|  | /* Generic associative array implementation. | 
|  | * | 
|  | * See Documentation/core-api/assoc_array.rst for information. | 
|  | * | 
|  | * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. | 
|  | * Written by David Howells (dhowells@redhat.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public Licence | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the Licence, or (at your option) any later version. | 
|  | */ | 
|  | //#define DEBUG | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/assoc_array_priv.h> | 
|  |  | 
|  | /* | 
|  | * Iterate over an associative array.  The caller must hold the RCU read lock | 
|  | * or better. | 
|  | */ | 
|  | static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, | 
|  | const struct assoc_array_ptr *stop, | 
|  | int (*iterator)(const void *leaf, | 
|  | void *iterator_data), | 
|  | void *iterator_data) | 
|  | { | 
|  | const struct assoc_array_shortcut *shortcut; | 
|  | const struct assoc_array_node *node; | 
|  | const struct assoc_array_ptr *cursor, *ptr, *parent; | 
|  | unsigned long has_meta; | 
|  | int slot, ret; | 
|  |  | 
|  | cursor = root; | 
|  |  | 
|  | begin_node: | 
|  | if (assoc_array_ptr_is_shortcut(cursor)) { | 
|  | /* Descend through a shortcut */ | 
|  | shortcut = assoc_array_ptr_to_shortcut(cursor); | 
|  | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ | 
|  | } | 
|  |  | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | slot = 0; | 
|  |  | 
|  | /* We perform two passes of each node. | 
|  | * | 
|  | * The first pass does all the leaves in this node.  This means we | 
|  | * don't miss any leaves if the node is split up by insertion whilst | 
|  | * we're iterating over the branches rooted here (we may, however, see | 
|  | * some leaves twice). | 
|  | */ | 
|  | has_meta = 0; | 
|  | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
|  | has_meta |= (unsigned long)ptr; | 
|  | if (ptr && assoc_array_ptr_is_leaf(ptr)) { | 
|  | /* We need a barrier between the read of the pointer, | 
|  | * which is supplied by the above READ_ONCE(). | 
|  | */ | 
|  | /* Invoke the callback */ | 
|  | ret = iterator(assoc_array_ptr_to_leaf(ptr), | 
|  | iterator_data); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The second pass attends to all the metadata pointers.  If we follow | 
|  | * one of these we may find that we don't come back here, but rather go | 
|  | * back to a replacement node with the leaves in a different layout. | 
|  | * | 
|  | * We are guaranteed to make progress, however, as the slot number for | 
|  | * a particular portion of the key space cannot change - and we | 
|  | * continue at the back pointer + 1. | 
|  | */ | 
|  | if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) | 
|  | goto finished_node; | 
|  | slot = 0; | 
|  |  | 
|  | continue_node: | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
|  | if (assoc_array_ptr_is_meta(ptr)) { | 
|  | cursor = ptr; | 
|  | goto begin_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | finished_node: | 
|  | /* Move up to the parent (may need to skip back over a shortcut) */ | 
|  | parent = READ_ONCE(node->back_pointer); /* Address dependency. */ | 
|  | slot = node->parent_slot; | 
|  | if (parent == stop) | 
|  | return 0; | 
|  |  | 
|  | if (assoc_array_ptr_is_shortcut(parent)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(parent); | 
|  | cursor = parent; | 
|  | parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ | 
|  | slot = shortcut->parent_slot; | 
|  | if (parent == stop) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Ascend to next slot in parent node */ | 
|  | cursor = parent; | 
|  | slot++; | 
|  | goto continue_node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_iterate - Pass all objects in the array to a callback | 
|  | * @array: The array to iterate over. | 
|  | * @iterator: The callback function. | 
|  | * @iterator_data: Private data for the callback function. | 
|  | * | 
|  | * Iterate over all the objects in an associative array.  Each one will be | 
|  | * presented to the iterator function. | 
|  | * | 
|  | * If the array is being modified concurrently with the iteration then it is | 
|  | * possible that some objects in the array will be passed to the iterator | 
|  | * callback more than once - though every object should be passed at least | 
|  | * once.  If this is undesirable then the caller must lock against modification | 
|  | * for the duration of this function. | 
|  | * | 
|  | * The function will return 0 if no objects were in the array or else it will | 
|  | * return the result of the last iterator function called.  Iteration stops | 
|  | * immediately if any call to the iteration function results in a non-zero | 
|  | * return. | 
|  | * | 
|  | * The caller should hold the RCU read lock or better if concurrent | 
|  | * modification is possible. | 
|  | */ | 
|  | int assoc_array_iterate(const struct assoc_array *array, | 
|  | int (*iterator)(const void *object, | 
|  | void *iterator_data), | 
|  | void *iterator_data) | 
|  | { | 
|  | struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ | 
|  |  | 
|  | if (!root) | 
|  | return 0; | 
|  | return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); | 
|  | } | 
|  |  | 
|  | enum assoc_array_walk_status { | 
|  | assoc_array_walk_tree_empty, | 
|  | assoc_array_walk_found_terminal_node, | 
|  | assoc_array_walk_found_wrong_shortcut, | 
|  | }; | 
|  |  | 
|  | struct assoc_array_walk_result { | 
|  | struct { | 
|  | struct assoc_array_node	*node;	/* Node in which leaf might be found */ | 
|  | int		level; | 
|  | int		slot; | 
|  | } terminal_node; | 
|  | struct { | 
|  | struct assoc_array_shortcut *shortcut; | 
|  | int		level; | 
|  | int		sc_level; | 
|  | unsigned long	sc_segments; | 
|  | unsigned long	dissimilarity; | 
|  | } wrong_shortcut; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Navigate through the internal tree looking for the closest node to the key. | 
|  | */ | 
|  | static enum assoc_array_walk_status | 
|  | assoc_array_walk(const struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops, | 
|  | const void *index_key, | 
|  | struct assoc_array_walk_result *result) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut; | 
|  | struct assoc_array_node *node; | 
|  | struct assoc_array_ptr *cursor, *ptr; | 
|  | unsigned long sc_segments, dissimilarity; | 
|  | unsigned long segments; | 
|  | int level, sc_level, next_sc_level; | 
|  | int slot; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | cursor = READ_ONCE(array->root);  /* Address dependency. */ | 
|  | if (!cursor) | 
|  | return assoc_array_walk_tree_empty; | 
|  |  | 
|  | level = 0; | 
|  |  | 
|  | /* Use segments from the key for the new leaf to navigate through the | 
|  | * internal tree, skipping through nodes and shortcuts that are on | 
|  | * route to the destination.  Eventually we'll come to a slot that is | 
|  | * either empty or contains a leaf at which point we've found a node in | 
|  | * which the leaf we're looking for might be found or into which it | 
|  | * should be inserted. | 
|  | */ | 
|  | jumped: | 
|  | segments = ops->get_key_chunk(index_key, level); | 
|  | pr_devel("segments[%d]: %lx\n", level, segments); | 
|  |  | 
|  | if (assoc_array_ptr_is_shortcut(cursor)) | 
|  | goto follow_shortcut; | 
|  |  | 
|  | consider_node: | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
|  | slot &= ASSOC_ARRAY_FAN_MASK; | 
|  | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
|  |  | 
|  | pr_devel("consider slot %x [ix=%d type=%lu]\n", | 
|  | slot, level, (unsigned long)ptr & 3); | 
|  |  | 
|  | if (!assoc_array_ptr_is_meta(ptr)) { | 
