|  | /* | 
|  | * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline. | 
|  | * | 
|  | *		This program is free software; you can redistribute it and/or | 
|  | *		modify it under the terms of the GNU General Public License | 
|  | *		as published by the Free Software Foundation; either version | 
|  | *		2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/siphash.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <net/netlink.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/pkt_cls.h> | 
|  | #include <net/red.h> | 
|  |  | 
|  |  | 
|  | /*	Stochastic Fairness Queuing algorithm. | 
|  | ======================================= | 
|  |  | 
|  | Source: | 
|  | Paul E. McKenney "Stochastic Fairness Queuing", | 
|  | IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. | 
|  |  | 
|  | Paul E. McKenney "Stochastic Fairness Queuing", | 
|  | "Interworking: Research and Experience", v.2, 1991, p.113-131. | 
|  |  | 
|  |  | 
|  | See also: | 
|  | M. Shreedhar and George Varghese "Efficient Fair | 
|  | Queuing using Deficit Round Robin", Proc. SIGCOMM 95. | 
|  |  | 
|  |  | 
|  | This is not the thing that is usually called (W)FQ nowadays. | 
|  | It does not use any timestamp mechanism, but instead | 
|  | processes queues in round-robin order. | 
|  |  | 
|  | ADVANTAGE: | 
|  |  | 
|  | - It is very cheap. Both CPU and memory requirements are minimal. | 
|  |  | 
|  | DRAWBACKS: | 
|  |  | 
|  | - "Stochastic" -> It is not 100% fair. | 
|  | When hash collisions occur, several flows are considered as one. | 
|  |  | 
|  | - "Round-robin" -> It introduces larger delays than virtual clock | 
|  | based schemes, and should not be used for isolating interactive | 
|  | traffic	from non-interactive. It means, that this scheduler | 
|  | should be used as leaf of CBQ or P3, which put interactive traffic | 
|  | to higher priority band. | 
|  |  | 
|  | We still need true WFQ for top level CSZ, but using WFQ | 
|  | for the best effort traffic is absolutely pointless: | 
|  | SFQ is superior for this purpose. | 
|  |  | 
|  | IMPLEMENTATION: | 
|  | This implementation limits : | 
|  | - maximal queue length per flow to 127 packets. | 
|  | - max mtu to 2^18-1; | 
|  | - max 65408 flows, | 
|  | - number of hash buckets to 65536. | 
|  |  | 
|  | It is easy to increase these values, but not in flight.  */ | 
|  |  | 
|  | #define SFQ_MAX_DEPTH		127 /* max number of packets per flow */ | 
|  | #define SFQ_DEFAULT_FLOWS	128 | 
|  | #define SFQ_MAX_FLOWS		(0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */ | 
|  | #define SFQ_EMPTY_SLOT		0xffff | 
|  | #define SFQ_DEFAULT_HASH_DIVISOR 1024 | 
|  |  | 
|  | /* We use 16 bits to store allot, and want to handle packets up to 64K | 
|  | * Scale allot by 8 (1<<3) so that no overflow occurs. | 
|  | */ | 
|  | #define SFQ_ALLOT_SHIFT		3 | 
|  | #define SFQ_ALLOT_SIZE(X)	DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT) | 
|  |  | 
|  | /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */ | 
|  | typedef u16 sfq_index; | 
|  |  | 
|  | /* | 
|  | * We dont use pointers to save space. | 
|  | * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array | 
|  | * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH] | 
|  | * are 'pointers' to dep[] array | 
|  | */ | 
|  | struct sfq_head { | 
|  | sfq_index	next; | 
|  | sfq_index	prev; | 
|  | }; | 
|  |  | 
|  | struct sfq_slot { | 
|  | struct sk_buff	*skblist_next; | 
