| /* | 
 |  * Based on arch/arm/mm/fault.c | 
 |  * | 
 |  * Copyright (C) 1995  Linus Torvalds | 
 |  * Copyright (C) 1995-2004 Russell King | 
 |  * Copyright (C) 2012 ARM Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/extable.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/hugetlb.h> | 
 |  | 
 | #include <asm/bug.h> | 
 | #include <asm/cmpxchg.h> | 
 | #include <asm/cpufeature.h> | 
 | #include <asm/exception.h> | 
 | #include <asm/debug-monitors.h> | 
 | #include <asm/esr.h> | 
 | #include <asm/kasan.h> | 
 | #include <asm/sysreg.h> | 
 | #include <asm/system_misc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/traps.h> | 
 |  | 
 | #include <acpi/ghes.h> | 
 |  | 
 | struct fault_info { | 
 | 	int	(*fn)(unsigned long addr, unsigned int esr, | 
 | 		      struct pt_regs *regs); | 
 | 	int	sig; | 
 | 	int	code; | 
 | 	const char *name; | 
 | }; | 
 |  | 
 | static struct fault_info fault_info[]; | 
 |  | 
 | static inline const struct fault_info *esr_to_fault_info(unsigned int esr) | 
 | { | 
 | 	return fault_info + (esr & 63); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KPROBES | 
 | static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* kprobe_running() needs smp_processor_id() */ | 
 | 	if (!user_mode(regs)) { | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && kprobe_fault_handler(regs, esr)) | 
 | 			ret = 1; | 
 | 		preempt_enable(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void data_abort_decode(unsigned int esr) | 
 | { | 
 | 	pr_alert("Data abort info:\n"); | 
 |  | 
 | 	if (esr & ESR_ELx_ISV) { | 
 | 		pr_alert("  Access size = %u byte(s)\n", | 
 | 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); | 
 | 		pr_alert("  SSE = %lu, SRT = %lu\n", | 
 | 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, | 
 | 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); | 
 | 		pr_alert("  SF = %lu, AR = %lu\n", | 
 | 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, | 
 | 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); | 
 | 	} else { | 
 | 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); | 
 | 	} | 
 |  | 
 | 	pr_alert("  CM = %lu, WnR = %lu\n", | 
 | 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, | 
 | 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); | 
 | } | 
 |  | 
 | static void mem_abort_decode(unsigned int esr) | 
 | { | 
 | 	pr_alert("Mem abort info:\n"); | 
 |  | 
 | 	pr_alert("  ESR = 0x%08x\n", esr); | 
 | 	pr_alert("  Exception class = %s, IL = %u bits\n", | 
 | 		 esr_get_class_string(esr), | 
 | 		 (esr & ESR_ELx_IL) ? 32 : 16); | 
 | 	pr_alert("  SET = %lu, FnV = %lu\n", | 
 | 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, | 
 | 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); | 
 | 	pr_alert("  EA = %lu, S1PTW = %lu\n", | 
 | 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, | 
 | 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); | 
 |  | 
 | 	if (esr_is_data_abort(esr)) | 
 | 		data_abort_decode(esr); | 
 | } | 
 |  | 
 | static inline bool is_ttbr0_addr(unsigned long addr) | 
 | { | 
 | 	/* entry assembly clears tags for TTBR0 addrs */ | 
 | 	return addr < TASK_SIZE; | 
 | } | 
 |  | 
 | static inline bool is_ttbr1_addr(unsigned long addr) | 
 | { | 
 | 	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */ | 
 | 	return arch_kasan_reset_tag(addr) >= VA_START; | 
 | } | 
 |  | 
 | /* | 
 |  * Dump out the page tables associated with 'addr' in the currently active mm. | 
 |  */ | 
 | void show_pte(unsigned long addr) | 
 | { | 
 | 	struct mm_struct *mm; | 
 | 	pgd_t *pgdp; | 
 | 	pgd_t pgd; | 
 |  | 
 | 	if (is_ttbr0_addr(addr)) { | 
 | 		/* TTBR0 */ | 
 | 		mm = current->active_mm; | 
 | 		if (mm == &init_mm) { | 
 | 			pr_alert("[%016lx] user address but active_mm is swapper\n", | 
 | 				 addr); | 
 | 			return; | 
 | 		} | 
 | 	} else if (is_ttbr1_addr(addr)) { | 