|  | /* The node doesn't have a node/shortcut pointer in the slot | 
|  | * corresponding to the index key that we have to follow. | 
|  | */ | 
|  | result->terminal_node.node = node; | 
|  | result->terminal_node.level = level; | 
|  | result->terminal_node.slot = slot; | 
|  | pr_devel("<--%s() = terminal_node\n", __func__); | 
|  | return assoc_array_walk_found_terminal_node; | 
|  | } | 
|  |  | 
|  | if (assoc_array_ptr_is_node(ptr)) { | 
|  | /* There is a pointer to a node in the slot corresponding to | 
|  | * this index key segment, so we need to follow it. | 
|  | */ | 
|  | cursor = ptr; | 
|  | level += ASSOC_ARRAY_LEVEL_STEP; | 
|  | if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) | 
|  | goto consider_node; | 
|  | goto jumped; | 
|  | } | 
|  |  | 
|  | /* There is a shortcut in the slot corresponding to the index key | 
|  | * segment.  We follow the shortcut if its partial index key matches | 
|  | * this leaf's.  Otherwise we need to split the shortcut. | 
|  | */ | 
|  | cursor = ptr; | 
|  | follow_shortcut: | 
|  | shortcut = assoc_array_ptr_to_shortcut(cursor); | 
|  | pr_devel("shortcut to %d\n", shortcut->skip_to_level); | 
|  | sc_level = level + ASSOC_ARRAY_LEVEL_STEP; | 
|  | BUG_ON(sc_level > shortcut->skip_to_level); | 
|  |  | 
|  | do { | 
|  | /* Check the leaf against the shortcut's index key a word at a | 
|  | * time, trimming the final word (the shortcut stores the index | 
|  | * key completely from the root to the shortcut's target). | 
|  | */ | 
|  | if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) | 
|  | segments = ops->get_key_chunk(index_key, sc_level); | 
|  |  | 
|  | sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; | 
|  | dissimilarity = segments ^ sc_segments; | 
|  |  | 
|  | if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { | 
|  | /* Trim segments that are beyond the shortcut */ | 
|  | int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
|  | dissimilarity &= ~(ULONG_MAX << shift); | 
|  | next_sc_level = shortcut->skip_to_level; | 
|  | } else { | 
|  | next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; | 
|  | next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  | } | 
|  |  | 
|  | if (dissimilarity != 0) { | 
|  | /* This shortcut points elsewhere */ | 
|  | result->wrong_shortcut.shortcut = shortcut; | 
|  | result->wrong_shortcut.level = level; | 
|  | result->wrong_shortcut.sc_level = sc_level; | 
|  | result->wrong_shortcut.sc_segments = sc_segments; | 
|  | result->wrong_shortcut.dissimilarity = dissimilarity; | 
|  | return assoc_array_walk_found_wrong_shortcut; | 
|  | } | 
|  |  | 
|  | sc_level = next_sc_level; | 
|  | } while (sc_level < shortcut->skip_to_level); | 
|  |  | 
|  | /* The shortcut matches the leaf's index to this point. */ | 
|  | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ | 
|  | if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { | 
|  | level = sc_level; | 
|  | goto jumped; | 
|  | } else { | 
|  | level = sc_level; | 
|  | goto consider_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_find - Find an object by index key | 
|  | * @array: The associative array to search. | 
|  | * @ops: The operations to use. | 
|  | * @index_key: The key to the object. | 
|  | * | 
|  | * Find an object in an associative array by walking through the internal tree | 
|  | * to the node that should contain the object and then searching the leaves | 
|  | * there.  NULL is returned if the requested object was not found in the array. | 
|  | * | 
|  | * The caller must hold the RCU read lock or better. | 
|  | */ | 
|  | void *assoc_array_find(const struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops, | 
|  | const void *index_key) | 
|  | { | 
|  | struct assoc_array_walk_result result; | 
|  | const struct assoc_array_node *node; | 
|  | const struct assoc_array_ptr *ptr; | 
|  | const void *leaf; | 
|  | int slot; | 
|  |  | 
|  | if (assoc_array_walk(array, ops, index_key, &result) != | 
|  | assoc_array_walk_found_terminal_node) | 
|  | return NULL; | 
|  |  | 
|  | node = result.terminal_node.node; | 
|  |  | 
|  | /* If the target key is available to us, it's has to be pointed to by | 
|  | * the terminal node. | 
|  | */ | 
|  | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ | 
|  | if (ptr && assoc_array_ptr_is_leaf(ptr)) { | 
|  | /* We need a barrier between the read of the pointer | 
|  | * and dereferencing the pointer - but only if we are | 
|  | * actually going to dereference it. | 
|  | */ | 
|  | leaf = assoc_array_ptr_to_leaf(ptr); | 
|  | if (ops->compare_object(leaf, index_key)) | 
|  | return (void *)leaf; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Destructively iterate over an associative array.  The caller must prevent | 
|  | * other simultaneous accesses. | 
|  | */ | 
|  | static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, | 
|  | const struct assoc_array_ops *ops) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut; | 
|  | struct assoc_array_node *node; | 
|  | struct assoc_array_ptr *cursor, *parent = NULL; | 
|  | int slot = -1; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | cursor = root; | 
|  | if (!cursor) { | 
|  | pr_devel("empty\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | move_to_meta: | 
|  | if (assoc_array_ptr_is_shortcut(cursor)) { | 
|  | /* Descend through a shortcut */ | 
|  | pr_devel("[%d] shortcut\n", slot); | 
|  | BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); | 
|  | shortcut = assoc_array_ptr_to_shortcut(cursor); | 
|  | BUG_ON(shortcut->back_pointer != parent); | 
|  | BUG_ON(slot != -1 && shortcut->parent_slot != slot); | 
|  | parent = cursor; | 
|  | cursor = shortcut->next_node; | 
|  | slot = -1; | 
|  | BUG_ON(!assoc_array_ptr_is_node(cursor)); | 
|  | } | 
|  |  | 
|  | pr_devel("[%d] node\n", slot); | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | BUG_ON(node->back_pointer != parent); | 
|  | BUG_ON(slot != -1 && node->parent_slot != slot); | 
|  | slot = 0; | 
|  |  | 
|  | continue_node: | 
|  | pr_devel("Node %p [back=%p]\n", node, node->back_pointer); | 
|  | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | struct assoc_array_ptr *ptr = node->slots[slot]; | 
|  | if (!ptr) | 
|  | continue; | 
|  | if (assoc_array_ptr_is_meta(ptr)) { | 
|  | parent = cursor; | 
|  | cursor = ptr; | 
|  | goto move_to_meta; | 
|  | } | 
|  |  | 
|  | if (ops) { | 
|  | pr_devel("[%d] free leaf\n", slot); | 
|  | ops->free_object(assoc_array_ptr_to_leaf(ptr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | parent = node->back_pointer; | 
|  | slot = node->parent_slot; | 
|  | pr_devel("free node\n"); | 
|  | kfree(node); | 
|  | if (!parent) | 
|  | return; /* Done */ | 
|  |  | 
|  | /* Move back up to the parent (may need to free a shortcut on | 
|  | * the way up) */ | 
|  | if (assoc_array_ptr_is_shortcut(parent)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(parent); | 
|  | BUG_ON(shortcut->next_node != cursor); | 
|  | cursor = parent; | 
|  | parent = shortcut->back_pointer; | 
|  | slot = shortcut->parent_slot; | 
|  | pr_devel("free shortcut\n"); | 
|  | kfree(shortcut); | 
|  | if (!parent) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!assoc_array_ptr_is_node(parent)); | 
|  | } | 
|  |  | 
|  | /* Ascend to next slot in parent node */ | 
|  | pr_devel("ascend to %p[%d]\n", parent, slot); | 
|  | cursor = parent; | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | slot++; | 
|  | goto continue_node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_destroy - Destroy an associative array | 
|  | * @array: The array to destroy. | 
|  | * @ops: The operations to use. | 
|  | * | 