|  | struct sk_buff	*skblist_prev; | 
|  | sfq_index	qlen; /* number of skbs in skblist */ | 
|  | sfq_index	next; /* next slot in sfq RR chain */ | 
|  | struct sfq_head dep; /* anchor in dep[] chains */ | 
|  | unsigned short	hash; /* hash value (index in ht[]) */ | 
|  | short		allot; /* credit for this slot */ | 
|  |  | 
|  | unsigned int    backlog; | 
|  | struct red_vars vars; | 
|  | }; | 
|  |  | 
|  | struct sfq_sched_data { | 
|  | /* frequently used fields */ | 
|  | int		limit;		/* limit of total number of packets in this qdisc */ | 
|  | unsigned int	divisor;	/* number of slots in hash table */ | 
|  | u8		headdrop; | 
|  | u8		maxdepth;	/* limit of packets per flow */ | 
|  |  | 
|  | siphash_key_t 	perturbation; | 
|  | u8		cur_depth;	/* depth of longest slot */ | 
|  | u8		flags; | 
|  | unsigned short  scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */ | 
|  | struct tcf_proto __rcu *filter_list; | 
|  | struct tcf_block *block; | 
|  | sfq_index	*ht;		/* Hash table ('divisor' slots) */ | 
|  | struct sfq_slot	*slots;		/* Flows table ('maxflows' entries) */ | 
|  |  | 
|  | struct red_parms *red_parms; | 
|  | struct tc_sfqred_stats stats; | 
|  | struct sfq_slot *tail;		/* current slot in round */ | 
|  |  | 
|  | struct sfq_head	dep[SFQ_MAX_DEPTH + 1]; | 
|  | /* Linked lists of slots, indexed by depth | 
|  | * dep[0] : list of unused flows | 
|  | * dep[1] : list of flows with 1 packet | 
|  | * dep[X] : list of flows with X packets | 
|  | */ | 
|  |  | 
|  | unsigned int	maxflows;	/* number of flows in flows array */ | 
|  | int		perturb_period; | 
|  | unsigned int	quantum;	/* Allotment per round: MUST BE >= MTU */ | 
|  | struct timer_list perturb_timer; | 
|  | struct Qdisc	*sch; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * sfq_head are either in a sfq_slot or in dep[] array | 
|  | */ | 
|  | static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val) | 
|  | { | 
|  | if (val < SFQ_MAX_FLOWS) | 
|  | return &q->slots[val].dep; | 
|  | return &q->dep[val - SFQ_MAX_FLOWS]; | 
|  | } | 
|  |  | 
|  | static unsigned int sfq_hash(const struct sfq_sched_data *q, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1); | 
|  | } | 
|  |  | 
|  | static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, | 
|  | int *qerr) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | struct tcf_result res; | 
|  | struct tcf_proto *fl; | 
|  | int result; | 
|  |  | 
|  | if (TC_H_MAJ(skb->priority) == sch->handle && | 
|  | TC_H_MIN(skb->priority) > 0 && | 
|  | TC_H_MIN(skb->priority) <= q->divisor) | 
|  | return TC_H_MIN(skb->priority); | 
|  |  | 
|  | fl = rcu_dereference_bh(q->filter_list); | 
|  | if (!fl) | 
|  | return sfq_hash(q, skb) + 1; | 
|  |  | 
|  | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; | 
|  | result = tcf_classify(skb, fl, &res, false); | 
|  | if (result >= 0) { | 
|  | #ifdef CONFIG_NET_CLS_ACT | 
|  | switch (result) { | 
|  | case TC_ACT_STOLEN: | 
|  | case TC_ACT_QUEUED: | 
|  | case TC_ACT_TRAP: | 
|  | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; | 
|  | /* fall through */ | 
|  | case TC_ACT_SHOT: | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | if (TC_H_MIN(res.classid) <= q->divisor) | 
|  | return TC_H_MIN(res.classid); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * x : slot number [0 .. SFQ_MAX_FLOWS - 1] | 
|  | */ | 
|  | static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) | 
