| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * AMD SVM support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "SVM: " fmt | 
 |  | 
 | #include <linux/kvm_host.h> | 
 |  | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "kvm_cache_regs.h" | 
 | #include "x86.h" | 
 | #include "cpuid.h" | 
 | #include "pmu.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/trace_events.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/amd-iommu.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/frame.h> | 
 | #include <linux/psp-sev.h> | 
 | #include <linux/file.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include <asm/apic.h> | 
 | #include <asm/perf_event.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/kvm_para.h> | 
 | #include <asm/irq_remapping.h> | 
 | #include <asm/spec-ctrl.h> | 
 |  | 
 | #include <asm/virtext.h> | 
 | #include "trace.h" | 
 |  | 
 | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
 |  | 
 | MODULE_AUTHOR("Qumranet"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static const struct x86_cpu_id svm_cpu_id[] = { | 
 | 	X86_FEATURE_MATCH(X86_FEATURE_SVM), | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); | 
 |  | 
 | #define IOPM_ALLOC_ORDER 2 | 
 | #define MSRPM_ALLOC_ORDER 1 | 
 |  | 
 | #define SEG_TYPE_LDT 2 | 
 | #define SEG_TYPE_BUSY_TSS16 3 | 
 |  | 
 | #define SVM_FEATURE_NPT            (1 <<  0) | 
 | #define SVM_FEATURE_LBRV           (1 <<  1) | 
 | #define SVM_FEATURE_SVML           (1 <<  2) | 
 | #define SVM_FEATURE_NRIP           (1 <<  3) | 
 | #define SVM_FEATURE_TSC_RATE       (1 <<  4) | 
 | #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5) | 
 | #define SVM_FEATURE_FLUSH_ASID     (1 <<  6) | 
 | #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7) | 
 | #define SVM_FEATURE_PAUSE_FILTER   (1 << 10) | 
 |  | 
 | #define SVM_AVIC_DOORBELL	0xc001011b | 
 |  | 
 | #define NESTED_EXIT_HOST	0	/* Exit handled on host level */ | 
 | #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */ | 
 | #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */ | 
 |  | 
 | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) | 
 |  | 
 | #define TSC_RATIO_RSVD          0xffffff0000000000ULL | 
 | #define TSC_RATIO_MIN		0x0000000000000001ULL | 
 | #define TSC_RATIO_MAX		0x000000ffffffffffULL | 
 |  | 
 | #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF) | 
 |  | 
 | /* | 
 |  * 0xff is broadcast, so the max index allowed for physical APIC ID | 
 |  * table is 0xfe.  APIC IDs above 0xff are reserved. | 
 |  */ | 
 | #define AVIC_MAX_PHYSICAL_ID_COUNT	255 | 
 |  | 
 | #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1 | 
 | #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0 | 
 | #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF | 
 |  | 
 | /* AVIC GATAG is encoded using VM and VCPU IDs */ | 
 | #define AVIC_VCPU_ID_BITS		8 | 
 | #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1) | 
 |  | 
 | #define AVIC_VM_ID_BITS			24 | 
 | #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS) | 
 | #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1) | 
 |  | 
 | #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ | 
 | 						(y & AVIC_VCPU_ID_MASK)) | 
 | #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) | 
 | #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK) | 
 |  | 
 | static bool erratum_383_found __read_mostly; | 
 |  | 
 | static const u32 host_save_user_msrs[] = { | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, | 
 | 	MSR_FS_BASE, | 
 | #endif | 
 | 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
 | 	MSR_TSC_AUX, | 
 | }; | 
 |  | 
 | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) | 
 |  | 
 | struct kvm_sev_info { | 
 | 	bool active;		/* SEV enabled guest */ | 
 | 	unsigned int asid;	/* ASID used for this guest */ | 
 | 	unsigned int handle;	/* SEV firmware handle */ | 
 | 	int fd;			/* SEV device fd */ | 
 | 	unsigned long pages_locked; /* Number of pages locked */ | 
 | 	struct list_head regions_list;  /* List of registered regions */ | 
 | }; | 
 |  | 
 | struct kvm_svm { | 
 | 	struct kvm kvm; | 
 |  | 
 | 	/* Struct members for AVIC */ | 
 | 	u32 avic_vm_id; | 
 | 	u32 ldr_mode; | 
 | 	struct page *avic_logical_id_table_page; | 
 | 	struct page *avic_physical_id_table_page; | 
 | 	struct hlist_node hnode; | 
 |  | 
 | 	struct kvm_sev_info sev_info; | 
 | }; | 
 |  | 
 | struct kvm_vcpu; | 
 |  | 
 | struct nested_state { | 
 | 	struct vmcb *hsave; | 
 | 	u64 hsave_msr; | 
 | 	u64 vm_cr_msr; | 
 | 	u64 vmcb; | 
 |  | 
 | 	/* These are the merged vectors */ | 
 | 	u32 *msrpm; | 
 |  | 
 | 	/* gpa pointers to the real vectors */ | 
 | 	u64 vmcb_msrpm; | 
 | 	u64 vmcb_iopm; | 
 |  | 
 | 	/* A VMEXIT is required but not yet emulated */ | 
 | 	bool exit_required; | 
 |  | 
 | 	/* cache for intercepts of the guest */ | 
 | 	u32 intercept_cr; | 
 | 	u32 intercept_dr; | 
 | 	u32 intercept_exceptions; | 
 | 	u64 intercept; | 
 |  | 
 | 	/* Nested Paging related state */ | 
 | 	u64 nested_cr3; | 
 | }; | 
 |  | 
 | #define MSRPM_OFFSETS	16 | 
 | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; | 
 |  | 
 | /* | 
 |  * Set osvw_len to higher value when updated Revision Guides | 
 |  * are published and we know what the new status bits are | 
 |  */ | 
 | static uint64_t osvw_len = 4, osvw_status; | 
 |  | 
 | struct vcpu_svm { | 
 | 	struct kvm_vcpu vcpu; | 
 | 	struct vmcb *vmcb; | 
 | 	unsigned long vmcb_pa; | 
 | 	struct svm_cpu_data *svm_data; | 
 | 	uint64_t asid_generation; | 
 | 	uint64_t sysenter_esp; | 
 | 	uint64_t sysenter_eip; | 
 | 	uint64_t tsc_aux; | 
 |  | 
 | 	u64 msr_decfg; | 
 |  | 
 | 	u64 next_rip; | 
 |  | 
 | 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; | 
 | 	struct { | 
 | 		u16 fs; | 
 | 		u16 gs; | 
 | 		u16 ldt; | 
 | 		u64 gs_base; | 
 | 	} host; | 
 |  | 
 | 	u64 spec_ctrl; | 
 | 	/* | 
 | 	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be | 
 | 	 * translated into the appropriate L2_CFG bits on the host to | 
 | 	 * perform speculative control. | 
 | 	 */ | 
 | 	u64 virt_spec_ctrl; | 
 |  | 
 | 	u32 *msrpm; | 
 |  | 
 | 	ulong nmi_iret_rip; | 
 |  | 
 | 	struct nested_state nested; | 
 |  | 
 | 	bool nmi_singlestep; | 
 | 	u64 nmi_singlestep_guest_rflags; | 
 |  | 
 | 	unsigned int3_injected; | 
 | 	unsigned long int3_rip; | 
 |  | 
 | 	/* cached guest cpuid flags for faster access */ | 
 | 	bool nrips_enabled	: 1; | 
 |  | 
 | 	u32 ldr_reg; | 
 | 	struct page *avic_backing_page; | 
 | 	u64 *avic_physical_id_cache; | 
 | 	bool avic_is_running; | 
 |  | 
 | 	/* | 
 | 	 * Per-vcpu list of struct amd_svm_iommu_ir: | 
 | 	 * This is used mainly to store interrupt remapping information used | 
 | 	 * when update the vcpu affinity. This avoids the need to scan for | 
 | 	 * IRTE and try to match ga_tag in the IOMMU driver. | 
 | 	 */ | 
 | 	struct list_head ir_list; | 
 | 	spinlock_t ir_list_lock; | 
 |  | 
 | 	/* which host CPU was used for running this vcpu */ | 
 | 	unsigned int last_cpu; | 
 | }; | 
 |  | 
 | /* | 
 |  * This is a wrapper of struct amd_iommu_ir_data. | 
 |  */ | 
 | struct amd_svm_iommu_ir { | 
 | 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */ | 
 | 	void *data;		/* Storing pointer to struct amd_ir_data */ | 
 | }; | 
 |  | 
 | #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF) | 
 | #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31) | 
 |  | 
 | #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL) | 
 | #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12) | 
 | #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62) | 
 | #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63) | 
 |  | 
 | static DEFINE_PER_CPU(u64, current_tsc_ratio); | 
 | #define TSC_RATIO_DEFAULT	0x0100000000ULL | 
 |  | 
 | #define MSR_INVALID			0xffffffffU | 
 |  | 
 | static const struct svm_direct_access_msrs { | 
 | 	u32 index;   /* Index of the MSR */ | 
 | 	bool always; /* True if intercept is always on */ | 
 | } direct_access_msrs[] = { | 
 | 	{ .index = MSR_STAR,				.always = true  }, | 
 | 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  }, | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ .index = MSR_GS_BASE,				.always = true  }, | 
 | 	{ .index = MSR_FS_BASE,				.always = true  }, | 
 | 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  }, | 
 | 	{ .index = MSR_LSTAR,				.always = true  }, | 
 | 	{ .index = MSR_CSTAR,				.always = true  }, | 
 | 	{ .index = MSR_SYSCALL_MASK,			.always = true  }, | 
 | #endif | 
 | 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false }, | 
 | 	{ .index = MSR_IA32_PRED_CMD,			.always = false }, | 
 | 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false }, | 
 | 	{ .index = MSR_INVALID,				.always = false }, | 
 | }; | 
 |  | 
 | /* enable NPT for AMD64 and X86 with PAE */ | 
 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | 
 | static bool npt_enabled = true; | 
 | #else | 
 | static bool npt_enabled; | 
 | #endif | 
 |  | 
 | /* | 
 |  * These 2 parameters are used to config the controls for Pause-Loop Exiting: | 
 |  * pause_filter_count: On processors that support Pause filtering(indicated | 
 |  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter | 
 |  *	count value. On VMRUN this value is loaded into an internal counter. | 
 |  *	Each time a pause instruction is executed, this counter is decremented | 
 |  *	until it reaches zero at which time a #VMEXIT is generated if pause | 
 |  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause | 
 |  *	Intercept Filtering for more details. | 
 |  *	This also indicate if ple logic enabled. | 
 |  * | 
 |  * pause_filter_thresh: In addition, some processor families support advanced | 
 |  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on | 
 |  *	the amount of time a guest is allowed to execute in a pause loop. | 
 |  *	In this mode, a 16-bit pause filter threshold field is added in the | 
 |  *	VMCB. The threshold value is a cycle count that is used to reset the | 
 |  *	pause counter. As with simple pause filtering, VMRUN loads the pause | 
 |  *	count value from VMCB into an internal counter. Then, on each pause | 
 |  *	instruction the hardware checks the elapsed number of cycles since | 
 |  *	the most recent pause instruction against the pause filter threshold. | 
 |  *	If the elapsed cycle count is greater than the pause filter threshold, | 
 |  *	then the internal pause count is reloaded from the VMCB and execution | 
 |  *	continues. If the elapsed cycle count is less than the pause filter | 
 |  *	threshold, then the internal pause count is decremented. If the count | 
 |  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is | 
 |  *	triggered. If advanced pause filtering is supported and pause filter | 
 |  *	threshold field is set to zero, the filter will operate in the simpler, | 
 |  *	count only mode. | 
 |  */ | 
 |  | 
 | static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; | 
 | module_param(pause_filter_thresh, ushort, 0444); | 
 |  | 
 | static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; | 
 | module_param(pause_filter_count, ushort, 0444); | 
 |  | 
 | /* Default doubles per-vcpu window every exit. */ | 
 | static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; | 
 | module_param(pause_filter_count_grow, ushort, 0444); | 
 |  | 
 | /* Default resets per-vcpu window every exit to pause_filter_count. */ | 
 | static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; | 
 | module_param(pause_filter_count_shrink, ushort, 0444); | 
 |  | 
 | /* Default is to compute the maximum so we can never overflow. */ | 
 | static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; | 
 | module_param(pause_filter_count_max, ushort, 0444); | 
 |  | 
 | /* allow nested paging (virtualized MMU) for all guests */ | 
 | static int npt = true; | 
 | module_param(npt, int, S_IRUGO); | 
 |  | 
 | /* allow nested virtualization in KVM/SVM */ | 
 | static int nested = true; | 
 | module_param(nested, int, S_IRUGO); | 
 |  | 
 | /* enable / disable AVIC */ | 
 | static int avic; | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | module_param(avic, int, S_IRUGO); | 
 | #endif | 
 |  | 
 | /* enable/disable Virtual VMLOAD VMSAVE */ | 
 | static int vls = true; | 
 | module_param(vls, int, 0444); | 
 |  | 
 | /* enable/disable Virtual GIF */ | 
 | static int vgif = true; | 
 | module_param(vgif, int, 0444); | 
 |  | 
 | /* enable/disable SEV support */ | 
 | static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); | 
 | module_param(sev, int, 0444); | 
 |  | 
 | static u8 rsm_ins_bytes[] = "\x0f\xaa"; | 
 |  | 
 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); | 
 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); | 
 | static void svm_complete_interrupts(struct vcpu_svm *svm); | 
 |  | 
 | static int nested_svm_exit_handled(struct vcpu_svm *svm); | 
 | static int nested_svm_intercept(struct vcpu_svm *svm); | 
 | static int nested_svm_vmexit(struct vcpu_svm *svm); | 
 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
 | 				      bool has_error_code, u32 error_code); | 
 |  | 
 | enum { | 
 | 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, | 
 | 			    pause filter count */ | 
 | 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */ | 
 | 	VMCB_ASID,	 /* ASID */ | 
 | 	VMCB_INTR,	 /* int_ctl, int_vector */ | 
 | 	VMCB_NPT,        /* npt_en, nCR3, gPAT */ | 
 | 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */ | 
 | 	VMCB_DR,         /* DR6, DR7 */ | 
 | 	VMCB_DT,         /* GDT, IDT */ | 
 | 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */ | 
 | 	VMCB_CR2,        /* CR2 only */ | 
 | 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ | 
 | 	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, | 
 | 			  * AVIC PHYSICAL_TABLE pointer, | 
 | 			  * AVIC LOGICAL_TABLE pointer | 
 | 			  */ | 
 | 	VMCB_DIRTY_MAX, | 
 | }; | 
 |  | 
 | /* TPR and CR2 are always written before VMRUN */ | 
 | #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2)) | 
 |  | 
 | #define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL | 
 |  | 
 | static unsigned int max_sev_asid; | 
 | static unsigned int min_sev_asid; | 
 | static unsigned long *sev_asid_bitmap; | 
 | #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) | 
 |  | 
 | struct enc_region { | 
 | 	struct list_head list; | 
 | 	unsigned long npages; | 
 | 	struct page **pages; | 
 | 	unsigned long uaddr; | 
 | 	unsigned long size; | 
 | }; | 
 |  | 
 |  | 
 | static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) | 
 | { | 
 | 	return container_of(kvm, struct kvm_svm, kvm); | 
 | } | 
 |  | 
 | static inline bool svm_sev_enabled(void) | 
 | { | 
 | 	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; | 
 | } | 
 |  | 
 | static inline bool sev_guest(struct kvm *kvm) | 
 | { | 
 | #ifdef CONFIG_KVM_AMD_SEV | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 |  | 
 | 	return sev->active; | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | static inline int sev_get_asid(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 |  | 
 | 	return sev->asid; | 
 | } | 
 |  | 
 | static inline void mark_all_dirty(struct vmcb *vmcb) | 
 | { | 
 | 	vmcb->control.clean = 0; | 
 | } | 
 |  | 
 | static inline void mark_all_clean(struct vmcb *vmcb) | 
 | { | 
 | 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) | 
 | 			       & ~VMCB_ALWAYS_DIRTY_MASK; | 
 | } | 
 |  | 
 | static inline void mark_dirty(struct vmcb *vmcb, int bit) | 
 | { | 
 | 	vmcb->control.clean &= ~(1 << bit); | 
 | } | 
 |  | 
 | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return container_of(vcpu, struct vcpu_svm, vcpu); | 
 | } | 
 |  | 
 | static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) | 
 | { | 
 | 	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; | 
 | 	mark_dirty(svm->vmcb, VMCB_AVIC); | 
 | } | 
 |  | 
 | static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 *entry = svm->avic_physical_id_cache; | 
 |  | 
 | 	if (!entry) | 
 | 		return false; | 
 |  | 
 | 	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
 | } | 
 |  | 
 | static void recalc_intercepts(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb_control_area *c, *h; | 
 | 	struct nested_state *g; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 |  | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return; | 
 |  | 
 | 	c = &svm->vmcb->control; | 
 | 	h = &svm->nested.hsave->control; | 
 | 	g = &svm->nested; | 
 |  | 
 | 	c->intercept_cr = h->intercept_cr | g->intercept_cr; | 
 | 	c->intercept_dr = h->intercept_dr | g->intercept_dr; | 
 | 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; | 
 | 	c->intercept = h->intercept | g->intercept; | 
 | } | 
 |  | 
 | static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	if (is_guest_mode(&svm->vcpu)) | 
 | 		return svm->nested.hsave; | 
 | 	else | 
 | 		return svm->vmcb; | 
 | } | 
 |  | 
 | static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_cr |= (1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_cr &= ~(1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	return vmcb->control.intercept_cr & (1U << bit); | 
 | } | 
 |  | 
 | static inline void set_dr_intercepts(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) | 
 | 		| (1 << INTERCEPT_DR1_READ) | 
 | 		| (1 << INTERCEPT_DR2_READ) | 
 | 		| (1 << INTERCEPT_DR3_READ) | 
 | 		| (1 << INTERCEPT_DR4_READ) | 
 | 		| (1 << INTERCEPT_DR5_READ) | 
 | 		| (1 << INTERCEPT_DR6_READ) | 
 | 		| (1 << INTERCEPT_DR7_READ) | 
 | 		| (1 << INTERCEPT_DR0_WRITE) | 
 | 		| (1 << INTERCEPT_DR1_WRITE) | 
 | 		| (1 << INTERCEPT_DR2_WRITE) | 
 | 		| (1 << INTERCEPT_DR3_WRITE) | 
 | 		| (1 << INTERCEPT_DR4_WRITE) | 
 | 		| (1 << INTERCEPT_DR5_WRITE) | 
 | 		| (1 << INTERCEPT_DR6_WRITE) | 
 | 		| (1 << INTERCEPT_DR7_WRITE); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_dr_intercepts(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_dr = 0; | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_exceptions |= (1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_exceptions &= ~(1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void set_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept |= (1ULL << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept &= ~(1ULL << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline bool vgif_enabled(struct vcpu_svm *svm) | 
 | { | 
 | 	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); | 
 | } | 
 |  | 
 | static inline void enable_gif(struct vcpu_svm *svm) | 
 | { | 
 | 	if (vgif_enabled(svm)) | 
 | 		svm->vmcb->control.int_ctl |= V_GIF_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags |= HF_GIF_MASK; | 
 | } | 
 |  | 
 | static inline void disable_gif(struct vcpu_svm *svm) | 
 | { | 
 | 	if (vgif_enabled(svm)) | 
 | 		svm->vmcb->control.int_ctl &= ~V_GIF_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags &= ~HF_GIF_MASK; | 
 | } | 
 |  | 
 | static inline bool gif_set(struct vcpu_svm *svm) | 
 | { | 
 | 	if (vgif_enabled(svm)) | 
 | 		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); | 
 | 	else | 
 | 		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); | 
 | } | 
 |  | 
 | static unsigned long iopm_base; | 
 |  | 
 | struct kvm_ldttss_desc { | 
 | 	u16 limit0; | 
 | 	u16 base0; | 
 | 	unsigned base1:8, type:5, dpl:2, p:1; | 
 | 	unsigned limit1:4, zero0:3, g:1, base2:8; | 
 | 	u32 base3; | 
 | 	u32 zero1; | 
 | } __attribute__((packed)); | 
 |  | 
 | struct svm_cpu_data { | 
 | 	int cpu; | 
 |  | 
 | 	u64 asid_generation; | 
 | 	u32 max_asid; | 
 | 	u32 next_asid; | 
 | 	u32 min_asid; | 
 | 	struct kvm_ldttss_desc *tss_desc; | 
 |  | 
 | 	struct page *save_area; | 
 | 	struct vmcb *current_vmcb; | 
 |  | 
 | 	/* index = sev_asid, value = vmcb pointer */ | 
 | 	struct vmcb **sev_vmcbs; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); | 
 |  | 
 | struct svm_init_data { | 
 | 	int cpu; | 
 | 	int r; | 
 | }; | 
 |  | 
 | static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; | 
 |  | 
 | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) | 
 | #define MSRS_RANGE_SIZE 2048 | 
 | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) | 
 |  | 
 | static u32 svm_msrpm_offset(u32 msr) | 
 | { | 
 | 	u32 offset; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NUM_MSR_MAPS; i++) { | 
 | 		if (msr < msrpm_ranges[i] || | 
 | 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE) | 
 | 			continue; | 
 |  | 
 | 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ | 
 | 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */ | 
 |  | 
 | 		/* Now we have the u8 offset - but need the u32 offset */ | 
 | 		return offset / 4; | 
 | 	} | 
 |  | 
 | 	/* MSR not in any range */ | 
 | 	return MSR_INVALID; | 
 | } | 
 |  | 
 | #define MAX_INST_SIZE 15 | 
 |  | 
 | static inline void clgi(void) | 
 | { | 
 | 	asm volatile (__ex(SVM_CLGI)); | 
 | } | 
 |  | 
 | static inline void stgi(void) | 
 | { | 
 | 	asm volatile (__ex(SVM_STGI)); | 
 | } | 
 |  | 
 | static inline void invlpga(unsigned long addr, u32 asid) | 
 | { | 
 | 	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); | 
 | } | 
 |  | 
 | static int get_npt_level(struct kvm_vcpu *vcpu) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return PT64_ROOT_4LEVEL; | 
 | #else | 
 | 	return PT32E_ROOT_LEVEL; | 
 | #endif | 
 | } | 
 |  | 
 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	vcpu->arch.efer = efer; | 
 |  | 
 | 	if (!npt_enabled) { | 
 | 		/* Shadow paging assumes NX to be available.  */ | 
 | 		efer |= EFER_NX; | 
 |  | 
 | 		if (!(efer & EFER_LMA)) | 
 | 			efer &= ~EFER_LME; | 
 | 	} | 
 |  | 
 | 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; | 
 | 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
 | } | 
 |  | 
 | static int is_external_interrupt(u32 info) | 
 | { | 
 | 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; | 
 | 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); | 
 | } | 
 |  | 
 | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 ret = 0; | 
 |  | 
 | 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) | 
 | 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (mask == 0) | 
 | 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; | 
 | 	else | 
 | 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; | 
 |  | 
 | } | 
 |  | 
 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (svm->vmcb->control.next_rip != 0) { | 
 | 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); | 
 | 		svm->next_rip = svm->vmcb->control.next_rip; | 
 | 	} | 
 |  | 
 | 	if (!svm->next_rip) { | 
 | 		if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) != | 
 | 				EMULATE_DONE) | 
 | 			printk(KERN_DEBUG "%s: NOP\n", __func__); | 
 | 		return; | 
 | 	} | 
 | 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) | 
 | 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", | 
 | 		       __func__, kvm_rip_read(vcpu), svm->next_rip); | 
 |  | 
 | 	kvm_rip_write(vcpu, svm->next_rip); | 
 | 	svm_set_interrupt_shadow(vcpu, 0); | 
 | } | 
 |  | 
 | static void svm_queue_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	unsigned nr = vcpu->arch.exception.nr; | 
 | 	bool has_error_code = vcpu->arch.exception.has_error_code; | 
 | 	bool reinject = vcpu->arch.exception.injected; | 
 | 	u32 error_code = vcpu->arch.exception.error_code; | 
 |  | 
 | 	/* | 
 | 	 * If we are within a nested VM we'd better #VMEXIT and let the guest | 
 | 	 * handle the exception | 
 | 	 */ | 
 | 	if (!reinject && | 
 | 	    nested_svm_check_exception(svm, nr, has_error_code, error_code)) | 
 | 		return; | 
 |  | 
 | 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { | 
 | 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); | 
 |  | 
 | 		/* | 
 | 		 * For guest debugging where we have to reinject #BP if some | 
 | 		 * INT3 is guest-owned: | 
 | 		 * Emulate nRIP by moving RIP forward. Will fail if injection | 
 | 		 * raises a fault that is not intercepted. Still better than | 
 | 		 * failing in all cases. | 
 | 		 */ | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 | 		rip = kvm_rip_read(&svm->vcpu); | 
 | 		svm->int3_rip = rip + svm->vmcb->save.cs.base; | 
 | 		svm->int3_injected = rip - old_rip; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.event_inj = nr | 
 | 		| SVM_EVTINJ_VALID | 
 | 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | 
 | 		| SVM_EVTINJ_TYPE_EXEPT; | 
 | 	svm->vmcb->control.event_inj_err = error_code; | 
 | } | 
 |  | 
 | static void svm_init_erratum_383(void) | 
 | { | 
 | 	u32 low, high; | 
 | 	int err; | 
 | 	u64 val; | 
 |  | 
 | 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) | 
 | 		return; | 
 |  | 
 | 	/* Use _safe variants to not break nested virtualization */ | 
 | 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); | 
 | 	if (err) | 
 | 		return; | 
 |  | 
 | 	val |= (1ULL << 47); | 
 |  | 
 | 	low  = lower_32_bits(val); | 
 | 	high = upper_32_bits(val); | 
 |  | 
 | 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); | 
 |  | 
 | 	erratum_383_found = true; | 
 | } | 
 |  | 
 | static void svm_init_osvw(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Guests should see errata 400 and 415 as fixed (assuming that | 
 | 	 * HLT and IO instructions are intercepted). | 
 | 	 */ | 
 | 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; | 
 | 	vcpu->arch.osvw.status = osvw_status & ~(6ULL); | 
 |  | 
 | 	/* | 
