| /* | 
 |  *  linux/fs/exec.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * #!-checking implemented by tytso. | 
 |  */ | 
 | /* | 
 |  * Demand-loading implemented 01.12.91 - no need to read anything but | 
 |  * the header into memory. The inode of the executable is put into | 
 |  * "current->executable", and page faults do the actual loading. Clean. | 
 |  * | 
 |  * Once more I can proudly say that linux stood up to being changed: it | 
 |  * was less than 2 hours work to get demand-loading completely implemented. | 
 |  * | 
 |  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead, | 
 |  * current->executable is only used by the procfs.  This allows a dispatch | 
 |  * table to check for several different types  of binary formats.  We keep | 
 |  * trying until we recognize the file or we run out of supported binary | 
 |  * formats. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/vmacache.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/fcntl.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/coredump.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/numa_balancing.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/key.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/module.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/tracehook.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/fs_struct.h> | 
 | #include <linux/pipe_fs_i.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <linux/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlb.h> | 
 |  | 
 | #include <trace/events/task.h> | 
 | #include "internal.h" | 
 |  | 
 | #include <trace/events/sched.h> | 
 |  | 
 | int suid_dumpable = 0; | 
 |  | 
 | static LIST_HEAD(formats); | 
 | static DEFINE_RWLOCK(binfmt_lock); | 
 |  | 
 | void __register_binfmt(struct linux_binfmt * fmt, int insert) | 
 | { | 
 | 	BUG_ON(!fmt); | 
 | 	if (WARN_ON(!fmt->load_binary)) | 
 | 		return; | 
 | 	write_lock(&binfmt_lock); | 
 | 	insert ? list_add(&fmt->lh, &formats) : | 
 | 		 list_add_tail(&fmt->lh, &formats); | 
 | 	write_unlock(&binfmt_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__register_binfmt); | 
 |  | 
 | void unregister_binfmt(struct linux_binfmt * fmt) | 
 | { | 
 | 	write_lock(&binfmt_lock); | 
 | 	list_del(&fmt->lh); | 
 | 	write_unlock(&binfmt_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(unregister_binfmt); | 
 |  | 
 | static inline void put_binfmt(struct linux_binfmt * fmt) | 
 | { | 
 | 	module_put(fmt->module); | 
 | } | 
 |  | 
 | bool path_noexec(const struct path *path) | 
 | { | 
 | 	return (path->mnt->mnt_flags & MNT_NOEXEC) || | 
 | 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); | 
 | } | 
 |  | 
 | #ifdef CONFIG_USELIB | 
 | /* | 
 |  * Note that a shared library must be both readable and executable due to | 
 |  * security reasons. | 
 |  * | 
 |  * Also note that we take the address to load from from the file itself. | 
 |  */ | 
 | SYSCALL_DEFINE1(uselib, const char __user *, library) | 
 | { | 
 | 	struct linux_binfmt *fmt; | 
 | 	struct file *file; | 
 | 	struct filename *tmp = getname(library); | 
 | 	int error = PTR_ERR(tmp); | 
 | 	static const struct open_flags uselib_flags = { | 
 | 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
 | 		.acc_mode = MAY_READ | MAY_EXEC, | 
 | 		.intent = LOOKUP_OPEN, | 
 | 		.lookup_flags = LOOKUP_FOLLOW, | 
 | 	}; | 
 |  | 
 | 	if (IS_ERR(tmp)) | 
 | 		goto out; | 
 |  | 
 | 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); | 
 | 	putname(tmp); | 
 | 	error = PTR_ERR(file); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out; | 
 |  | 
 | 	error = -EINVAL; | 
 | 	if (!S_ISREG(file_inode(file)->i_mode)) | 
 | 		goto exit; | 
 |  | 
 | 	error = -EACCES; | 
 | 	if (path_noexec(&file->f_path)) | 