 | 		/* TTBR1 */ | 
 | 		mm = &init_mm; | 
 | 	} else { | 
 | 		pr_alert("[%016lx] address between user and kernel address ranges\n", | 
 | 			 addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n", | 
 | 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, | 
 | 		 VA_BITS, mm->pgd); | 
 | 	pgdp = pgd_offset(mm, addr); | 
 | 	pgd = READ_ONCE(*pgdp); | 
 | 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); | 
 |  | 
 | 	do { | 
 | 		pud_t *pudp, pud; | 
 | 		pmd_t *pmdp, pmd; | 
 | 		pte_t *ptep, pte; | 
 |  | 
 | 		if (pgd_none(pgd) || pgd_bad(pgd)) | 
 | 			break; | 
 |  | 
 | 		pudp = pud_offset(pgdp, addr); | 
 | 		pud = READ_ONCE(*pudp); | 
 | 		pr_cont(", pud=%016llx", pud_val(pud)); | 
 | 		if (pud_none(pud) || pud_bad(pud)) | 
 | 			break; | 
 |  | 
 | 		pmdp = pmd_offset(pudp, addr); | 
 | 		pmd = READ_ONCE(*pmdp); | 
 | 		pr_cont(", pmd=%016llx", pmd_val(pmd)); | 
 | 		if (pmd_none(pmd) || pmd_bad(pmd)) | 
 | 			break; | 
 |  | 
 | 		ptep = pte_offset_map(pmdp, addr); | 
 | 		pte = READ_ONCE(*ptep); | 
 | 		pr_cont(", pte=%016llx", pte_val(pte)); | 
 | 		pte_unmap(ptep); | 
 | 	} while(0); | 
 |  | 
 | 	pr_cont("\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * This function sets the access flags (dirty, accessed), as well as write | 
 |  * permission, and only to a more permissive setting. | 
 |  * | 
 |  * It needs to cope with hardware update of the accessed/dirty state by other | 
 |  * agents in the system and can safely skip the __sync_icache_dcache() call as, | 
 |  * like set_pte_at(), the PTE is never changed from no-exec to exec here. | 
 |  * | 
 |  * Returns whether or not the PTE actually changed. | 
 |  */ | 
 | int ptep_set_access_flags(struct vm_area_struct *vma, | 
 | 			  unsigned long address, pte_t *ptep, | 
 | 			  pte_t entry, int dirty) | 
 | { | 
 | 	pteval_t old_pteval, pteval; | 
 | 	pte_t pte = READ_ONCE(*ptep); | 
 |  | 
 | 	if (pte_same(pte, entry)) | 
 | 		return 0; | 
 |  | 
 | 	/* only preserve the access flags and write permission */ | 
 | 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; | 
 |  | 
 | 	/* | 
 | 	 * Setting the flags must be done atomically to avoid racing with the | 
 | 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must | 
 | 	 * be set to the most permissive (lowest value) of *ptep and entry | 
 | 	 * (calculated as: a & b == ~(~a | ~b)). | 
 | 	 */ | 
 | 	pte_val(entry) ^= PTE_RDONLY; | 
 | 	pteval = pte_val(pte); | 
 | 	do { | 
 | 		old_pteval = pteval; | 
 | 		pteval ^= PTE_RDONLY; | 
 | 		pteval |= pte_val(entry); | 
 | 		pteval ^= PTE_RDONLY; | 
 | 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); | 
 | 	} while (pteval != old_pteval); | 
 |  | 
 | 	flush_tlb_fix_spurious_fault(vma, address); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_el1_instruction_abort(unsigned int esr) | 
 | { | 
 | 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; | 
 | } | 
 |  | 
 | static inline bool is_el1_permission_fault(unsigned int esr, | 
 | 					   struct pt_regs *regs, | 
 | 					   unsigned long addr) | 
 | { | 
 | 	unsigned int ec       = ESR_ELx_EC(esr); | 
 | 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; | 
 |  | 
 | 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) | 
 | 		return false; | 
 |  | 
 | 	if (fsc_type == ESR_ELx_FSC_PERM) | 
 | 		return true; | 
 |  | 
 | 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) | 
 | 		return fsc_type == ESR_ELx_FSC_FAULT && | 
 | 			(regs->pstate & PSR_PAN_BIT); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void die_kernel_fault(const char *msg, unsigned long addr, | 
 | 			     unsigned int esr, struct pt_regs *regs) | 
 | { | 
 | 	bust_spinlocks(1); | 
 |  | 
 | 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, | 
 | 		 addr); | 
 |  | 
 | 	mem_abort_decode(esr); | 
 |  | 
 | 	show_pte(addr); | 
 | 	die("Oops", regs, esr); | 