 | 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that | 
 | 	 * all osvw.status bits inside that length, including bit 0 (which is | 
 | 	 * reserved for erratum 298), are valid. However, if host processor's | 
 | 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to | 
 | 	 * be conservative here and therefore we tell the guest that erratum 298 | 
 | 	 * is present (because we really don't know). | 
 | 	 */ | 
 | 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) | 
 | 		vcpu->arch.osvw.status |= 1; | 
 | } | 
 |  | 
 | static int has_svm(void) | 
 | { | 
 | 	const char *msg; | 
 |  | 
 | 	if (!cpu_has_svm(&msg)) { | 
 | 		printk(KERN_INFO "has_svm: %s\n", msg); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void svm_hardware_disable(void) | 
 | { | 
 | 	/* Make sure we clean up behind us */ | 
 | 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) | 
 | 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | 
 |  | 
 | 	cpu_svm_disable(); | 
 |  | 
 | 	amd_pmu_disable_virt(); | 
 | } | 
 |  | 
 | static int svm_hardware_enable(void) | 
 | { | 
 |  | 
 | 	struct svm_cpu_data *sd; | 
 | 	uint64_t efer; | 
 | 	struct desc_struct *gdt; | 
 | 	int me = raw_smp_processor_id(); | 
 |  | 
 | 	rdmsrl(MSR_EFER, efer); | 
 | 	if (efer & EFER_SVME) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!has_svm()) { | 
 | 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	sd = per_cpu(svm_data, me); | 
 | 	if (!sd) { | 
 | 		pr_err("%s: svm_data is NULL on %d\n", __func__, me); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sd->asid_generation = 1; | 
 | 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; | 
 | 	sd->next_asid = sd->max_asid + 1; | 
 | 	sd->min_asid = max_sev_asid + 1; | 
 |  | 
 | 	gdt = get_current_gdt_rw(); | 
 | 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); | 
 |  | 
 | 	wrmsrl(MSR_EFER, efer | EFER_SVME); | 
 |  | 
 | 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
 | 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | 
 | 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Get OSVW bits. | 
 | 	 * | 
 | 	 * Note that it is possible to have a system with mixed processor | 
 | 	 * revisions and therefore different OSVW bits. If bits are not the same | 
 | 	 * on different processors then choose the worst case (i.e. if erratum | 
 | 	 * is present on one processor and not on another then assume that the | 
 | 	 * erratum is present everywhere). | 
 | 	 */ | 
 | 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { | 
 | 		uint64_t len, status = 0; | 
 | 		int err; | 
 |  | 
 | 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); | 
 | 		if (!err) | 
 | 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, | 
 | 						      &err); | 
 |  | 
 | 		if (err) | 
 | 			osvw_status = osvw_len = 0; | 
 | 		else { | 
 | 			if (len < osvw_len) | 
 | 				osvw_len = len; | 
 | 			osvw_status |= status; | 
 | 			osvw_status &= (1ULL << osvw_len) - 1; | 
 | 		} | 
 | 	} else | 
 | 		osvw_status = osvw_len = 0; | 
 |  | 
 | 	svm_init_erratum_383(); | 
 |  | 
 | 	amd_pmu_enable_virt(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_cpu_uninit(int cpu) | 
 | { | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); | 
 |  | 
 | 	if (!sd) | 
 | 		return; | 
 |  | 
 | 	per_cpu(svm_data, raw_smp_processor_id()) = NULL; | 
 | 	kfree(sd->sev_vmcbs); | 
 | 	__free_page(sd->save_area); | 
 | 	kfree(sd); | 
 | } | 
 |  | 
 | static int svm_cpu_init(int cpu) | 
 | { | 
 | 	struct svm_cpu_data *sd; | 
 | 	int r; | 
 |  | 
 | 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); | 
 | 	if (!sd) | 
 | 		return -ENOMEM; | 
 | 	sd->cpu = cpu; | 
 | 	r = -ENOMEM; | 
 | 	sd->save_area = alloc_page(GFP_KERNEL); | 
 | 	if (!sd->save_area) | 
 | 		goto err_1; | 
 |  | 
 | 	if (svm_sev_enabled()) { | 
 | 		r = -ENOMEM; | 
 | 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, | 
 | 					      sizeof(void *), | 
 | 					      GFP_KERNEL); | 
 | 		if (!sd->sev_vmcbs) | 
 | 			goto err_1; | 
 | 	} | 
 |  | 
 | 	per_cpu(svm_data, cpu) = sd; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_1: | 
 | 	kfree(sd); | 
 | 	return r; | 
 |  | 
 | } | 
 |  | 
 | static bool valid_msr_intercept(u32 index) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) | 
 | 		if (direct_access_msrs[i].index == index) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) | 
 | { | 
 | 	u8 bit_write; | 
 | 	unsigned long tmp; | 
 | 	u32 offset; | 
 | 	u32 *msrpm; | 
 |  | 
 | 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: | 
 | 				      to_svm(vcpu)->msrpm; | 
 |  | 
 | 	offset    = svm_msrpm_offset(msr); | 
 | 	bit_write = 2 * (msr & 0x0f) + 1; | 
 | 	tmp       = msrpm[offset]; | 
 |  | 
 | 	BUG_ON(offset == MSR_INVALID); | 
 |  | 
 | 	return !!test_bit(bit_write,  &tmp); | 
 | } | 
 |  | 
 | static void set_msr_interception(u32 *msrpm, unsigned msr, | 
 | 				 int read, int write) | 
 | { | 
 | 	u8 bit_read, bit_write; | 
 | 	unsigned long tmp; | 
 | 	u32 offset; | 
 |  | 
 | 	/* | 
 | 	 * If this warning triggers extend the direct_access_msrs list at the | 
 | 	 * beginning of the file | 
 | 	 */ | 
 | 	WARN_ON(!valid_msr_intercept(msr)); | 
 |  | 
 | 	offset    = svm_msrpm_offset(msr); | 
 | 	bit_read  = 2 * (msr & 0x0f); | 
 | 	bit_write = 2 * (msr & 0x0f) + 1; | 
 | 	tmp       = msrpm[offset]; | 
 |  | 
 | 	BUG_ON(offset == MSR_INVALID); | 
 |  | 
 | 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp); | 
 | 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); | 
 |  | 
 | 	msrpm[offset] = tmp; | 
 | } | 
 |  | 
 | static void svm_vcpu_init_msrpm(u32 *msrpm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
 | 		if (!direct_access_msrs[i].always) | 
 | 			continue; | 
 |  | 
 | 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void add_msr_offset(u32 offset) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MSRPM_OFFSETS; ++i) { | 
 |  | 
 | 		/* Offset already in list? */ | 
 | 		if (msrpm_offsets[i] == offset) | 
 | 			return; | 
 |  | 
 | 		/* Slot used by another offset? */ | 
 | 		if (msrpm_offsets[i] != MSR_INVALID) | 
 | 			continue; | 
 |  | 
 | 		/* Add offset to list */ | 
 | 		msrpm_offsets[i] = offset; | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just | 
 | 	 * increase MSRPM_OFFSETS in this case. | 
 | 	 */ | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static void init_msrpm_offsets(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
 | 		u32 offset; | 
 |  | 
 | 		offset = svm_msrpm_offset(direct_access_msrs[i].index); | 
 | 		BUG_ON(offset == MSR_INVALID); | 
 |  | 
 | 		add_msr_offset(offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_enable_lbrv(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 *msrpm = svm->msrpm; | 
 |  | 
 | 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | 
 | } | 
 |  | 
 | static void svm_disable_lbrv(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 *msrpm = svm->msrpm; | 
 |  | 
 | 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); | 
 | } | 
 |  | 
 | static void disable_nmi_singlestep(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->nmi_singlestep = false; | 
 |  | 
 | 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { | 
 | 		/* Clear our flags if they were not set by the guest */ | 
 | 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | 
 | 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; | 
 | 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | 
 | 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; | 
 | 	} | 
 | } | 
 |  | 
 | /* Note: | 
 |  * This hash table is used to map VM_ID to a struct kvm_svm, | 
 |  * when handling AMD IOMMU GALOG notification to schedule in | 
 |  * a particular vCPU. | 
 |  */ | 
 | #define SVM_VM_DATA_HASH_BITS	8 | 
 | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); | 
 | static u32 next_vm_id = 0; | 
 | static bool next_vm_id_wrapped = 0; | 
 | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); | 
 |  | 
 | /* Note: | 
 |  * This function is called from IOMMU driver to notify | 
 |  * SVM to schedule in a particular vCPU of a particular VM. | 
 |  */ | 
 | static int avic_ga_log_notifier(u32 ga_tag) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct kvm_svm *kvm_svm; | 
 | 	struct kvm_vcpu *vcpu = NULL; | 
 | 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); | 
 | 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); | 
 |  | 
 | 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 | 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { | 
 | 		if (kvm_svm->avic_vm_id != vm_id) | 
 | 			continue; | 
 | 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 |  | 
 | 	/* Note: | 
 | 	 * At this point, the IOMMU should have already set the pending | 
 | 	 * bit in the vAPIC backing page. So, we just need to schedule | 
 | 	 * in the vcpu. | 
 | 	 */ | 
 | 	if (vcpu) | 
 | 		kvm_vcpu_wake_up(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int sev_hardware_setup(void) | 
 | { | 
 | 	struct sev_user_data_status *status; | 
 | 	int rc; | 
 |  | 
 | 	/* Maximum number of encrypted guests supported simultaneously */ | 
 | 	max_sev_asid = cpuid_ecx(0x8000001F); | 
 |  | 
 | 	if (!max_sev_asid) | 
 | 		return 1; | 
 |  | 
 | 	/* Minimum ASID value that should be used for SEV guest */ | 
 | 	min_sev_asid = cpuid_edx(0x8000001F); | 
 |  | 
 | 	/* Initialize SEV ASID bitmap */ | 
 | 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); | 
 | 	if (!sev_asid_bitmap) | 
 | 		return 1; | 
 |  | 
 | 	status = kmalloc(sizeof(*status), GFP_KERNEL); | 
 | 	if (!status) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Check SEV platform status. | 
 | 	 * | 
 | 	 * PLATFORM_STATUS can be called in any state, if we failed to query | 
 | 	 * the PLATFORM status then either PSP firmware does not support SEV | 
 | 	 * feature or SEV firmware is dead. | 
 | 	 */ | 
 | 	rc = sev_platform_status(status, NULL); | 
 | 	if (rc) | 
 | 		goto err; | 
 |  | 
 | 	pr_info("SEV supported\n"); | 
 |  | 
 | err: | 
 | 	kfree(status); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void grow_ple_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	int old = control->pause_filter_count; | 
 |  | 
 | 	control->pause_filter_count = __grow_ple_window(old, | 
 | 							pause_filter_count, | 
 | 							pause_filter_count_grow, | 
 | 							pause_filter_count_max); | 
 |  | 
 | 	if (control->pause_filter_count != old) | 
 | 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 |  | 
 | 	trace_kvm_ple_window_grow(vcpu->vcpu_id, | 
 | 				  control->pause_filter_count, old); | 
 | } | 
 |  | 
 | static void shrink_ple_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	int old = control->pause_filter_count; | 
 |  | 
 | 	control->pause_filter_count = | 
 | 				__shrink_ple_window(old, | 
 | 						    pause_filter_count, | 
 | 						    pause_filter_count_shrink, | 
 | 						    pause_filter_count); | 
 | 	if (control->pause_filter_count != old) | 
 | 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 |  | 
 | 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, | 
 | 				    control->pause_filter_count, old); | 
 | } | 
 |  | 
 | static __init int svm_hardware_setup(void) | 
 | { | 
 | 	int cpu; | 
 | 	struct page *iopm_pages; | 
 | 	void *iopm_va; | 
 | 	int r; | 
 |  | 
 | 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); | 
 |  | 
 | 	if (!iopm_pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	iopm_va = page_address(iopm_pages); | 
 | 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); | 
 | 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; | 
 |  | 
 | 	init_msrpm_offsets(); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_NX)) | 
 | 		kvm_enable_efer_bits(EFER_NX); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) | 
 | 		kvm_enable_efer_bits(EFER_FFXSR); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
 | 		kvm_has_tsc_control = true; | 
 | 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; | 
 | 		kvm_tsc_scaling_ratio_frac_bits = 32; | 
 | 	} | 
 |  | 
 | 	/* Check for pause filtering support */ | 
 | 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { | 
 | 		pause_filter_count = 0; | 
 | 		pause_filter_thresh = 0; | 
 | 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { | 
 | 		pause_filter_thresh = 0; | 
 | 	} | 
 |  | 
 | 	if (nested) { | 
 | 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); | 
 | 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); | 
 | 	} | 
 |  | 
 | 	if (sev) { | 
 | 		if (boot_cpu_has(X86_FEATURE_SEV) && | 
 | 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) { | 
 | 			r = sev_hardware_setup(); | 
 | 			if (r) | 
 | 				sev = false; | 
 | 		} else { | 
 | 			sev = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		r = svm_cpu_init(cpu); | 
 | 		if (r) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_NPT)) | 
 | 		npt_enabled = false; | 
 |  | 
 | 	if (npt_enabled && !npt) { | 
 | 		printk(KERN_INFO "kvm: Nested Paging disabled\n"); | 
 | 		npt_enabled = false; | 
 | 	} | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		printk(KERN_INFO "kvm: Nested Paging enabled\n"); | 
 | 		kvm_enable_tdp(); | 
 | 	} else | 
 | 		kvm_disable_tdp(); | 
 |  | 
 | 	if (avic) { | 
 | 		if (!npt_enabled || | 
 | 		    !boot_cpu_has(X86_FEATURE_AVIC) || | 
 | 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { | 
 | 			avic = false; | 
 | 		} else { | 
 | 			pr_info("AVIC enabled\n"); | 
 |  | 
 | 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (vls) { | 
 | 		if (!npt_enabled || | 
 | 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || | 
 | 		    !IS_ENABLED(CONFIG_X86_64)) { | 
 | 			vls = false; | 
 | 		} else { | 
 | 			pr_info("Virtual VMLOAD VMSAVE supported\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (vgif) { | 
 | 		if (!boot_cpu_has(X86_FEATURE_VGIF)) | 
 | 			vgif = false; | 
 | 		else | 
 | 			pr_info("Virtual GIF supported\n"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER); | 
 | 	iopm_base = 0; | 
 | 	return r; | 
 | } | 
 |  | 
 | static __exit void svm_hardware_unsetup(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (svm_sev_enabled()) | 
 | 		bitmap_free(sev_asid_bitmap); | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		svm_cpu_uninit(cpu); | 
 |  | 
 | 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); | 
 | 	iopm_base = 0; | 
 | } | 
 |  | 
 | static void init_seg(struct vmcb_seg *seg) | 
 | { | 
 | 	seg->selector = 0; | 
 | 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | | 
 | 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ | 
 | 	seg->limit = 0xffff; | 
 | 	seg->base = 0; | 
 | } | 
 |  | 
 | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | 
 | { | 
 | 	seg->selector = 0; | 
 | 	seg->attrib = SVM_SELECTOR_P_MASK | type; | 
 | 	seg->limit = 0xffff; | 
 | 	seg->base = 0; | 
 | } | 
 |  | 
 | static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		return svm->nested.hsave->control.tsc_offset; | 
 |  | 
 | 	return vcpu->arch.tsc_offset; | 
 | } | 
 |  | 
 | static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 g_tsc_offset = 0; | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* Write L1's TSC offset.  */ | 
 | 		g_tsc_offset = svm->vmcb->control.tsc_offset - | 
 | 			       svm->nested.hsave->control.tsc_offset; | 
 | 		svm->nested.hsave->control.tsc_offset = offset; | 
 | 	} else | 
 | 		trace_kvm_write_tsc_offset(vcpu->vcpu_id, | 
 | 					   svm->vmcb->control.tsc_offset, | 
 | 					   offset); | 
 |  | 
 | 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 | 	return svm->vmcb->control.tsc_offset; | 
 | } | 
 |  | 
 | static void avic_init_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); | 
 | 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); | 
 | 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); | 
 | 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); | 
 |  | 
 | 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; | 
 | 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; | 
 | 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | 
 | } | 
 |  | 
 | static void init_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	struct vmcb_save_area *save = &svm->vmcb->save; | 
 |  | 
 | 	svm->vcpu.arch.hflags = 0; | 
 |  | 
 | 	set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR3_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR4_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE); | 
 | 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
 | 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 |  | 
 | 	set_dr_intercepts(svm); | 
 |  | 
 | 	set_exception_intercept(svm, PF_VECTOR); | 
 | 	set_exception_intercept(svm, UD_VECTOR); | 
 | 	set_exception_intercept(svm, MC_VECTOR); | 
 | 	set_exception_intercept(svm, AC_VECTOR); | 
 | 	set_exception_intercept(svm, DB_VECTOR); | 
 | 	/* | 
 | 	 * Guest access to VMware backdoor ports could legitimately | 
 | 	 * trigger #GP because of TSS I/O permission bitmap. | 
 | 	 * We intercept those #GP and allow access to them anyway | 
 | 	 * as VMware does. | 
 | 	 */ | 
 | 	if (enable_vmware_backdoor) | 
 | 		set_exception_intercept(svm, GP_VECTOR); | 
 |  | 
 | 	set_intercept(svm, INTERCEPT_INTR); | 
 | 	set_intercept(svm, INTERCEPT_NMI); | 
 | 	set_intercept(svm, INTERCEPT_SMI); | 
 | 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0); | 
 | 	set_intercept(svm, INTERCEPT_RDPMC); | 
 | 	set_intercept(svm, INTERCEPT_CPUID); | 
 | 	set_intercept(svm, INTERCEPT_INVD); | 
 | 	set_intercept(svm, INTERCEPT_INVLPG); | 
 | 	set_intercept(svm, INTERCEPT_INVLPGA); | 
 | 	set_intercept(svm, INTERCEPT_IOIO_PROT); | 
 | 	set_intercept(svm, INTERCEPT_MSR_PROT); | 
 | 	set_intercept(svm, INTERCEPT_TASK_SWITCH); | 
 | 	set_intercept(svm, INTERCEPT_SHUTDOWN); | 
 | 	set_intercept(svm, INTERCEPT_VMRUN); | 
 | 	set_intercept(svm, INTERCEPT_VMMCALL); | 
 | 	set_intercept(svm, INTERCEPT_VMLOAD); | 
 | 	set_intercept(svm, INTERCEPT_VMSAVE); | 
 | 	set_intercept(svm, INTERCEPT_STGI); | 
 | 	set_intercept(svm, INTERCEPT_CLGI); | 
 | 	set_intercept(svm, INTERCEPT_SKINIT); | 
 | 	set_intercept(svm, INTERCEPT_WBINVD); | 
 | 	set_intercept(svm, INTERCEPT_XSETBV); | 
 | 	set_intercept(svm, INTERCEPT_RSM); | 
 |  | 
 | 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { | 
 | 		set_intercept(svm, INTERCEPT_MONITOR); | 
 | 		set_intercept(svm, INTERCEPT_MWAIT); | 
 | 	} | 
 |  | 
 | 	if (!kvm_hlt_in_guest(svm->vcpu.kvm)) | 
 | 		set_intercept(svm, INTERCEPT_HLT); | 
 |  | 
 | 	control->iopm_base_pa = __sme_set(iopm_base); | 
 | 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); | 
 | 	control->int_ctl = V_INTR_MASKING_MASK; | 
 |  | 
 | 	init_seg(&save->es); | 
 | 	init_seg(&save->ss); | 
 | 	init_seg(&save->ds); | 
 | 	init_seg(&save->fs); | 
 | 	init_seg(&save->gs); | 
 |  | 
 | 	save->cs.selector = 0xf000; | 
 | 	save->cs.base = 0xffff0000; | 
 | 	/* Executable/Readable Code Segment */ | 
 | 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | | 
 | 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; | 
 | 	save->cs.limit = 0xffff; | 
 |  | 
 | 	save->gdtr.limit = 0xffff; | 
 | 	save->idtr.limit = 0xffff; | 
 |  | 
 | 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | 
 | 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | 
 |  | 
 | 	svm_set_efer(&svm->vcpu, 0); | 
 | 	save->dr6 = 0xffff0ff0; | 
 | 	kvm_set_rflags(&svm->vcpu, 2); | 
 | 	save->rip = 0x0000fff0; | 
 | 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; | 
 |  | 
 | 	/* | 
 | 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. | 
 | 	 * It also updates the guest-visible cr0 value. | 
 | 	 */ | 
 | 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); | 
 | 	kvm_mmu_reset_context(&svm->vcpu); | 
 |  | 
 | 	save->cr4 = X86_CR4_PAE; | 
 | 	/* rdx = ?? */ | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		/* Setup VMCB for Nested Paging */ | 
 | 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; | 
 | 		clr_intercept(svm, INTERCEPT_INVLPG); | 
 | 		clr_exception_intercept(svm, PF_VECTOR); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR3_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
 | 		save->g_pat = svm->vcpu.arch.pat; | 
 | 		save->cr3 = 0; | 
 | 		save->cr4 = 0; | 
 | 	} | 
 | 	svm->asid_generation = 0; | 
 |  | 
 | 	svm->nested.vmcb = 0; | 
 | 	svm->vcpu.arch.hflags = 0; | 
 |  | 
 | 	if (pause_filter_count) { | 
 | 		control->pause_filter_count = pause_filter_count; | 
 | 		if (pause_filter_thresh) | 
 | 			control->pause_filter_thresh = pause_filter_thresh; | 
 | 		set_intercept(svm, INTERCEPT_PAUSE); | 
 | 	} else { | 
 | 		clr_intercept(svm, INTERCEPT_PAUSE); | 
 | 	} | 
 |  | 
 | 	if (kvm_vcpu_apicv_active(&svm->vcpu)) | 
 | 		avic_init_vmcb(svm); | 
 |  | 
 | 	/* | 
 | 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it | 
 | 	 * in VMCB and clear intercepts to avoid #VMEXIT. | 
 | 	 */ | 
 | 	if (vls) { | 
 | 		clr_intercept(svm, INTERCEPT_VMLOAD); | 
 | 		clr_intercept(svm, INTERCEPT_VMSAVE); | 
 | 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; | 
 | 	} | 
 |  | 
 | 	if (vgif) { | 
 | 		clr_intercept(svm, INTERCEPT_STGI); | 
 | 		clr_intercept(svm, INTERCEPT_CLGI); | 
 | 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; | 
 | 	} | 
 |  | 
 | 	if (sev_guest(svm->vcpu.kvm)) { | 
 | 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; | 
 | 		clr_exception_intercept(svm, UD_VECTOR); | 
 | 	} | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 |  | 
 | 	enable_gif(svm); | 
 |  | 
 | } | 
 |  | 
 | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, | 
 | 				       unsigned int index) | 
 | { | 
 | 	u64 *avic_physical_id_table; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
 |  | 
 | 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) | 
 | 		return NULL; | 
 |  | 
 | 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); | 
 |  | 
 | 	return &avic_physical_id_table[index]; | 
 | } | 
 |  | 
 | /** | 
 |  * Note: | 
 |  * AVIC hardware walks the nested page table to check permissions, | 
 |  * but does not use the SPA address specified in the leaf page | 
 |  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer | 
 |  * field of the VMCB. Therefore, we set up the | 
 |  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. | 
 |  */ | 
 | static int avic_init_access_page(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 | 	if (kvm->arch.apic_access_page_done) | 
 | 		goto out; | 
 |  | 
 | 	ret = __x86_set_memory_region(kvm, | 
 | 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | 
 | 				      APIC_DEFAULT_PHYS_BASE, | 
 | 				      PAGE_SIZE); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	kvm->arch.apic_access_page_done = true; | 
 | out: | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int avic_init_backing_page(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret; | 
 | 	u64 *entry, new_entry; | 
 | 	int id = vcpu->vcpu_id; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	ret = avic_init_access_page(vcpu); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!svm->vcpu.arch.apic->regs) | 
 | 		return -EINVAL; | 
 |  | 
 | 	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs); | 
 |  | 
 | 	/* Setting AVIC backing page address in the phy APIC ID table */ | 
 | 	entry = avic_get_physical_id_entry(vcpu, id); | 
 | 	if (!entry) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_entry = READ_ONCE(*entry); | 
 | 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & | 
 | 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | | 
 | 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); | 
 | 	WRITE_ONCE(*entry, new_entry); | 
 |  | 
 | 	svm->avic_physical_id_cache = entry; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __sev_asid_free(int asid) | 
 | { | 
 | 	struct svm_cpu_data *sd; | 
 | 	int cpu, pos; | 
 |  | 
 | 	pos = asid - 1; | 
 | 	clear_bit(pos, sev_asid_bitmap); | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		sd = per_cpu(svm_data, cpu); | 
 | 		sd->sev_vmcbs[pos] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void sev_asid_free(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 |  | 
 | 	__sev_asid_free(sev->asid); | 
 | } | 
 |  | 
 | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) | 
 | { | 
 | 	struct sev_data_decommission *decommission; | 
 | 	struct sev_data_deactivate *data; | 
 |  | 
 | 	if (!handle) | 
 | 		return; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return; | 
 |  | 
 | 	/* deactivate handle */ | 
 | 	data->handle = handle; | 
 | 	sev_guest_deactivate(data, NULL); | 
 |  | 
 | 	wbinvd_on_all_cpus(); | 
 | 	sev_guest_df_flush(NULL); | 
 | 	kfree(data); | 
 |  | 
 | 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); | 
 | 	if (!decommission) | 
 | 		return; | 
 |  | 
 | 	/* decommission handle */ | 
 | 	decommission->handle = handle; | 
 | 	sev_guest_decommission(decommission, NULL); | 
 |  | 
 | 	kfree(decommission); | 
 | } | 
 |  | 
 | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, | 
 | 				    unsigned long ulen, unsigned long *n, | 
 | 				    int write) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	unsigned long npages, npinned, size; | 
 | 	unsigned long locked, lock_limit; | 
 | 	struct page **pages; | 
 | 	unsigned long first, last; | 
 |  | 
 | 	if (ulen == 0 || uaddr + ulen < uaddr) | 
 | 		return NULL; | 
 |  | 
 | 	/* Calculate number of pages. */ | 
 | 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; | 