|  | * Discard all metadata and free all objects in an associative array.  The | 
|  | * array will be empty and ready to use again upon completion.  This function | 
|  | * cannot fail. | 
|  | * | 
|  | * The caller must prevent all other accesses whilst this takes place as no | 
|  | * attempt is made to adjust pointers gracefully to permit RCU readlock-holding | 
|  | * accesses to continue.  On the other hand, no memory allocation is required. | 
|  | */ | 
|  | void assoc_array_destroy(struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops) | 
|  | { | 
|  | assoc_array_destroy_subtree(array->root, ops); | 
|  | array->root = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle insertion into an empty tree. | 
|  | */ | 
|  | static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) | 
|  | { | 
|  | struct assoc_array_node *new_n0; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n0) | 
|  | return false; | 
|  |  | 
|  | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
|  | edit->leaf_p = &new_n0->slots[0]; | 
|  | edit->adjust_count_on = new_n0; | 
|  | edit->set[0].ptr = &edit->array->root; | 
|  | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
|  |  | 
|  | pr_devel("<--%s() = ok [no root]\n", __func__); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle insertion into a terminal node. | 
|  | */ | 
|  | static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, | 
|  | const struct assoc_array_ops *ops, | 
|  | const void *index_key, | 
|  | struct assoc_array_walk_result *result) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut, *new_s0; | 
|  | struct assoc_array_node *node, *new_n0, *new_n1, *side; | 
|  | struct assoc_array_ptr *ptr; | 
|  | unsigned long dissimilarity, base_seg, blank; | 
|  | size_t keylen; | 
|  | bool have_meta; | 
|  | int level, diff; | 
|  | int slot, next_slot, free_slot, i, j; | 
|  |  | 
|  | node	= result->terminal_node.node; | 
|  | level	= result->terminal_node.level; | 
|  | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | /* We arrived at a node which doesn't have an onward node or shortcut | 
|  | * pointer that we have to follow.  This means that (a) the leaf we | 
|  | * want must go here (either by insertion or replacement) or (b) we | 
|  | * need to split this node and insert in one of the fragments. | 
|  | */ | 
|  | free_slot = -1; | 
|  |  | 
|  | /* Firstly, we have to check the leaves in this node to see if there's | 
|  | * a matching one we should replace in place. | 
|  | */ | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | ptr = node->slots[i]; | 
|  | if (!ptr) { | 
|  | free_slot = i; | 
|  | continue; | 
|  | } | 
|  | if (assoc_array_ptr_is_leaf(ptr) && | 
|  | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | 
|  | index_key)) { | 
|  | pr_devel("replace in slot %d\n", i); | 
|  | edit->leaf_p = &node->slots[i]; | 
|  | edit->dead_leaf = node->slots[i]; | 
|  | pr_devel("<--%s() = ok [replace]\n", __func__); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is a free slot in this node then we can just insert the | 
|  | * leaf here. | 
|  | */ | 
|  | if (free_slot >= 0) { | 
|  | pr_devel("insert in free slot %d\n", free_slot); | 
|  | edit->leaf_p = &node->slots[free_slot]; | 
|  | edit->adjust_count_on = node; | 
|  | pr_devel("<--%s() = ok [insert]\n", __func__); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* The node has no spare slots - so we're either going to have to split | 
|  | * it or insert another node before it. | 
|  | * | 
|  | * Whatever, we're going to need at least two new nodes - so allocate | 
|  | * those now.  We may also need a new shortcut, but we deal with that | 
|  | * when we need it. | 
|  | */ | 
|  | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n0) | 
|  | return false; | 
|  | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
|  | new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n1) | 
|  | return false; | 
|  | edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); | 
|  |  | 
|  | /* We need to find out how similar the leaves are. */ | 
|  | pr_devel("no spare slots\n"); | 
|  | have_meta = false; | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | ptr = node->slots[i]; | 
|  | if (assoc_array_ptr_is_meta(ptr)) { | 
|  | edit->segment_cache[i] = 0xff; | 
|  | have_meta = true; | 
|  | continue; | 
|  | } | 
|  | base_seg = ops->get_object_key_chunk( | 
|  | assoc_array_ptr_to_leaf(ptr), level); | 
|  | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
|  | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
|  | } | 
|  |  | 
|  | if (have_meta) { | 
|  | pr_devel("have meta\n"); | 
|  | goto split_node; | 
|  | } | 
|  |  | 
|  | /* The node contains only leaves */ | 
|  | dissimilarity = 0; | 
|  | base_seg = edit->segment_cache[0]; | 
|  | for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) | 
|  | dissimilarity |= edit->segment_cache[i] ^ base_seg; | 
|  |  | 
|  | pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); | 
|  |  | 
|  | if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { | 
|  | /* The old leaves all cluster in the same slot.  We will need | 
|  | * to insert a shortcut if the new node wants to cluster with them. | 
|  | */ | 
|  | if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) | 
|  | goto all_leaves_cluster_together; | 
|  |  | 
|  | /* Otherwise all the old leaves cluster in the same slot, but | 
|  | * the new leaf wants to go into a different slot - so we | 
|  | * create a new node (n0) to hold the new leaf and a pointer to | 
|  | * a new node (n1) holding all the old leaves. | 
|  | * | 
|  | * This can be done by falling through to the node splitting | 
|  | * path. | 
|  | */ | 
|  | pr_devel("present leaves cluster but not new leaf\n"); | 
|  | } | 
|  |  | 
|  | split_node: | 
|  | pr_devel("split node\n"); | 
|  |  | 
|  | /* We need to split the current node.  The node must contain anything | 
|  | * from a single leaf (in the one leaf case, this leaf will cluster | 
|  | * with the new leaf) and the rest meta-pointers, to all leaves, some | 
|  | * of which may cluster. | 
|  | * | 
|  | * It won't contain the case in which all the current leaves plus the | 
|  | * new leaves want to cluster in the same slot. | 
|  | * | 
|  | * We need to expel at least two leaves out of a set consisting of the | 
|  | * leaves in the node and the new leaf.  The current meta pointers can | 
|  | * just be copied as they shouldn't cluster with any of the leaves. | 
|  | * | 
|  | * We need a new node (n0) to replace the current one and a new node to | 
|  | * take the expelled nodes (n1). | 
|  | */ | 
|  | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
|  | new_n0->back_pointer = node->back_pointer; | 
|  | new_n0->parent_slot = node->parent_slot; | 
|  | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
|  | new_n1->parent_slot = -1; /* Need to calculate this */ | 
|  |  | 
|  | do_split_node: | 
|  | pr_devel("do_split_node\n"); | 
|  |  | 
|  | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | 
|  | new_n1->nr_leaves_on_branch = 0; | 
|  |  | 
|  | /* Begin by finding two matching leaves.  There have to be at least two | 
|  | * that match - even if there are meta pointers - because any leaf that | 
|  | * would match a slot with a meta pointer in it must be somewhere | 
|  | * behind that meta pointer and cannot be here.  Further, given N | 
|  | * remaining leaf slots, we now have N+1 leaves to go in them. | 
|  | */ | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | slot = edit->segment_cache[i]; | 
|  | if (slot != 0xff) | 
|  | for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) | 
|  | if (edit->segment_cache[j] == slot) | 
|  | goto found_slot_for_multiple_occupancy; | 