 | 	bust_spinlocks(0); | 
 | 	do_exit(SIGKILL); | 
 | } | 
 |  | 
 | static void __do_kernel_fault(unsigned long addr, unsigned int esr, | 
 | 			      struct pt_regs *regs) | 
 | { | 
 | 	const char *msg; | 
 |  | 
 | 	/* | 
 | 	 * Are we prepared to handle this kernel fault? | 
 | 	 * We are almost certainly not prepared to handle instruction faults. | 
 | 	 */ | 
 | 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) | 
 | 		return; | 
 |  | 
 | 	if (is_el1_permission_fault(esr, regs, addr)) { | 
 | 		if (esr & ESR_ELx_WNR) | 
 | 			msg = "write to read-only memory"; | 
 | 		else | 
 | 			msg = "read from unreadable memory"; | 
 | 	} else if (addr < PAGE_SIZE) { | 
 | 		msg = "NULL pointer dereference"; | 
 | 	} else { | 
 | 		msg = "paging request"; | 
 | 	} | 
 |  | 
 | 	die_kernel_fault(msg, addr, esr, regs); | 
 | } | 
 |  | 
 | static void __do_user_fault(struct siginfo *info, unsigned int esr) | 
 | { | 
 | 	current->thread.fault_address = (unsigned long)info->si_addr; | 
 |  | 
 | 	/* | 
 | 	 * If the faulting address is in the kernel, we must sanitize the ESR. | 
 | 	 * From userspace's point of view, kernel-only mappings don't exist | 
 | 	 * at all, so we report them as level 0 translation faults. | 
 | 	 * (This is not quite the way that "no mapping there at all" behaves: | 
 | 	 * an alignment fault not caused by the memory type would take | 
 | 	 * precedence over translation fault for a real access to empty | 
 | 	 * space. Unfortunately we can't easily distinguish "alignment fault | 
 | 	 * not caused by memory type" from "alignment fault caused by memory | 
 | 	 * type", so we ignore this wrinkle and just return the translation | 
 | 	 * fault.) | 
 | 	 */ | 
 | 	if (!is_ttbr0_addr(current->thread.fault_address)) { | 
 | 		switch (ESR_ELx_EC(esr)) { | 
 | 		case ESR_ELx_EC_DABT_LOW: | 
 | 			/* | 
 | 			 * These bits provide only information about the | 
 | 			 * faulting instruction, which userspace knows already. | 
 | 			 * We explicitly clear bits which are architecturally | 
 | 			 * RES0 in case they are given meanings in future. | 
 | 			 * We always report the ESR as if the fault was taken | 
 | 			 * to EL1 and so ISV and the bits in ISS[23:14] are | 
 | 			 * clear. (In fact it always will be a fault to EL1.) | 
 | 			 */ | 
 | 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | | 
 | 				ESR_ELx_CM | ESR_ELx_WNR; | 
 | 			esr |= ESR_ELx_FSC_FAULT; | 
 | 			break; | 
 | 		case ESR_ELx_EC_IABT_LOW: | 
 | 			/* | 
 | 			 * Claim a level 0 translation fault. | 
 | 			 * All other bits are architecturally RES0 for faults | 
 | 			 * reported with that DFSC value, so we clear them. | 
 | 			 */ | 
 | 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; | 
 | 			esr |= ESR_ELx_FSC_FAULT; | 
 | 			break; | 
 | 		default: | 
 | 			/* | 
 | 			 * This should never happen (entry.S only brings us | 
 | 			 * into this code for insn and data aborts from a lower | 
 | 			 * exception level). Fail safe by not providing an ESR | 
 | 			 * context record at all. | 
 | 			 */ | 
 | 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); | 
 | 			esr = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	current->thread.fault_code = esr; | 
 | 	arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current); | 
 | } | 
 |  | 
 | static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * If we are in kernel mode at this point, we have no context to | 
 | 	 * handle this fault with. | 
 | 	 */ | 
 | 	if (user_mode(regs)) { | 
 | 		const struct fault_info *inf = esr_to_fault_info(esr); | 
 | 		struct siginfo si; | 
 |  | 
 | 		clear_siginfo(&si); | 
 | 		si.si_signo	= inf->sig; | 
 | 		si.si_code	= inf->code; | 
 | 		si.si_addr	= (void __user *)addr; | 
 |  | 
 | 		__do_user_fault(&si, esr); | 
 | 	} else { | 
 | 		__do_kernel_fault(addr, esr, regs); | 
 | 	} | 
 | } | 