 | 		goto exit; | 
 |  | 
 | 	fsnotify_open(file); | 
 |  | 
 | 	error = -ENOEXEC; | 
 |  | 
 | 	read_lock(&binfmt_lock); | 
 | 	list_for_each_entry(fmt, &formats, lh) { | 
 | 		if (!fmt->load_shlib) | 
 | 			continue; | 
 | 		if (!try_module_get(fmt->module)) | 
 | 			continue; | 
 | 		read_unlock(&binfmt_lock); | 
 | 		error = fmt->load_shlib(file); | 
 | 		read_lock(&binfmt_lock); | 
 | 		put_binfmt(fmt); | 
 | 		if (error != -ENOEXEC) | 
 | 			break; | 
 | 	} | 
 | 	read_unlock(&binfmt_lock); | 
 | exit: | 
 | 	fput(file); | 
 | out: | 
 |   	return error; | 
 | } | 
 | #endif /* #ifdef CONFIG_USELIB */ | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* | 
 |  * The nascent bprm->mm is not visible until exec_mmap() but it can | 
 |  * use a lot of memory, account these pages in current->mm temporary | 
 |  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we | 
 |  * change the counter back via acct_arg_size(0). | 
 |  */ | 
 | static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	long diff = (long)(pages - bprm->vma_pages); | 
 |  | 
 | 	if (!mm || !diff) | 
 | 		return; | 
 |  | 
 | 	bprm->vma_pages = pages; | 
 | 	add_mm_counter(mm, MM_ANONPAGES, diff); | 
 | } | 
 |  | 
 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		int write) | 
 | { | 
 | 	struct page *page; | 
 | 	int ret; | 
 | 	unsigned int gup_flags = FOLL_FORCE; | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	if (write) { | 
 | 		ret = expand_downwards(bprm->vma, pos); | 
 | 		if (ret < 0) | 
 | 			return NULL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (write) | 
 | 		gup_flags |= FOLL_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * We are doing an exec().  'current' is the process | 
 | 	 * doing the exec and bprm->mm is the new process's mm. | 
 | 	 */ | 
 | 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, | 
 | 			&page, NULL, NULL); | 
 | 	if (ret <= 0) | 
 | 		return NULL; | 
 |  | 
 | 	if (write) { | 
 | 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | 
 | 		unsigned long ptr_size, limit; | 
 |  | 
 | 		/* | 
 | 		 * Since the stack will hold pointers to the strings, we | 
 | 		 * must account for them as well. | 
 | 		 * | 
 | 		 * The size calculation is the entire vma while each arg page is | 
 | 		 * built, so each time we get here it's calculating how far it | 
 | 		 * is currently (rather than each call being just the newly | 
 | 		 * added size from the arg page).  As a result, we need to | 
 | 		 * always add the entire size of the pointers, so that on the | 
 | 		 * last call to get_arg_page() we'll actually have the entire | 
 | 		 * correct size. | 
 | 		 */ | 
 | 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); | 
 | 		if (ptr_size > ULONG_MAX - size) | 
 | 			goto fail; | 
 | 		size += ptr_size; | 
 |  | 
 | 		acct_arg_size(bprm, size / PAGE_SIZE); | 
 |  | 
 | 		/* | 
 | 		 * We've historically supported up to 32 pages (ARG_MAX) | 
 | 		 * of argument strings even with small stacks | 
 | 		 */ | 
 | 		if (size <= ARG_MAX) | 
 | 			return page; | 
 |  | 
 | 		/* | 
 | 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM | 
 | 		 * (whichever is smaller) for the argv+env strings. | 
 | 		 * This ensures that: | 
 | 		 *  - the remaining binfmt code will not run out of stack space, | 
 | 		 *  - the program will have a reasonable amount of stack left | 
 | 		 *    to work from. | 
 | 		 */ | 
 | 		limit = _STK_LIM / 4 * 3; | 
 | 		limit = min(limit, bprm->rlim_stack.rlim_cur / 4); | 
 | 		if (size > limit) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	return page; | 
 |  | 
 | fail: | 
 | 	put_page(page); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void put_arg_page(struct page *page) | 
 | { | 
 | 	put_page(page); | 