|  | { | 
|  | sfq_index p, n; | 
|  | struct sfq_slot *slot = &q->slots[x]; | 
|  | int qlen = slot->qlen; | 
|  |  | 
|  | p = qlen + SFQ_MAX_FLOWS; | 
|  | n = q->dep[qlen].next; | 
|  |  | 
|  | slot->dep.next = n; | 
|  | slot->dep.prev = p; | 
|  |  | 
|  | q->dep[qlen].next = x;		/* sfq_dep_head(q, p)->next = x */ | 
|  | sfq_dep_head(q, n)->prev = x; | 
|  | } | 
|  |  | 
|  | #define sfq_unlink(q, x, n, p)			\ | 
|  | do {					\ | 
|  | n = q->slots[x].dep.next;	\ | 
|  | p = q->slots[x].dep.prev;	\ | 
|  | sfq_dep_head(q, p)->next = n;	\ | 
|  | sfq_dep_head(q, n)->prev = p;	\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) | 
|  | { | 
|  | sfq_index p, n; | 
|  | int d; | 
|  |  | 
|  | sfq_unlink(q, x, n, p); | 
|  |  | 
|  | d = q->slots[x].qlen--; | 
|  | if (n == p && q->cur_depth == d) | 
|  | q->cur_depth--; | 
|  | sfq_link(q, x); | 
|  | } | 
|  |  | 
|  | static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) | 
|  | { | 
|  | sfq_index p, n; | 
|  | int d; | 
|  |  | 
|  | sfq_unlink(q, x, n, p); | 
|  |  | 
|  | d = ++q->slots[x].qlen; | 
|  | if (q->cur_depth < d) | 
|  | q->cur_depth = d; | 
|  | sfq_link(q, x); | 
|  | } | 
|  |  | 
|  | /* helper functions : might be changed when/if skb use a standard list_head */ | 
|  |  | 
|  | /* remove one skb from tail of slot queue */ | 
|  | static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot) | 
|  | { | 
|  | struct sk_buff *skb = slot->skblist_prev; | 
|  |  | 
|  | slot->skblist_prev = skb->prev; | 
|  | skb->prev->next = (struct sk_buff *)slot; | 
|  | skb->next = skb->prev = NULL; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* remove one skb from head of slot queue */ | 
|  | static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot) | 
|  | { | 
|  | struct sk_buff *skb = slot->skblist_next; | 
|  |  | 
|  | slot->skblist_next = skb->next; | 
|  | skb->next->prev = (struct sk_buff *)slot; | 
|  | skb->next = skb->prev = NULL; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static inline void slot_queue_init(struct sfq_slot *slot) | 
|  | { | 
|  | memset(slot, 0, sizeof(*slot)); | 
|  | slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot; | 
|  | } | 
|  |  | 
|  | /* add skb to slot queue (tail add) */ | 
|  | static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb) | 
|  | { | 
|  | skb->prev = slot->skblist_prev; | 
|  | skb->next = (struct sk_buff *)slot; | 
|  | slot->skblist_prev->next = skb; | 
|  | slot->skblist_prev = skb; | 
|  | } | 
|  |  | 
|  | static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | sfq_index x, d = q->cur_depth; | 
|  | struct sk_buff *skb; | 
|  | unsigned int len; | 
|  | struct sfq_slot *slot; | 
|  |  | 
|  | /* Queue is full! Find the longest slot and drop tail packet from it */ | 
|  | if (d > 1) { | 
|  | x = q->dep[d].next; | 
|  | slot = &q->slots[x]; | 
|  | drop: | 
|  | skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot); | 
|  | len = qdisc_pkt_len(skb); | 
|  | slot->backlog -= len; | 
|  | sfq_dec(q, x); | 
|  | sch->q.qlen--; | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | qdisc_drop(skb, sch, to_free); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | if (d == 1) { | 
|  | /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ | 
|  | x = q->tail->next; | 
|  | slot = &q->slots[x]; | 
|  | q->tail->next = slot->next; | 
|  | q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Is ECN parameter configured */ | 