 |  | 
 | #define VM_FAULT_BADMAP		0x010000 | 
 | #define VM_FAULT_BADACCESS	0x020000 | 
 |  | 
 | static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, | 
 | 			   unsigned int mm_flags, unsigned long vm_flags, | 
 | 			   struct task_struct *tsk) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	vm_fault_t fault; | 
 |  | 
 | 	vma = find_vma(mm, addr); | 
 | 	fault = VM_FAULT_BADMAP; | 
 | 	if (unlikely(!vma)) | 
 | 		goto out; | 
 | 	if (unlikely(vma->vm_start > addr)) | 
 | 		goto check_stack; | 
 |  | 
 | 	/* | 
 | 	 * Ok, we have a good vm_area for this memory access, so we can handle | 
 | 	 * it. | 
 | 	 */ | 
 | good_area: | 
 | 	/* | 
 | 	 * Check that the permissions on the VMA allow for the fault which | 
 | 	 * occurred. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & vm_flags)) { | 
 | 		fault = VM_FAULT_BADACCESS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); | 
 |  | 
 | check_stack: | 
 | 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) | 
 | 		goto good_area; | 
 | out: | 
 | 	return fault; | 
 | } | 
 |  | 
 | static bool is_el0_instruction_abort(unsigned int esr) | 
 | { | 
 | 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; | 
 | } | 
 |  | 
 | static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct *mm; | 
 | 	struct siginfo si; | 
 | 	vm_fault_t fault, major = 0; | 
 | 	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC; | 
 | 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
 |  | 
 | 	if (notify_page_fault(regs, esr)) | 
 | 		return 0; | 
 |  | 
 | 	tsk = current; | 
 | 	mm  = tsk->mm; | 
 |  | 
 | 	/* | 
 | 	 * If we're in an interrupt or have no user context, we must not take | 
 | 	 * the fault. | 
 | 	 */ | 
 | 	if (faulthandler_disabled() || !mm) | 
 | 		goto no_context; | 
 |  | 
 | 	if (user_mode(regs)) | 
 | 		mm_flags |= FAULT_FLAG_USER; | 
 |  | 
 | 	if (is_el0_instruction_abort(esr)) { | 
 | 		vm_flags = VM_EXEC; | 
 | 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { | 
 | 		vm_flags = VM_WRITE; | 
 | 		mm_flags |= FAULT_FLAG_WRITE; | 
 | 	} | 
 |  | 
 | 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(esr, regs, addr)) { | 
 | 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */ | 
 | 		if (regs->orig_addr_limit == KERNEL_DS) | 
 | 			die_kernel_fault("access to user memory with fs=KERNEL_DS", | 
 | 					 addr, esr, regs); | 
 |  | 
 | 		if (is_el1_instruction_abort(esr)) | 
 | 			die_kernel_fault("execution of user memory", | 
 | 					 addr, esr, regs); | 
 |  | 
 | 		if (!search_exception_tables(regs->pc)) | 
 | 			die_kernel_fault("access to user memory outside uaccess routines", | 
 | 					 addr, esr, regs); | 
 | 	} | 
 |  | 
 | 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); | 
 |  | 
 | 	/* | 
 | 	 * As per x86, we may deadlock here. However, since the kernel only | 
 | 	 * validly references user space from well defined areas of the code, | 
 | 	 * we can bug out early if this is from code which shouldn't. | 
 | 	 */ | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) | 
 | 			goto no_context; | 
 | retry: | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} else { | 
 | 		/* | 
 | 		 * The above down_read_trylock() might have succeeded in which | 
 | 		 * case, we'll have missed the might_sleep() from down_read(). | 
 | 		 */ | 
 | 		might_sleep(); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) | 
 | 			goto no_context; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); | 
 | 	major |= fault & VM_FAULT_MAJOR; | 
 |  | 
 | 	if (fault & VM_FAULT_RETRY) { | 
 | 		/* | 
 | 		 * If we need to retry but a fatal signal is pending, | 
 | 		 * handle the signal first. We do not need to release | 
 | 		 * the mmap_sem because it would already be released | 
 | 		 * in __lock_page_or_retry in mm/filemap.c. | 
 | 		 */ | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			if (!user_mode(regs)) | 