 | } | 
 |  | 
 | static void free_arg_pages(struct linux_binprm *bprm) | 
 | { | 
 | } | 
 |  | 
 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		struct page *page) | 
 | { | 
 | 	flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | 
 | } | 
 |  | 
 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	int err; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	struct mm_struct *mm = bprm->mm; | 
 |  | 
 | 	bprm->vma = vma = vm_area_alloc(mm); | 
 | 	if (!vma) | 
 | 		return -ENOMEM; | 
 | 	vma_set_anonymous(vma); | 
 |  | 
 | 	if (down_write_killable(&mm->mmap_sem)) { | 
 | 		err = -EINTR; | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Place the stack at the largest stack address the architecture | 
 | 	 * supports. Later, we'll move this to an appropriate place. We don't | 
 | 	 * use STACK_TOP because that can depend on attributes which aren't | 
 | 	 * configured yet. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); | 
 | 	vma->vm_end = STACK_TOP_MAX; | 
 | 	vma->vm_start = vma->vm_end - PAGE_SIZE; | 
 | 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; | 
 | 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
 |  | 
 | 	err = insert_vm_struct(mm, vma); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	mm->stack_vm = mm->total_vm = 1; | 
 | 	arch_bprm_mm_init(mm, vma); | 
 | 	up_write(&mm->mmap_sem); | 
 | 	bprm->p = vma->vm_end - sizeof(void *); | 
 | 	return 0; | 
 | err: | 
 | 	up_write(&mm->mmap_sem); | 
 | err_free: | 
 | 	bprm->vma = NULL; | 
 | 	vm_area_free(vma); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
 | { | 
 | 	return len <= MAX_ARG_STRLEN; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
 | { | 
 | } | 
 |  | 
 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		int write) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = bprm->page[pos / PAGE_SIZE]; | 
 | 	if (!page && write) { | 
 | 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | 
 | 		if (!page) | 
 | 			return NULL; | 
 | 		bprm->page[pos / PAGE_SIZE] = page; | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void put_arg_page(struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static void free_arg_page(struct linux_binprm *bprm, int i) | 
 | { | 
 | 	if (bprm->page[i]) { | 
 | 		__free_page(bprm->page[i]); | 
 | 		bprm->page[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_arg_pages(struct linux_binprm *bprm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_ARG_PAGES; i++) | 
 | 		free_arg_page(bprm, i); | 
 | } | 
 |  | 
 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
 | { | 
 | 	return len <= bprm->p; | 
 | } | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * Create a new mm_struct and populate it with a temporary stack | 
 |  * vm_area_struct.  We don't have enough context at this point to set the stack | 
 |  * flags, permissions, and offset, so we use temporary values.  We'll update | 
 |  * them later in setup_arg_pages(). | 
 |  */ | 
 | static int bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	int err; | 
 | 	struct mm_struct *mm = NULL; | 
 |  | 
 | 	bprm->mm = mm = mm_alloc(); | 
 | 	err = -ENOMEM; | 
 | 	if (!mm) | 
 | 		goto err; | 
 |  | 
 | 	/* Save current stack limit for all calculations made during exec. */ | 
 | 	task_lock(current->group_leader); | 
 | 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; | 
 | 	task_unlock(current->group_leader); | 
 |  | 
 | 	err = __bprm_mm_init(bprm); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	if (mm) { | 
 | 		bprm->mm = NULL; | 
 | 		mmdrop(mm); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | struct user_arg_ptr { | 
 | #ifdef CONFIG_COMPAT | 
 | 	bool is_compat; | 
 | #endif | 
 | 	union { | 
 | 		const char __user *const __user *native; | 