 | 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; | 
 | 	npages = (last - first + 1); | 
 |  | 
 | 	locked = sev->pages_locked + npages; | 
 | 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
 | 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { | 
 | 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Avoid using vmalloc for smaller buffers. */ | 
 | 	size = npages * sizeof(struct page *); | 
 | 	if (size > PAGE_SIZE) | 
 | 		pages = vmalloc(size); | 
 | 	else | 
 | 		pages = kmalloc(size, GFP_KERNEL); | 
 |  | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	/* Pin the user virtual address. */ | 
 | 	npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); | 
 | 	if (npinned != npages) { | 
 | 		pr_err("SEV: Failure locking %lu pages.\n", npages); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	*n = npages; | 
 | 	sev->pages_locked = locked; | 
 |  | 
 | 	return pages; | 
 |  | 
 | err: | 
 | 	if (npinned > 0) | 
 | 		release_pages(pages, npinned); | 
 |  | 
 | 	kvfree(pages); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, | 
 | 			     unsigned long npages) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 |  | 
 | 	release_pages(pages, npages); | 
 | 	kvfree(pages); | 
 | 	sev->pages_locked -= npages; | 
 | } | 
 |  | 
 | static void sev_clflush_pages(struct page *pages[], unsigned long npages) | 
 | { | 
 | 	uint8_t *page_virtual; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (npages == 0 || pages == NULL) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < npages; i++) { | 
 | 		page_virtual = kmap_atomic(pages[i]); | 
 | 		clflush_cache_range(page_virtual, PAGE_SIZE); | 
 | 		kunmap_atomic(page_virtual); | 
 | 	} | 
 | } | 
 |  | 
 | static void __unregister_enc_region_locked(struct kvm *kvm, | 
 | 					   struct enc_region *region) | 
 | { | 
 | 	/* | 
 | 	 * The guest may change the memory encryption attribute from C=0 -> C=1 | 
 | 	 * or vice versa for this memory range. Lets make sure caches are | 
 | 	 * flushed to ensure that guest data gets written into memory with | 
 | 	 * correct C-bit. | 
 | 	 */ | 
 | 	sev_clflush_pages(region->pages, region->npages); | 
 |  | 
 | 	sev_unpin_memory(kvm, region->pages, region->npages); | 
 | 	list_del(®ion->list); | 
 | 	kfree(region); | 
 | } | 
 |  | 
 | static struct kvm *svm_vm_alloc(void) | 
 | { | 
 | 	struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm)); | 
 | 	return &kvm_svm->kvm; | 
 | } | 
 |  | 
 | static void svm_vm_free(struct kvm *kvm) | 
 | { | 
 | 	vfree(to_kvm_svm(kvm)); | 
 | } | 
 |  | 
 | static void sev_vm_destroy(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct list_head *head = &sev->regions_list; | 
 | 	struct list_head *pos, *q; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	/* | 
 | 	 * if userspace was terminated before unregistering the memory regions | 
 | 	 * then lets unpin all the registered memory. | 
 | 	 */ | 
 | 	if (!list_empty(head)) { | 
 | 		list_for_each_safe(pos, q, head) { | 
 | 			__unregister_enc_region_locked(kvm, | 
 | 				list_entry(pos, struct enc_region, list)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&kvm->lock); | 
 |  | 
 | 	sev_unbind_asid(kvm, sev->handle); | 
 | 	sev_asid_free(kvm); | 
 | } | 
 |  | 
 | static void avic_vm_destroy(struct kvm *kvm) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
 |  | 
 | 	if (!avic) | 
 | 		return; | 
 |  | 
 | 	if (kvm_svm->avic_logical_id_table_page) | 
 | 		__free_page(kvm_svm->avic_logical_id_table_page); | 
 | 	if (kvm_svm->avic_physical_id_table_page) | 
 | 		__free_page(kvm_svm->avic_physical_id_table_page); | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 | 	hash_del(&kvm_svm->hnode); | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 | } | 
 |  | 
 | static void svm_vm_destroy(struct kvm *kvm) | 
 | { | 
 | 	avic_vm_destroy(kvm); | 
 | 	sev_vm_destroy(kvm); | 
 | } | 
 |  | 
 | static int avic_vm_init(struct kvm *kvm) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int err = -ENOMEM; | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
 | 	struct kvm_svm *k2; | 
 | 	struct page *p_page; | 
 | 	struct page *l_page; | 
 | 	u32 vm_id; | 
 |  | 
 | 	if (!avic) | 
 | 		return 0; | 
 |  | 
 | 	/* Allocating physical APIC ID table (4KB) */ | 
 | 	p_page = alloc_page(GFP_KERNEL); | 
 | 	if (!p_page) | 
 | 		goto free_avic; | 
 |  | 
 | 	kvm_svm->avic_physical_id_table_page = p_page; | 
 | 	clear_page(page_address(p_page)); | 
 |  | 
 | 	/* Allocating logical APIC ID table (4KB) */ | 
 | 	l_page = alloc_page(GFP_KERNEL); | 
 | 	if (!l_page) | 
 | 		goto free_avic; | 
 |  | 
 | 	kvm_svm->avic_logical_id_table_page = l_page; | 
 | 	clear_page(page_address(l_page)); | 
 |  | 
 | 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
 |  again: | 
 | 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; | 
 | 	if (vm_id == 0) { /* id is 1-based, zero is not okay */ | 
 | 		next_vm_id_wrapped = 1; | 
 | 		goto again; | 
 | 	} | 
 | 	/* Is it still in use? Only possible if wrapped at least once */ | 
 | 	if (next_vm_id_wrapped) { | 
 | 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { | 
 | 			if (k2->avic_vm_id == vm_id) | 
 | 				goto again; | 
 | 		} | 
 | 	} | 
 | 	kvm_svm->avic_vm_id = vm_id; | 
 | 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); | 
 | 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_avic: | 
 | 	avic_vm_destroy(kvm); | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline int | 
 | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *ir; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Here, we go through the per-vcpu ir_list to update all existing | 
 | 	 * interrupt remapping table entry targeting this vcpu. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 |  | 
 | 	if (list_empty(&svm->ir_list)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(ir, &svm->ir_list, node) { | 
 | 		ret = amd_iommu_update_ga(cpu, r, ir->data); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	u64 entry; | 
 | 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */ | 
 | 	int h_physical_id = kvm_cpu_get_apicid(cpu); | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (!kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Since the host physical APIC id is 8 bits, | 
 | 	 * we can support host APIC ID upto 255. | 
 | 	 */ | 
 | 	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) | 
 | 		return; | 
 |  | 
 | 	entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
 | 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
 |  | 
 | 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; | 
 | 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); | 
 |  | 
 | 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
 | 	if (svm->avic_is_running) | 
 | 		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
 |  | 
 | 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
 | 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, | 
 | 					svm->avic_is_running); | 
 | } | 
 |  | 
 | static void avic_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 entry; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (!kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
 | 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) | 
 | 		avic_update_iommu_vcpu_affinity(vcpu, -1, 0); | 
 |  | 
 | 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
 | 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
 | } | 
 |  | 
 | /** | 
 |  * This function is called during VCPU halt/unhalt. | 
 |  */ | 
 | static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->avic_is_running = is_run; | 
 | 	if (is_run) | 
 | 		avic_vcpu_load(vcpu, vcpu->cpu); | 
 | 	else | 
 | 		avic_vcpu_put(vcpu); | 
 | } | 
 |  | 
 | static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 dummy; | 
 | 	u32 eax = 1; | 
 |  | 
 | 	vcpu->arch.microcode_version = 0x01000065; | 
 | 	svm->spec_ctrl = 0; | 
 | 	svm->virt_spec_ctrl = 0; | 
 |  | 
 | 	if (!init_event) { | 
 | 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | | 
 | 					   MSR_IA32_APICBASE_ENABLE; | 
 | 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) | 
 | 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; | 
 | 	} | 
 | 	init_vmcb(svm); | 
 |  | 
 | 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RDX, eax); | 
 |  | 
 | 	if (kvm_vcpu_apicv_active(vcpu) && !init_event) | 
 | 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); | 
 | } | 
 |  | 
 | static int avic_init_vcpu(struct vcpu_svm *svm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	ret = avic_init_backing_page(&svm->vcpu); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	INIT_LIST_HEAD(&svm->ir_list); | 
 | 	spin_lock_init(&svm->ir_list_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) | 
 | { | 
 | 	struct vcpu_svm *svm; | 
 | 	struct page *page; | 
 | 	struct page *msrpm_pages; | 
 | 	struct page *hsave_page; | 
 | 	struct page *nested_msrpm_pages; | 
 | 	int err; | 
 |  | 
 | 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
 | 	if (!svm) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = kvm_vcpu_init(&svm->vcpu, kvm, id); | 
 | 	if (err) | 
 | 		goto free_svm; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	page = alloc_page(GFP_KERNEL); | 
 | 	if (!page) | 
 | 		goto uninit; | 
 |  | 
 | 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
 | 	if (!msrpm_pages) | 
 | 		goto free_page1; | 
 |  | 
 | 	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
 | 	if (!nested_msrpm_pages) | 
 | 		goto free_page2; | 
 |  | 
 | 	hsave_page = alloc_page(GFP_KERNEL); | 
 | 	if (!hsave_page) | 
 | 		goto free_page3; | 
 |  | 
 | 	err = avic_init_vcpu(svm); | 
 | 	if (err) | 
 | 		goto free_page4; | 
 |  | 
 | 	/* We initialize this flag to true to make sure that the is_running | 
 | 	 * bit would be set the first time the vcpu is loaded. | 
 | 	 */ | 
 | 	svm->avic_is_running = true; | 
 |  | 
 | 	svm->nested.hsave = page_address(hsave_page); | 
 |  | 
 | 	svm->msrpm = page_address(msrpm_pages); | 
 | 	svm_vcpu_init_msrpm(svm->msrpm); | 
 |  | 
 | 	svm->nested.msrpm = page_address(nested_msrpm_pages); | 
 | 	svm_vcpu_init_msrpm(svm->nested.msrpm); | 
 |  | 
 | 	svm->vmcb = page_address(page); | 
 | 	clear_page(svm->vmcb); | 
 | 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); | 
 | 	svm->asid_generation = 0; | 
 | 	init_vmcb(svm); | 
 |  | 
 | 	svm_init_osvw(&svm->vcpu); | 
 |  | 
 | 	return &svm->vcpu; | 
 |  | 
 | free_page4: | 
 | 	__free_page(hsave_page); | 
 | free_page3: | 
 | 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); | 
 | free_page2: | 
 | 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); | 
 | free_page1: | 
 | 	__free_page(page); | 
 | uninit: | 
 | 	kvm_vcpu_uninit(&svm->vcpu); | 
 | free_svm: | 
 | 	kmem_cache_free(kvm_vcpu_cache, svm); | 
 | out: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void svm_clear_current_vmcb(struct vmcb *vmcb) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); | 
 | } | 
 |  | 
 | static void svm_free_vcpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * The vmcb page can be recycled, causing a false negative in | 
 | 	 * svm_vcpu_load(). So, ensure that no logical CPU has this | 
 | 	 * vmcb page recorded as its current vmcb. | 
 | 	 */ | 
 | 	svm_clear_current_vmcb(svm->vmcb); | 
 |  | 
 | 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); | 
 | 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); | 
 | 	__free_page(virt_to_page(svm->nested.hsave)); | 
 | 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); | 
 | 	kvm_vcpu_uninit(vcpu); | 
 | 	kmem_cache_free(kvm_vcpu_cache, svm); | 
 | } | 
 |  | 
 | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(cpu != vcpu->cpu)) { | 
 | 		svm->asid_generation = 0; | 
 | 		mark_all_dirty(svm->vmcb); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); | 
 | #endif | 
 | 	savesegment(fs, svm->host.fs); | 
 | 	savesegment(gs, svm->host.gs); | 
 | 	svm->host.ldt = kvm_read_ldt(); | 
 |  | 
 | 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
 | 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
 | 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; | 
 | 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { | 
 | 			__this_cpu_write(current_tsc_ratio, tsc_ratio); | 
 | 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); | 
 | 		} | 
 | 	} | 
 | 	/* This assumes that the kernel never uses MSR_TSC_AUX */ | 
 | 	if (static_cpu_has(X86_FEATURE_RDTSCP)) | 
 | 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | 
 |  | 
 | 	if (sd->current_vmcb != svm->vmcb) { | 
 | 		sd->current_vmcb = svm->vmcb; | 
 | 		indirect_branch_prediction_barrier(); | 
 | 	} | 
 | 	avic_vcpu_load(vcpu, cpu); | 
 | } | 
 |  | 
 | static void svm_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int i; | 
 |  | 
 | 	avic_vcpu_put(vcpu); | 
 |  | 
 | 	++vcpu->stat.host_state_reload; | 
 | 	kvm_load_ldt(svm->host.ldt); | 
 | #ifdef CONFIG_X86_64 | 
 | 	loadsegment(fs, svm->host.fs); | 
 | 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); | 
 | 	load_gs_index(svm->host.gs); | 
 | #else | 
 | #ifdef CONFIG_X86_32_LAZY_GS | 
 | 	loadsegment(gs, svm->host.gs); | 
 | #endif | 
 | #endif | 
 | 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
 | 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
 | } | 
 |  | 
 | static void svm_vcpu_blocking(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	avic_set_running(vcpu, false); | 
 | } | 
 |  | 
 | static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	avic_set_running(vcpu, true); | 
 | } | 
 |  | 
 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	unsigned long rflags = svm->vmcb->save.rflags; | 
 |  | 
 | 	if (svm->nmi_singlestep) { | 
 | 		/* Hide our flags if they were not set by the guest */ | 
 | 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | 
 | 			rflags &= ~X86_EFLAGS_TF; | 
 | 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | 
 | 			rflags &= ~X86_EFLAGS_RF; | 
 | 	} | 
 | 	return rflags; | 
 | } | 
 |  | 
 | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	if (to_svm(vcpu)->nmi_singlestep) | 
 | 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 |  | 
 |        /* | 
 |         * Any change of EFLAGS.VM is accompanied by a reload of SS | 
 |         * (caused by either a task switch or an inter-privilege IRET), | 
 |         * so we do not need to update the CPL here. | 
 |         */ | 
 | 	to_svm(vcpu)->vmcb->save.rflags = rflags; | 
 | } | 
 |  | 
 | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
 | { | 
 | 	switch (reg) { | 
 | 	case VCPU_EXREG_PDPTR: | 
 | 		BUG_ON(!npt_enabled); | 
 | 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_set_vintr(struct vcpu_svm *svm) | 
 | { | 
 | 	set_intercept(svm, INTERCEPT_VINTR); | 
 | } | 
 |  | 
 | static void svm_clear_vintr(struct vcpu_svm *svm) | 
 | { | 
 | 	clr_intercept(svm, INTERCEPT_VINTR); | 
 | } | 
 |  | 
 | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
 |  | 
 | 	switch (seg) { | 
 | 	case VCPU_SREG_CS: return &save->cs; | 
 | 	case VCPU_SREG_DS: return &save->ds; | 
 | 	case VCPU_SREG_ES: return &save->es; | 
 | 	case VCPU_SREG_FS: return &save->fs; | 
 | 	case VCPU_SREG_GS: return &save->gs; | 
 | 	case VCPU_SREG_SS: return &save->ss; | 
 | 	case VCPU_SREG_TR: return &save->tr; | 
 | 	case VCPU_SREG_LDTR: return &save->ldtr; | 
 | 	} | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	return s->base; | 
 | } | 
 |  | 
 | static void svm_get_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	var->base = s->base; | 
 | 	var->limit = s->limit; | 
 | 	var->selector = s->selector; | 
 | 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; | 
 | 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; | 
 | 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
 | 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; | 
 | 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; | 
 | 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; | 
 | 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; | 
 |  | 
 | 	/* | 
 | 	 * AMD CPUs circa 2014 track the G bit for all segments except CS. | 
 | 	 * However, the SVM spec states that the G bit is not observed by the | 
 | 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments. | 
 | 	 * So let's synthesize a legal G bit for all segments, this helps | 
 | 	 * running KVM nested. It also helps cross-vendor migration, because | 
 | 	 * Intel's vmentry has a check on the 'G' bit. | 
 | 	 */ | 
 | 	var->g = s->limit > 0xfffff; | 
 |  | 
 | 	/* | 
 | 	 * AMD's VMCB does not have an explicit unusable field, so emulate it | 
 | 	 * for cross vendor migration purposes by "not present" | 
 | 	 */ | 
 | 	var->unusable = !var->present; | 
 |  | 
 | 	switch (seg) { | 
 | 	case VCPU_SREG_TR: | 
 | 		/* | 
 | 		 * Work around a bug where the busy flag in the tr selector | 
 | 		 * isn't exposed | 
 | 		 */ | 
 | 		var->type |= 0x2; | 
 | 		break; | 
 | 	case VCPU_SREG_DS: | 
 | 	case VCPU_SREG_ES: | 
 | 	case VCPU_SREG_FS: | 
 | 	case VCPU_SREG_GS: | 
 | 		/* | 
 | 		 * The accessed bit must always be set in the segment | 
 | 		 * descriptor cache, although it can be cleared in the | 
 | 		 * descriptor, the cached bit always remains at 1. Since | 
 | 		 * Intel has a check on this, set it here to support | 
 | 		 * cross-vendor migration. | 
 | 		 */ | 
 | 		if (!var->unusable) | 
 | 			var->type |= 0x1; | 
 | 		break; | 
 | 	case VCPU_SREG_SS: | 
 | 		/* | 
 | 		 * On AMD CPUs sometimes the DB bit in the segment | 
 | 		 * descriptor is left as 1, although the whole segment has | 
 | 		 * been made unusable. Clear it here to pass an Intel VMX | 
 | 		 * entry check when cross vendor migrating. | 
 | 		 */ | 
 | 		if (var->unusable) | 
 | 			var->db = 0; | 
 | 		/* This is symmetric with svm_set_segment() */ | 
 | 		var->dpl = to_svm(vcpu)->vmcb->save.cpl; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_get_cpl(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
 |  | 
 | 	return save->cpl; | 
 | } | 
 |  | 
 | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	dt->size = svm->vmcb->save.idtr.limit; | 
 | 	dt->address = svm->vmcb->save.idtr.base; | 
 | } | 
 |  | 
 | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.idtr.limit = dt->size; | 
 | 	svm->vmcb->save.idtr.base = dt->address ; | 
 | 	mark_dirty(svm->vmcb, VMCB_DT); | 
 | } | 
 |  | 
 | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	dt->size = svm->vmcb->save.gdtr.limit; | 
 | 	dt->address = svm->vmcb->save.gdtr.base; | 
 | } | 
 |  | 
 | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.gdtr.limit = dt->size; | 
 | 	svm->vmcb->save.gdtr.base = dt->address ; | 
 | 	mark_dirty(svm->vmcb, VMCB_DT); | 
 | } | 
 |  | 
 | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void svm_decache_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void update_cr0_intercept(struct vcpu_svm *svm) | 
 | { | 
 | 	ulong gcr0 = svm->vcpu.arch.cr0; | 
 | 	u64 *hcr0 = &svm->vmcb->save.cr0; | 
 |  | 
 | 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | 
 | 		| (gcr0 & SVM_CR0_SELECTIVE_MASK); | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 |  | 
 | 	if (gcr0 == *hcr0) { | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	} else { | 
 | 		set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->arch.efer & EFER_LME) { | 
 | 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
 | 			vcpu->arch.efer |= EFER_LMA; | 
 | 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME; | 
 | 		} | 
 |  | 
 | 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { | 
 | 			vcpu->arch.efer &= ~EFER_LMA; | 
 | 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	vcpu->arch.cr0 = cr0; | 
 |  | 
 | 	if (!npt_enabled) | 
 | 		cr0 |= X86_CR0_PG | X86_CR0_WP; | 
 |  | 
 | 	/* | 
 | 	 * re-enable caching here because the QEMU bios | 
 | 	 * does not do it - this results in some delay at | 
 | 	 * reboot | 
 | 	 */ | 
 | 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | 
 | 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW); | 
 | 	svm->vmcb->save.cr0 = cr0; | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 | 	update_cr0_intercept(svm); | 
 | } | 
 |  | 
 | static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; | 
 | 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; | 
 |  | 
 | 	if (cr4 & X86_CR4_VMXE) | 
 | 		return 1; | 
 |  | 
 | 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) | 
 | 		svm_flush_tlb(vcpu, true); | 
 |  | 
 | 	vcpu->arch.cr4 = cr4; | 
 | 	if (!npt_enabled) | 
 | 		cr4 |= X86_CR4_PAE; | 
 | 	cr4 |= host_cr4_mce; | 
 | 	to_svm(vcpu)->vmcb->save.cr4 = cr4; | 
 | 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_set_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	s->base = var->base; | 
 | 	s->limit = var->limit; | 
 | 	s->selector = var->selector; | 
 | 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); | 
 | 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; | 
 | 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; | 
 | 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; | 
 | 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; | 
 | 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; | 
 | 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; | 
 | 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * This is always accurate, except if SYSRET returned to a segment | 
 | 	 * with SS.DPL != 3.  Intel does not have this quirk, and always | 
 | 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it | 
 | 	 * would entail passing the CPL to userspace and back. | 
 | 	 */ | 
 | 	if (seg == VCPU_SREG_SS) | 
 | 		/* This is symmetric with svm_get_segment() */ | 
 | 		svm->vmcb->save.cpl = (var->dpl & 3); | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_SEG); | 
 | } | 
 |  | 
 | static void update_bp_intercept(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	clr_exception_intercept(svm, BP_VECTOR); | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { | 
 | 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
 | 			set_exception_intercept(svm, BP_VECTOR); | 
 | 	} else | 
 | 		vcpu->guest_debug = 0; | 
 | } | 
 |  | 
 | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) | 
 | { | 
 | 	if (sd->next_asid > sd->max_asid) { | 
 | 		++sd->asid_generation; | 
 | 		sd->next_asid = sd->min_asid; | 
 | 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; | 
 | 	} | 
 |  | 
 | 	svm->asid_generation = sd->asid_generation; | 
 | 	svm->vmcb->control.asid = sd->next_asid++; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_ASID); | 
 | } | 
 |  | 
 | static u64 svm_get_dr6(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return to_svm(vcpu)->vmcb->save.dr6; | 
 | } | 
 |  | 
 | static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.dr6 = value; | 
 | 	mark_dirty(svm->vmcb, VMCB_DR); | 
 | } | 
 |  | 
 | static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	get_debugreg(vcpu->arch.db[0], 0); | 
 | 	get_debugreg(vcpu->arch.db[1], 1); | 
 | 	get_debugreg(vcpu->arch.db[2], 2); | 
 | 	get_debugreg(vcpu->arch.db[3], 3); | 
 | 	vcpu->arch.dr6 = svm_get_dr6(vcpu); | 
 | 	vcpu->arch.dr7 = svm->vmcb->save.dr7; | 
 |  | 
 | 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; | 
 | 	set_dr_intercepts(svm); | 
 | } | 
 |  | 
 | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.dr7 = value; | 
 | 	mark_dirty(svm->vmcb, VMCB_DR); | 
 | } | 
 |  | 
 | static int pf_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); | 
 | 	u64 error_code = svm->vmcb->control.exit_info_1; | 
 |  | 
 | 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, | 
 | 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ? | 
 | 			svm->vmcb->control.insn_bytes : NULL, | 
 | 			svm->vmcb->control.insn_len); | 
 | } | 
 |  | 
 | static int npf_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); | 
 | 	u64 error_code = svm->vmcb->control.exit_info_1; | 
 |  | 
 | 	trace_kvm_page_fault(fault_address, error_code); | 
 | 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, | 
 | 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ? | 
 | 			svm->vmcb->control.insn_bytes : NULL, | 
 | 			svm->vmcb->control.insn_len); | 
 | } | 
 |  | 
 | static int db_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 |  | 
 | 	if (!(svm->vcpu.guest_debug & | 
 | 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && | 
 | 		!svm->nmi_singlestep) { | 
 | 		kvm_queue_exception(&svm->vcpu, DB_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (svm->nmi_singlestep) { | 
 | 		disable_nmi_singlestep(svm); | 
 | 		/* Make sure we check for pending NMIs upon entry */ | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	} | 
 |  | 
 | 	if (svm->vcpu.guest_debug & | 
 | 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 		kvm_run->debug.arch.pc = | 
 | 			svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
 | 		kvm_run->debug.arch.exception = DB_VECTOR; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int bp_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
 | 	kvm_run->debug.arch.exception = BP_VECTOR; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ud_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return handle_ud(&svm->vcpu); | 
 | } | 
 |  | 
 | static int ac_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gp_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 | 	u32 error_code = svm->vmcb->control.exit_info_1; | 
 | 	int er; | 
 |  | 