 | 				goto no_context; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of | 
 | 		 * starvation. | 
 | 		 */ | 
 | 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { | 
 | 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
 | 			mm_flags |= FAULT_FLAG_TRIED; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	/* | 
 | 	 * Handle the "normal" (no error) case first. | 
 | 	 */ | 
 | 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | | 
 | 			      VM_FAULT_BADACCESS)))) { | 
 | 		/* | 
 | 		 * Major/minor page fault accounting is only done | 
 | 		 * once. If we go through a retry, it is extremely | 
 | 		 * likely that the page will be found in page cache at | 
 | 		 * that point. | 
 | 		 */ | 
 | 		if (major) { | 
 | 			tsk->maj_flt++; | 
 | 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, | 
 | 				      addr); | 
 | 		} else { | 
 | 			tsk->min_flt++; | 
 | 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, | 
 | 				      addr); | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are in kernel mode at this point, we have no context to | 
 | 	 * handle this fault with. | 
 | 	 */ | 
 | 	if (!user_mode(regs)) | 
 | 		goto no_context; | 
 |  | 
 | 	if (fault & VM_FAULT_OOM) { | 
 | 		/* | 
 | 		 * We ran out of memory, call the OOM killer, and return to | 
 | 		 * userspace (which will retry the fault, or kill us if we got | 
 | 		 * oom-killed). | 
 | 		 */ | 
 | 		pagefault_out_of_memory(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	clear_siginfo(&si); | 
 | 	si.si_addr = (void __user *)addr; | 
 |  | 
 | 	if (fault & VM_FAULT_SIGBUS) { | 
 | 		/* | 
 | 		 * We had some memory, but were unable to successfully fix up | 
 | 		 * this page fault. | 
 | 		 */ | 
 | 		si.si_signo	= SIGBUS; | 
 | 		si.si_code	= BUS_ADRERR; | 
 | 	} else if (fault & VM_FAULT_HWPOISON_LARGE) { | 
 | 		unsigned int hindex = VM_FAULT_GET_HINDEX(fault); | 
 |  | 
 | 		si.si_signo	= SIGBUS; | 
 | 		si.si_code	= BUS_MCEERR_AR; | 
 | 		si.si_addr_lsb	= hstate_index_to_shift(hindex); | 
 | 	} else if (fault & VM_FAULT_HWPOISON) { | 
 | 		si.si_signo	= SIGBUS; | 
 | 		si.si_code	= BUS_MCEERR_AR; | 
 | 		si.si_addr_lsb	= PAGE_SHIFT; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Something tried to access memory that isn't in our memory | 
 | 		 * map. | 
 | 		 */ | 
 | 		si.si_signo	= SIGSEGV; | 
 | 		si.si_code	= fault == VM_FAULT_BADACCESS ? | 
 | 				  SEGV_ACCERR : SEGV_MAPERR; | 
 | 	} | 
 |  | 
 | 	__do_user_fault(&si, esr); | 
 | 	return 0; | 
 |  | 
 | no_context: | 
 | 	__do_kernel_fault(addr, esr, regs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __kprobes do_translation_fault(unsigned long addr, | 
 | 					  unsigned int esr, | 
 | 					  struct pt_regs *regs) | 
 | { | 
 | 	if (is_ttbr0_addr(addr)) | 
 | 		return do_page_fault(addr, esr, regs); | 
 |  | 
 | 	do_bad_area(addr, esr, regs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_alignment_fault(unsigned long addr, unsigned int esr, | 
 | 			      struct pt_regs *regs) | 
 | { | 
 | 	do_bad_area(addr, esr, regs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) | 
 | { | 
 | 	return 1; /* "fault" */ | 
 | } | 
 |  | 
 | static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) | 
 | { | 
 | 	struct siginfo info; | 
 | 	const struct fault_info *inf; | 
 |  | 
 | 	inf = esr_to_fault_info(esr); | 
 |  | 
 | 	/* | 
 | 	 * Synchronous aborts may interrupt code which had interrupts masked. | 
 | 	 * Before calling out into the wider kernel tell the interested | 
 | 	 * subsystems. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) { | 
 | 		if (interrupts_enabled(regs)) | 
 | 			nmi_enter(); | 
 |  | 
 | 		ghes_notify_sea(); | 
 |  | 
 | 		if (interrupts_enabled(regs)) | 
 | 			nmi_exit(); | 
 | 	} | 
 |  | 
 | 	clear_siginfo(&info); | 