|  | static int sfq_prob_mark(const struct sfq_sched_data *q) | 
|  | { | 
|  | return q->flags & TC_RED_ECN; | 
|  | } | 
|  |  | 
|  | /* Should packets over max threshold just be marked */ | 
|  | static int sfq_hard_mark(const struct sfq_sched_data *q) | 
|  | { | 
|  | return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN; | 
|  | } | 
|  |  | 
|  | static int sfq_headdrop(const struct sfq_sched_data *q) | 
|  | { | 
|  | return q->headdrop; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | unsigned int hash, dropped; | 
|  | sfq_index x, qlen; | 
|  | struct sfq_slot *slot; | 
|  | int uninitialized_var(ret); | 
|  | struct sk_buff *head; | 
|  | int delta; | 
|  |  | 
|  | hash = sfq_classify(skb, sch, &ret); | 
|  | if (hash == 0) { | 
|  | if (ret & __NET_XMIT_BYPASS) | 
|  | qdisc_qstats_drop(sch); | 
|  | __qdisc_drop(skb, to_free); | 
|  | return ret; | 
|  | } | 
|  | hash--; | 
|  |  | 
|  | x = q->ht[hash]; | 
|  | slot = &q->slots[x]; | 
|  | if (x == SFQ_EMPTY_SLOT) { | 
|  | x = q->dep[0].next; /* get a free slot */ | 
|  | if (x >= SFQ_MAX_FLOWS) | 
|  | return qdisc_drop(skb, sch, to_free); | 
|  | q->ht[hash] = x; | 
|  | slot = &q->slots[x]; | 
|  | slot->hash = hash; | 
|  | slot->backlog = 0; /* should already be 0 anyway... */ | 
|  | red_set_vars(&slot->vars); | 
|  | goto enqueue; | 
|  | } | 
|  | if (q->red_parms) { | 
|  | slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms, | 
|  | &slot->vars, | 
|  | slot->backlog); | 
|  | switch (red_action(q->red_parms, | 
|  | &slot->vars, | 
|  | slot->vars.qavg)) { | 
|  | case RED_DONT_MARK: | 
|  | break; | 
|  |  | 
|  | case RED_PROB_MARK: | 
|  | qdisc_qstats_overlimit(sch); | 
|  | if (sfq_prob_mark(q)) { | 
|  | /* We know we have at least one packet in queue */ | 
|  | if (sfq_headdrop(q) && | 
|  | INET_ECN_set_ce(slot->skblist_next)) { | 
|  | q->stats.prob_mark_head++; | 
|  | break; | 
|  | } | 
|  | if (INET_ECN_set_ce(skb)) { | 
|  | q->stats.prob_mark++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | q->stats.prob_drop++; | 
|  | goto congestion_drop; | 
|  |  | 
|  | case RED_HARD_MARK: | 
|  | qdisc_qstats_overlimit(sch); | 
|  | if (sfq_hard_mark(q)) { | 
|  | /* We know we have at least one packet in queue */ | 
|  | if (sfq_headdrop(q) && | 
|  | INET_ECN_set_ce(slot->skblist_next)) { | 
|  | q->stats.forced_mark_head++; | 
|  | break; | 
|  | } | 
|  | if (INET_ECN_set_ce(skb)) { | 
|  | q->stats.forced_mark++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | q->stats.forced_drop++; | 
|  | goto congestion_drop; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (slot->qlen >= q->maxdepth) { | 
|  | congestion_drop: | 
|  | if (!sfq_headdrop(q)) | 
|  | return qdisc_drop(skb, sch, to_free); | 
|  |  | 
|  | /* We know we have at least one packet in queue */ | 
|  | head = slot_dequeue_head(slot); | 
|  | delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb); | 
|  | sch->qstats.backlog -= delta; | 
|  | slot->backlog -= delta; | 
|  | qdisc_drop(head, sch, to_free); | 
|  |  | 
|  | slot_queue_add(slot, skb); | 
|  | qdisc_tree_reduce_backlog(sch, 0, delta); | 
|  | return NET_XMIT_CN; | 
|  | } | 
|  |  | 
|  | enqueue: | 
|  | qdisc_qstats_backlog_inc(sch, skb); | 
|  | slot->backlog += qdisc_pkt_len(skb); | 
|  | slot_queue_add(slot, skb); | 
|  | sfq_inc(q, x); | 
|  | if (slot->qlen == 1) {		/* The flow is new */ | 