 | 	WARN_ON_ONCE(!enable_vmware_backdoor); | 
 |  | 
 | 	er = kvm_emulate_instruction(vcpu, | 
 | 		EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); | 
 | 	if (er == EMULATE_USER_EXIT) | 
 | 		return 0; | 
 | 	else if (er != EMULATE_DONE) | 
 | 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_erratum_383(void) | 
 | { | 
 | 	int err, i; | 
 | 	u64 value; | 
 |  | 
 | 	if (!erratum_383_found) | 
 | 		return false; | 
 |  | 
 | 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); | 
 | 	if (err) | 
 | 		return false; | 
 |  | 
 | 	/* Bit 62 may or may not be set for this mce */ | 
 | 	value &= ~(1ULL << 62); | 
 |  | 
 | 	if (value != 0xb600000000010015ULL) | 
 | 		return false; | 
 |  | 
 | 	/* Clear MCi_STATUS registers */ | 
 | 	for (i = 0; i < 6; ++i) | 
 | 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); | 
 |  | 
 | 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); | 
 | 	if (!err) { | 
 | 		u32 low, high; | 
 |  | 
 | 		value &= ~(1ULL << 2); | 
 | 		low    = lower_32_bits(value); | 
 | 		high   = upper_32_bits(value); | 
 |  | 
 | 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); | 
 | 	} | 
 |  | 
 | 	/* Flush tlb to evict multi-match entries */ | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void svm_handle_mce(struct vcpu_svm *svm) | 
 | { | 
 | 	if (is_erratum_383()) { | 
 | 		/* | 
 | 		 * Erratum 383 triggered. Guest state is corrupt so kill the | 
 | 		 * guest. | 
 | 		 */ | 
 | 		pr_err("KVM: Guest triggered AMD Erratum 383\n"); | 
 |  | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On an #MC intercept the MCE handler is not called automatically in | 
 | 	 * the host. So do it by hand here. | 
 | 	 */ | 
 | 	asm volatile ( | 
 | 		"int $0x12\n"); | 
 | 	/* not sure if we ever come back to this point */ | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static int mc_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int shutdown_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	/* | 
 | 	 * VMCB is undefined after a SHUTDOWN intercept | 
 | 	 * so reinitialize it. | 
 | 	 */ | 
 | 	clear_page(svm->vmcb); | 
 | 	init_vmcb(svm); | 
 |  | 
 | 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 | 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ | 
 | 	int size, in, string; | 
 | 	unsigned port; | 
 |  | 
 | 	++svm->vcpu.stat.io_exits; | 
 | 	string = (io_info & SVM_IOIO_STR_MASK) != 0; | 
 | 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0; | 
 | 	if (string) | 
 | 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
 |  | 
 | 	port = io_info >> 16; | 
 | 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; | 
 | 	svm->next_rip = svm->vmcb->control.exit_info_2; | 
 |  | 
 | 	return kvm_fast_pio(&svm->vcpu, size, port, in); | 
 | } | 
 |  | 
 | static int nmi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int intr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	++svm->vcpu.stat.irq_exits; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int nop_on_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int halt_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; | 
 | 	return kvm_emulate_halt(&svm->vcpu); | 
 | } | 
 |  | 
 | static int vmmcall_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	return kvm_emulate_hypercall(&svm->vcpu); | 
 | } | 
 |  | 
 | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	return svm->nested.nested_cr3; | 
 | } | 
 |  | 
 | static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 cr3 = svm->nested.nested_cr3; | 
 | 	u64 pdpte; | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte, | 
 | 				       offset_in_page(cr3) + index * 8, 8); | 
 | 	if (ret) | 
 | 		return 0; | 
 | 	return pdpte; | 
 | } | 
 |  | 
 | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, | 
 | 				   unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.nested_cr3 = __sme_set(root); | 
 | 	mark_dirty(svm->vmcb, VMCB_NPT); | 
 | } | 
 |  | 
 | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, | 
 | 				       struct x86_exception *fault) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { | 
 | 		/* | 
 | 		 * TODO: track the cause of the nested page fault, and | 
 | 		 * correctly fill in the high bits of exit_info_1. | 
 | 		 */ | 
 | 		svm->vmcb->control.exit_code = SVM_EXIT_NPF; | 
 | 		svm->vmcb->control.exit_code_hi = 0; | 
 | 		svm->vmcb->control.exit_info_1 = (1ULL << 32); | 
 | 		svm->vmcb->control.exit_info_2 = fault->address; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; | 
 | 	svm->vmcb->control.exit_info_1 |= fault->error_code; | 
 |  | 
 | 	/* | 
 | 	 * The present bit is always zero for page structure faults on real | 
 | 	 * hardware. | 
 | 	 */ | 
 | 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) | 
 | 		svm->vmcb->control.exit_info_1 &= ~1; | 
 |  | 
 | 	nested_svm_vmexit(svm); | 
 | } | 
 |  | 
 | static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	WARN_ON(mmu_is_nested(vcpu)); | 
 | 	kvm_init_shadow_mmu(vcpu); | 
 | 	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3; | 
 | 	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3; | 
 | 	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr; | 
 | 	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; | 
 | 	vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu); | 
 | 	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu); | 
 | 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu; | 
 | } | 
 |  | 
 | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->arch.walk_mmu = &vcpu->arch.mmu; | 
 | } | 
 |  | 
 | static int nested_svm_check_permissions(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!(svm->vcpu.arch.efer & EFER_SVME) || | 
 | 	    !is_paging(&svm->vcpu)) { | 
 | 		kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (svm->vmcb->save.cpl) { | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
 | 				      bool has_error_code, u32 error_code) | 
 | { | 
 | 	int vmexit; | 
 |  | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	vmexit = nested_svm_intercept(svm); | 
 | 	if (vmexit != NESTED_EXIT_DONE) | 
 | 		return 0; | 
 |  | 
 | 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; | 
 | 	svm->vmcb->control.exit_code_hi = 0; | 
 | 	svm->vmcb->control.exit_info_1 = error_code; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception. | 
 | 	 * The fix is to add the ancillary datum (CR2 or DR6) to structs | 
 | 	 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be | 
 | 	 * written only when inject_pending_event runs (DR6 would written here | 
 | 	 * too).  This should be conditional on a new capability---if the | 
 | 	 * capability is disabled, kvm_multiple_exception would write the | 
 | 	 * ancillary information to CR2 or DR6, for backwards ABI-compatibility. | 
 | 	 */ | 
 | 	if (svm->vcpu.arch.exception.nested_apf) | 
 | 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; | 
 | 	else | 
 | 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; | 
 |  | 
 | 	svm->nested.exit_required = true; | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | /* This function returns true if it is save to enable the irq window */ | 
 | static inline bool nested_svm_intr(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * if vmexit was already requested (by intercepted exception | 
 | 	 * for instance) do not overwrite it with "external interrupt" | 
 | 	 * vmexit. | 
 | 	 */ | 
 | 	if (svm->nested.exit_required) | 
 | 		return false; | 
 |  | 
 | 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR; | 
 | 	svm->vmcb->control.exit_info_1 = 0; | 
 | 	svm->vmcb->control.exit_info_2 = 0; | 
 |  | 
 | 	if (svm->nested.intercept & 1ULL) { | 
 | 		/* | 
 | 		 * The #vmexit can't be emulated here directly because this | 
 | 		 * code path runs with irqs and preemption disabled. A | 
 | 		 * #vmexit emulation might sleep. Only signal request for | 
 | 		 * the #vmexit here. | 
 | 		 */ | 
 | 		svm->nested.exit_required = true; | 
 | 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* This function returns true if it is save to enable the nmi window */ | 
 | static inline bool nested_svm_nmi(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) | 
 | 		return true; | 
 |  | 
 | 	svm->vmcb->control.exit_code = SVM_EXIT_NMI; | 
 | 	svm->nested.exit_required = true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) | 
 | 		goto error; | 
 |  | 
 | 	*_page = page; | 
 |  | 
 | 	return kmap(page); | 
 |  | 
 | error: | 
 | 	kvm_inject_gp(&svm->vcpu, 0); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void nested_svm_unmap(struct page *page) | 
 | { | 
 | 	kunmap(page); | 
 | 	kvm_release_page_dirty(page); | 
 | } | 
 |  | 
 | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) | 
 | { | 
 | 	unsigned port, size, iopm_len; | 
 | 	u16 val, mask; | 
 | 	u8 start_bit; | 
 | 	u64 gpa; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) | 
 | 		return NESTED_EXIT_HOST; | 
 |  | 
 | 	port = svm->vmcb->control.exit_info_1 >> 16; | 
 | 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> | 
 | 		SVM_IOIO_SIZE_SHIFT; | 
 | 	gpa  = svm->nested.vmcb_iopm + (port / 8); | 
 | 	start_bit = port % 8; | 
 | 	iopm_len = (start_bit + size > 8) ? 2 : 1; | 
 | 	mask = (0xf >> (4 - size)) << start_bit; | 
 | 	val = 0; | 
 |  | 
 | 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
 | } | 
 |  | 
 | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 offset, msr, value; | 
 | 	int write, mask; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
 | 		return NESTED_EXIT_HOST; | 
 |  | 
 | 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
 | 	offset = svm_msrpm_offset(msr); | 
 | 	write  = svm->vmcb->control.exit_info_1 & 1; | 
 | 	mask   = 1 << ((2 * (msr & 0xf)) + write); | 
 |  | 
 | 	if (offset == MSR_INVALID) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	/* Offset is in 32 bit units but need in 8 bit units */ | 
 | 	offset *= 4; | 
 |  | 
 | 	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4)) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
 | } | 
 |  | 
 | /* DB exceptions for our internal use must not cause vmexit */ | 
 | static int nested_svm_intercept_db(struct vcpu_svm *svm) | 
 | { | 
 | 	unsigned long dr6; | 
 |  | 
 | 	/* if we're not singlestepping, it's not ours */ | 
 | 	if (!svm->nmi_singlestep) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	/* if it's not a singlestep exception, it's not ours */ | 
 | 	if (kvm_get_dr(&svm->vcpu, 6, &dr6)) | 
 | 		return NESTED_EXIT_DONE; | 
 | 	if (!(dr6 & DR6_BS)) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	/* if the guest is singlestepping, it should get the vmexit */ | 
 | 	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) { | 
 | 		disable_nmi_singlestep(svm); | 
 | 		return NESTED_EXIT_DONE; | 
 | 	} | 
 |  | 
 | 	/* it's ours, the nested hypervisor must not see this one */ | 
 | 	return NESTED_EXIT_HOST; | 
 | } | 
 |  | 
 | static int nested_svm_exit_special(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 |  | 
 | 	switch (exit_code) { | 
 | 	case SVM_EXIT_INTR: | 
 | 	case SVM_EXIT_NMI: | 
 | 	case SVM_EXIT_EXCP_BASE + MC_VECTOR: | 
 | 		return NESTED_EXIT_HOST; | 
 | 	case SVM_EXIT_NPF: | 
 | 		/* For now we are always handling NPFs when using them */ | 
 | 		if (npt_enabled) | 
 | 			return NESTED_EXIT_HOST; | 
 | 		break; | 
 | 	case SVM_EXIT_EXCP_BASE + PF_VECTOR: | 
 | 		/* When we're shadowing, trap PFs, but not async PF */ | 
 | 		if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0) | 
 | 			return NESTED_EXIT_HOST; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NESTED_EXIT_CONTINUE; | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns true, this #vmexit was already handled | 
 |  */ | 
 | static int nested_svm_intercept(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 | 	int vmexit = NESTED_EXIT_HOST; | 
 |  | 
 | 	switch (exit_code) { | 
 | 	case SVM_EXIT_MSR: | 
 | 		vmexit = nested_svm_exit_handled_msr(svm); | 
 | 		break; | 
 | 	case SVM_EXIT_IOIO: | 
 | 		vmexit = nested_svm_intercept_ioio(svm); | 
 | 		break; | 
 | 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { | 
 | 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); | 
 | 		if (svm->nested.intercept_cr & bit) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { | 
 | 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); | 
 | 		if (svm->nested.intercept_dr & bit) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { | 
 | 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); | 
 | 		if (svm->nested.intercept_exceptions & excp_bits) { | 
 | 			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR) | 
 | 				vmexit = nested_svm_intercept_db(svm); | 
 | 			else | 
 | 				vmexit = NESTED_EXIT_DONE; | 
 | 		} | 
 | 		/* async page fault always cause vmexit */ | 
 | 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && | 
 | 			 svm->vcpu.arch.exception.nested_apf != 0) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_ERR: { | 
 | 		vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	default: { | 
 | 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); | 
 | 		if (svm->nested.intercept & exit_bits) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 	} | 
 | 	} | 
 |  | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | static int nested_svm_exit_handled(struct vcpu_svm *svm) | 
 | { | 
 | 	int vmexit; | 
 |  | 
 | 	vmexit = nested_svm_intercept(svm); | 
 |  | 
 | 	if (vmexit == NESTED_EXIT_DONE) | 
 | 		nested_svm_vmexit(svm); | 
 |  | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) | 
 | { | 
 | 	struct vmcb_control_area *dst  = &dst_vmcb->control; | 
 | 	struct vmcb_control_area *from = &from_vmcb->control; | 
 |  | 
 | 	dst->intercept_cr         = from->intercept_cr; | 
 | 	dst->intercept_dr         = from->intercept_dr; | 
 | 	dst->intercept_exceptions = from->intercept_exceptions; | 
 | 	dst->intercept            = from->intercept; | 
 | 	dst->iopm_base_pa         = from->iopm_base_pa; | 
 | 	dst->msrpm_base_pa        = from->msrpm_base_pa; | 
 | 	dst->tsc_offset           = from->tsc_offset; | 
 | 	dst->asid                 = from->asid; | 
 | 	dst->tlb_ctl              = from->tlb_ctl; | 
 | 	dst->int_ctl              = from->int_ctl; | 
 | 	dst->int_vector           = from->int_vector; | 
 | 	dst->int_state            = from->int_state; | 
 | 	dst->exit_code            = from->exit_code; | 
 | 	dst->exit_code_hi         = from->exit_code_hi; | 
 | 	dst->exit_info_1          = from->exit_info_1; | 
 | 	dst->exit_info_2          = from->exit_info_2; | 
 | 	dst->exit_int_info        = from->exit_int_info; | 
 | 	dst->exit_int_info_err    = from->exit_int_info_err; | 
 | 	dst->nested_ctl           = from->nested_ctl; | 
 | 	dst->event_inj            = from->event_inj; | 
 | 	dst->event_inj_err        = from->event_inj_err; | 
 | 	dst->nested_cr3           = from->nested_cr3; | 
 | 	dst->virt_ext              = from->virt_ext; | 
 | } | 
 |  | 
 | static int nested_svm_vmexit(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct vmcb *hsave = svm->nested.hsave; | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	struct page *page; | 
 |  | 
 | 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, | 
 | 				       vmcb->control.exit_info_1, | 
 | 				       vmcb->control.exit_info_2, | 
 | 				       vmcb->control.exit_int_info, | 
 | 				       vmcb->control.exit_int_info_err, | 
 | 				       KVM_ISA_SVM); | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	/* Exit Guest-Mode */ | 
 | 	leave_guest_mode(&svm->vcpu); | 
 | 	svm->nested.vmcb = 0; | 
 |  | 
 | 	/* Give the current vmcb to the guest */ | 
 | 	disable_gif(svm); | 
 |  | 
 | 	nested_vmcb->save.es     = vmcb->save.es; | 
 | 	nested_vmcb->save.cs     = vmcb->save.cs; | 
 | 	nested_vmcb->save.ss     = vmcb->save.ss; | 
 | 	nested_vmcb->save.ds     = vmcb->save.ds; | 
 | 	nested_vmcb->save.gdtr   = vmcb->save.gdtr; | 
 | 	nested_vmcb->save.idtr   = vmcb->save.idtr; | 
 | 	nested_vmcb->save.efer   = svm->vcpu.arch.efer; | 
 | 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
 | 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
 | 	nested_vmcb->save.cr2    = vmcb->save.cr2; | 
 | 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4; | 
 | 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); | 
 | 	nested_vmcb->save.rip    = vmcb->save.rip; | 
 | 	nested_vmcb->save.rsp    = vmcb->save.rsp; | 
 | 	nested_vmcb->save.rax    = vmcb->save.rax; | 
 | 	nested_vmcb->save.dr7    = vmcb->save.dr7; | 
 | 	nested_vmcb->save.dr6    = vmcb->save.dr6; | 
 | 	nested_vmcb->save.cpl    = vmcb->save.cpl; | 
 |  | 
 | 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl; | 
 | 	nested_vmcb->control.int_vector        = vmcb->control.int_vector; | 
 | 	nested_vmcb->control.int_state         = vmcb->control.int_state; | 
 | 	nested_vmcb->control.exit_code         = vmcb->control.exit_code; | 
 | 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi; | 
 | 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1; | 
 | 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2; | 
 | 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info; | 
 | 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | 
 |  | 
 | 	if (svm->nrips_enabled) | 
 | 		nested_vmcb->control.next_rip  = vmcb->control.next_rip; | 
 |  | 
 | 	/* | 
 | 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | 
 | 	 * to make sure that we do not lose injected events. So check event_inj | 
 | 	 * here and copy it to exit_int_info if it is valid. | 
 | 	 * Exit_int_info and event_inj can't be both valid because the case | 
 | 	 * below only happens on a VMRUN instruction intercept which has | 
 | 	 * no valid exit_int_info set. | 
 | 	 */ | 
 | 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { | 
 | 		struct vmcb_control_area *nc = &nested_vmcb->control; | 
 |  | 
 | 		nc->exit_int_info     = vmcb->control.event_inj; | 
 | 		nc->exit_int_info_err = vmcb->control.event_inj_err; | 
 | 	} | 
 |  | 
 | 	nested_vmcb->control.tlb_ctl           = 0; | 
 | 	nested_vmcb->control.event_inj         = 0; | 
 | 	nested_vmcb->control.event_inj_err     = 0; | 
 |  | 
 | 	/* We always set V_INTR_MASKING and remember the old value in hflags */ | 
 | 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
 | 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; | 
 |  | 
 | 	/* Restore the original control entries */ | 
 | 	copy_vmcb_control_area(vmcb, hsave); | 
 |  | 
 | 	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset; | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	svm->nested.nested_cr3 = 0; | 
 |  | 
 | 	/* Restore selected save entries */ | 
 | 	svm->vmcb->save.es = hsave->save.es; | 
 | 	svm->vmcb->save.cs = hsave->save.cs; | 
 | 	svm->vmcb->save.ss = hsave->save.ss; | 
 | 	svm->vmcb->save.ds = hsave->save.ds; | 
 | 	svm->vmcb->save.gdtr = hsave->save.gdtr; | 
 | 	svm->vmcb->save.idtr = hsave->save.idtr; | 
 | 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags); | 
 | 	svm_set_efer(&svm->vcpu, hsave->save.efer); | 
 | 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); | 
 | 	svm_set_cr4(&svm->vcpu, hsave->save.cr4); | 
 | 	if (npt_enabled) { | 
 | 		svm->vmcb->save.cr3 = hsave->save.cr3; | 
 | 		svm->vcpu.arch.cr3 = hsave->save.cr3; | 
 | 	} else { | 
 | 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); | 
 | 	} | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); | 
 | 	svm->vmcb->save.dr7 = 0; | 
 | 	svm->vmcb->save.cpl = 0; | 
 | 	svm->vmcb->control.exit_int_info = 0; | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 |  | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	nested_svm_uninit_mmu_context(&svm->vcpu); | 
 | 	kvm_mmu_reset_context(&svm->vcpu); | 
 | 	kvm_mmu_load(&svm->vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it | 
 | 	 * doesn't end up in L1. | 
 | 	 */ | 
 | 	svm->vcpu.arch.nmi_injected = false; | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) | 
 | { | 
 | 	/* | 
 | 	 * This function merges the msr permission bitmaps of kvm and the | 
 | 	 * nested vmcb. It is optimized in that it only merges the parts where | 
 | 	 * the kvm msr permission bitmap may contain zero bits | 
 | 	 */ | 
 | 	int i; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
 | 		return true; | 
 |  | 
 | 	for (i = 0; i < MSRPM_OFFSETS; i++) { | 
 | 		u32 value, p; | 
 | 		u64 offset; | 
 |  | 
 | 		if (msrpm_offsets[i] == 0xffffffff) | 
 | 			break; | 
 |  | 
 | 		p      = msrpm_offsets[i]; | 
 | 		offset = svm->nested.vmcb_msrpm + (p * 4); | 
 |  | 
 | 		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) | 
 | 			return false; | 
 |  | 
 | 		svm->nested.msrpm[p] = svm->msrpm[p] | value; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool nested_vmcb_checks(struct vmcb *vmcb) | 
 | { | 
 | 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) | 
 | 		return false; | 
 |  | 
 | 	if (vmcb->control.asid == 0) | 
 | 		return false; | 
 |  | 
 | 	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && | 
 | 	    !npt_enabled) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, | 
 | 				 struct vmcb *nested_vmcb, struct page *page) | 
 | { | 
 | 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) | 
 | 		svm->vcpu.arch.hflags |= HF_HIF_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | 
 |  | 
 | 	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { | 
 | 		kvm_mmu_unload(&svm->vcpu); | 
 | 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; | 
 | 		nested_svm_init_mmu_context(&svm->vcpu); | 
 | 	} | 
 |  | 
 | 	/* Load the nested guest state */ | 
 | 	svm->vmcb->save.es = nested_vmcb->save.es; | 
 | 	svm->vmcb->save.cs = nested_vmcb->save.cs; | 
 | 	svm->vmcb->save.ss = nested_vmcb->save.ss; | 
 | 	svm->vmcb->save.ds = nested_vmcb->save.ds; | 
 | 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; | 
 | 	svm->vmcb->save.idtr = nested_vmcb->save.idtr; | 
 | 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); | 
 | 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); | 
 | 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); | 
 | 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); | 
 | 	if (npt_enabled) { | 
 | 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3; | 
 | 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; | 
 | 	} else | 
 | 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); | 
 |  | 
 | 	/* Guest paging mode is active - reset mmu */ | 
 | 	kvm_mmu_reset_context(&svm->vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); | 
 |  | 
 | 	/* In case we don't even reach vcpu_run, the fields are not updated */ | 
 | 	svm->vmcb->save.rax = nested_vmcb->save.rax; | 
 | 	svm->vmcb->save.rsp = nested_vmcb->save.rsp; | 
 | 	svm->vmcb->save.rip = nested_vmcb->save.rip; | 
 | 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7; | 
 | 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6; | 
 | 	svm->vmcb->save.cpl = nested_vmcb->save.cpl; | 
 |  | 
 | 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; | 
 | 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL; | 
 |  | 
 | 	/* cache intercepts */ | 
 | 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr; | 
 | 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr; | 
 | 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; | 
 | 	svm->nested.intercept            = nested_vmcb->control.intercept; | 
 |  | 
 | 	svm_flush_tlb(&svm->vcpu, true); | 
 | 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; | 
 | 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) | 
 | 		svm->vcpu.arch.hflags |= HF_VINTR_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; | 
 |  | 
 | 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { | 
 | 		/* We only want the cr8 intercept bits of the guest */ | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR8_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 | 	} | 
 |  | 
 | 	/* We don't want to see VMMCALLs from a nested guest */ | 
 | 	clr_intercept(svm, INTERCEPT_VMMCALL); | 
 |  | 
 | 	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset; | 
 | 	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset; | 
 |  | 
 | 	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext; | 
 | 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; | 
 | 	svm->vmcb->control.int_state = nested_vmcb->control.int_state; | 
 | 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; | 
 | 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; | 
 |  | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	/* Enter Guest-Mode */ | 
 | 	enter_guest_mode(&svm->vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Merge guest and host intercepts - must be called  with vcpu in | 
 | 	 * guest-mode to take affect here | 
 | 	 */ | 
 | 	recalc_intercepts(svm); | 
 |  | 
 | 	svm->nested.vmcb = vmcb_gpa; | 
 |  | 
 | 	enable_gif(svm); | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 | } | 
 |  | 
 | static bool nested_svm_vmrun(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct vmcb *hsave = svm->nested.hsave; | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	struct page *page; | 
 | 	u64 vmcb_gpa; | 
 |  | 
 | 	vmcb_gpa = svm->vmcb->save.rax; | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return false; | 
 |  | 
 | 	if (!nested_vmcb_checks(nested_vmcb)) { | 
 | 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR; | 
 | 		nested_vmcb->control.exit_code_hi = 0; | 
 | 		nested_vmcb->control.exit_info_1  = 0; | 
 | 		nested_vmcb->control.exit_info_2  = 0; | 