|  | } | 
|  | found_slot_for_multiple_occupancy: | 
|  | pr_devel("same slot: %x %x [%02x]\n", i, j, slot); | 
|  | BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); | 
|  | BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); | 
|  | BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); | 
|  |  | 
|  | new_n1->parent_slot = slot; | 
|  |  | 
|  | /* Metadata pointers cannot change slot */ | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) | 
|  | if (assoc_array_ptr_is_meta(node->slots[i])) | 
|  | new_n0->slots[i] = node->slots[i]; | 
|  | else | 
|  | new_n0->slots[i] = NULL; | 
|  | BUG_ON(new_n0->slots[slot] != NULL); | 
|  | new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); | 
|  |  | 
|  | /* Filter the leaf pointers between the new nodes */ | 
|  | free_slot = -1; | 
|  | next_slot = 0; | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | if (assoc_array_ptr_is_meta(node->slots[i])) | 
|  | continue; | 
|  | if (edit->segment_cache[i] == slot) { | 
|  | new_n1->slots[next_slot++] = node->slots[i]; | 
|  | new_n1->nr_leaves_on_branch++; | 
|  | } else { | 
|  | do { | 
|  | free_slot++; | 
|  | } while (new_n0->slots[free_slot] != NULL); | 
|  | new_n0->slots[free_slot] = node->slots[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); | 
|  |  | 
|  | if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { | 
|  | do { | 
|  | free_slot++; | 
|  | } while (new_n0->slots[free_slot] != NULL); | 
|  | edit->leaf_p = &new_n0->slots[free_slot]; | 
|  | edit->adjust_count_on = new_n0; | 
|  | } else { | 
|  | edit->leaf_p = &new_n1->slots[next_slot++]; | 
|  | edit->adjust_count_on = new_n1; | 
|  | } | 
|  |  | 
|  | BUG_ON(next_slot <= 1); | 
|  |  | 
|  | edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | if (edit->segment_cache[i] == 0xff) { | 
|  | ptr = node->slots[i]; | 
|  | BUG_ON(assoc_array_ptr_is_leaf(ptr)); | 
|  | if (assoc_array_ptr_is_node(ptr)) { | 
|  | side = assoc_array_ptr_to_node(ptr); | 
|  | edit->set_backpointers[i] = &side->back_pointer; | 
|  | } else { | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | edit->set_backpointers[i] = &shortcut->back_pointer; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ptr = node->back_pointer; | 
|  | if (!ptr) | 
|  | edit->set[0].ptr = &edit->array->root; | 
|  | else if (assoc_array_ptr_is_node(ptr)) | 
|  | edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; | 
|  | else | 
|  | edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; | 
|  | edit->excised_meta[0] = assoc_array_node_to_ptr(node); | 
|  | pr_devel("<--%s() = ok [split node]\n", __func__); | 
|  | return true; | 
|  |  | 
|  | all_leaves_cluster_together: | 
|  | /* All the leaves, new and old, want to cluster together in this node | 
|  | * in the same slot, so we have to replace this node with a shortcut to | 
|  | * skip over the identical parts of the key and then place a pair of | 
|  | * nodes, one inside the other, at the end of the shortcut and | 
|  | * distribute the keys between them. | 
|  | * | 
|  | * Firstly we need to work out where the leaves start diverging as a | 
|  | * bit position into their keys so that we know how big the shortcut | 
|  | * needs to be. | 
|  | * | 
|  | * We only need to make a single pass of N of the N+1 leaves because if | 
|  | * any keys differ between themselves at bit X then at least one of | 
|  | * them must also differ with the base key at bit X or before. | 
|  | */ | 
|  | pr_devel("all leaves cluster together\n"); | 
|  | diff = INT_MAX; | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), | 
|  | index_key); | 
|  | if (x < diff) { | 
|  | BUG_ON(x < 0); | 
|  | diff = x; | 
|  | } | 
|  | } | 
|  | BUG_ON(diff == INT_MAX); | 
|  | BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); | 
|  |  | 
|  | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
|  |  | 
|  | new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
|  | keylen * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!new_s0) | 
|  | return false; | 
|  | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); | 
|  |  | 
|  | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | 
|  | new_s0->back_pointer = node->back_pointer; | 
|  | new_s0->parent_slot = node->parent_slot; | 
|  | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | 
|  | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | 
|  | new_n0->parent_slot = 0; | 
|  | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
|  | new_n1->parent_slot = -1; /* Need to calculate this */ | 
|  |  | 
|  | new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; | 
|  | pr_devel("skip_to_level = %d [diff %d]\n", level, diff); | 
|  | BUG_ON(level <= 0); | 
|  |  | 
|  | for (i = 0; i < keylen; i++) | 
|  | new_s0->index_key[i] = | 
|  | ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  |  | 
|  | if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) { | 
|  | blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
|  | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); | 
|  | new_s0->index_key[keylen - 1] &= ~blank; | 
|  | } | 
|  |  | 
|  | /* This now reduces to a node splitting exercise for which we'll need | 
|  | * to regenerate the disparity table. | 
|  | */ | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | ptr = node->slots[i]; | 
|  | base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), | 
|  | level); | 
|  | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
|  | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
|  | } | 
|  |  | 
|  | base_seg = ops->get_key_chunk(index_key, level); | 
|  | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | 
|  | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; | 
|  | goto do_split_node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle insertion into the middle of a shortcut. | 
|  | */ | 
|  | static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, | 
|  | const struct assoc_array_ops *ops, | 
|  | struct assoc_array_walk_result *result) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; | 
|  | struct assoc_array_node *node, *new_n0, *side; | 
|  | unsigned long sc_segments, dissimilarity, blank; | 
|  | size_t keylen; | 
|  | int level, sc_level, diff; | 
|  | int sc_slot; | 
|  |  | 
|  | shortcut	= result->wrong_shortcut.shortcut; | 
|  | level		= result->wrong_shortcut.level; | 
|  | sc_level	= result->wrong_shortcut.sc_level; | 
|  | sc_segments	= result->wrong_shortcut.sc_segments; | 
|  | dissimilarity	= result->wrong_shortcut.dissimilarity; | 
|  |  | 
|  | pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", | 
|  | __func__, level, dissimilarity, sc_level); | 
|  |  | 
|  | /* We need to split a shortcut and insert a node between the two | 
|  | * pieces.  Zero-length pieces will be dispensed with entirely. | 
|  | * | 
|  | * First of all, we need to find out in which level the first | 
|  | * difference was. | 
|  | */ | 
|  | diff = __ffs(dissimilarity); | 
|  | diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; | 
|  | diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; | 
|  | pr_devel("diff=%d\n", diff); | 
|  |  | 
|  | if (!shortcut->back_pointer) { | 
|  | edit->set[0].ptr = &edit->array->root; | 
|  | } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { | 
|  | node = assoc_array_ptr_to_node(shortcut->back_pointer); | 
|  | edit->set[0].ptr = &node->slots[shortcut->parent_slot]; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); | 
|  |  | 
|  | /* Create a new node now since we're going to need it anyway */ | 
|  | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n0) | 
|  | return false; | 
|  | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
|  | edit->adjust_count_on = new_n0; | 