|  | if (q->tail == NULL) {	/* It is the first flow */ | 
|  | slot->next = x; | 
|  | } else { | 
|  | slot->next = q->tail->next; | 
|  | q->tail->next = x; | 
|  | } | 
|  | /* We put this flow at the end of our flow list. | 
|  | * This might sound unfair for a new flow to wait after old ones, | 
|  | * but we could endup servicing new flows only, and freeze old ones. | 
|  | */ | 
|  | q->tail = slot; | 
|  | /* We could use a bigger initial quantum for new flows */ | 
|  | slot->allot = q->scaled_quantum; | 
|  | } | 
|  | if (++sch->q.qlen <= q->limit) | 
|  | return NET_XMIT_SUCCESS; | 
|  |  | 
|  | qlen = slot->qlen; | 
|  | dropped = sfq_drop(sch, to_free); | 
|  | /* Return Congestion Notification only if we dropped a packet | 
|  | * from this flow. | 
|  | */ | 
|  | if (qlen != slot->qlen) { | 
|  | qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb)); | 
|  | return NET_XMIT_CN; | 
|  | } | 
|  |  | 
|  | /* As we dropped a packet, better let upper stack know this */ | 
|  | qdisc_tree_reduce_backlog(sch, 1, dropped); | 
|  | return NET_XMIT_SUCCESS; | 
|  | } | 
|  |  | 
|  | static struct sk_buff * | 
|  | sfq_dequeue(struct Qdisc *sch) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | struct sk_buff *skb; | 
|  | sfq_index a, next_a; | 
|  | struct sfq_slot *slot; | 
|  |  | 
|  | /* No active slots */ | 
|  | if (q->tail == NULL) | 
|  | return NULL; | 
|  |  | 
|  | next_slot: | 
|  | a = q->tail->next; | 
|  | slot = &q->slots[a]; | 
|  | if (slot->allot <= 0) { | 
|  | q->tail = slot; | 
|  | slot->allot += q->scaled_quantum; | 
|  | goto next_slot; | 
|  | } | 
|  | skb = slot_dequeue_head(slot); | 
|  | sfq_dec(q, a); | 
|  | qdisc_bstats_update(sch, skb); | 
|  | sch->q.qlen--; | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | slot->backlog -= qdisc_pkt_len(skb); | 
|  | /* Is the slot empty? */ | 
|  | if (slot->qlen == 0) { | 
|  | q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
|  | next_a = slot->next; | 
|  | if (a == next_a) { | 
|  | q->tail = NULL; /* no more active slots */ | 
|  | return skb; | 
|  | } | 
|  | q->tail->next = next_a; | 
|  | } else { | 
|  | slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb)); | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static void | 
|  | sfq_reset(struct Qdisc *sch) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = sfq_dequeue(sch)) != NULL) | 
|  | rtnl_kfree_skbs(skb, skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When q->perturbation is changed, we rehash all queued skbs | 
|  | * to avoid OOO (Out Of Order) effects. | 
|  | * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change | 
|  | * counters. | 
|  | */ | 
|  | static void sfq_rehash(struct Qdisc *sch) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | struct sk_buff *skb; | 
|  | int i; | 
|  | struct sfq_slot *slot; | 
|  | struct sk_buff_head list; | 
|  | int dropped = 0; | 
|  | unsigned int drop_len = 0; | 
|  |  | 
|  | __skb_queue_head_init(&list); | 
|  |  | 
|  | for (i = 0; i < q->maxflows; i++) { | 
|  | slot = &q->slots[i]; | 
|  | if (!slot->qlen) | 
|  | continue; | 
|  | while (slot->qlen) { | 
|  | skb = slot_dequeue_head(slot); | 
|  | sfq_dec(q, i); | 
|  | __skb_queue_tail(&list, skb); | 
|  | } | 
|  | slot->backlog = 0; | 
|  | red_set_vars(&slot->vars); | 
|  | q->ht[slot->hash] = SFQ_EMPTY_SLOT; | 
|  | } | 
|  | q->tail = NULL; | 
|  |  | 
|  | while ((skb = __skb_dequeue(&list)) != NULL) { | 