 | 	info.si_signo = inf->sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code  = inf->code; | 
 | 	if (esr & ESR_ELx_FnV) | 
 | 		info.si_addr = NULL; | 
 | 	else | 
 | 		info.si_addr  = (void __user *)addr; | 
 | 	arm64_notify_die(inf->name, regs, &info, esr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct fault_info fault_info[] = { | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	}, | 
 | 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	}, | 
 | 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	}, | 
 | 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	}, | 
 | 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	}, | 
 | 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	}, | 
 | 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			}, | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	}, | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	}, | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	}, | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	}, | 
 | 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			}, | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented | 
 | 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			}, | 
 | 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" }, | 
 | 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" }, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		}, | 
 | 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			}, | 
 | }; | 
 |  | 
 | int handle_guest_sea(phys_addr_t addr, unsigned int esr) | 
 | { | 
 | 	return ghes_notify_sea(); | 
 | } | 
 |  | 
 | asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, | 
 | 					 struct pt_regs *regs) | 
 | { | 
 | 	const struct fault_info *inf = esr_to_fault_info(esr); | 
 | 	struct siginfo info; | 
 |  | 
 | 	if (!inf->fn(addr, esr, regs)) | 
 | 		return; | 
 |  | 
 | 	if (!user_mode(regs)) { | 
 | 		pr_alert("Unhandled fault at 0x%016lx\n", addr); | 
 | 		mem_abort_decode(esr); | 
 | 		show_pte(addr); | 
 | 	} | 
 |  | 
 | 	clear_siginfo(&info); | 
 | 	info.si_signo = inf->sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code  = inf->code; | 
 | 	info.si_addr  = (void __user *)addr; | 
 | 	arm64_notify_die(inf->name, regs, &info, esr); | 
 | } | 
 |  | 
 | asmlinkage void __exception do_el0_irq_bp_hardening(void) | 
 | { | 
 | 	/* PC has already been checked in entry.S */ | 
 | 	arm64_apply_bp_hardening(); | 
 | } | 
 |  | 
 | asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr, | 
 | 						   unsigned int esr, | 
 | 						   struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * We've taken an instruction abort from userspace and not yet | 
 | 	 * re-enabled IRQs. If the address is a kernel address, apply | 
 | 	 * BP hardening prior to enabling IRQs and pre-emption. | 
 | 	 */ | 
 | 	if (!is_ttbr0_addr(addr)) | 
 | 		arm64_apply_bp_hardening(); | 
 |  | 
 | 	local_irq_enable(); | 
 | 	do_mem_abort(addr, esr, regs); | 
 | } | 
 |  | 
 |  | 
 | asmlinkage void __exception do_sp_pc_abort(unsigned long addr, | 
 | 					   unsigned int esr, | 
 | 					   struct pt_regs *regs) | 
 | { | 
 | 	struct siginfo info; | 
 |  | 
 | 	if (user_mode(regs)) { | 
 | 		if (!is_ttbr0_addr(instruction_pointer(regs))) | 
 | 			arm64_apply_bp_hardening(); | 
 | 		local_irq_enable(); | 
 | 	} | 
 |  | 
 | 	clear_siginfo(&info); | 
 | 	info.si_signo = SIGBUS; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code  = BUS_ADRALN; | 
 | 	info.si_addr  = (void __user *)addr; | 
 | 	arm64_notify_die("SP/PC alignment exception", regs, &info, esr); | 
 | } | 
 |  | 
 | int __init early_brk64(unsigned long addr, unsigned int esr, | 
 | 		       struct pt_regs *regs); | 
 |  | 
 | /* | 
 |  * __refdata because early_brk64 is __init, but the reference to it is | 
 |  * clobbered at arch_initcall time. | 
 |  * See traps.c and debug-monitors.c:debug_traps_init(). | 
 |  */ | 