|  |  | 
|  | /* Insert a new shortcut before the new node if this segment isn't of | 
|  | * zero length - otherwise we just connect the new node directly to the | 
|  | * parent. | 
|  | */ | 
|  | level += ASSOC_ARRAY_LEVEL_STEP; | 
|  | if (diff > level) { | 
|  | pr_devel("pre-shortcut %d...%d\n", level, diff); | 
|  | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
|  |  | 
|  | new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
|  | keylen * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!new_s0) | 
|  | return false; | 
|  | edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); | 
|  | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | 
|  | new_s0->back_pointer = shortcut->back_pointer; | 
|  | new_s0->parent_slot = shortcut->parent_slot; | 
|  | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | 
|  | new_s0->skip_to_level = diff; | 
|  |  | 
|  | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | 
|  | new_n0->parent_slot = 0; | 
|  |  | 
|  | memcpy(new_s0->index_key, shortcut->index_key, | 
|  | keylen * sizeof(unsigned long)); | 
|  |  | 
|  | blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
|  | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); | 
|  | new_s0->index_key[keylen - 1] &= ~blank; | 
|  | } else { | 
|  | pr_devel("no pre-shortcut\n"); | 
|  | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | 
|  | new_n0->back_pointer = shortcut->back_pointer; | 
|  | new_n0->parent_slot = shortcut->parent_slot; | 
|  | } | 
|  |  | 
|  | side = assoc_array_ptr_to_node(shortcut->next_node); | 
|  | new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; | 
|  |  | 
|  | /* We need to know which slot in the new node is going to take a | 
|  | * metadata pointer. | 
|  | */ | 
|  | sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | 
|  | sc_slot &= ASSOC_ARRAY_FAN_MASK; | 
|  |  | 
|  | pr_devel("new slot %lx >> %d -> %d\n", | 
|  | sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); | 
|  |  | 
|  | /* Determine whether we need to follow the new node with a replacement | 
|  | * for the current shortcut.  We could in theory reuse the current | 
|  | * shortcut if its parent slot number doesn't change - but that's a | 
|  | * 1-in-16 chance so not worth expending the code upon. | 
|  | */ | 
|  | level = diff + ASSOC_ARRAY_LEVEL_STEP; | 
|  | if (level < shortcut->skip_to_level) { | 
|  | pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); | 
|  | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
|  |  | 
|  | new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + | 
|  | keylen * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!new_s1) | 
|  | return false; | 
|  | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); | 
|  |  | 
|  | new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); | 
|  | new_s1->parent_slot = sc_slot; | 
|  | new_s1->next_node = shortcut->next_node; | 
|  | new_s1->skip_to_level = shortcut->skip_to_level; | 
|  |  | 
|  | new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); | 
|  |  | 
|  | memcpy(new_s1->index_key, shortcut->index_key, | 
|  | keylen * sizeof(unsigned long)); | 
|  |  | 
|  | edit->set[1].ptr = &side->back_pointer; | 
|  | edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); | 
|  | } else { | 
|  | pr_devel("no post-shortcut\n"); | 
|  |  | 
|  | /* We don't have to replace the pointed-to node as long as we | 
|  | * use memory barriers to make sure the parent slot number is | 
|  | * changed before the back pointer (the parent slot number is | 
|  | * irrelevant to the old parent shortcut). | 
|  | */ | 
|  | new_n0->slots[sc_slot] = shortcut->next_node; | 
|  | edit->set_parent_slot[0].p = &side->parent_slot; | 
|  | edit->set_parent_slot[0].to = sc_slot; | 
|  | edit->set[1].ptr = &side->back_pointer; | 
|  | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | 
|  | } | 
|  |  | 
|  | /* Install the new leaf in a spare slot in the new node. */ | 
|  | if (sc_slot == 0) | 
|  | edit->leaf_p = &new_n0->slots[1]; | 
|  | else | 
|  | edit->leaf_p = &new_n0->slots[0]; | 
|  |  | 
|  | pr_devel("<--%s() = ok [split shortcut]\n", __func__); | 
|  | return edit; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_insert - Script insertion of an object into an associative array | 
|  | * @array: The array to insert into. | 
|  | * @ops: The operations to use. | 
|  | * @index_key: The key to insert at. | 
|  | * @object: The object to insert. | 
|  | * | 
|  | * Precalculate and preallocate a script for the insertion or replacement of an | 
|  | * object in an associative array.  This results in an edit script that can | 
|  | * either be applied or cancelled. | 
|  | * | 
|  | * The function returns a pointer to an edit script or -ENOMEM. | 
|  | * | 
|  | * The caller should lock against other modifications and must continue to hold | 
|  | * the lock until assoc_array_apply_edit() has been called. | 
|  | * | 
|  | * Accesses to the tree may take place concurrently with this function, | 
|  | * provided they hold the RCU read lock. | 
|  | */ | 
|  | struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops, | 
|  | const void *index_key, | 
|  | void *object) | 
|  | { | 
|  | struct assoc_array_walk_result result; | 
|  | struct assoc_array_edit *edit; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | /* The leaf pointer we're given must not have the bottom bit set as we | 
|  | * use those for type-marking the pointer.  NULL pointers are also not | 
|  | * allowed as they indicate an empty slot but we have to allow them | 
|  | * here as they can be updated later. | 
|  | */ | 
|  | BUG_ON(assoc_array_ptr_is_meta(object)); | 
|  |  | 
|  | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
|  | if (!edit) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | edit->array = array; | 
|  | edit->ops = ops; | 
|  | edit->leaf = assoc_array_leaf_to_ptr(object); | 
|  | edit->adjust_count_by = 1; | 
|  |  | 
|  | switch (assoc_array_walk(array, ops, index_key, &result)) { | 
|  | case assoc_array_walk_tree_empty: | 
|  | /* Allocate a root node if there isn't one yet */ | 
|  | if (!assoc_array_insert_in_empty_tree(edit)) | 
|  | goto enomem; | 
|  | return edit; | 
|  |  | 
|  | case assoc_array_walk_found_terminal_node: | 
|  | /* We found a node that doesn't have a node/shortcut pointer in | 
|  | * the slot corresponding to the index key that we have to | 
|  | * follow. | 
|  | */ | 
|  | if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, | 
|  | &result)) | 
|  | goto enomem; | 
|  | return edit; | 
|  |  | 
|  | case assoc_array_walk_found_wrong_shortcut: | 
|  | /* We found a shortcut that didn't match our key in a slot we | 
|  | * needed to follow. | 
|  | */ | 
|  | if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) | 
|  | goto enomem; | 
|  | return edit; | 
|  | } | 
|  |  | 
|  | enomem: | 
|  | /* Clean up after an out of memory error */ | 
|  | pr_devel("enomem\n"); | 
|  | assoc_array_cancel_edit(edit); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_insert_set_object - Set the new object pointer in an edit script | 
|  | * @edit: The edit script to modify. | 
|  | * @object: The object pointer to set. | 
|  | * | 
|  | * Change the object to be inserted in an edit script.  The object pointed to | 
|  | * by the old object is not freed.  This must be done prior to applying the | 
|  | * script. | 
|  | */ | 
|  | void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) | 
|  | { | 
|  | BUG_ON(!object); | 
|  | edit->leaf = assoc_array_leaf_to_ptr(object); | 
|  | } | 
|  |  | 
|  | struct assoc_array_delete_collapse_context { | 
|  | struct assoc_array_node	*node; | 
|  | const void		*skip_leaf; | 