|  | unsigned int hash = sfq_hash(q, skb); | 
|  | sfq_index x = q->ht[hash]; | 
|  |  | 
|  | slot = &q->slots[x]; | 
|  | if (x == SFQ_EMPTY_SLOT) { | 
|  | x = q->dep[0].next; /* get a free slot */ | 
|  | if (x >= SFQ_MAX_FLOWS) { | 
|  | drop: | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | drop_len += qdisc_pkt_len(skb); | 
|  | kfree_skb(skb); | 
|  | dropped++; | 
|  | continue; | 
|  | } | 
|  | q->ht[hash] = x; | 
|  | slot = &q->slots[x]; | 
|  | slot->hash = hash; | 
|  | } | 
|  | if (slot->qlen >= q->maxdepth) | 
|  | goto drop; | 
|  | slot_queue_add(slot, skb); | 
|  | if (q->red_parms) | 
|  | slot->vars.qavg = red_calc_qavg(q->red_parms, | 
|  | &slot->vars, | 
|  | slot->backlog); | 
|  | slot->backlog += qdisc_pkt_len(skb); | 
|  | sfq_inc(q, x); | 
|  | if (slot->qlen == 1) {		/* The flow is new */ | 
|  | if (q->tail == NULL) {	/* It is the first flow */ | 
|  | slot->next = x; | 
|  | } else { | 
|  | slot->next = q->tail->next; | 
|  | q->tail->next = x; | 
|  | } | 
|  | q->tail = slot; | 
|  | slot->allot = q->scaled_quantum; | 
|  | } | 
|  | } | 
|  | sch->q.qlen -= dropped; | 
|  | qdisc_tree_reduce_backlog(sch, dropped, drop_len); | 
|  | } | 
|  |  | 
|  | static void sfq_perturbation(struct timer_list *t) | 
|  | { | 
|  | struct sfq_sched_data *q = from_timer(q, t, perturb_timer); | 
|  | struct Qdisc *sch = q->sch; | 
|  | spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); | 
|  | siphash_key_t nkey; | 
|  |  | 
|  | get_random_bytes(&nkey, sizeof(nkey)); | 
|  | spin_lock(root_lock); | 
|  | q->perturbation = nkey; | 
|  | if (!q->filter_list && q->tail) | 
|  | sfq_rehash(sch); | 
|  | spin_unlock(root_lock); | 
|  |  | 
|  | if (q->perturb_period) | 
|  | mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
|  | } | 
|  |  | 
|  | static int sfq_change(struct Qdisc *sch, struct nlattr *opt) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | struct tc_sfq_qopt *ctl = nla_data(opt); | 
|  | struct tc_sfq_qopt_v1 *ctl_v1 = NULL; | 
|  | unsigned int qlen, dropped = 0; | 
|  | struct red_parms *p = NULL; | 
|  | struct sk_buff *to_free = NULL; | 
|  | struct sk_buff *tail = NULL; | 
|  |  | 
|  | if (opt->nla_len < nla_attr_size(sizeof(*ctl))) | 
|  | return -EINVAL; | 
|  | if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1))) | 
|  | ctl_v1 = nla_data(opt); | 
|  | if (ctl->divisor && | 
|  | (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536)) | 
|  | return -EINVAL; | 
|  | if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max, | 
|  | ctl_v1->Wlog)) | 
|  | return -EINVAL; | 
|  | if (ctl_v1 && ctl_v1->qth_min) { | 
|  | p = kmalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  | } | 
|  | sch_tree_lock(sch); | 
|  | if (ctl->quantum) { | 
|  | q->quantum = ctl->quantum; | 
|  | q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); | 
|  | } | 
|  | q->perturb_period = ctl->perturb_period * HZ; | 
|  | if (ctl->flows) | 
|  | q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS); | 
|  | if (ctl->divisor) { | 
|  | q->divisor = ctl->divisor; | 
|  | q->maxflows = min_t(u32, q->maxflows, q->divisor); | 
|  | } | 
|  | if (ctl_v1) { | 
|  | if (ctl_v1->depth) | 
|  | q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH); | 
|  | if (p) { | 
|  | swap(q->red_parms, p); | 
|  | red_set_parms(q->red_parms, | 
|  | ctl_v1->qth_min, ctl_v1->qth_max, | 
|  | ctl_v1->Wlog, | 