 | #ifdef CONFIG_COMPAT | 
 | 		const compat_uptr_t __user *compat; | 
 | #endif | 
 | 	} ptr; | 
 | }; | 
 |  | 
 | static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) | 
 | { | 
 | 	const char __user *native; | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | 	if (unlikely(argv.is_compat)) { | 
 | 		compat_uptr_t compat; | 
 |  | 
 | 		if (get_user(compat, argv.ptr.compat + nr)) | 
 | 			return ERR_PTR(-EFAULT); | 
 |  | 
 | 		return compat_ptr(compat); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (get_user(native, argv.ptr.native + nr)) | 
 | 		return ERR_PTR(-EFAULT); | 
 |  | 
 | 	return native; | 
 | } | 
 |  | 
 | /* | 
 |  * count() counts the number of strings in array ARGV. | 
 |  */ | 
 | static int count(struct user_arg_ptr argv, int max) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	if (argv.ptr.native != NULL) { | 
 | 		for (;;) { | 
 | 			const char __user *p = get_user_arg_ptr(argv, i); | 
 |  | 
 | 			if (!p) | 
 | 				break; | 
 |  | 
 | 			if (IS_ERR(p)) | 
 | 				return -EFAULT; | 
 |  | 
 | 			if (i >= max) | 
 | 				return -E2BIG; | 
 | 			++i; | 
 |  | 
 | 			if (fatal_signal_pending(current)) | 
 | 				return -ERESTARTNOHAND; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * 'copy_strings()' copies argument/environment strings from the old | 
 |  * processes's memory to the new process's stack.  The call to get_user_pages() | 
 |  * ensures the destination page is created and not swapped out. | 
 |  */ | 
 | static int copy_strings(int argc, struct user_arg_ptr argv, | 
 | 			struct linux_binprm *bprm) | 
 | { | 
 | 	struct page *kmapped_page = NULL; | 
 | 	char *kaddr = NULL; | 
 | 	unsigned long kpos = 0; | 
 | 	int ret; | 
 |  | 
 | 	while (argc-- > 0) { | 
 | 		const char __user *str; | 
 | 		int len; | 
 | 		unsigned long pos; | 
 |  | 
 | 		ret = -EFAULT; | 
 | 		str = get_user_arg_ptr(argv, argc); | 
 | 		if (IS_ERR(str)) | 
 | 			goto out; | 
 |  | 
 | 		len = strnlen_user(str, MAX_ARG_STRLEN); | 
 | 		if (!len) | 
 | 			goto out; | 
 |  | 
 | 		ret = -E2BIG; | 
 | 		if (!valid_arg_len(bprm, len)) | 
 | 			goto out; | 
 |  | 
 | 		/* We're going to work our way backwords. */ | 
 | 		pos = bprm->p; | 
 | 		str += len; | 
 | 		bprm->p -= len; | 
 |  | 
 | 		while (len > 0) { | 
 | 			int offset, bytes_to_copy; | 
 |  | 
 | 			if (fatal_signal_pending(current)) { | 
 | 				ret = -ERESTARTNOHAND; | 
 | 				goto out; | 
 | 			} | 
 | 			cond_resched(); | 
 |  | 
 | 			offset = pos % PAGE_SIZE; | 
 | 			if (offset == 0) | 
 | 				offset = PAGE_SIZE; | 
 |  | 
 | 			bytes_to_copy = offset; | 
 | 			if (bytes_to_copy > len) | 
 | 				bytes_to_copy = len; | 
 |  | 
 | 			offset -= bytes_to_copy; | 
 | 			pos -= bytes_to_copy; | 
 | 			str -= bytes_to_copy; | 
 | 			len -= bytes_to_copy; | 
 |  | 
 | 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | 
 | 				struct page *page; | 
 |  | 
 | 				page = get_arg_page(bprm, pos, 1); | 
 | 				if (!page) { | 
 | 					ret = -E2BIG; | 
 | 					goto out; | 
 | 				} | 
 |  | 
 | 				if (kmapped_page) { | 
 | 					flush_kernel_dcache_page(kmapped_page); | 
 | 					kunmap(kmapped_page); | 
 | 					put_arg_page(kmapped_page); | 
 | 				} | 
 | 				kmapped_page = page; | 
 | 				kaddr = kmap(kmapped_page); | 
 | 				kpos = pos & PAGE_MASK; | 
 | 				flush_arg_page(bprm, kpos, kmapped_page); | 
 | 			} | 
 | 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | 
 | 				ret = -EFAULT; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	if (kmapped_page) { | 
 | 		flush_kernel_dcache_page(kmapped_page); | 
 | 		kunmap(kmapped_page); | 
 | 		put_arg_page(kmapped_page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Like copy_strings, but get argv and its values from kernel memory. | 
 |  */ | 