|  | int			slot; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Subtree collapse to node iterator. | 
|  | */ | 
|  | static int assoc_array_delete_collapse_iterator(const void *leaf, | 
|  | void *iterator_data) | 
|  | { | 
|  | struct assoc_array_delete_collapse_context *collapse = iterator_data; | 
|  |  | 
|  | if (leaf == collapse->skip_leaf) | 
|  | return 0; | 
|  |  | 
|  | BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); | 
|  |  | 
|  | collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_delete - Script deletion of an object from an associative array | 
|  | * @array: The array to search. | 
|  | * @ops: The operations to use. | 
|  | * @index_key: The key to the object. | 
|  | * | 
|  | * Precalculate and preallocate a script for the deletion of an object from an | 
|  | * associative array.  This results in an edit script that can either be | 
|  | * applied or cancelled. | 
|  | * | 
|  | * The function returns a pointer to an edit script if the object was found, | 
|  | * NULL if the object was not found or -ENOMEM. | 
|  | * | 
|  | * The caller should lock against other modifications and must continue to hold | 
|  | * the lock until assoc_array_apply_edit() has been called. | 
|  | * | 
|  | * Accesses to the tree may take place concurrently with this function, | 
|  | * provided they hold the RCU read lock. | 
|  | */ | 
|  | struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops, | 
|  | const void *index_key) | 
|  | { | 
|  | struct assoc_array_delete_collapse_context collapse; | 
|  | struct assoc_array_walk_result result; | 
|  | struct assoc_array_node *node, *new_n0; | 
|  | struct assoc_array_edit *edit; | 
|  | struct assoc_array_ptr *ptr; | 
|  | bool has_meta; | 
|  | int slot, i; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
|  | if (!edit) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | edit->array = array; | 
|  | edit->ops = ops; | 
|  | edit->adjust_count_by = -1; | 
|  |  | 
|  | switch (assoc_array_walk(array, ops, index_key, &result)) { | 
|  | case assoc_array_walk_found_terminal_node: | 
|  | /* We found a node that should contain the leaf we've been | 
|  | * asked to remove - *if* it's in the tree. | 
|  | */ | 
|  | pr_devel("terminal_node\n"); | 
|  | node = result.terminal_node.node; | 
|  |  | 
|  | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = node->slots[slot]; | 
|  | if (ptr && | 
|  | assoc_array_ptr_is_leaf(ptr) && | 
|  | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | 
|  | index_key)) | 
|  | goto found_leaf; | 
|  | } | 
|  | case assoc_array_walk_tree_empty: | 
|  | case assoc_array_walk_found_wrong_shortcut: | 
|  | default: | 
|  | assoc_array_cancel_edit(edit); | 
|  | pr_devel("not found\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | found_leaf: | 
|  | BUG_ON(array->nr_leaves_on_tree <= 0); | 
|  |  | 
|  | /* In the simplest form of deletion we just clear the slot and release | 
|  | * the leaf after a suitable interval. | 
|  | */ | 
|  | edit->dead_leaf = node->slots[slot]; | 
|  | edit->set[0].ptr = &node->slots[slot]; | 
|  | edit->set[0].to = NULL; | 
|  | edit->adjust_count_on = node; | 
|  |  | 
|  | /* If that concludes erasure of the last leaf, then delete the entire | 
|  | * internal array. | 
|  | */ | 
|  | if (array->nr_leaves_on_tree == 1) { | 
|  | edit->set[1].ptr = &array->root; | 
|  | edit->set[1].to = NULL; | 
|  | edit->adjust_count_on = NULL; | 
|  | edit->excised_subtree = array->root; | 
|  | pr_devel("all gone\n"); | 
|  | return edit; | 
|  | } | 
|  |  | 
|  | /* However, we'd also like to clear up some metadata blocks if we | 
|  | * possibly can. | 
|  | * | 
|  | * We go for a simple algorithm of: if this node has FAN_OUT or fewer | 
|  | * leaves in it, then attempt to collapse it - and attempt to | 
|  | * recursively collapse up the tree. | 
|  | * | 
|  | * We could also try and collapse in partially filled subtrees to take | 
|  | * up space in this node. | 
|  | */ | 
|  | if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | 
|  | struct assoc_array_node *parent, *grandparent; | 
|  | struct assoc_array_ptr *ptr; | 
|  |  | 
|  | /* First of all, we need to know if this node has metadata so | 
|  | * that we don't try collapsing if all the leaves are already | 
|  | * here. | 
|  | */ | 
|  | has_meta = false; | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | ptr = node->slots[i]; | 
|  | if (assoc_array_ptr_is_meta(ptr)) { | 
|  | has_meta = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_devel("leaves: %ld [m=%d]\n", | 
|  | node->nr_leaves_on_branch - 1, has_meta); | 
|  |  | 
|  | /* Look further up the tree to see if we can collapse this node | 
|  | * into a more proximal node too. | 
|  | */ | 
|  | parent = node; | 
|  | collapse_up: | 
|  | pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); | 
|  |  | 
|  | ptr = parent->back_pointer; | 
|  | if (!ptr) | 
|  | goto do_collapse; | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); | 
|  | ptr = s->back_pointer; | 
|  | if (!ptr) | 
|  | goto do_collapse; | 
|  | } | 
|  |  | 
|  | grandparent = assoc_array_ptr_to_node(ptr); | 
|  | if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | 
|  | parent = grandparent; | 
|  | goto collapse_up; | 
|  | } | 
|  |  | 
|  | do_collapse: | 
|  | /* There's no point collapsing if the original node has no meta | 
|  | * pointers to discard and if we didn't merge into one of that | 
|  | * node's ancestry. | 
|  | */ | 
|  | if (has_meta || parent != node) { | 
|  | node = parent; | 
|  |  | 
|  | /* Create a new node to collapse into */ | 
|  | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n0) | 
|  | goto enomem; | 
|  | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | 
|  |  | 
|  | new_n0->back_pointer = node->back_pointer; | 
|  | new_n0->parent_slot = node->parent_slot; | 
|  | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | 
|  | edit->adjust_count_on = new_n0; | 
|  |  | 
|  | collapse.node = new_n0; | 
|  | collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); | 
|  | collapse.slot = 0; | 
|  | assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), | 
|  | node->back_pointer, | 
|  | assoc_array_delete_collapse_iterator, | 
|  | &collapse); | 
|  | pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); | 
|  | BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); | 
|  |  | 
|  | if (!node->back_pointer) { | 
|  | edit->set[1].ptr = &array->root; | 
|  | } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { | 
|  | BUG(); | 
|  | } else if (assoc_array_ptr_is_node(node->back_pointer)) { | 
|  | struct assoc_array_node *p = | 
|  | assoc_array_ptr_to_node(node->back_pointer); | 
|  | edit->set[1].ptr = &p->slots[node->parent_slot]; | 
|  | } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { | 
|  | struct assoc_array_shortcut *s = | 
|  | assoc_array_ptr_to_shortcut(node->back_pointer); | 
|  | edit->set[1].ptr = &s->next_node; | 
|  | } | 
|  | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | 
|  | edit->excised_subtree = assoc_array_node_to_ptr(node); | 
|  | } | 
|  | } | 
|  |  | 
|  | return edit; | 
|  |  | 
|  | enomem: | 
|  | /* Clean up after an out of memory error */ | 
|  | pr_devel("enomem\n"); | 
|  | assoc_array_cancel_edit(edit); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_clear - Script deletion of all objects from an associative array | 
|  | * @array: The array to clear. | 
|  | * @ops: The operations to use. | 
|  | * | 
|  | * Precalculate and preallocate a script for the deletion of all the objects | 
|  | * from an associative array.  This results in an edit script that can either | 
|  | * be applied or cancelled. | 
|  | * | 