 |  | 
 | 		nested_svm_unmap(page); | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, | 
 | 			       nested_vmcb->save.rip, | 
 | 			       nested_vmcb->control.int_ctl, | 
 | 			       nested_vmcb->control.event_inj, | 
 | 			       nested_vmcb->control.nested_ctl); | 
 |  | 
 | 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, | 
 | 				    nested_vmcb->control.intercept_cr >> 16, | 
 | 				    nested_vmcb->control.intercept_exceptions, | 
 | 				    nested_vmcb->control.intercept); | 
 |  | 
 | 	/* Clear internal status */ | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Save the old vmcb, so we don't need to pick what we save, but can | 
 | 	 * restore everything when a VMEXIT occurs | 
 | 	 */ | 
 | 	hsave->save.es     = vmcb->save.es; | 
 | 	hsave->save.cs     = vmcb->save.cs; | 
 | 	hsave->save.ss     = vmcb->save.ss; | 
 | 	hsave->save.ds     = vmcb->save.ds; | 
 | 	hsave->save.gdtr   = vmcb->save.gdtr; | 
 | 	hsave->save.idtr   = vmcb->save.idtr; | 
 | 	hsave->save.efer   = svm->vcpu.arch.efer; | 
 | 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
 | 	hsave->save.cr4    = svm->vcpu.arch.cr4; | 
 | 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu); | 
 | 	hsave->save.rip    = kvm_rip_read(&svm->vcpu); | 
 | 	hsave->save.rsp    = vmcb->save.rsp; | 
 | 	hsave->save.rax    = vmcb->save.rax; | 
 | 	if (npt_enabled) | 
 | 		hsave->save.cr3    = vmcb->save.cr3; | 
 | 	else | 
 | 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
 |  | 
 | 	copy_vmcb_control_area(hsave, vmcb); | 
 |  | 
 | 	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) | 
 | { | 
 | 	to_vmcb->save.fs = from_vmcb->save.fs; | 
 | 	to_vmcb->save.gs = from_vmcb->save.gs; | 
 | 	to_vmcb->save.tr = from_vmcb->save.tr; | 
 | 	to_vmcb->save.ldtr = from_vmcb->save.ldtr; | 
 | 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; | 
 | 	to_vmcb->save.star = from_vmcb->save.star; | 
 | 	to_vmcb->save.lstar = from_vmcb->save.lstar; | 
 | 	to_vmcb->save.cstar = from_vmcb->save.cstar; | 
 | 	to_vmcb->save.sfmask = from_vmcb->save.sfmask; | 
 | 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; | 
 | 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; | 
 | 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; | 
 | } | 
 |  | 
 | static int vmload_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb); | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vmsave_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb); | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vmrun_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	/* Save rip after vmrun instruction */ | 
 | 	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); | 
 |  | 
 | 	if (!nested_svm_vmrun(svm)) | 
 | 		return 1; | 
 |  | 
 | 	if (!nested_svm_vmrun_msrpm(svm)) | 
 | 		goto failed; | 
 |  | 
 | 	return 1; | 
 |  | 
 | failed: | 
 |  | 
 | 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR; | 
 | 	svm->vmcb->control.exit_code_hi = 0; | 
 | 	svm->vmcb->control.exit_info_1  = 0; | 
 | 	svm->vmcb->control.exit_info_2  = 0; | 
 |  | 
 | 	nested_svm_vmexit(svm); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int stgi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * If VGIF is enabled, the STGI intercept is only added to | 
 | 	 * detect the opening of the SMI/NMI window; remove it now. | 
 | 	 */ | 
 | 	if (vgif_enabled(svm)) | 
 | 		clr_intercept(svm, INTERCEPT_STGI); | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 |  | 
 | 	enable_gif(svm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int clgi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	disable_gif(svm); | 
 |  | 
 | 	/* After a CLGI no interrupts should come */ | 
 | 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) { | 
 | 		svm_clear_vintr(svm); | 
 | 		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
 | 		mark_dirty(svm->vmcb, VMCB_INTR); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int invlpga_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 |  | 
 | 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX), | 
 | 			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
 |  | 
 | 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ | 
 | 	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | } | 
 |  | 
 | static int skinit_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
 |  | 
 | 	kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int wbinvd_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return kvm_emulate_wbinvd(&svm->vcpu); | 
 | } | 
 |  | 
 | static int xsetbv_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu); | 
 | 	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
 |  | 
 | 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { | 
 | 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 		return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int task_switch_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u16 tss_selector; | 
 | 	int reason; | 
 | 	int int_type = svm->vmcb->control.exit_int_info & | 
 | 		SVM_EXITINTINFO_TYPE_MASK; | 
 | 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; | 
 | 	uint32_t type = | 
 | 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; | 
 | 	uint32_t idt_v = | 
 | 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; | 
 | 	bool has_error_code = false; | 
 | 	u32 error_code = 0; | 
 |  | 
 | 	tss_selector = (u16)svm->vmcb->control.exit_info_1; | 
 |  | 
 | 	if (svm->vmcb->control.exit_info_2 & | 
 | 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) | 
 | 		reason = TASK_SWITCH_IRET; | 
 | 	else if (svm->vmcb->control.exit_info_2 & | 
 | 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) | 
 | 		reason = TASK_SWITCH_JMP; | 
 | 	else if (idt_v) | 
 | 		reason = TASK_SWITCH_GATE; | 
 | 	else | 
 | 		reason = TASK_SWITCH_CALL; | 
 |  | 
 | 	if (reason == TASK_SWITCH_GATE) { | 
 | 		switch (type) { | 
 | 		case SVM_EXITINTINFO_TYPE_NMI: | 
 | 			svm->vcpu.arch.nmi_injected = false; | 
 | 			break; | 
 | 		case SVM_EXITINTINFO_TYPE_EXEPT: | 
 | 			if (svm->vmcb->control.exit_info_2 & | 
 | 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { | 
 | 				has_error_code = true; | 
 | 				error_code = | 
 | 					(u32)svm->vmcb->control.exit_info_2; | 
 | 			} | 
 | 			kvm_clear_exception_queue(&svm->vcpu); | 
 | 			break; | 
 | 		case SVM_EXITINTINFO_TYPE_INTR: | 
 | 			kvm_clear_interrupt_queue(&svm->vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (reason != TASK_SWITCH_GATE || | 
 | 	    int_type == SVM_EXITINTINFO_TYPE_SOFT || | 
 | 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT && | 
 | 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT) | 
 | 		int_vec = -1; | 
 |  | 
 | 	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, | 
 | 				has_error_code, error_code) == EMULATE_FAIL) { | 
 | 		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 		svm->vcpu.run->internal.ndata = 0; | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int cpuid_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 	return kvm_emulate_cpuid(&svm->vcpu); | 
 | } | 
 |  | 
 | static int iret_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	++svm->vcpu.stat.nmi_window_exits; | 
 | 	clr_intercept(svm, INTERCEPT_IRET); | 
 | 	svm->vcpu.arch.hflags |= HF_IRET_MASK; | 
 | 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int invlpg_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
 |  | 
 | 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); | 
 | 	return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | } | 
 |  | 
 | static int emulate_on_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
 | } | 
 |  | 
 | static int rsm_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, | 
 | 					rsm_ins_bytes, 2) == EMULATE_DONE; | 
 | } | 
 |  | 
 | static int rdpmc_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_NRIPS)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	err = kvm_rdpmc(&svm->vcpu); | 
 | 	return kvm_complete_insn_gp(&svm->vcpu, err); | 
 | } | 
 |  | 
 | static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, | 
 | 					    unsigned long val) | 
 | { | 
 | 	unsigned long cr0 = svm->vcpu.arch.cr0; | 
 | 	bool ret = false; | 
 | 	u64 intercept; | 
 |  | 
 | 	intercept = svm->nested.intercept; | 
 |  | 
 | 	if (!is_guest_mode(&svm->vcpu) || | 
 | 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) | 
 | 		return false; | 
 |  | 
 | 	cr0 &= ~SVM_CR0_SELECTIVE_MASK; | 
 | 	val &= ~SVM_CR0_SELECTIVE_MASK; | 
 |  | 
 | 	if (cr0 ^ val) { | 
 | 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
 | 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define CR_VALID (1ULL << 63) | 
 |  | 
 | static int cr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int reg, cr; | 
 | 	unsigned long val; | 
 | 	int err; | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
 | 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) | 
 | 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; | 
 | 	else | 
 | 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; | 
 |  | 
 | 	err = 0; | 
 | 	if (cr >= 16) { /* mov to cr */ | 
 | 		cr -= 16; | 
 | 		val = kvm_register_read(&svm->vcpu, reg); | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			if (!check_selective_cr0_intercepted(svm, val)) | 
 | 				err = kvm_set_cr0(&svm->vcpu, val); | 
 | 			else | 
 | 				return 1; | 
 |  | 
 | 			break; | 
 | 		case 3: | 
 | 			err = kvm_set_cr3(&svm->vcpu, val); | 
 | 			break; | 
 | 		case 4: | 
 | 			err = kvm_set_cr4(&svm->vcpu, val); | 
 | 			break; | 
 | 		case 8: | 
 | 			err = kvm_set_cr8(&svm->vcpu, val); | 
 | 			break; | 
 | 		default: | 
 | 			WARN(1, "unhandled write to CR%d", cr); | 
 | 			kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 	} else { /* mov from cr */ | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			val = kvm_read_cr0(&svm->vcpu); | 
 | 			break; | 
 | 		case 2: | 
 | 			val = svm->vcpu.arch.cr2; | 
 | 			break; | 
 | 		case 3: | 
 | 			val = kvm_read_cr3(&svm->vcpu); | 
 | 			break; | 
 | 		case 4: | 
 | 			val = kvm_read_cr4(&svm->vcpu); | 
 | 			break; | 
 | 		case 8: | 
 | 			val = kvm_get_cr8(&svm->vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			WARN(1, "unhandled read from CR%d", cr); | 
 | 			kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 		kvm_register_write(&svm->vcpu, reg, val); | 
 | 	} | 
 | 	return kvm_complete_insn_gp(&svm->vcpu, err); | 
 | } | 
 |  | 
 | static int dr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int reg, dr; | 
 | 	unsigned long val; | 
 |  | 
 | 	if (svm->vcpu.guest_debug == 0) { | 
 | 		/* | 
 | 		 * No more DR vmexits; force a reload of the debug registers | 
 | 		 * and reenter on this instruction.  The next vmexit will | 
 | 		 * retrieve the full state of the debug registers. | 
 | 		 */ | 
 | 		clr_dr_intercepts(svm); | 
 | 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
 | 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; | 
 |  | 
 | 	if (dr >= 16) { /* mov to DRn */ | 
 | 		if (!kvm_require_dr(&svm->vcpu, dr - 16)) | 
 | 			return 1; | 
 | 		val = kvm_register_read(&svm->vcpu, reg); | 
 | 		kvm_set_dr(&svm->vcpu, dr - 16, val); | 
 | 	} else { | 
 | 		if (!kvm_require_dr(&svm->vcpu, dr)) | 
 | 			return 1; | 
 | 		kvm_get_dr(&svm->vcpu, dr, &val); | 
 | 		kvm_register_write(&svm->vcpu, reg, val); | 
 | 	} | 
 |  | 
 | 	return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | } | 
 |  | 
 | static int cr8_write_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 | 	int r; | 
 |  | 
 | 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu); | 
 | 	/* instruction emulation calls kvm_set_cr8() */ | 
 | 	r = cr_interception(svm); | 
 | 	if (lapic_in_kernel(&svm->vcpu)) | 
 | 		return r; | 
 | 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) | 
 | 		return r; | 
 | 	kvm_run->exit_reason = KVM_EXIT_SET_TPR; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_get_msr_feature(struct kvm_msr_entry *msr) | 
 | { | 
 | 	msr->data = 0; | 
 |  | 
 | 	switch (msr->index) { | 
 | 	case MSR_F10H_DECFG: | 
 | 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) | 
 | 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; | 
 | 		break; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	switch (msr_info->index) { | 
 | 	case MSR_STAR: | 
 | 		msr_info->data = svm->vmcb->save.star; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_LSTAR: | 
 | 		msr_info->data = svm->vmcb->save.lstar; | 
 | 		break; | 
 | 	case MSR_CSTAR: | 
 | 		msr_info->data = svm->vmcb->save.cstar; | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		msr_info->data = svm->vmcb->save.kernel_gs_base; | 
 | 		break; | 
 | 	case MSR_SYSCALL_MASK: | 
 | 		msr_info->data = svm->vmcb->save.sfmask; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		msr_info->data = svm->vmcb->save.sysenter_cs; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		msr_info->data = svm->sysenter_eip; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		msr_info->data = svm->sysenter_esp; | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | 
 | 			return 1; | 
 | 		msr_info->data = svm->tsc_aux; | 
 | 		break; | 
 | 	/* | 
 | 	 * Nobody will change the following 5 values in the VMCB so we can | 
 | 	 * safely return them on rdmsr. They will always be 0 until LBRV is | 
 | 	 * implemented. | 
 | 	 */ | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 		msr_info->data = svm->vmcb->save.dbgctl; | 
 | 		break; | 
 | 	case MSR_IA32_LASTBRANCHFROMIP: | 
 | 		msr_info->data = svm->vmcb->save.br_from; | 
 | 		break; | 
 | 	case MSR_IA32_LASTBRANCHTOIP: | 
 | 		msr_info->data = svm->vmcb->save.br_to; | 
 | 		break; | 
 | 	case MSR_IA32_LASTINTFROMIP: | 
 | 		msr_info->data = svm->vmcb->save.last_excp_from; | 
 | 		break; | 
 | 	case MSR_IA32_LASTINTTOIP: | 
 | 		msr_info->data = svm->vmcb->save.last_excp_to; | 
 | 		break; | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 		msr_info->data = svm->nested.hsave_msr; | 
 | 		break; | 
 | 	case MSR_VM_CR: | 
 | 		msr_info->data = svm->nested.vm_cr_msr; | 
 | 		break; | 
 | 	case MSR_IA32_SPEC_CTRL: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = svm->spec_ctrl; | 
 | 		break; | 
 | 	case MSR_AMD64_VIRT_SPEC_CTRL: | 
 | 		if (!msr_info->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | 
 | 			return 1; | 
 |  | 
 | 		msr_info->data = svm->virt_spec_ctrl; | 
 | 		break; | 
 | 	case MSR_F15H_IC_CFG: { | 
 |  | 
 | 		int family, model; | 
 |  | 
 | 		family = guest_cpuid_family(vcpu); | 
 | 		model  = guest_cpuid_model(vcpu); | 
 |  | 
 | 		if (family < 0 || model < 0) | 
 | 			return kvm_get_msr_common(vcpu, msr_info); | 
 |  | 
 | 		msr_info->data = 0; | 
 |  | 
 | 		if (family == 0x15 && | 
 | 		    (model >= 0x2 && model < 0x20)) | 
 | 			msr_info->data = 0x1E; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_F10H_DECFG: | 
 | 		msr_info->data = svm->msr_decfg; | 
 | 		break; | 
 | 	default: | 
 | 		return kvm_get_msr_common(vcpu, msr_info); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rdmsr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
 | 	struct msr_data msr_info; | 
 |  | 
 | 	msr_info.index = ecx; | 
 | 	msr_info.host_initiated = false; | 
 | 	if (svm_get_msr(&svm->vcpu, &msr_info)) { | 
 | 		trace_kvm_msr_read_ex(ecx); | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 		return 1; | 
 | 	} else { | 
 | 		trace_kvm_msr_read(ecx, msr_info.data); | 
 |  | 
 | 		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, | 
 | 				   msr_info.data & 0xffffffff); | 
 | 		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, | 
 | 				   msr_info.data >> 32); | 
 | 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 		return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int svm_dis, chg_mask; | 
 |  | 
 | 	if (data & ~SVM_VM_CR_VALID_MASK) | 
 | 		return 1; | 
 |  | 
 | 	chg_mask = SVM_VM_CR_VALID_MASK; | 
 |  | 
 | 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) | 
 | 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); | 
 |  | 
 | 	svm->nested.vm_cr_msr &= ~chg_mask; | 
 | 	svm->nested.vm_cr_msr |= (data & chg_mask); | 
 |  | 
 | 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; | 
 |  | 
 | 	/* check for svm_disable while efer.svme is set */ | 
 | 	if (svm_dis && (vcpu->arch.efer & EFER_SVME)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	u32 ecx = msr->index; | 
 | 	u64 data = msr->data; | 
 | 	switch (ecx) { | 
 | 	case MSR_IA32_CR_PAT: | 
 | 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) | 
 | 			return 1; | 
 | 		vcpu->arch.pat = data; | 
 | 		svm->vmcb->save.g_pat = data; | 
 | 		mark_dirty(svm->vmcb, VMCB_NPT); | 
 | 		break; | 
 | 	case MSR_IA32_SPEC_CTRL: | 
 | 		if (!msr->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | 
 | 			return 1; | 
 |  | 
 | 		/* The STIBP bit doesn't fault even if it's not advertised */ | 
 | 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) | 
 | 			return 1; | 
 |  | 
 | 		svm->spec_ctrl = data; | 
 |  | 
 | 		if (!data) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * For non-nested: | 
 | 		 * When it's written (to non-zero) for the first time, pass | 
 | 		 * it through. | 
 | 		 * | 
 | 		 * For nested: | 
 | 		 * The handling of the MSR bitmap for L2 guests is done in | 
 | 		 * nested_svm_vmrun_msrpm. | 
 | 		 * We update the L1 MSR bit as well since it will end up | 
 | 		 * touching the MSR anyway now. | 
 | 		 */ | 
 | 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); | 
 | 		break; | 
 | 	case MSR_IA32_PRED_CMD: | 
 | 		if (!msr->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) | 
 | 			return 1; | 
 |  | 
 | 		if (data & ~PRED_CMD_IBPB) | 
 | 			return 1; | 
 |  | 
 | 		if (!data) | 
 | 			break; | 
 |  | 
 | 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); | 
 | 		if (is_guest_mode(vcpu)) | 
 | 			break; | 
 | 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); | 
 | 		break; | 
 | 	case MSR_AMD64_VIRT_SPEC_CTRL: | 
 | 		if (!msr->host_initiated && | 
 | 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | 
 | 			return 1; | 
 |  | 
 | 		if (data & ~SPEC_CTRL_SSBD) | 
 | 			return 1; | 
 |  | 
 | 		svm->virt_spec_ctrl = data; | 
 | 		break; | 
 | 	case MSR_STAR: | 
 | 		svm->vmcb->save.star = data; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_LSTAR: | 
 | 		svm->vmcb->save.lstar = data; | 
 | 		break; | 
 | 	case MSR_CSTAR: | 
 | 		svm->vmcb->save.cstar = data; | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		svm->vmcb->save.kernel_gs_base = data; | 
 | 		break; | 
 | 	case MSR_SYSCALL_MASK: | 
 | 		svm->vmcb->save.sfmask = data; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		svm->vmcb->save.sysenter_cs = data; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		svm->sysenter_eip = data; | 
 | 		svm->vmcb->save.sysenter_eip = data; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		svm->sysenter_esp = data; | 
 | 		svm->vmcb->save.sysenter_esp = data; | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * This is rare, so we update the MSR here instead of using | 
 | 		 * direct_access_msrs.  Doing that would require a rdmsr in | 
 | 		 * svm_vcpu_put. | 
 | 		 */ | 
 | 		svm->tsc_aux = data; | 
 | 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | 
 | 		break; | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 		if (!boot_cpu_has(X86_FEATURE_LBRV)) { | 
 | 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", | 
 | 				    __func__, data); | 
 | 			break; | 
 | 		} | 
 | 		if (data & DEBUGCTL_RESERVED_BITS) | 
 | 			return 1; | 
 |  | 
 | 		svm->vmcb->save.dbgctl = data; | 
 | 		mark_dirty(svm->vmcb, VMCB_LBR); | 
 | 		if (data & (1ULL<<0)) | 
 | 			svm_enable_lbrv(svm); | 
 | 		else | 
 | 			svm_disable_lbrv(svm); | 
 | 		break; | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 		svm->nested.hsave_msr = data; | 
 | 		break; | 
 | 	case MSR_VM_CR: | 
 | 		return svm_set_vm_cr(vcpu, data); | 
 | 	case MSR_VM_IGNNE: | 
 | 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); | 
 | 		break; | 
 | 	case MSR_F10H_DECFG: { | 
 | 		struct kvm_msr_entry msr_entry; | 
 |  | 
 | 		msr_entry.index = msr->index; | 
 | 		if (svm_get_msr_feature(&msr_entry)) | 
 | 			return 1; | 
 |  | 
 | 		/* Check the supported bits */ | 
 | 		if (data & ~msr_entry.data) | 
 | 			return 1; | 
 |  | 
 | 		/* Don't allow the guest to change a bit, #GP */ | 
 | 		if (!msr->host_initiated && (data ^ msr_entry.data)) | 
 | 			return 1; | 
 |  | 
 | 		svm->msr_decfg = data; | 
 | 		break; | 
 | 	} | 
 | 	case MSR_IA32_APICBASE: | 
 | 		if (kvm_vcpu_apicv_active(vcpu)) | 
 | 			avic_update_vapic_bar(to_svm(vcpu), data); | 
 | 		/* Follow through */ | 
 | 	default: | 
 | 		return kvm_set_msr_common(vcpu, msr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int wrmsr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct msr_data msr; | 
 | 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
 | 	u64 data = kvm_read_edx_eax(&svm->vcpu); | 
 |  | 
 | 	msr.data = data; | 
 | 	msr.index = ecx; | 
 | 	msr.host_initiated = false; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 	if (kvm_set_msr(&svm->vcpu, &msr)) { | 
 | 		trace_kvm_msr_write_ex(ecx, data); | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 		return 1; | 
 | 	} else { | 
 | 		trace_kvm_msr_write(ecx, data); | 
 | 		return kvm_skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static int msr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (svm->vmcb->control.exit_info_1) | 
 | 		return wrmsr_interception(svm); | 
 | 	else | 
 | 		return rdmsr_interception(svm); | 
 | } | 
 |  | 
 | static int interrupt_window_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 | 	svm_clear_vintr(svm); | 
 | 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
 | 	mark_dirty(svm->vmcb, VMCB_INTR); | 
 | 	++svm->vcpu.stat.irq_window_exits; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int pause_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 | 	bool in_kernel = (svm_get_cpl(vcpu) == 0); | 
 |  | 
 | 	if (pause_filter_thresh) | 
 | 		grow_ple_window(vcpu); | 
 |  | 
 | 	kvm_vcpu_on_spin(vcpu, in_kernel); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int nop_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return kvm_skip_emulated_instruction(&(svm->vcpu)); | 
 | } | 
 |  | 
 | static int monitor_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); | 
 | 	return nop_interception(svm); | 
 | } | 
 |  | 
 | static int mwait_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); | 
 | 	return nop_interception(svm); | 
 | } | 
 |  | 
 | enum avic_ipi_failure_cause { | 
 | 	AVIC_IPI_FAILURE_INVALID_INT_TYPE, | 
 | 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, | 
 | 	AVIC_IPI_FAILURE_INVALID_TARGET, | 
 | 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, | 
 | }; | 
 |  | 
 | static int avic_incomplete_ipi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32; | 
 | 	u32 icrl = svm->vmcb->control.exit_info_1; | 
 | 	u32 id = svm->vmcb->control.exit_info_2 >> 32; | 
 | 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF; | 
 | 	struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
 |  | 
 | 	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index); | 
 |  | 
 | 	switch (id) { | 
 | 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE: | 
 | 		/* | 
 | 		 * AVIC hardware handles the generation of | 
 | 		 * IPIs when the specified Message Type is Fixed | 
 | 		 * (also known as fixed delivery mode) and | 
 | 		 * the Trigger Mode is edge-triggered. The hardware | 
 | 		 * also supports self and broadcast delivery modes | 
 | 		 * specified via the Destination Shorthand(DSH) | 
 | 		 * field of the ICRL. Logical and physical APIC ID | 
 | 		 * formats are supported. All other IPI types cause | 
 | 		 * a #VMEXIT, which needs to emulated. | 
 | 		 */ | 
 | 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh); | 
 | 		kvm_lapic_reg_write(apic, APIC_ICR, icrl); | 
 | 		break; | 
 | 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: { | 
 | 		int i; | 
 | 		struct kvm_vcpu *vcpu; | 
 | 		struct kvm *kvm = svm->vcpu.kvm; | 
 | 		struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
 |  | 
 | 		/* | 
 | 		 * At this point, we expect that the AVIC HW has already | 
 | 		 * set the appropriate IRR bits on the valid target | 
 | 		 * vcpus. So, we just need to kick the appropriate vcpu. | 
 | 		 */ | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 			bool m = kvm_apic_match_dest(vcpu, apic, | 
 | 						     icrl & KVM_APIC_SHORT_MASK, | 
 | 						     GET_APIC_DEST_FIELD(icrh), | 
 | 						     icrl & KVM_APIC_DEST_MASK); | 
 |  | 
 | 			if (m && !avic_vcpu_is_running(vcpu)) | 
 | 				kvm_vcpu_wake_up(vcpu); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case AVIC_IPI_FAILURE_INVALID_TARGET: | 
 | 		break; | 
 | 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: | 
 | 		WARN_ONCE(1, "Invalid backing page\n"); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("Unknown IPI interception\n"); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) | 
 | { | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
 | 	int index; | 
 | 	u32 *logical_apic_id_table; | 
 | 	int dlid = GET_APIC_LOGICAL_ID(ldr); | 
 |  | 
 | 	if (!dlid) | 
 | 		return NULL; | 
 |  | 
 | 	if (flat) { /* flat */ | 
 | 		index = ffs(dlid) - 1; | 
 | 		if (index > 7) | 
 | 			return NULL; | 
 | 	} else { /* cluster */ | 
 | 		int cluster = (dlid & 0xf0) >> 4; | 