|  | ctl_v1->Plog, ctl_v1->Scell_log, | 
|  | NULL, | 
|  | ctl_v1->max_P); | 
|  | } | 
|  | q->flags = ctl_v1->flags; | 
|  | q->headdrop = ctl_v1->headdrop; | 
|  | } | 
|  | if (ctl->limit) { | 
|  | q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows); | 
|  | q->maxflows = min_t(u32, q->maxflows, q->limit); | 
|  | } | 
|  |  | 
|  | qlen = sch->q.qlen; | 
|  | while (sch->q.qlen > q->limit) { | 
|  | dropped += sfq_drop(sch, &to_free); | 
|  | if (!tail) | 
|  | tail = to_free; | 
|  | } | 
|  |  | 
|  | rtnl_kfree_skbs(to_free, tail); | 
|  | qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); | 
|  |  | 
|  | del_timer(&q->perturb_timer); | 
|  | if (q->perturb_period) { | 
|  | mod_timer(&q->perturb_timer, jiffies + q->perturb_period); | 
|  | get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
|  | } | 
|  | sch_tree_unlock(sch); | 
|  | kfree(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void *sfq_alloc(size_t sz) | 
|  | { | 
|  | return  kvmalloc(sz, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static void sfq_free(void *addr) | 
|  | { | 
|  | kvfree(addr); | 
|  | } | 
|  |  | 
|  | static void sfq_destroy(struct Qdisc *sch) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | tcf_block_put(q->block); | 
|  | q->perturb_period = 0; | 
|  | del_timer_sync(&q->perturb_timer); | 
|  | sfq_free(q->ht); | 
|  | sfq_free(q->slots); | 
|  | kfree(q->red_parms); | 
|  | } | 
|  |  | 
|  | static int sfq_init(struct Qdisc *sch, struct nlattr *opt, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | int i; | 
|  | int err; | 
|  |  | 
|  | q->sch = sch; | 
|  | timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE); | 
|  |  | 
|  | err = tcf_block_get(&q->block, &q->filter_list, sch, extack); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) { | 
|  | q->dep[i].next = i + SFQ_MAX_FLOWS; | 
|  | q->dep[i].prev = i + SFQ_MAX_FLOWS; | 
|  | } | 
|  |  | 
|  | q->limit = SFQ_MAX_DEPTH; | 
|  | q->maxdepth = SFQ_MAX_DEPTH; | 
|  | q->cur_depth = 0; | 
|  | q->tail = NULL; | 
|  | q->divisor = SFQ_DEFAULT_HASH_DIVISOR; | 
|  | q->maxflows = SFQ_DEFAULT_FLOWS; | 
|  | q->quantum = psched_mtu(qdisc_dev(sch)); | 
|  | q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); | 
|  | q->perturb_period = 0; | 
|  | get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
|  |  | 
|  | if (opt) { | 
|  | int err = sfq_change(sch, opt); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor); | 
|  | q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows); | 
|  | if (!q->ht || !q->slots) { | 
|  | /* Note: sfq_destroy() will be called by our caller */ | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < q->divisor; i++) | 
|  | q->ht[i] = SFQ_EMPTY_SLOT; | 
|  |  | 
|  | for (i = 0; i < q->maxflows; i++) { | 
|  | slot_queue_init(&q->slots[i]); | 
|  | sfq_link(q, i); | 
|  | } | 
|  | if (q->limit >= 1) | 
|  | sch->flags |= TCQ_F_CAN_BYPASS; | 
|  | else | 
|  | sch->flags &= ~TCQ_F_CAN_BYPASS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | unsigned char *b = skb_tail_pointer(skb); | 
|  | struct tc_sfq_qopt_v1 opt; | 
|  | struct red_parms *p = q->red_parms; | 
|  |  | 
|  | memset(&opt, 0, sizeof(opt)); | 
|  | opt.v0.quantum	= q->quantum; | 
|  | opt.v0.perturb_period = q->perturb_period / HZ; | 
|  | opt.v0.limit	= q->limit; | 
|  | opt.v0.divisor	= q->divisor; | 
|  | opt.v0.flows	= q->maxflows; | 
|  | opt.depth	= q->maxdepth; | 
|  | opt.headdrop	= q->headdrop; | 