|  | * The function returns a pointer to an edit script if there are objects to be | 
|  | * deleted, NULL if there are no objects in the array or -ENOMEM. | 
|  | * | 
|  | * The caller should lock against other modifications and must continue to hold | 
|  | * the lock until assoc_array_apply_edit() has been called. | 
|  | * | 
|  | * Accesses to the tree may take place concurrently with this function, | 
|  | * provided they hold the RCU read lock. | 
|  | */ | 
|  | struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops) | 
|  | { | 
|  | struct assoc_array_edit *edit; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | if (!array->root) | 
|  | return NULL; | 
|  |  | 
|  | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
|  | if (!edit) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | edit->array = array; | 
|  | edit->ops = ops; | 
|  | edit->set[1].ptr = &array->root; | 
|  | edit->set[1].to = NULL; | 
|  | edit->excised_subtree = array->root; | 
|  | edit->ops_for_excised_subtree = ops; | 
|  | pr_devel("all gone\n"); | 
|  | return edit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the deferred destruction after an applied edit. | 
|  | */ | 
|  | static void assoc_array_rcu_cleanup(struct rcu_head *head) | 
|  | { | 
|  | struct assoc_array_edit *edit = | 
|  | container_of(head, struct assoc_array_edit, rcu); | 
|  | int i; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | if (edit->dead_leaf) | 
|  | edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); | 
|  | for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) | 
|  | if (edit->excised_meta[i]) | 
|  | kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); | 
|  |  | 
|  | if (edit->excised_subtree) { | 
|  | BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); | 
|  | if (assoc_array_ptr_is_node(edit->excised_subtree)) { | 
|  | struct assoc_array_node *n = | 
|  | assoc_array_ptr_to_node(edit->excised_subtree); | 
|  | n->back_pointer = NULL; | 
|  | } else { | 
|  | struct assoc_array_shortcut *s = | 
|  | assoc_array_ptr_to_shortcut(edit->excised_subtree); | 
|  | s->back_pointer = NULL; | 
|  | } | 
|  | assoc_array_destroy_subtree(edit->excised_subtree, | 
|  | edit->ops_for_excised_subtree); | 
|  | } | 
|  |  | 
|  | kfree(edit); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_apply_edit - Apply an edit script to an associative array | 
|  | * @edit: The script to apply. | 
|  | * | 
|  | * Apply an edit script to an associative array to effect an insertion, | 
|  | * deletion or clearance.  As the edit script includes preallocated memory, | 
|  | * this is guaranteed not to fail. | 
|  | * | 
|  | * The edit script, dead objects and dead metadata will be scheduled for | 
|  | * destruction after an RCU grace period to permit those doing read-only | 
|  | * accesses on the array to continue to do so under the RCU read lock whilst | 
|  | * the edit is taking place. | 
|  | */ | 
|  | void assoc_array_apply_edit(struct assoc_array_edit *edit) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut; | 
|  | struct assoc_array_node *node; | 
|  | struct assoc_array_ptr *ptr; | 
|  | int i; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | smp_wmb(); | 
|  | if (edit->leaf_p) | 
|  | *edit->leaf_p = edit->leaf; | 
|  |  | 
|  | smp_wmb(); | 
|  | for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) | 
|  | if (edit->set_parent_slot[i].p) | 
|  | *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; | 
|  |  | 
|  | smp_wmb(); | 
|  | for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) | 
|  | if (edit->set_backpointers[i]) | 
|  | *edit->set_backpointers[i] = edit->set_backpointers_to; | 
|  |  | 
|  | smp_wmb(); | 
|  | for (i = 0; i < ARRAY_SIZE(edit->set); i++) | 
|  | if (edit->set[i].ptr) | 
|  | *edit->set[i].ptr = edit->set[i].to; | 
|  |  | 
|  | if (edit->array->root == NULL) { | 
|  | edit->array->nr_leaves_on_tree = 0; | 
|  | } else if (edit->adjust_count_on) { | 
|  | node = edit->adjust_count_on; | 
|  | for (;;) { | 
|  | node->nr_leaves_on_branch += edit->adjust_count_by; | 
|  |  | 
|  | ptr = node->back_pointer; | 
|  | if (!ptr) | 
|  | break; | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | ptr = shortcut->back_pointer; | 
|  | if (!ptr) | 
|  | break; | 
|  | } | 
|  | BUG_ON(!assoc_array_ptr_is_node(ptr)); | 
|  | node = assoc_array_ptr_to_node(ptr); | 
|  | } | 
|  |  | 
|  | edit->array->nr_leaves_on_tree += edit->adjust_count_by; | 
|  | } | 
|  |  | 
|  | call_rcu(&edit->rcu, assoc_array_rcu_cleanup); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_cancel_edit - Discard an edit script. | 
|  | * @edit: The script to discard. | 
|  | * | 
|  | * Free an edit script and all the preallocated data it holds without making | 
|  | * any changes to the associative array it was intended for. | 
|  | * | 
|  | * NOTE!  In the case of an insertion script, this does _not_ release the leaf | 
|  | * that was to be inserted.  That is left to the caller. | 
|  | */ | 
|  | void assoc_array_cancel_edit(struct assoc_array_edit *edit) | 
|  | { | 
|  | struct assoc_array_ptr *ptr; | 
|  | int i; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | /* Clean up after an out of memory error */ | 
|  | for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { | 
|  | ptr = edit->new_meta[i]; | 
|  | if (ptr) { | 
|  | if (assoc_array_ptr_is_node(ptr)) | 
|  | kfree(assoc_array_ptr_to_node(ptr)); | 
|  | else | 
|  | kfree(assoc_array_ptr_to_shortcut(ptr)); | 
|  | } | 
|  | } | 
|  | kfree(edit); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * assoc_array_gc - Garbage collect an associative array. | 
|  | * @array: The array to clean. | 
|  | * @ops: The operations to use. | 
|  | * @iterator: A callback function to pass judgement on each object. | 
|  | * @iterator_data: Private data for the callback function. | 
|  | * | 
|  | * Collect garbage from an associative array and pack down the internal tree to | 
|  | * save memory. | 
|  | * | 
|  | * The iterator function is asked to pass judgement upon each object in the | 
|  | * array.  If it returns false, the object is discard and if it returns true, | 
|  | * the object is kept.  If it returns true, it must increment the object's | 
|  | * usage count (or whatever it needs to do to retain it) before returning. | 
|  | * | 
|  | * This function returns 0 if successful or -ENOMEM if out of memory.  In the | 
|  | * latter case, the array is not changed. | 
|  | * | 
|  | * The caller should lock against other modifications and must continue to hold | 
|  | * the lock until assoc_array_apply_edit() has been called. | 
|  | * | 
|  | * Accesses to the tree may take place concurrently with this function, | 
|  | * provided they hold the RCU read lock. | 
|  | */ | 
|  | int assoc_array_gc(struct assoc_array *array, | 
|  | const struct assoc_array_ops *ops, | 
|  | bool (*iterator)(void *object, void *iterator_data), | 
|  | void *iterator_data) | 
|  | { | 
|  | struct assoc_array_shortcut *shortcut, *new_s; | 
|  | struct assoc_array_node *node, *new_n; | 
|  | struct assoc_array_edit *edit; | 
|  | struct assoc_array_ptr *cursor, *ptr; | 
|  | struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; | 
|  | unsigned long nr_leaves_on_tree; | 
|  | int keylen, slot, nr_free, next_slot, i; | 
|  |  | 
|  | pr_devel("-->%s()\n", __func__); | 
|  |  | 
|  | if (!array->root) | 
|  | return 0; | 
|  |  | 
|  | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | 
|  | if (!edit) | 
|  | return -ENOMEM; | 
|  | edit->array = array; | 
|  | edit->ops = ops; | 
|  | edit->ops_for_excised_subtree = ops; | 
|  | edit->set[0].ptr = &array->root; | 
|  | edit->excised_subtree = array->root; | 
|  |  | 