 | 		int apic = ffs(dlid & 0x0f) - 1; | 
 |  | 
 | 		if ((apic < 0) || (apic > 7) || | 
 | 		    (cluster >= 0xf)) | 
 | 			return NULL; | 
 | 		index = (cluster << 2) + apic; | 
 | 	} | 
 |  | 
 | 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); | 
 |  | 
 | 	return &logical_apic_id_table[index]; | 
 | } | 
 |  | 
 | static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr, | 
 | 			  bool valid) | 
 | { | 
 | 	bool flat; | 
 | 	u32 *entry, new_entry; | 
 |  | 
 | 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; | 
 | 	entry = avic_get_logical_id_entry(vcpu, ldr, flat); | 
 | 	if (!entry) | 
 | 		return -EINVAL; | 
 |  | 
 | 	new_entry = READ_ONCE(*entry); | 
 | 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
 | 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); | 
 | 	if (valid) | 
 | 		new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
 | 	else | 
 | 		new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
 | 	WRITE_ONCE(*entry, new_entry); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); | 
 |  | 
 | 	if (!ldr) | 
 | 		return 1; | 
 |  | 
 | 	ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true); | 
 | 	if (ret && svm->ldr_reg) { | 
 | 		avic_ldr_write(vcpu, 0, svm->ldr_reg, false); | 
 | 		svm->ldr_reg = 0; | 
 | 	} else { | 
 | 		svm->ldr_reg = ldr; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 *old, *new; | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID); | 
 | 	u32 id = (apic_id_reg >> 24) & 0xff; | 
 |  | 
 | 	if (vcpu->vcpu_id == id) | 
 | 		return 0; | 
 |  | 
 | 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); | 
 | 	new = avic_get_physical_id_entry(vcpu, id); | 
 | 	if (!new || !old) | 
 | 		return 1; | 
 |  | 
 | 	/* We need to move physical_id_entry to new offset */ | 
 | 	*new = *old; | 
 | 	*old = 0ULL; | 
 | 	to_svm(vcpu)->avic_physical_id_cache = new; | 
 |  | 
 | 	/* | 
 | 	 * Also update the guest physical APIC ID in the logical | 
 | 	 * APIC ID table entry if already setup the LDR. | 
 | 	 */ | 
 | 	if (svm->ldr_reg) | 
 | 		avic_handle_ldr_update(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int avic_handle_dfr_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
 | 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); | 
 | 	u32 mod = (dfr >> 28) & 0xf; | 
 |  | 
 | 	/* | 
 | 	 * We assume that all local APICs are using the same type. | 
 | 	 * If this changes, we need to flush the AVIC logical | 
 | 	 * APID id table. | 
 | 	 */ | 
 | 	if (kvm_svm->ldr_mode == mod) | 
 | 		return 0; | 
 |  | 
 | 	clear_page(page_address(kvm_svm->avic_logical_id_table_page)); | 
 | 	kvm_svm->ldr_mode = mod; | 
 |  | 
 | 	if (svm->ldr_reg) | 
 | 		avic_handle_ldr_update(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int avic_unaccel_trap_write(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
 | 	u32 offset = svm->vmcb->control.exit_info_1 & | 
 | 				AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
 |  | 
 | 	switch (offset) { | 
 | 	case APIC_ID: | 
 | 		if (avic_handle_apic_id_update(&svm->vcpu)) | 
 | 			return 0; | 
 | 		break; | 
 | 	case APIC_LDR: | 
 | 		if (avic_handle_ldr_update(&svm->vcpu)) | 
 | 			return 0; | 
 | 		break; | 
 | 	case APIC_DFR: | 
 | 		avic_handle_dfr_update(&svm->vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_avic_unaccelerated_access_trap(u32 offset) | 
 | { | 
 | 	bool ret = false; | 
 |  | 
 | 	switch (offset) { | 
 | 	case APIC_ID: | 
 | 	case APIC_EOI: | 
 | 	case APIC_RRR: | 
 | 	case APIC_LDR: | 
 | 	case APIC_DFR: | 
 | 	case APIC_SPIV: | 
 | 	case APIC_ESR: | 
 | 	case APIC_ICR: | 
 | 	case APIC_LVTT: | 
 | 	case APIC_LVTTHMR: | 
 | 	case APIC_LVTPC: | 
 | 	case APIC_LVT0: | 
 | 	case APIC_LVT1: | 
 | 	case APIC_LVTERR: | 
 | 	case APIC_TMICT: | 
 | 	case APIC_TDCR: | 
 | 		ret = true; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int avic_unaccelerated_access_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int ret = 0; | 
 | 	u32 offset = svm->vmcb->control.exit_info_1 & | 
 | 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
 | 	u32 vector = svm->vmcb->control.exit_info_2 & | 
 | 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK; | 
 | 	bool write = (svm->vmcb->control.exit_info_1 >> 32) & | 
 | 		     AVIC_UNACCEL_ACCESS_WRITE_MASK; | 
 | 	bool trap = is_avic_unaccelerated_access_trap(offset); | 
 |  | 
 | 	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset, | 
 | 					    trap, write, vector); | 
 | 	if (trap) { | 
 | 		/* Handling Trap */ | 
 | 		WARN_ONCE(!write, "svm: Handling trap read.\n"); | 
 | 		ret = avic_unaccel_trap_write(svm); | 
 | 	} else { | 
 | 		/* Handling Fault */ | 
 | 		ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { | 
 | 	[SVM_EXIT_READ_CR0]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR3]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR4]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR8]			= cr_interception, | 
 | 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR0]			= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR3]			= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR4]			= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception, | 
 | 	[SVM_EXIT_READ_DR0]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR1]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR2]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR3]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR4]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR5]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR6]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR7]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR0]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR1]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR2]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR3]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR4]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR5]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR6]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR7]			= dr_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception, | 
 | 	[SVM_EXIT_INTR]				= intr_interception, | 
 | 	[SVM_EXIT_NMI]				= nmi_interception, | 
 | 	[SVM_EXIT_SMI]				= nop_on_interception, | 
 | 	[SVM_EXIT_INIT]				= nop_on_interception, | 
 | 	[SVM_EXIT_VINTR]			= interrupt_window_interception, | 
 | 	[SVM_EXIT_RDPMC]			= rdpmc_interception, | 
 | 	[SVM_EXIT_CPUID]			= cpuid_interception, | 
 | 	[SVM_EXIT_IRET]                         = iret_interception, | 
 | 	[SVM_EXIT_INVD]                         = emulate_on_interception, | 
 | 	[SVM_EXIT_PAUSE]			= pause_interception, | 
 | 	[SVM_EXIT_HLT]				= halt_interception, | 
 | 	[SVM_EXIT_INVLPG]			= invlpg_interception, | 
 | 	[SVM_EXIT_INVLPGA]			= invlpga_interception, | 
 | 	[SVM_EXIT_IOIO]				= io_interception, | 
 | 	[SVM_EXIT_MSR]				= msr_interception, | 
 | 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception, | 
 | 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception, | 
 | 	[SVM_EXIT_VMRUN]			= vmrun_interception, | 
 | 	[SVM_EXIT_VMMCALL]			= vmmcall_interception, | 
 | 	[SVM_EXIT_VMLOAD]			= vmload_interception, | 
 | 	[SVM_EXIT_VMSAVE]			= vmsave_interception, | 
 | 	[SVM_EXIT_STGI]				= stgi_interception, | 
 | 	[SVM_EXIT_CLGI]				= clgi_interception, | 
 | 	[SVM_EXIT_SKINIT]			= skinit_interception, | 
 | 	[SVM_EXIT_WBINVD]                       = wbinvd_interception, | 
 | 	[SVM_EXIT_MONITOR]			= monitor_interception, | 
 | 	[SVM_EXIT_MWAIT]			= mwait_interception, | 
 | 	[SVM_EXIT_XSETBV]			= xsetbv_interception, | 
 | 	[SVM_EXIT_NPF]				= npf_interception, | 
 | 	[SVM_EXIT_RSM]                          = rsm_interception, | 
 | 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception, | 
 | 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception, | 
 | }; | 
 |  | 
 | static void dump_vmcb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	struct vmcb_save_area *save = &svm->vmcb->save; | 
 |  | 
 | 	pr_err("VMCB Control Area:\n"); | 
 | 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); | 
 | 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); | 
 | 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); | 
 | 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); | 
 | 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); | 
 | 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept); | 
 | 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); | 
 | 	pr_err("%-20s%d\n", "pause filter threshold:", | 
 | 	       control->pause_filter_thresh); | 
 | 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); | 
 | 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); | 
 | 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); | 
 | 	pr_err("%-20s%d\n", "asid:", control->asid); | 
 | 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); | 
 | 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); | 
 | 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector); | 
 | 	pr_err("%-20s%08x\n", "int_state:", control->int_state); | 
 | 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code); | 
 | 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); | 
 | 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); | 
 | 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); | 
 | 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); | 
 | 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); | 
 | 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); | 
 | 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); | 
 | 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj); | 
 | 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); | 
 | 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); | 
 | 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); | 
 | 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); | 
 | 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); | 
 | 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); | 
 | 	pr_err("VMCB State Save Area:\n"); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "es:", | 
 | 	       save->es.selector, save->es.attrib, | 
 | 	       save->es.limit, save->es.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "cs:", | 
 | 	       save->cs.selector, save->cs.attrib, | 
 | 	       save->cs.limit, save->cs.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "ss:", | 
 | 	       save->ss.selector, save->ss.attrib, | 
 | 	       save->ss.limit, save->ss.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "ds:", | 
 | 	       save->ds.selector, save->ds.attrib, | 
 | 	       save->ds.limit, save->ds.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "fs:", | 
 | 	       save->fs.selector, save->fs.attrib, | 
 | 	       save->fs.limit, save->fs.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "gs:", | 
 | 	       save->gs.selector, save->gs.attrib, | 
 | 	       save->gs.limit, save->gs.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "gdtr:", | 
 | 	       save->gdtr.selector, save->gdtr.attrib, | 
 | 	       save->gdtr.limit, save->gdtr.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "ldtr:", | 
 | 	       save->ldtr.selector, save->ldtr.attrib, | 
 | 	       save->ldtr.limit, save->ldtr.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "idtr:", | 
 | 	       save->idtr.selector, save->idtr.attrib, | 
 | 	       save->idtr.limit, save->idtr.base); | 
 | 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 	       "tr:", | 
 | 	       save->tr.selector, save->tr.attrib, | 
 | 	       save->tr.limit, save->tr.base); | 
 | 	pr_err("cpl:            %d                efer:         %016llx\n", | 
 | 		save->cpl, save->efer); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "cr0:", save->cr0, "cr2:", save->cr2); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "cr3:", save->cr3, "cr4:", save->cr4); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "dr6:", save->dr6, "dr7:", save->dr7); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "rip:", save->rip, "rflags:", save->rflags); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "rsp:", save->rsp, "rax:", save->rax); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "star:", save->star, "lstar:", save->lstar); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "cstar:", save->cstar, "sfmask:", save->sfmask); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "kernel_gs_base:", save->kernel_gs_base, | 
 | 	       "sysenter_cs:", save->sysenter_cs); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "sysenter_esp:", save->sysenter_esp, | 
 | 	       "sysenter_eip:", save->sysenter_eip); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "br_from:", save->br_from, "br_to:", save->br_to); | 
 | 	pr_err("%-15s %016llx %-13s %016llx\n", | 
 | 	       "excp_from:", save->last_excp_from, | 
 | 	       "excp_to:", save->last_excp_to); | 
 | } | 
 |  | 
 | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) | 
 | { | 
 | 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; | 
 |  | 
 | 	*info1 = control->exit_info_1; | 
 | 	*info2 = control->exit_info_2; | 
 | } | 
 |  | 
 | static int handle_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 |  | 
 | 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); | 
 |  | 
 | 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) | 
 | 		vcpu->arch.cr0 = svm->vmcb->save.cr0; | 
 | 	if (npt_enabled) | 
 | 		vcpu->arch.cr3 = svm->vmcb->save.cr3; | 
 |  | 
 | 	if (unlikely(svm->nested.exit_required)) { | 
 | 		nested_svm_vmexit(svm); | 
 | 		svm->nested.exit_required = false; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		int vmexit; | 
 |  | 
 | 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, | 
 | 					svm->vmcb->control.exit_info_1, | 
 | 					svm->vmcb->control.exit_info_2, | 
 | 					svm->vmcb->control.exit_int_info, | 
 | 					svm->vmcb->control.exit_int_info_err, | 
 | 					KVM_ISA_SVM); | 
 |  | 
 | 		vmexit = nested_svm_exit_special(svm); | 
 |  | 
 | 		if (vmexit == NESTED_EXIT_CONTINUE) | 
 | 			vmexit = nested_svm_exit_handled(svm); | 
 |  | 
 | 		if (vmexit == NESTED_EXIT_DONE) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	svm_complete_interrupts(svm); | 
 |  | 
 | 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
 | 		kvm_run->fail_entry.hardware_entry_failure_reason | 
 | 			= svm->vmcb->control.exit_code; | 
 | 		pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); | 
 | 		dump_vmcb(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) && | 
 | 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && | 
 | 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && | 
 | 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) | 
 | 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " | 
 | 		       "exit_code 0x%x\n", | 
 | 		       __func__, svm->vmcb->control.exit_int_info, | 
 | 		       exit_code); | 
 |  | 
 | 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers) | 
 | 	    || !svm_exit_handlers[exit_code]) { | 
 | 		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code); | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return svm_exit_handlers[exit_code](svm); | 
 | } | 
 |  | 
 | static void reload_tss(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 | 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */ | 
 | 	load_TR_desc(); | 
 | } | 
 |  | 
 | static void pre_sev_run(struct vcpu_svm *svm, int cpu) | 
 | { | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 | 	int asid = sev_get_asid(svm->vcpu.kvm); | 
 |  | 
 | 	/* Assign the asid allocated with this SEV guest */ | 
 | 	svm->vmcb->control.asid = asid; | 
 |  | 
 | 	/* | 
 | 	 * Flush guest TLB: | 
 | 	 * | 
 | 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU. | 
 | 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. | 
 | 	 */ | 
 | 	if (sd->sev_vmcbs[asid] == svm->vmcb && | 
 | 	    svm->last_cpu == cpu) | 
 | 		return; | 
 |  | 
 | 	svm->last_cpu = cpu; | 
 | 	sd->sev_vmcbs[asid] = svm->vmcb; | 
 | 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
 | 	mark_dirty(svm->vmcb, VMCB_ASID); | 
 | } | 
 |  | 
 | static void pre_svm_run(struct vcpu_svm *svm) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 |  | 
 | 	if (sev_guest(svm->vcpu.kvm)) | 
 | 		return pre_sev_run(svm, cpu); | 
 |  | 
 | 	/* FIXME: handle wraparound of asid_generation */ | 
 | 	if (svm->asid_generation != sd->asid_generation) | 
 | 		new_asid(svm, sd); | 
 | } | 
 |  | 
 | static void svm_inject_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; | 
 | 	vcpu->arch.hflags |= HF_NMI_MASK; | 
 | 	set_intercept(svm, INTERCEPT_IRET); | 
 | 	++vcpu->stat.nmi_injections; | 
 | } | 
 |  | 
 | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) | 
 | { | 
 | 	struct vmcb_control_area *control; | 
 |  | 
 | 	/* The following fields are ignored when AVIC is enabled */ | 
 | 	control = &svm->vmcb->control; | 
 | 	control->int_vector = irq; | 
 | 	control->int_ctl &= ~V_INTR_PRIO_MASK; | 
 | 	control->int_ctl |= V_IRQ_MASK | | 
 | 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); | 
 | 	mark_dirty(svm->vmcb, VMCB_INTR); | 
 | } | 
 |  | 
 | static void svm_set_irq(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	BUG_ON(!(gif_set(svm))); | 
 |  | 
 | 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr); | 
 | 	++vcpu->stat.irq_injections; | 
 |  | 
 | 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | | 
 | 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; | 
 | } | 
 |  | 
 | static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); | 
 | } | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (svm_nested_virtualize_tpr(vcpu) || | 
 | 	    kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 |  | 
 | 	if (irr == -1) | 
 | 		return; | 
 |  | 
 | 	if (tpr >= irr) | 
 | 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 | } | 
 |  | 
 | static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return avic && irqchip_split(vcpu->kvm); | 
 | } | 
 |  | 
 | static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) | 
 | { | 
 | } | 
 |  | 
 | static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) | 
 | { | 
 | } | 
 |  | 
 | /* Note: Currently only used by Hyper-V. */ | 
 | static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 |  | 
 | 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
 | 		return; | 
 |  | 
 | 	vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; | 
 | 	mark_dirty(vmcb, VMCB_INTR); | 
 | } | 
 |  | 
 | static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) | 
 | { | 
 | 	kvm_lapic_set_irr(vec, vcpu->arch.apic); | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	if (avic_vcpu_is_running(vcpu)) | 
 | 		wrmsrl(SVM_AVIC_DOORBELL, | 
 | 		       kvm_cpu_get_apicid(vcpu->cpu)); | 
 | 	else | 
 | 		kvm_vcpu_wake_up(vcpu); | 
 | } | 
 |  | 
 | static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *cur; | 
 |  | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 | 	list_for_each_entry(cur, &svm->ir_list, node) { | 
 | 		if (cur->data != pi->ir_data) | 
 | 			continue; | 
 | 		list_del(&cur->node); | 
 | 		kfree(cur); | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | } | 
 |  | 
 | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long flags; | 
 | 	struct amd_svm_iommu_ir *ir; | 
 |  | 
 | 	/** | 
 | 	 * In some cases, the existing irte is updaed and re-set, | 
 | 	 * so we need to check here if it's already been * added | 
 | 	 * to the ir_list. | 
 | 	 */ | 
 | 	if (pi->ir_data && (pi->prev_ga_tag != 0)) { | 
 | 		struct kvm *kvm = svm->vcpu.kvm; | 
 | 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); | 
 | 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
 | 		struct vcpu_svm *prev_svm; | 
 |  | 
 | 		if (!prev_vcpu) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prev_svm = to_svm(prev_vcpu); | 
 | 		svm_ir_list_del(prev_svm, pi); | 
 | 	} | 
 |  | 
 | 	/** | 
 | 	 * Allocating new amd_iommu_pi_data, which will get | 
 | 	 * add to the per-vcpu ir_list. | 
 | 	 */ | 
 | 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL); | 
 | 	if (!ir) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	ir->data = pi->ir_data; | 
 |  | 
 | 	spin_lock_irqsave(&svm->ir_list_lock, flags); | 
 | 	list_add(&ir->node, &svm->ir_list); | 
 | 	spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Note: | 
 |  * The HW cannot support posting multicast/broadcast | 
 |  * interrupts to a vCPU. So, we still use legacy interrupt | 
 |  * remapping for these kind of interrupts. | 
 |  * | 
 |  * For lowest-priority interrupts, we only support | 
 |  * those with single CPU as the destination, e.g. user | 
 |  * configures the interrupts via /proc/irq or uses | 
 |  * irqbalance to make the interrupts single-CPU. | 
 |  */ | 
 | static int | 
 | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, | 
 | 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm) | 
 | { | 
 | 	struct kvm_lapic_irq irq; | 
 | 	struct kvm_vcpu *vcpu = NULL; | 
 |  | 
 | 	kvm_set_msi_irq(kvm, e, &irq); | 
 |  | 
 | 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { | 
 | 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", | 
 | 			 __func__, irq.vector); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, | 
 | 		 irq.vector); | 
 | 	*svm = to_svm(vcpu); | 
 | 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); | 
 | 	vcpu_info->vector = irq.vector; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * svm_update_pi_irte - set IRTE for Posted-Interrupts | 
 |  * | 
 |  * @kvm: kvm | 
 |  * @host_irq: host irq of the interrupt | 
 |  * @guest_irq: gsi of the interrupt | 
 |  * @set: set or unset PI | 
 |  * returns 0 on success, < 0 on failure | 
 |  */ | 
 | static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, | 
 | 			      uint32_t guest_irq, bool set) | 
 | { | 
 | 	struct kvm_kernel_irq_routing_entry *e; | 
 | 	struct kvm_irq_routing_table *irq_rt; | 
 | 	int idx, ret = -EINVAL; | 
 |  | 
 | 	if (!kvm_arch_has_assigned_device(kvm) || | 
 | 	    !irq_remapping_cap(IRQ_POSTING_CAP)) | 
 | 		return 0; | 
 |  | 
 | 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", | 
 | 		 __func__, host_irq, guest_irq, set); | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->irq_srcu); | 
 | 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); | 
 | 	WARN_ON(guest_irq >= irq_rt->nr_rt_entries); | 
 |  | 
 | 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { | 
 | 		struct vcpu_data vcpu_info; | 
 | 		struct vcpu_svm *svm = NULL; | 
 |  | 
 | 		if (e->type != KVM_IRQ_ROUTING_MSI) | 
 | 			continue; | 
 |  | 
 | 		/** | 
 | 		 * Here, we setup with legacy mode in the following cases: | 
 | 		 * 1. When cannot target interrupt to a specific vcpu. | 
 | 		 * 2. Unsetting posted interrupt. | 
 | 		 * 3. APIC virtialization is disabled for the vcpu. | 
 | 		 */ | 
 | 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && | 
 | 		    kvm_vcpu_apicv_active(&svm->vcpu)) { | 
 | 			struct amd_iommu_pi_data pi; | 
 |  | 
 | 			/* Try to enable guest_mode in IRTE */ | 
 | 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & | 
 | 					    AVIC_HPA_MASK); | 
 | 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, | 
 | 						     svm->vcpu.vcpu_id); | 
 | 			pi.is_guest_mode = true; | 
 | 			pi.vcpu_data = &vcpu_info; | 
 | 			ret = irq_set_vcpu_affinity(host_irq, &pi); | 
 |  | 
 | 			/** | 
 | 			 * Here, we successfully setting up vcpu affinity in | 
 | 			 * IOMMU guest mode. Now, we need to store the posted | 
 | 			 * interrupt information in a per-vcpu ir_list so that | 
 | 			 * we can reference to them directly when we update vcpu | 
 | 			 * scheduling information in IOMMU irte. | 
 | 			 */ | 
 | 			if (!ret && pi.is_guest_mode) | 
 | 				svm_ir_list_add(svm, &pi); | 
 | 		} else { | 
 | 			/* Use legacy mode in IRTE */ | 
 | 			struct amd_iommu_pi_data pi; | 
 |  | 
 | 			/** | 
 | 			 * Here, pi is used to: | 
 | 			 * - Tell IOMMU to use legacy mode for this interrupt. | 
 | 			 * - Retrieve ga_tag of prior interrupt remapping data. | 
 | 			 */ | 
 | 			pi.is_guest_mode = false; | 
 | 			ret = irq_set_vcpu_affinity(host_irq, &pi); | 
 |  | 
 | 			/** | 
 | 			 * Check if the posted interrupt was previously | 
 | 			 * setup with the guest_mode by checking if the ga_tag | 
 | 			 * was cached. If so, we need to clean up the per-vcpu | 
 | 			 * ir_list. | 
 | 			 */ | 
 | 			if (!ret && pi.prev_ga_tag) { | 
 | 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); | 
 | 				struct kvm_vcpu *vcpu; | 
 |  | 
 | 				vcpu = kvm_get_vcpu_by_id(kvm, id); | 
 | 				if (vcpu) | 
 | 					svm_ir_list_del(to_svm(vcpu), &pi); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!ret && svm) { | 
 | 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, | 
 | 						 e->gsi, vcpu_info.vector, | 
 | 						 vcpu_info.pi_desc_addr, set); | 
 | 		} | 
 |  | 
 | 		if (ret < 0) { | 
 | 			pr_err("%s: failed to update PI IRTE\n", __func__); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	srcu_read_unlock(&kvm->irq_srcu, idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	int ret; | 
 | 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && | 
 | 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
 | 	ret = ret && gif_set(svm) && nested_svm_nmi(svm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
 | } | 
 |  | 
 | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (masked) { | 