|  |  | 
|  | if (p) { | 
|  | opt.qth_min	= p->qth_min >> p->Wlog; | 
|  | opt.qth_max	= p->qth_max >> p->Wlog; | 
|  | opt.Wlog	= p->Wlog; | 
|  | opt.Plog	= p->Plog; | 
|  | opt.Scell_log	= p->Scell_log; | 
|  | opt.max_P	= p->max_P; | 
|  | } | 
|  | memcpy(&opt.stats, &q->stats, sizeof(opt.stats)); | 
|  | opt.flags	= q->flags; | 
|  |  | 
|  | if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | return skb->len; | 
|  |  | 
|  | nla_put_failure: | 
|  | nlmsg_trim(skb, b); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long sfq_find(struct Qdisc *sch, u32 classid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent, | 
|  | u32 classid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sfq_unbind(struct Qdisc *q, unsigned long cl) | 
|  | { | 
|  | } | 
|  |  | 
|  | static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | if (cl) | 
|  | return NULL; | 
|  | return q->block; | 
|  | } | 
|  |  | 
|  | static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, | 
|  | struct sk_buff *skb, struct tcmsg *tcm) | 
|  | { | 
|  | tcm->tcm_handle |= TC_H_MIN(cl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, | 
|  | struct gnet_dump *d) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | sfq_index idx = q->ht[cl - 1]; | 
|  | struct gnet_stats_queue qs = { 0 }; | 
|  | struct tc_sfq_xstats xstats = { 0 }; | 
|  |  | 
|  | if (idx != SFQ_EMPTY_SLOT) { | 
|  | const struct sfq_slot *slot = &q->slots[idx]; | 
|  |  | 
|  | xstats.allot = slot->allot << SFQ_ALLOT_SHIFT; | 
|  | qs.qlen = slot->qlen; | 
|  | qs.backlog = slot->backlog; | 
|  | } | 
|  | if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) | 
|  | return -1; | 
|  | return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); | 
|  | } | 
|  |  | 
|  | static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) | 
|  | { | 
|  | struct sfq_sched_data *q = qdisc_priv(sch); | 
|  | unsigned int i; | 
|  |  | 
|  | if (arg->stop) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < q->divisor; i++) { | 
|  | if (q->ht[i] == SFQ_EMPTY_SLOT || | 
|  | arg->count < arg->skip) { | 
|  | arg->count++; | 
|  | continue; | 
|  | } | 
|  | if (arg->fn(sch, i + 1, arg) < 0) { | 
|  | arg->stop = 1; | 
|  | break; | 
|  | } | 
|  | arg->count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct Qdisc_class_ops sfq_class_ops = { | 
|  | .leaf		=	sfq_leaf, | 
|  | .find		=	sfq_find, | 
|  | .tcf_block	=	sfq_tcf_block, | 
|  | .bind_tcf	=	sfq_bind, | 
|  | .unbind_tcf	=	sfq_unbind, | 
|  | .dump		=	sfq_dump_class, | 
|  | .dump_stats	=	sfq_dump_class_stats, | 
|  | .walk		=	sfq_walk, | 
|  | }; | 
|  |  | 
|  | static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { | 
|  | .cl_ops		=	&sfq_class_ops, | 
|  | .id		=	"sfq", | 
|  | .priv_size	=	sizeof(struct sfq_sched_data), | 
|  | .enqueue	=	sfq_enqueue, | 
|  | .dequeue	=	sfq_dequeue, | 
|  | .peek		=	qdisc_peek_dequeued, | 
|  | .init		=	sfq_init, | 
|  | .reset		=	sfq_reset, | 
|  | .destroy	=	sfq_destroy, | 
|  | .change		=	NULL, | 
|  | .dump		=	sfq_dump, | 
|  | .owner		=	THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init sfq_module_init(void) | 
|  | { | 
|  | return register_qdisc(&sfq_qdisc_ops); | 
|  | } | 
|  | static void __exit sfq_module_exit(void) | 
|  | { | 
|  | unregister_qdisc(&sfq_qdisc_ops); | 
|  | } | 
|  | module_init(sfq_module_init) | 
|  | module_exit(sfq_module_exit) | 
|  | MODULE_LICENSE("GPL"); |