|  | new_root = new_parent = NULL; | 
|  | new_ptr_pp = &new_root; | 
|  | cursor = array->root; | 
|  |  | 
|  | descend: | 
|  | /* If this point is a shortcut, then we need to duplicate it and | 
|  | * advance the target cursor. | 
|  | */ | 
|  | if (assoc_array_ptr_is_shortcut(cursor)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(cursor); | 
|  | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | 
|  | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | 
|  | new_s = kmalloc(sizeof(struct assoc_array_shortcut) + | 
|  | keylen * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!new_s) | 
|  | goto enomem; | 
|  | pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); | 
|  | memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + | 
|  | keylen * sizeof(unsigned long))); | 
|  | new_s->back_pointer = new_parent; | 
|  | new_s->parent_slot = shortcut->parent_slot; | 
|  | *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); | 
|  | new_ptr_pp = &new_s->next_node; | 
|  | cursor = shortcut->next_node; | 
|  | } | 
|  |  | 
|  | /* Duplicate the node at this position */ | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | 
|  | if (!new_n) | 
|  | goto enomem; | 
|  | pr_devel("dup node %p -> %p\n", node, new_n); | 
|  | new_n->back_pointer = new_parent; | 
|  | new_n->parent_slot = node->parent_slot; | 
|  | *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); | 
|  | new_ptr_pp = NULL; | 
|  | slot = 0; | 
|  |  | 
|  | continue_node: | 
|  | /* Filter across any leaves and gc any subtrees */ | 
|  | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = node->slots[slot]; | 
|  | if (!ptr) | 
|  | continue; | 
|  |  | 
|  | if (assoc_array_ptr_is_leaf(ptr)) { | 
|  | if (iterator(assoc_array_ptr_to_leaf(ptr), | 
|  | iterator_data)) | 
|  | /* The iterator will have done any reference | 
|  | * counting on the object for us. | 
|  | */ | 
|  | new_n->slots[slot] = ptr; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_ptr_pp = &new_n->slots[slot]; | 
|  | cursor = ptr; | 
|  | goto descend; | 
|  | } | 
|  |  | 
|  | pr_devel("-- compress node %p --\n", new_n); | 
|  |  | 
|  | /* Count up the number of empty slots in this node and work out the | 
|  | * subtree leaf count. | 
|  | */ | 
|  | new_n->nr_leaves_on_branch = 0; | 
|  | nr_free = 0; | 
|  | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | ptr = new_n->slots[slot]; | 
|  | if (!ptr) | 
|  | nr_free++; | 
|  | else if (assoc_array_ptr_is_leaf(ptr)) | 
|  | new_n->nr_leaves_on_branch++; | 
|  | } | 
|  | pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); | 
|  |  | 
|  | /* See what we can fold in */ | 
|  | next_slot = 0; | 
|  | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | 
|  | struct assoc_array_shortcut *s; | 
|  | struct assoc_array_node *child; | 
|  |  | 
|  | ptr = new_n->slots[slot]; | 
|  | if (!ptr || assoc_array_ptr_is_leaf(ptr)) | 
|  | continue; | 
|  |  | 
|  | s = NULL; | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | s = assoc_array_ptr_to_shortcut(ptr); | 
|  | ptr = s->next_node; | 
|  | } | 
|  |  | 
|  | child = assoc_array_ptr_to_node(ptr); | 
|  | new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; | 
|  |  | 
|  | if (child->nr_leaves_on_branch <= nr_free + 1) { | 
|  | /* Fold the child node into this one */ | 
|  | pr_devel("[%d] fold node %lu/%d [nx %d]\n", | 
|  | slot, child->nr_leaves_on_branch, nr_free + 1, | 
|  | next_slot); | 
|  |  | 
|  | /* We would already have reaped an intervening shortcut | 
|  | * on the way back up the tree. | 
|  | */ | 
|  | BUG_ON(s); | 
|  |  | 
|  | new_n->slots[slot] = NULL; | 
|  | nr_free++; | 
|  | if (slot < next_slot) | 
|  | next_slot = slot; | 
|  | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | 
|  | struct assoc_array_ptr *p = child->slots[i]; | 
|  | if (!p) | 
|  | continue; | 
|  | BUG_ON(assoc_array_ptr_is_meta(p)); | 
|  | while (new_n->slots[next_slot]) | 
|  | next_slot++; | 
|  | BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); | 
|  | new_n->slots[next_slot++] = p; | 
|  | nr_free--; | 
|  | } | 
|  | kfree(child); | 
|  | } else { | 
|  | pr_devel("[%d] retain node %lu/%d [nx %d]\n", | 
|  | slot, child->nr_leaves_on_branch, nr_free + 1, | 
|  | next_slot); | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); | 
|  |  | 
|  | nr_leaves_on_tree = new_n->nr_leaves_on_branch; | 
|  |  | 
|  | /* Excise this node if it is singly occupied by a shortcut */ | 
|  | if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { | 
|  | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) | 
|  | if ((ptr = new_n->slots[slot])) | 
|  | break; | 
|  |  | 
|  | if (assoc_array_ptr_is_meta(ptr) && | 
|  | assoc_array_ptr_is_shortcut(ptr)) { | 
|  | pr_devel("excise node %p with 1 shortcut\n", new_n); | 
|  | new_s = assoc_array_ptr_to_shortcut(ptr); | 
|  | new_parent = new_n->back_pointer; | 
|  | slot = new_n->parent_slot; | 
|  | kfree(new_n); | 
|  | if (!new_parent) { | 
|  | new_s->back_pointer = NULL; | 
|  | new_s->parent_slot = 0; | 
|  | new_root = ptr; | 
|  | goto gc_complete; | 
|  | } | 
|  |  | 
|  | if (assoc_array_ptr_is_shortcut(new_parent)) { | 
|  | /* We can discard any preceding shortcut also */ | 
|  | struct assoc_array_shortcut *s = | 
|  | assoc_array_ptr_to_shortcut(new_parent); | 
|  |  | 
|  | pr_devel("excise preceding shortcut\n"); | 
|  |  | 
|  | new_parent = new_s->back_pointer = s->back_pointer; | 
|  | slot = new_s->parent_slot = s->parent_slot; | 
|  | kfree(s); | 
|  | if (!new_parent) { | 
|  | new_s->back_pointer = NULL; | 
|  | new_s->parent_slot = 0; | 
|  | new_root = ptr; | 
|  | goto gc_complete; | 
|  | } | 
|  | } | 
|  |  | 
|  | new_s->back_pointer = new_parent; | 
|  | new_s->parent_slot = slot; | 
|  | new_n = assoc_array_ptr_to_node(new_parent); | 
|  | new_n->slots[slot] = ptr; | 
|  | goto ascend_old_tree; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Excise any shortcuts we might encounter that point to nodes that | 
|  | * only contain leaves. | 
|  | */ | 
|  | ptr = new_n->back_pointer; | 
|  | if (!ptr) | 
|  | goto gc_complete; | 
|  |  | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | new_s = assoc_array_ptr_to_shortcut(ptr); | 
|  | new_parent = new_s->back_pointer; | 
|  | slot = new_s->parent_slot; | 
|  |  | 
|  | if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { | 
|  | struct assoc_array_node *n; | 
|  |  | 
|  | pr_devel("excise shortcut\n"); | 
|  | new_n->back_pointer = new_parent; | 
|  | new_n->parent_slot = slot; | 
|  | kfree(new_s); | 
|  | if (!new_parent) { | 
|  | new_root = assoc_array_node_to_ptr(new_n); | 
|  | goto gc_complete; | 
|  | } | 
|  |  | 
|  | n = assoc_array_ptr_to_node(new_parent); | 
|  | n->slots[slot] = assoc_array_node_to_ptr(new_n); | 
|  | } | 
|  | } else { | 
|  | new_parent = ptr; | 
|  | } | 
|  | new_n = assoc_array_ptr_to_node(new_parent); | 
|  |  | 
|  | ascend_old_tree: | 
|  | ptr = node->back_pointer; | 
|  | if (assoc_array_ptr_is_shortcut(ptr)) { | 
|  | shortcut = assoc_array_ptr_to_shortcut(ptr); | 
|  | slot = shortcut->parent_slot; | 
|  | cursor = shortcut->back_pointer; | 
|  | if (!cursor) | 
|  | goto gc_complete; | 
|  | } else { | 
|  | slot = node->parent_slot; | 
|  | cursor = ptr; | 
|  | } | 
|  | BUG_ON(!cursor); | 
|  | node = assoc_array_ptr_to_node(cursor); | 
|  | slot++; | 
|  | goto continue_node; | 
|  |  | 
|  | gc_complete: | 
|  | edit->set[0].to = new_root; | 
|  | assoc_array_apply_edit(edit); | 
|  | array->nr_leaves_on_tree = nr_leaves_on_tree; | 
|  | return 0; | 
|  |  | 
|  | enomem: | 
|  | pr_devel("enomem\n"); | 
|  | assoc_array_destroy_subtree(new_root, edit->ops); | 
|  | kfree(edit); | 
|  | return -ENOMEM; | 
|  | } |