 | 		svm->vcpu.arch.hflags |= HF_NMI_MASK; | 
 | 		set_intercept(svm, INTERCEPT_IRET); | 
 | 	} else { | 
 | 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK; | 
 | 		clr_intercept(svm, INTERCEPT_IRET); | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	int ret; | 
 |  | 
 | 	if (!gif_set(svm) || | 
 | 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) | 
 | 		return 0; | 
 |  | 
 | 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); | 
 |  | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes | 
 | 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we | 
 | 	 * get that intercept, this function will be called again though and | 
 | 	 * we'll get the vintr intercept. However, if the vGIF feature is | 
 | 	 * enabled, the STGI interception will not occur. Enable the irq | 
 | 	 * window under the assumption that the hardware will set the GIF. | 
 | 	 */ | 
 | 	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) { | 
 | 		svm_set_vintr(svm); | 
 | 		svm_inject_irq(svm, 0x0); | 
 | 	} | 
 | } | 
 |  | 
 | static void enable_nmi_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) | 
 | 	    == HF_NMI_MASK) | 
 | 		return; /* IRET will cause a vm exit */ | 
 |  | 
 | 	if (!gif_set(svm)) { | 
 | 		if (vgif_enabled(svm)) | 
 | 			set_intercept(svm, INTERCEPT_STGI); | 
 | 		return; /* STGI will cause a vm exit */ | 
 | 	} | 
 |  | 
 | 	if (svm->nested.exit_required) | 
 | 		return; /* we're not going to run the guest yet */ | 
 |  | 
 | 	/* | 
 | 	 * Something prevents NMI from been injected. Single step over possible | 
 | 	 * problem (IRET or exception injection or interrupt shadow) | 
 | 	 */ | 
 | 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); | 
 | 	svm->nmi_singlestep = true; | 
 | 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 | } | 
 |  | 
 | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) | 
 | 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
 | 	else | 
 | 		svm->asid_generation--; | 
 | } | 
 |  | 
 | static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	invlpga(gva, svm->vmcb->control.asid); | 
 | } | 
 |  | 
 | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (svm_nested_virtualize_tpr(vcpu)) | 
 | 		return; | 
 |  | 
 | 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { | 
 | 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; | 
 | 		kvm_set_cr8(vcpu, cr8); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 cr8; | 
 |  | 
 | 	if (svm_nested_virtualize_tpr(vcpu) || | 
 | 	    kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	cr8 = kvm_get_cr8(vcpu); | 
 | 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK; | 
 | 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; | 
 | } | 
 |  | 
 | static void svm_complete_interrupts(struct vcpu_svm *svm) | 
 | { | 
 | 	u8 vector; | 
 | 	int type; | 
 | 	u32 exitintinfo = svm->vmcb->control.exit_int_info; | 
 | 	unsigned int3_injected = svm->int3_injected; | 
 |  | 
 | 	svm->int3_injected = 0; | 
 |  | 
 | 	/* | 
 | 	 * If we've made progress since setting HF_IRET_MASK, we've | 
 | 	 * executed an IRET and can allow NMI injection. | 
 | 	 */ | 
 | 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK) | 
 | 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { | 
 | 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); | 
 | 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 | 	} | 
 |  | 
 | 	svm->vcpu.arch.nmi_injected = false; | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | 
 | 		return; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 |  | 
 | 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; | 
 | 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | 
 |  | 
 | 	switch (type) { | 
 | 	case SVM_EXITINTINFO_TYPE_NMI: | 
 | 		svm->vcpu.arch.nmi_injected = true; | 
 | 		break; | 
 | 	case SVM_EXITINTINFO_TYPE_EXEPT: | 
 | 		/* | 
 | 		 * In case of software exceptions, do not reinject the vector, | 
 | 		 * but re-execute the instruction instead. Rewind RIP first | 
 | 		 * if we emulated INT3 before. | 
 | 		 */ | 
 | 		if (kvm_exception_is_soft(vector)) { | 
 | 			if (vector == BP_VECTOR && int3_injected && | 
 | 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) | 
 | 				kvm_rip_write(&svm->vcpu, | 
 | 					      kvm_rip_read(&svm->vcpu) - | 
 | 					      int3_injected); | 
 | 			break; | 
 | 		} | 
 | 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { | 
 | 			u32 err = svm->vmcb->control.exit_int_info_err; | 
 | 			kvm_requeue_exception_e(&svm->vcpu, vector, err); | 
 |  | 
 | 		} else | 
 | 			kvm_requeue_exception(&svm->vcpu, vector); | 
 | 		break; | 
 | 	case SVM_EXITINTINFO_TYPE_INTR: | 
 | 		kvm_queue_interrupt(&svm->vcpu, vector, false); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 |  | 
 | 	control->exit_int_info = control->event_inj; | 
 | 	control->exit_int_info_err = control->event_inj_err; | 
 | 	control->event_inj = 0; | 
 | 	svm_complete_interrupts(svm); | 
 | } | 
 |  | 
 | static void svm_vcpu_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
 |  | 
 | 	/* | 
 | 	 * A vmexit emulation is required before the vcpu can be executed | 
 | 	 * again. | 
 | 	 */ | 
 | 	if (unlikely(svm->nested.exit_required)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Disable singlestep if we're injecting an interrupt/exception. | 
 | 	 * We don't want our modified rflags to be pushed on the stack where | 
 | 	 * we might not be able to easily reset them if we disabled NMI | 
 | 	 * singlestep later. | 
 | 	 */ | 
 | 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { | 
 | 		/* | 
 | 		 * Event injection happens before external interrupts cause a | 
 | 		 * vmexit and interrupts are disabled here, so smp_send_reschedule | 
 | 		 * is enough to force an immediate vmexit. | 
 | 		 */ | 
 | 		disable_nmi_singlestep(svm); | 
 | 		smp_send_reschedule(vcpu->cpu); | 
 | 	} | 
 |  | 
 | 	pre_svm_run(svm); | 
 |  | 
 | 	sync_lapic_to_cr8(vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr2 = vcpu->arch.cr2; | 
 |  | 
 | 	clgi(); | 
 | 	kvm_load_guest_xcr0(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if | 
 | 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there | 
 | 	 * is no need to worry about the conditional branch over the wrmsr | 
 | 	 * being speculatively taken. | 
 | 	 */ | 
 | 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); | 
 |  | 
 | 	local_irq_enable(); | 
 |  | 
 | 	asm volatile ( | 
 | 		"push %%" _ASM_BP "; \n\t" | 
 | 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" | 
 | 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" | 
 | 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" | 
 | 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" | 
 | 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" | 
 | 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %c[r8](%[svm]),  %%r8  \n\t" | 
 | 		"mov %c[r9](%[svm]),  %%r9  \n\t" | 
 | 		"mov %c[r10](%[svm]), %%r10 \n\t" | 
 | 		"mov %c[r11](%[svm]), %%r11 \n\t" | 
 | 		"mov %c[r12](%[svm]), %%r12 \n\t" | 
 | 		"mov %c[r13](%[svm]), %%r13 \n\t" | 
 | 		"mov %c[r14](%[svm]), %%r14 \n\t" | 
 | 		"mov %c[r15](%[svm]), %%r15 \n\t" | 
 | #endif | 
 |  | 
 | 		/* Enter guest mode */ | 
 | 		"push %%" _ASM_AX " \n\t" | 
 | 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" | 
 | 		__ex(SVM_VMLOAD) "\n\t" | 
 | 		__ex(SVM_VMRUN) "\n\t" | 
 | 		__ex(SVM_VMSAVE) "\n\t" | 
 | 		"pop %%" _ASM_AX " \n\t" | 
 |  | 
 | 		/* Save guest registers, load host registers */ | 
 | 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" | 
 | 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" | 
 | 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" | 
 | 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" | 
 | 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" | 
 | 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %%r8,  %c[r8](%[svm]) \n\t" | 
 | 		"mov %%r9,  %c[r9](%[svm]) \n\t" | 
 | 		"mov %%r10, %c[r10](%[svm]) \n\t" | 
 | 		"mov %%r11, %c[r11](%[svm]) \n\t" | 
 | 		"mov %%r12, %c[r12](%[svm]) \n\t" | 
 | 		"mov %%r13, %c[r13](%[svm]) \n\t" | 
 | 		"mov %%r14, %c[r14](%[svm]) \n\t" | 
 | 		"mov %%r15, %c[r15](%[svm]) \n\t" | 
 | #endif | 
 | 		/* | 
 | 		* Clear host registers marked as clobbered to prevent | 
 | 		* speculative use. | 
 | 		*/ | 
 | 		"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t" | 
 | 		"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t" | 
 | 		"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t" | 
 | 		"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t" | 
 | 		"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"xor %%r8, %%r8 \n\t" | 
 | 		"xor %%r9, %%r9 \n\t" | 
 | 		"xor %%r10, %%r10 \n\t" | 
 | 		"xor %%r11, %%r11 \n\t" | 
 | 		"xor %%r12, %%r12 \n\t" | 
 | 		"xor %%r13, %%r13 \n\t" | 
 | 		"xor %%r14, %%r14 \n\t" | 
 | 		"xor %%r15, %%r15 \n\t" | 
 | #endif | 
 | 		"pop %%" _ASM_BP | 
 | 		: | 
 | 		: [svm]"a"(svm), | 
 | 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), | 
 | 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), | 
 | 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), | 
 | 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), | 
 | 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), | 
 | 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), | 
 | 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) | 
 | #ifdef CONFIG_X86_64 | 
 | 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), | 
 | 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), | 
 | 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), | 
 | 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), | 
 | 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), | 
 | 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), | 
 | 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), | 
 | 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) | 
 | #endif | 
 | 		: "cc", "memory" | 
 | #ifdef CONFIG_X86_64 | 
 | 		, "rbx", "rcx", "rdx", "rsi", "rdi" | 
 | 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" | 
 | #else | 
 | 		, "ebx", "ecx", "edx", "esi", "edi" | 
 | #endif | 
 | 		); | 
 |  | 
 | 	/* Eliminate branch target predictions from guest mode */ | 
 | 	vmexit_fill_RSB(); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	wrmsrl(MSR_GS_BASE, svm->host.gs_base); | 
 | #else | 
 | 	loadsegment(fs, svm->host.fs); | 
 | #ifndef CONFIG_X86_32_LAZY_GS | 
 | 	loadsegment(gs, svm->host.gs); | 
 | #endif | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * We do not use IBRS in the kernel. If this vCPU has used the | 
 | 	 * SPEC_CTRL MSR it may have left it on; save the value and | 
 | 	 * turn it off. This is much more efficient than blindly adding | 
 | 	 * it to the atomic save/restore list. Especially as the former | 
 | 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. | 
 | 	 * | 
 | 	 * For non-nested case: | 
 | 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to | 
 | 	 * save it. | 
 | 	 * | 
 | 	 * For nested case: | 
 | 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to | 
 | 	 * save it. | 
 | 	 */ | 
 | 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) | 
 | 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); | 
 |  | 
 | 	reload_tss(vcpu); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); | 
 |  | 
 | 	vcpu->arch.cr2 = svm->vmcb->save.cr2; | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; | 
 |  | 
 | 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) | 
 | 		kvm_before_interrupt(&svm->vcpu); | 
 |  | 
 | 	kvm_put_guest_xcr0(vcpu); | 
 | 	stgi(); | 
 |  | 
 | 	/* Any pending NMI will happen here */ | 
 |  | 
 | 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) | 
 | 		kvm_after_interrupt(&svm->vcpu); | 
 |  | 
 | 	sync_cr8_to_lapic(vcpu); | 
 |  | 
 | 	svm->next_rip = 0; | 
 |  | 
 | 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; | 
 |  | 
 | 	/* if exit due to PF check for async PF */ | 
 | 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) | 
 | 		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); | 
 | 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to handle MC intercepts here before the vcpu has a chance to | 
 | 	 * change the physical cpu | 
 | 	 */ | 
 | 	if (unlikely(svm->vmcb->control.exit_code == | 
 | 		     SVM_EXIT_EXCP_BASE + MC_VECTOR)) | 
 | 		svm_handle_mce(svm); | 
 |  | 
 | 	mark_all_clean(svm->vmcb); | 
 | } | 
 | STACK_FRAME_NON_STANDARD(svm_vcpu_run); | 
 |  | 
 | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr3 = __sme_set(root); | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 | } | 
 |  | 
 | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.nested_cr3 = __sme_set(root); | 
 | 	mark_dirty(svm->vmcb, VMCB_NPT); | 
 |  | 
 | 	/* Also sync guest cr3 here in case we live migrate */ | 
 | 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 | } | 
 |  | 
 | static int is_disabled(void) | 
 | { | 
 | 	u64 vm_cr; | 
 |  | 
 | 	rdmsrl(MSR_VM_CR, vm_cr); | 
 | 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
 | { | 
 | 	/* | 
 | 	 * Patch in the VMMCALL instruction: | 
 | 	 */ | 
 | 	hypercall[0] = 0x0f; | 
 | 	hypercall[1] = 0x01; | 
 | 	hypercall[2] = 0xd9; | 
 | } | 
 |  | 
 | static void svm_check_processor_compat(void *rtn) | 
 | { | 
 | 	*(int *)rtn = 0; | 
 | } | 
 |  | 
 | static bool svm_cpu_has_accelerated_tpr(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_has_emulated_msr(int index) | 
 | { | 
 | 	switch (index) { | 
 | 	case MSR_IA32_MCG_EXT_CTL: | 
 | 		return false; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_cpuid_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	/* Update nrips enabled cache */ | 
 | 	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); | 
 |  | 
 | 	if (!kvm_vcpu_apicv_active(vcpu)) | 
 | 		return; | 
 |  | 
 | 	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC); | 
 | } | 
 |  | 
 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
 | { | 
 | 	switch (func) { | 
 | 	case 0x1: | 
 | 		if (avic) | 
 | 			entry->ecx &= ~bit(X86_FEATURE_X2APIC); | 
 | 		break; | 
 | 	case 0x80000001: | 
 | 		if (nested) | 
 | 			entry->ecx |= (1 << 2); /* Set SVM bit */ | 
 | 		break; | 
 | 	case 0x8000000A: | 
 | 		entry->eax = 1; /* SVM revision 1 */ | 
 | 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | 
 | 				   ASID emulation to nested SVM */ | 
 | 		entry->ecx = 0; /* Reserved */ | 
 | 		entry->edx = 0; /* Per default do not support any | 
 | 				   additional features */ | 
 |  | 
 | 		/* Support next_rip if host supports it */ | 
 | 		if (boot_cpu_has(X86_FEATURE_NRIPS)) | 
 | 			entry->edx |= SVM_FEATURE_NRIP; | 
 |  | 
 | 		/* Support NPT for the guest if enabled */ | 
 | 		if (npt_enabled) | 
 | 			entry->edx |= SVM_FEATURE_NPT; | 
 |  | 
 | 		break; | 
 | 	case 0x8000001F: | 
 | 		/* Support memory encryption cpuid if host supports it */ | 
 | 		if (boot_cpu_has(X86_FEATURE_SEV)) | 
 | 			cpuid(0x8000001f, &entry->eax, &entry->ebx, | 
 | 				&entry->ecx, &entry->edx); | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_get_lpage_level(void) | 
 | { | 
 | 	return PT_PDPE_LEVEL; | 
 | } | 
 |  | 
 | static bool svm_rdtscp_supported(void) | 
 | { | 
 | 	return boot_cpu_has(X86_FEATURE_RDTSCP); | 
 | } | 
 |  | 
 | static bool svm_invpcid_supported(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_mpx_supported(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_xsaves_supported(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_umip_emulated(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_has_wbinvd_exit(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | #define PRE_EX(exit)  { .exit_code = (exit), \ | 
 | 			.stage = X86_ICPT_PRE_EXCEPT, } | 
 | #define POST_EX(exit) { .exit_code = (exit), \ | 
 | 			.stage = X86_ICPT_POST_EXCEPT, } | 
 | #define POST_MEM(exit) { .exit_code = (exit), \ | 
 | 			.stage = X86_ICPT_POST_MEMACCESS, } | 
 |  | 
 | static const struct __x86_intercept { | 
 | 	u32 exit_code; | 
 | 	enum x86_intercept_stage stage; | 
 | } x86_intercept_map[] = { | 
 | 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0), | 
 | 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0), | 
 | 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0), | 
 | 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0), | 
 | 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0), | 
 | 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0), | 
 | 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0), | 
 | 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ), | 
 | 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ), | 
 | 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE), | 
 | 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE), | 
 | 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ), | 
 | 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ), | 
 | 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE), | 
 | 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE), | 
 | 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN), | 
 | 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL), | 
 | 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD), | 
 | 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE), | 
 | 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI), | 
 | 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI), | 
 | 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT), | 
 | 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA), | 
 | 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP), | 
 | 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR), | 
 | 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT), | 
 | 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG), | 
 | 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD), | 
 | 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD), | 
 | 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR), | 
 | 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC), | 
 | 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR), | 
 | 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC), | 
 | 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID), | 
 | 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM), | 
 | 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE), | 
 | 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF), | 
 | 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF), | 
 | 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT), | 
 | 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET), | 
 | 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP), | 
 | 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT), | 
 | 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO), | 
 | 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO), | 
 | 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO), | 
 | 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO), | 
 | }; | 
 |  | 
 | #undef PRE_EX | 
 | #undef POST_EX | 
 | #undef POST_MEM | 
 |  | 
 | static int svm_check_intercept(struct kvm_vcpu *vcpu, | 
 | 			       struct x86_instruction_info *info, | 
 | 			       enum x86_intercept_stage stage) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int vmexit, ret = X86EMUL_CONTINUE; | 
 | 	struct __x86_intercept icpt_info; | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 |  | 
 | 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) | 
 | 		goto out; | 
 |  | 
 | 	icpt_info = x86_intercept_map[info->intercept]; | 
 |  | 
 | 	if (stage != icpt_info.stage) | 
 | 		goto out; | 
 |  | 
 | 	switch (icpt_info.exit_code) { | 
 | 	case SVM_EXIT_READ_CR0: | 
 | 		if (info->intercept == x86_intercept_cr_read) | 
 | 			icpt_info.exit_code += info->modrm_reg; | 
 | 		break; | 
 | 	case SVM_EXIT_WRITE_CR0: { | 
 | 		unsigned long cr0, val; | 
 | 		u64 intercept; | 
 |  | 
 | 		if (info->intercept == x86_intercept_cr_write) | 
 | 			icpt_info.exit_code += info->modrm_reg; | 
 |  | 
 | 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || | 
 | 		    info->intercept == x86_intercept_clts) | 
 | 			break; | 
 |  | 
 | 		intercept = svm->nested.intercept; | 
 |  | 
 | 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) | 
 | 			break; | 
 |  | 
 | 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; | 
 | 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK; | 
 |  | 
 | 		if (info->intercept == x86_intercept_lmsw) { | 
 | 			cr0 &= 0xfUL; | 
 | 			val &= 0xfUL; | 
 | 			/* lmsw can't clear PE - catch this here */ | 
 | 			if (cr0 & X86_CR0_PE) | 
 | 				val |= X86_CR0_PE; | 
 | 		} | 
 |  | 
 | 		if (cr0 ^ val) | 
 | 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
 |  | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_READ_DR0: | 
 | 	case SVM_EXIT_WRITE_DR0: | 
 | 		icpt_info.exit_code += info->modrm_reg; | 
 | 		break; | 
 | 	case SVM_EXIT_MSR: | 
 | 		if (info->intercept == x86_intercept_wrmsr) | 
 | 			vmcb->control.exit_info_1 = 1; | 
 | 		else | 
 | 			vmcb->control.exit_info_1 = 0; | 
 | 		break; | 
 | 	case SVM_EXIT_PAUSE: | 
 | 		/* | 
 | 		 * We get this for NOP only, but pause | 
 | 		 * is rep not, check this here | 
 | 		 */ | 
 | 		if (info->rep_prefix != REPE_PREFIX) | 
 | 			goto out; | 
 | 		break; | 
 | 	case SVM_EXIT_IOIO: { | 
 | 		u64 exit_info; | 
 | 		u32 bytes; | 
 |  | 
 | 		if (info->intercept == x86_intercept_in || | 
 | 		    info->intercept == x86_intercept_ins) { | 
 | 			exit_info = ((info->src_val & 0xffff) << 16) | | 
 | 				SVM_IOIO_TYPE_MASK; | 
 | 			bytes = info->dst_bytes; | 
 | 		} else { | 
 | 			exit_info = (info->dst_val & 0xffff) << 16; | 
 | 			bytes = info->src_bytes; | 
 | 		} | 
 |  | 
 | 		if (info->intercept == x86_intercept_outs || | 
 | 		    info->intercept == x86_intercept_ins) | 
 | 			exit_info |= SVM_IOIO_STR_MASK; | 
 |  | 
 | 		if (info->rep_prefix) | 
 | 			exit_info |= SVM_IOIO_REP_MASK; | 
 |  | 
 | 		bytes = min(bytes, 4u); | 
 |  | 
 | 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; | 
 |  | 
 | 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); | 
 |  | 
 | 		vmcb->control.exit_info_1 = exit_info; | 
 | 		vmcb->control.exit_info_2 = info->next_rip; | 
 |  | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */ | 
 | 	if (static_cpu_has(X86_FEATURE_NRIPS)) | 
 | 		vmcb->control.next_rip  = info->next_rip; | 
 | 	vmcb->control.exit_code = icpt_info.exit_code; | 
 | 	vmexit = nested_svm_exit_handled(svm); | 
 |  | 
 | 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED | 
 | 					   : X86EMUL_CONTINUE; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void svm_handle_external_intr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	local_irq_enable(); | 
 | 	/* | 
 | 	 * We must have an instruction with interrupts enabled, so | 
 | 	 * the timer interrupt isn't delayed by the interrupt shadow. | 
 | 	 */ | 
 | 	asm("nop"); | 
 | 	local_irq_disable(); | 
 | } | 
 |  | 
 | static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	if (pause_filter_thresh) | 
 | 		shrink_ple_window(vcpu); | 
 | } | 
 |  | 
 | static inline void avic_post_state_restore(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (avic_handle_apic_id_update(vcpu) != 0) | 
 | 		return; | 
 | 	if (avic_handle_dfr_update(vcpu) != 0) | 
 | 		return; | 
 | 	avic_handle_ldr_update(vcpu); | 
 | } | 
 |  | 
 | static void svm_setup_mce(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* [63:9] are reserved. */ | 
 | 	vcpu->arch.mcg_cap &= 0x1ff; | 
 | } | 
 |  | 
 | static int svm_smi_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	/* Per APM Vol.2 15.22.2 "Response to SMI" */ | 
 | 	if (!gif_set(svm)) | 
 | 		return 0; | 
 |  | 
 | 	if (is_guest_mode(&svm->vcpu) && | 
 | 	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { | 
 | 		/* TODO: Might need to set exit_info_1 and exit_info_2 here */ | 
 | 		svm->vmcb->control.exit_code = SVM_EXIT_SMI; | 
 | 		svm->nested.exit_required = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int ret; | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* FED8h - SVM Guest */ | 
 | 		put_smstate(u64, smstate, 0x7ed8, 1); | 
 | 		/* FEE0h - SVM Guest VMCB Physical Address */ | 
 | 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); | 
 |  | 
 | 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
 |  | 
 | 		ret = nested_svm_vmexit(svm); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct page *page; | 
 | 	struct { | 
 | 		u64 guest; | 
 | 		u64 vmcb; | 
 | 	} svm_state_save; | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save, | 
 | 				  sizeof(svm_state_save)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (svm_state_save.guest) { | 
 | 		vcpu->arch.hflags &= ~HF_SMM_MASK; | 
 | 		nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page); | 
 | 		if (nested_vmcb) | 
 | 			enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page); | 
 | 		else | 
 | 			ret = 1; | 
 | 		vcpu->arch.hflags |= HF_SMM_MASK; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int enable_smi_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (!gif_set(svm)) { | 
 | 		if (vgif_enabled(svm)) | 
 | 			set_intercept(svm, INTERCEPT_STGI); | 
 | 		/* STGI will cause a vm exit */ | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sev_asid_new(void) | 
 | { | 
 | 	int pos; | 
 |  | 
 | 	/* | 
 | 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. | 
 | 	 */ | 
 | 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); | 