 | static struct fault_info __refdata debug_fault_info[] = { | 
 | 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	}, | 
 | 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	}, | 
 | 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	}, | 
 | 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		}, | 
 | 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		}, | 
 | 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	}, | 
 | 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		}, | 
 | 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		}, | 
 | }; | 
 |  | 
 | void __init hook_debug_fault_code(int nr, | 
 | 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
 | 				  int sig, int code, const char *name) | 
 | { | 
 | 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); | 
 |  | 
 | 	debug_fault_info[nr].fn		= fn; | 
 | 	debug_fault_info[nr].sig	= sig; | 
 | 	debug_fault_info[nr].code	= code; | 
 | 	debug_fault_info[nr].name	= name; | 
 | } | 
 |  | 
 | void hook_fault_code(int nr, | 
 | 		     int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
 | 		     int sig, int code, const char *name) | 
 | { | 
 | 	WARN_ON(nr < 0 || nr >= ARRAY_SIZE(fault_info)); | 
 |  | 
 | 	fault_info[nr].fn   = fn; | 
 | 	fault_info[nr].sig  = sig; | 
 | 	fault_info[nr].code = code; | 
 | 	fault_info[nr].name = name; | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM64_ERRATUM_1463225 | 
 | DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); | 
 |  | 
 | static int __exception | 
 | cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) | 
 | { | 
 | 	if (user_mode(regs)) | 
 | 		return 0; | 
 |  | 
 | 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We've taken a dummy step exception from the kernel to ensure | 
 | 	 * that interrupts are re-enabled on the syscall path. Return back | 
 | 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions | 
 | 	 * masked so that we can safely restore the mdscr and get on with | 
 | 	 * handling the syscall. | 
 | 	 */ | 
 | 	regs->pstate |= PSR_D_BIT; | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static int __exception | 
 | cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARM64_ERRATUM_1463225 */ | 
 |  | 
 | asmlinkage int __exception do_debug_exception(unsigned long addr_if_watchpoint, | 
 | 					       unsigned int esr, | 
 | 					       struct pt_regs *regs) | 
 | { | 
 | 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); | 
 | 	unsigned long pc = instruction_pointer(regs); | 
 | 	int rv; | 
 |  | 
 | 	if (cortex_a76_erratum_1463225_debug_handler(regs)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were | 
 | 	 * already disabled to preserve the last enabled/disabled addresses. | 
 | 	 */ | 
 | 	if (interrupts_enabled(regs)) | 
 | 		trace_hardirqs_off(); | 
 |  | 
 | 	if (user_mode(regs) && !is_ttbr0_addr(pc)) | 
 | 		arm64_apply_bp_hardening(); | 
 |  | 
 | 	if (!inf->fn(addr_if_watchpoint, esr, regs)) { | 
 | 		rv = 1; | 
 | 	} else { | 
 | 		struct siginfo info; | 
 |  | 
 | 		clear_siginfo(&info); | 
 | 		info.si_signo = inf->sig; | 
 | 		info.si_errno = 0; | 
 | 		info.si_code  = inf->code; | 
 | 		info.si_addr  = (void __user *)pc; | 
 | 		arm64_notify_die(inf->name, regs, &info, esr); | 
 | 		rv = 0; | 
 | 	} | 
 |  | 
 | 	if (interrupts_enabled(regs)) | 
 | 		trace_hardirqs_on(); | 
 |  | 
 | 	return rv; | 
 | } | 
 | NOKPROBE_SYMBOL(do_debug_exception); | 
 |  | 
 | #ifdef CONFIG_ARM64_PAN | 
 | void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) | 
 | { | 
 | 	/* | 
 | 	 * We modify PSTATE. This won't work from irq context as the PSTATE | 
 | 	 * is discarded once we return from the exception. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(in_interrupt()); | 
 |  | 
 | 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); | 
 | 	asm(SET_PSTATE_PAN(1)); | 
 | } | 
 | #endif /* CONFIG_ARM64_PAN */ |