 | 	if (pos >= max_sev_asid) | 
 | 		return -EBUSY; | 
 |  | 
 | 	set_bit(pos, sev_asid_bitmap); | 
 | 	return pos + 1; | 
 | } | 
 |  | 
 | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	int asid, ret; | 
 |  | 
 | 	ret = -EBUSY; | 
 | 	if (unlikely(sev->active)) | 
 | 		return ret; | 
 |  | 
 | 	asid = sev_asid_new(); | 
 | 	if (asid < 0) | 
 | 		return ret; | 
 |  | 
 | 	ret = sev_platform_init(&argp->error); | 
 | 	if (ret) | 
 | 		goto e_free; | 
 |  | 
 | 	sev->active = true; | 
 | 	sev->asid = asid; | 
 | 	INIT_LIST_HEAD(&sev->regions_list); | 
 |  | 
 | 	return 0; | 
 |  | 
 | e_free: | 
 | 	__sev_asid_free(asid); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) | 
 | { | 
 | 	struct sev_data_activate *data; | 
 | 	int asid = sev_get_asid(kvm); | 
 | 	int ret; | 
 |  | 
 | 	wbinvd_on_all_cpus(); | 
 |  | 
 | 	ret = sev_guest_df_flush(error); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* activate ASID on the given handle */ | 
 | 	data->handle = handle; | 
 | 	data->asid   = asid; | 
 | 	ret = sev_guest_activate(data, error); | 
 | 	kfree(data); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __sev_issue_cmd(int fd, int id, void *data, int *error) | 
 | { | 
 | 	struct fd f; | 
 | 	int ret; | 
 |  | 
 | 	f = fdget(fd); | 
 | 	if (!f.file) | 
 | 		return -EBADF; | 
 |  | 
 | 	ret = sev_issue_cmd_external_user(f.file, id, data, error); | 
 |  | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 |  | 
 | 	return __sev_issue_cmd(sev->fd, id, data, error); | 
 | } | 
 |  | 
 | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct sev_data_launch_start *start; | 
 | 	struct kvm_sev_launch_start params; | 
 | 	void *dh_blob, *session_blob; | 
 | 	int *error = &argp->error; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	start = kzalloc(sizeof(*start), GFP_KERNEL); | 
 | 	if (!start) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dh_blob = NULL; | 
 | 	if (params.dh_uaddr) { | 
 | 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); | 
 | 		if (IS_ERR(dh_blob)) { | 
 | 			ret = PTR_ERR(dh_blob); | 
 | 			goto e_free; | 
 | 		} | 
 |  | 
 | 		start->dh_cert_address = __sme_set(__pa(dh_blob)); | 
 | 		start->dh_cert_len = params.dh_len; | 
 | 	} | 
 |  | 
 | 	session_blob = NULL; | 
 | 	if (params.session_uaddr) { | 
 | 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); | 
 | 		if (IS_ERR(session_blob)) { | 
 | 			ret = PTR_ERR(session_blob); | 
 | 			goto e_free_dh; | 
 | 		} | 
 |  | 
 | 		start->session_address = __sme_set(__pa(session_blob)); | 
 | 		start->session_len = params.session_len; | 
 | 	} | 
 |  | 
 | 	start->handle = params.handle; | 
 | 	start->policy = params.policy; | 
 |  | 
 | 	/* create memory encryption context */ | 
 | 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); | 
 | 	if (ret) | 
 | 		goto e_free_session; | 
 |  | 
 | 	/* Bind ASID to this guest */ | 
 | 	ret = sev_bind_asid(kvm, start->handle, error); | 
 | 	if (ret) | 
 | 		goto e_free_session; | 
 |  | 
 | 	/* return handle to userspace */ | 
 | 	params.handle = start->handle; | 
 | 	if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { | 
 | 		sev_unbind_asid(kvm, start->handle); | 
 | 		ret = -EFAULT; | 
 | 		goto e_free_session; | 
 | 	} | 
 |  | 
 | 	sev->handle = start->handle; | 
 | 	sev->fd = argp->sev_fd; | 
 |  | 
 | e_free_session: | 
 | 	kfree(session_blob); | 
 | e_free_dh: | 
 | 	kfree(dh_blob); | 
 | e_free: | 
 | 	kfree(start); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static unsigned long get_num_contig_pages(unsigned long idx, | 
 | 				struct page **inpages, unsigned long npages) | 
 | { | 
 | 	unsigned long paddr, next_paddr; | 
 | 	unsigned long i = idx + 1, pages = 1; | 
 |  | 
 | 	/* find the number of contiguous pages starting from idx */ | 
 | 	paddr = __sme_page_pa(inpages[idx]); | 
 | 	while (i < npages) { | 
 | 		next_paddr = __sme_page_pa(inpages[i++]); | 
 | 		if ((paddr + PAGE_SIZE) == next_paddr) { | 
 | 			pages++; | 
 | 			paddr = next_paddr; | 
 | 			continue; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct kvm_sev_launch_update_data params; | 
 | 	struct sev_data_launch_update_data *data; | 
 | 	struct page **inpages; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	vaddr = params.uaddr; | 
 | 	size = params.len; | 
 | 	vaddr_end = vaddr + size; | 
 |  | 
 | 	/* Lock the user memory. */ | 
 | 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); | 
 | 	if (!inpages) { | 
 | 		ret = -ENOMEM; | 
 | 		goto e_free; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The LAUNCH_UPDATE command will perform in-place encryption of the | 
 | 	 * memory content (i.e it will write the same memory region with C=1). | 
 | 	 * It's possible that the cache may contain the data with C=0, i.e., | 
 | 	 * unencrypted so invalidate it first. | 
 | 	 */ | 
 | 	sev_clflush_pages(inpages, npages); | 
 |  | 
 | 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { | 
 | 		int offset, len; | 
 |  | 
 | 		/* | 
 | 		 * If the user buffer is not page-aligned, calculate the offset | 
 | 		 * within the page. | 
 | 		 */ | 
 | 		offset = vaddr & (PAGE_SIZE - 1); | 
 |  | 
 | 		/* Calculate the number of pages that can be encrypted in one go. */ | 
 | 		pages = get_num_contig_pages(i, inpages, npages); | 
 |  | 
 | 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); | 
 |  | 
 | 		data->handle = sev->handle; | 
 | 		data->len = len; | 
 | 		data->address = __sme_page_pa(inpages[i]) + offset; | 
 | 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); | 
 | 		if (ret) | 
 | 			goto e_unpin; | 
 |  | 
 | 		size -= len; | 
 | 		next_vaddr = vaddr + len; | 
 | 	} | 
 |  | 
 | e_unpin: | 
 | 	/* content of memory is updated, mark pages dirty */ | 
 | 	for (i = 0; i < npages; i++) { | 
 | 		set_page_dirty_lock(inpages[i]); | 
 | 		mark_page_accessed(inpages[i]); | 
 | 	} | 
 | 	/* unlock the user pages */ | 
 | 	sev_unpin_memory(kvm, inpages, npages); | 
 | e_free: | 
 | 	kfree(data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	void __user *measure = (void __user *)(uintptr_t)argp->data; | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct sev_data_launch_measure *data; | 
 | 	struct kvm_sev_launch_measure params; | 
 | 	void __user *p = NULL; | 
 | 	void *blob = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(¶ms, measure, sizeof(params))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* User wants to query the blob length */ | 
 | 	if (!params.len) | 
 | 		goto cmd; | 
 |  | 
 | 	p = (void __user *)(uintptr_t)params.uaddr; | 
 | 	if (p) { | 
 | 		if (params.len > SEV_FW_BLOB_MAX_SIZE) { | 
 | 			ret = -EINVAL; | 
 | 			goto e_free; | 
 | 		} | 
 |  | 
 | 		ret = -ENOMEM; | 
 | 		blob = kmalloc(params.len, GFP_KERNEL); | 
 | 		if (!blob) | 
 | 			goto e_free; | 
 |  | 
 | 		data->address = __psp_pa(blob); | 
 | 		data->len = params.len; | 
 | 	} | 
 |  | 
 | cmd: | 
 | 	data->handle = sev->handle; | 
 | 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); | 
 |  | 
 | 	/* | 
 | 	 * If we query the session length, FW responded with expected data. | 
 | 	 */ | 
 | 	if (!params.len) | 
 | 		goto done; | 
 |  | 
 | 	if (ret) | 
 | 		goto e_free_blob; | 
 |  | 
 | 	if (blob) { | 
 | 		if (copy_to_user(p, blob, params.len)) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 |  | 
 | done: | 
 | 	params.len = data->len; | 
 | 	if (copy_to_user(measure, ¶ms, sizeof(params))) | 
 | 		ret = -EFAULT; | 
 | e_free_blob: | 
 | 	kfree(blob); | 
 | e_free: | 
 | 	kfree(data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct sev_data_launch_finish *data; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	data->handle = sev->handle; | 
 | 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); | 
 |  | 
 | 	kfree(data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct kvm_sev_guest_status params; | 
 | 	struct sev_data_guest_status *data; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	data->handle = sev->handle; | 
 | 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); | 
 | 	if (ret) | 
 | 		goto e_free; | 
 |  | 
 | 	params.policy = data->policy; | 
 | 	params.state = data->state; | 
 | 	params.handle = data->handle; | 
 |  | 
 | 	if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) | 
 | 		ret = -EFAULT; | 
 | e_free: | 
 | 	kfree(data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, | 
 | 			       unsigned long dst, int size, | 
 | 			       int *error, bool enc) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct sev_data_dbg *data; | 
 | 	int ret; | 
 |  | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	data->handle = sev->handle; | 
 | 	data->dst_addr = dst; | 
 | 	data->src_addr = src; | 
 | 	data->len = size; | 
 |  | 
 | 	ret = sev_issue_cmd(kvm, | 
 | 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, | 
 | 			    data, error); | 
 | 	kfree(data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, | 
 | 			     unsigned long dst_paddr, int sz, int *err) | 
 | { | 
 | 	int offset; | 
 |  | 
 | 	/* | 
 | 	 * Its safe to read more than we are asked, caller should ensure that | 
 | 	 * destination has enough space. | 
 | 	 */ | 
 | 	src_paddr = round_down(src_paddr, 16); | 
 | 	offset = src_paddr & 15; | 
 | 	sz = round_up(sz + offset, 16); | 
 |  | 
 | 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); | 
 | } | 
 |  | 
 | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, | 
 | 				  unsigned long __user dst_uaddr, | 
 | 				  unsigned long dst_paddr, | 
 | 				  int size, int *err) | 
 | { | 
 | 	struct page *tpage = NULL; | 
 | 	int ret, offset; | 
 |  | 
 | 	/* if inputs are not 16-byte then use intermediate buffer */ | 
 | 	if (!IS_ALIGNED(dst_paddr, 16) || | 
 | 	    !IS_ALIGNED(paddr,     16) || | 
 | 	    !IS_ALIGNED(size,      16)) { | 
 | 		tpage = (void *)alloc_page(GFP_KERNEL); | 
 | 		if (!tpage) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		dst_paddr = __sme_page_pa(tpage); | 
 | 	} | 
 |  | 
 | 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); | 
 | 	if (ret) | 
 | 		goto e_free; | 
 |  | 
 | 	if (tpage) { | 
 | 		offset = paddr & 15; | 
 | 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, | 
 | 				 page_address(tpage) + offset, size)) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 |  | 
 | e_free: | 
 | 	if (tpage) | 
 | 		__free_page(tpage); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, | 
 | 				  unsigned long __user vaddr, | 
 | 				  unsigned long dst_paddr, | 
 | 				  unsigned long __user dst_vaddr, | 
 | 				  int size, int *error) | 
 | { | 
 | 	struct page *src_tpage = NULL; | 
 | 	struct page *dst_tpage = NULL; | 
 | 	int ret, len = size; | 
 |  | 
 | 	/* If source buffer is not aligned then use an intermediate buffer */ | 
 | 	if (!IS_ALIGNED(vaddr, 16)) { | 
 | 		src_tpage = alloc_page(GFP_KERNEL); | 
 | 		if (!src_tpage) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (copy_from_user(page_address(src_tpage), | 
 | 				(void __user *)(uintptr_t)vaddr, size)) { | 
 | 			__free_page(src_tpage); | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		paddr = __sme_page_pa(src_tpage); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *  If destination buffer or length is not aligned then do read-modify-write: | 
 | 	 *   - decrypt destination in an intermediate buffer | 
 | 	 *   - copy the source buffer in an intermediate buffer | 
 | 	 *   - use the intermediate buffer as source buffer | 
 | 	 */ | 
 | 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { | 
 | 		int dst_offset; | 
 |  | 
 | 		dst_tpage = alloc_page(GFP_KERNEL); | 
 | 		if (!dst_tpage) { | 
 | 			ret = -ENOMEM; | 
 | 			goto e_free; | 
 | 		} | 
 |  | 
 | 		ret = __sev_dbg_decrypt(kvm, dst_paddr, | 
 | 					__sme_page_pa(dst_tpage), size, error); | 
 | 		if (ret) | 
 | 			goto e_free; | 
 |  | 
 | 		/* | 
 | 		 *  If source is kernel buffer then use memcpy() otherwise | 
 | 		 *  copy_from_user(). | 
 | 		 */ | 
 | 		dst_offset = dst_paddr & 15; | 
 |  | 
 | 		if (src_tpage) | 
 | 			memcpy(page_address(dst_tpage) + dst_offset, | 
 | 			       page_address(src_tpage), size); | 
 | 		else { | 
 | 			if (copy_from_user(page_address(dst_tpage) + dst_offset, | 
 | 					   (void __user *)(uintptr_t)vaddr, size)) { | 
 | 				ret = -EFAULT; | 
 | 				goto e_free; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		paddr = __sme_page_pa(dst_tpage); | 
 | 		dst_paddr = round_down(dst_paddr, 16); | 
 | 		len = round_up(size, 16); | 
 | 	} | 
 |  | 
 | 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); | 
 |  | 
 | e_free: | 
 | 	if (src_tpage) | 
 | 		__free_page(src_tpage); | 
 | 	if (dst_tpage) | 
 | 		__free_page(dst_tpage); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) | 
 | { | 
 | 	unsigned long vaddr, vaddr_end, next_vaddr; | 
 | 	unsigned long dst_vaddr; | 
 | 	struct page **src_p, **dst_p; | 
 | 	struct kvm_sev_dbg debug; | 
 | 	unsigned long n; | 
 | 	unsigned int size; | 
 | 	int ret; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) | 
 | 		return -EINVAL; | 
 | 	if (!debug.dst_uaddr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vaddr = debug.src_uaddr; | 
 | 	size = debug.len; | 
 | 	vaddr_end = vaddr + size; | 
 | 	dst_vaddr = debug.dst_uaddr; | 
 |  | 
 | 	for (; vaddr < vaddr_end; vaddr = next_vaddr) { | 
 | 		int len, s_off, d_off; | 
 |  | 
 | 		/* lock userspace source and destination page */ | 
 | 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); | 
 | 		if (!src_p) | 
 | 			return -EFAULT; | 
 |  | 
 | 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); | 
 | 		if (!dst_p) { | 
 | 			sev_unpin_memory(kvm, src_p, n); | 
 | 			return -EFAULT; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the | 
 | 		 * memory content (i.e it will write the same memory region with C=1). | 
 | 		 * It's possible that the cache may contain the data with C=0, i.e., | 
 | 		 * unencrypted so invalidate it first. | 
 | 		 */ | 
 | 		sev_clflush_pages(src_p, 1); | 
 | 		sev_clflush_pages(dst_p, 1); | 
 |  | 
 | 		/* | 
 | 		 * Since user buffer may not be page aligned, calculate the | 
 | 		 * offset within the page. | 
 | 		 */ | 
 | 		s_off = vaddr & ~PAGE_MASK; | 
 | 		d_off = dst_vaddr & ~PAGE_MASK; | 
 | 		len = min_t(size_t, (PAGE_SIZE - s_off), size); | 
 |  | 
 | 		if (dec) | 
 | 			ret = __sev_dbg_decrypt_user(kvm, | 
 | 						     __sme_page_pa(src_p[0]) + s_off, | 
 | 						     dst_vaddr, | 
 | 						     __sme_page_pa(dst_p[0]) + d_off, | 
 | 						     len, &argp->error); | 
 | 		else | 
 | 			ret = __sev_dbg_encrypt_user(kvm, | 
 | 						     __sme_page_pa(src_p[0]) + s_off, | 
 | 						     vaddr, | 
 | 						     __sme_page_pa(dst_p[0]) + d_off, | 
 | 						     dst_vaddr, | 
 | 						     len, &argp->error); | 
 |  | 
 | 		sev_unpin_memory(kvm, src_p, n); | 
 | 		sev_unpin_memory(kvm, dst_p, n); | 
 |  | 
 | 		if (ret) | 
 | 			goto err; | 
 |  | 
 | 		next_vaddr = vaddr + len; | 
 | 		dst_vaddr = dst_vaddr + len; | 
 | 		size -= len; | 
 | 	} | 
 | err: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct sev_data_launch_secret *data; | 
 | 	struct kvm_sev_launch_secret params; | 
 | 	struct page **pages; | 
 | 	void *blob, *hdr; | 
 | 	unsigned long n; | 
 | 	int ret, offset; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); | 
 | 	if (!pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * The secret must be copied into contiguous memory region, lets verify | 
 | 	 * that userspace memory pages are contiguous before we issue command. | 
 | 	 */ | 
 | 	if (get_num_contig_pages(0, pages, n) != n) { | 
 | 		ret = -EINVAL; | 
 | 		goto e_unpin_memory; | 
 | 	} | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		goto e_unpin_memory; | 
 |  | 
 | 	offset = params.guest_uaddr & (PAGE_SIZE - 1); | 
 | 	data->guest_address = __sme_page_pa(pages[0]) + offset; | 
 | 	data->guest_len = params.guest_len; | 
 |  | 
 | 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); | 
 | 	if (IS_ERR(blob)) { | 
 | 		ret = PTR_ERR(blob); | 
 | 		goto e_free; | 
 | 	} | 
 |  | 
 | 	data->trans_address = __psp_pa(blob); | 
 | 	data->trans_len = params.trans_len; | 
 |  | 
 | 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); | 
 | 	if (IS_ERR(hdr)) { | 
 | 		ret = PTR_ERR(hdr); | 
 | 		goto e_free_blob; | 
 | 	} | 
 | 	data->hdr_address = __psp_pa(hdr); | 
 | 	data->hdr_len = params.hdr_len; | 
 |  | 
 | 	data->handle = sev->handle; | 
 | 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); | 
 |  | 
 | 	kfree(hdr); | 
 |  | 
 | e_free_blob: | 
 | 	kfree(blob); | 
 | e_free: | 
 | 	kfree(data); | 
 | e_unpin_memory: | 
 | 	sev_unpin_memory(kvm, pages, n); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int svm_mem_enc_op(struct kvm *kvm, void __user *argp) | 
 | { | 
 | 	struct kvm_sev_cmd sev_cmd; | 
 | 	int r; | 
 |  | 
 | 	if (!svm_sev_enabled()) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	switch (sev_cmd.id) { | 
 | 	case KVM_SEV_INIT: | 
 | 		r = sev_guest_init(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_LAUNCH_START: | 
 | 		r = sev_launch_start(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_LAUNCH_UPDATE_DATA: | 
 | 		r = sev_launch_update_data(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_LAUNCH_MEASURE: | 
 | 		r = sev_launch_measure(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_LAUNCH_FINISH: | 
 | 		r = sev_launch_finish(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_GUEST_STATUS: | 
 | 		r = sev_guest_status(kvm, &sev_cmd); | 
 | 		break; | 
 | 	case KVM_SEV_DBG_DECRYPT: | 
 | 		r = sev_dbg_crypt(kvm, &sev_cmd, true); | 
 | 		break; | 
 | 	case KVM_SEV_DBG_ENCRYPT: | 
 | 		r = sev_dbg_crypt(kvm, &sev_cmd, false); | 
 | 		break; | 
 | 	case KVM_SEV_LAUNCH_SECRET: | 
 | 		r = sev_launch_secret(kvm, &sev_cmd); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) | 
 | 		r = -EFAULT; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int svm_register_enc_region(struct kvm *kvm, | 
 | 				   struct kvm_enc_region *range) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct enc_region *region; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!sev_guest(kvm)) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	region = kzalloc(sizeof(*region), GFP_KERNEL); | 
 | 	if (!region) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); | 
 | 	if (!region->pages) { | 
 | 		ret = -ENOMEM; | 
 | 		goto e_free; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The guest may change the memory encryption attribute from C=0 -> C=1 | 
 | 	 * or vice versa for this memory range. Lets make sure caches are | 
 | 	 * flushed to ensure that guest data gets written into memory with | 
 | 	 * correct C-bit. | 
 | 	 */ | 
 | 	sev_clflush_pages(region->pages, region->npages); | 
 |  | 
 | 	region->uaddr = range->addr; | 
 | 	region->size = range->size; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 | 	list_add_tail(®ion->list, &sev->regions_list); | 
 | 	mutex_unlock(&kvm->lock); | 
 |  | 
 | 	return ret; | 
 |  | 
 | e_free: | 
 | 	kfree(region); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct enc_region * | 
 | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) | 
 | { | 
 | 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
 | 	struct list_head *head = &sev->regions_list; | 
 | 	struct enc_region *i; | 
 |  | 
 | 	list_for_each_entry(i, head, list) { | 
 | 		if (i->uaddr == range->addr && | 
 | 		    i->size == range->size) | 
 | 			return i; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | static int svm_unregister_enc_region(struct kvm *kvm, | 
 | 				     struct kvm_enc_region *range) | 
 | { | 
 | 	struct enc_region *region; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	if (!sev_guest(kvm)) { | 
 | 		ret = -ENOTTY; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	region = find_enc_region(kvm, range); | 
 | 	if (!region) { | 
 | 		ret = -EINVAL; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	__unregister_enc_region_locked(kvm, region); | 
 |  | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	return 0; | 
 |  | 
 | failed: | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct kvm_x86_ops svm_x86_ops __ro_after_init = { | 
 | 	.cpu_has_kvm_support = has_svm, | 
 | 	.disabled_by_bios = is_disabled, | 
 | 	.hardware_setup = svm_hardware_setup, | 
 | 	.hardware_unsetup = svm_hardware_unsetup, | 
 | 	.check_processor_compatibility = svm_check_processor_compat, | 
 | 	.hardware_enable = svm_hardware_enable, | 
 | 	.hardware_disable = svm_hardware_disable, | 
 | 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, | 
 | 	.has_emulated_msr = svm_has_emulated_msr, | 
 |  | 
 | 	.vcpu_create = svm_create_vcpu, | 
 | 	.vcpu_free = svm_free_vcpu, | 
 | 	.vcpu_reset = svm_vcpu_reset, | 
 |  | 
 | 	.vm_alloc = svm_vm_alloc, | 
 | 	.vm_free = svm_vm_free, | 
 | 	.vm_init = avic_vm_init, | 
 | 	.vm_destroy = svm_vm_destroy, | 
 |  | 
 | 	.prepare_guest_switch = svm_prepare_guest_switch, | 
 | 	.vcpu_load = svm_vcpu_load, | 
 | 	.vcpu_put = svm_vcpu_put, | 
 | 	.vcpu_blocking = svm_vcpu_blocking, | 
 | 	.vcpu_unblocking = svm_vcpu_unblocking, | 
 |  | 
 | 	.update_bp_intercept = update_bp_intercept, | 
 | 	.get_msr_feature = svm_get_msr_feature, | 
 | 	.get_msr = svm_get_msr, | 
 | 	.set_msr = svm_set_msr, | 
 | 	.get_segment_base = svm_get_segment_base, | 
 | 	.get_segment = svm_get_segment, | 
 | 	.set_segment = svm_set_segment, | 
 | 	.get_cpl = svm_get_cpl, | 
 | 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits, | 
 | 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits, | 
 | 	.decache_cr3 = svm_decache_cr3, | 
 | 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits, | 
 | 	.set_cr0 = svm_set_cr0, | 
 | 	.set_cr3 = svm_set_cr3, | 
 | 	.set_cr4 = svm_set_cr4, | 
 | 	.set_efer = svm_set_efer, | 
 | 	.get_idt = svm_get_idt, | 
 | 	.set_idt = svm_set_idt, | 
 | 	.get_gdt = svm_get_gdt, | 
 | 	.set_gdt = svm_set_gdt, | 
 | 	.get_dr6 = svm_get_dr6, | 
 | 	.set_dr6 = svm_set_dr6, | 
 | 	.set_dr7 = svm_set_dr7, | 
 | 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs, | 
 | 	.cache_reg = svm_cache_reg, | 
 | 	.get_rflags = svm_get_rflags, | 
 | 	.set_rflags = svm_set_rflags, | 
 |  | 
 | 	.tlb_flush = svm_flush_tlb, | 
 | 	.tlb_flush_gva = svm_flush_tlb_gva, | 
 |  | 
 | 	.run = svm_vcpu_run, | 
 | 	.handle_exit = handle_exit, | 
 | 	.skip_emulated_instruction = skip_emulated_instruction, | 
 | 	.set_interrupt_shadow = svm_set_interrupt_shadow, | 
 | 	.get_interrupt_shadow = svm_get_interrupt_shadow, | 
 | 	.patch_hypercall = svm_patch_hypercall, | 
 | 	.set_irq = svm_set_irq, | 
 | 	.set_nmi = svm_inject_nmi, | 
 | 	.queue_exception = svm_queue_exception, | 
 | 	.cancel_injection = svm_cancel_injection, | 
 | 	.interrupt_allowed = svm_interrupt_allowed, | 
 | 	.nmi_allowed = svm_nmi_allowed, | 
 | 	.get_nmi_mask = svm_get_nmi_mask, | 
 | 	.set_nmi_mask = svm_set_nmi_mask, | 
 | 	.enable_nmi_window = enable_nmi_window, | 
 | 	.enable_irq_window = enable_irq_window, | 
 | 	.update_cr8_intercept = update_cr8_intercept, | 
 | 	.set_virtual_apic_mode = svm_set_virtual_apic_mode, | 
 | 	.get_enable_apicv = svm_get_enable_apicv, | 
 | 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, | 
 | 	.load_eoi_exitmap = svm_load_eoi_exitmap, | 
 | 	.hwapic_irr_update = svm_hwapic_irr_update, | 
 | 	.hwapic_isr_update = svm_hwapic_isr_update, | 
 | 	.sync_pir_to_irr = kvm_lapic_find_highest_irr, | 
 | 	.apicv_post_state_restore = avic_post_state_restore, | 
 |  | 
 | 	.set_tss_addr = svm_set_tss_addr, | 
 | 	.set_identity_map_addr = svm_set_identity_map_addr, | 
 | 	.get_tdp_level = get_npt_level, | 
 | 	.get_mt_mask = svm_get_mt_mask, | 
 |  | 
 | 	.get_exit_info = svm_get_exit_info, | 
 |  | 
 | 	.get_lpage_level = svm_get_lpage_level, | 
 |  | 
 | 	.cpuid_update = svm_cpuid_update, | 
 |  | 
 | 	.rdtscp_supported = svm_rdtscp_supported, | 
 | 	.invpcid_supported = svm_invpcid_supported, | 
 | 	.mpx_supported = svm_mpx_supported, | 
 | 	.xsaves_supported = svm_xsaves_supported, | 
 | 	.umip_emulated = svm_umip_emulated, | 
 |  | 
 | 	.set_supported_cpuid = svm_set_supported_cpuid, | 
 |  | 
 | 	.has_wbinvd_exit = svm_has_wbinvd_exit, | 
 |  | 
 | 	.read_l1_tsc_offset = svm_read_l1_tsc_offset, | 
 | 	.write_l1_tsc_offset = svm_write_l1_tsc_offset, | 
 |  | 
 | 	.set_tdp_cr3 = set_tdp_cr3, | 
 |  | 
 | 	.check_intercept = svm_check_intercept, | 
 | 	.handle_external_intr = svm_handle_external_intr, | 
 |  | 
 | 	.request_immediate_exit = __kvm_request_immediate_exit, | 
 |  | 
 | 	.sched_in = svm_sched_in, | 
 |  | 
 | 	.pmu_ops = &amd_pmu_ops, | 
 | 	.deliver_posted_interrupt = svm_deliver_avic_intr, | 
 | 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, | 
 | 	.update_pi_irte = svm_update_pi_irte, | 
 | 	.setup_mce = svm_setup_mce, | 
 |  | 
 | 	.smi_allowed = svm_smi_allowed, | 
 | 	.pre_enter_smm = svm_pre_enter_smm, | 
 | 	.pre_leave_smm = svm_pre_leave_smm, | 
 | 	.enable_smi_window = enable_smi_window, | 
 |  | 
 | 	.mem_enc_op = svm_mem_enc_op, | 
 | 	.mem_enc_reg_region = svm_register_enc_region, | 
 | 	.mem_enc_unreg_region = svm_unregister_enc_region, | 
 | }; | 
 |  | 
 | static int __init svm_init(void) | 
 | { | 
 | 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), | 
 | 			__alignof__(struct vcpu_svm), THIS_MODULE); | 
 | } | 
 |  | 
 | static void __exit svm_exit(void) | 
 | { | 
 | 	kvm_exit(); | 
 | } | 
 |  | 
 | module_init(svm_init) | 
 | module_exit(svm_exit) |