 | int copy_strings_kernel(int argc, const char *const *__argv, | 
 | 			struct linux_binprm *bprm) | 
 | { | 
 | 	int r; | 
 | 	mm_segment_t oldfs = get_fs(); | 
 | 	struct user_arg_ptr argv = { | 
 | 		.ptr.native = (const char __user *const  __user *)__argv, | 
 | 	}; | 
 |  | 
 | 	set_fs(KERNEL_DS); | 
 | 	r = copy_strings(argc, argv, bprm); | 
 | 	set_fs(oldfs); | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL(copy_strings_kernel); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | /* | 
 |  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once | 
 |  * the binfmt code determines where the new stack should reside, we shift it to | 
 |  * its final location.  The process proceeds as follows: | 
 |  * | 
 |  * 1) Use shift to calculate the new vma endpoints. | 
 |  * 2) Extend vma to cover both the old and new ranges.  This ensures the | 
 |  *    arguments passed to subsequent functions are consistent. | 
 |  * 3) Move vma's page tables to the new range. | 
 |  * 4) Free up any cleared pgd range. | 
 |  * 5) Shrink the vma to cover only the new range. | 
 |  */ | 
 | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long old_start = vma->vm_start; | 
 | 	unsigned long old_end = vma->vm_end; | 
 | 	unsigned long length = old_end - old_start; | 
 | 	unsigned long new_start = old_start - shift; | 
 | 	unsigned long new_end = old_end - shift; | 
 | 	struct mmu_gather tlb; | 
 |  | 
 | 	BUG_ON(new_start > new_end); | 
 |  | 
 | 	/* | 
 | 	 * ensure there are no vmas between where we want to go | 
 | 	 * and where we are | 
 | 	 */ | 
 | 	if (vma != find_vma(mm, new_start)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * cover the whole range: [new_start, old_end) | 
 | 	 */ | 
 | 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * move the page tables downwards, on failure we rely on | 
 | 	 * process cleanup to remove whatever mess we made. | 
 | 	 */ | 
 | 	if (length != move_page_tables(vma, old_start, | 
 | 				       vma, new_start, length, false)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	tlb_gather_mmu(&tlb, mm, old_start, old_end); | 
 | 	if (new_end > old_start) { | 
 | 		/* | 
 | 		 * when the old and new regions overlap clear from new_end. | 
 | 		 */ | 
 | 		free_pgd_range(&tlb, new_end, old_end, new_end, | 
 | 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); | 
 | 	} else { | 
 | 		/* | 
 | 		 * otherwise, clean from old_start; this is done to not touch | 
 | 		 * the address space in [new_end, old_start) some architectures | 
 | 		 * have constraints on va-space that make this illegal (IA64) - | 
 | 		 * for the others its just a little faster. | 
 | 		 */ | 
 | 		free_pgd_range(&tlb, old_start, old_end, new_end, | 
 | 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); | 
 | 	} | 
 | 	tlb_finish_mmu(&tlb, old_start, old_end); | 
 |  | 
 | 	/* | 
 | 	 * Shrink the vma to just the new range.  Always succeeds. | 
 | 	 */ | 
 | 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Finalizes the stack vm_area_struct. The flags and permissions are updated, | 
 |  * the stack is optionally relocated, and some extra space is added. | 
 |  */ | 
 | int setup_arg_pages(struct linux_binprm *bprm, | 
 | 		    unsigned long stack_top, | 
 | 		    int executable_stack) | 
 | { | 
 | 	unsigned long ret; | 
 | 	unsigned long stack_shift; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma = bprm->vma; | 
 | 	struct vm_area_struct *prev = NULL; | 
 | 	unsigned long vm_flags; | 
 | 	unsigned long stack_base; | 
 | 	unsigned long stack_size; | 
 | 	unsigned long stack_expand; | 
 | 	unsigned long rlim_stack; | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	/* Limit stack size */ | 
 | 	stack_base = bprm->rlim_stack.rlim_max; | 
 | 	if (stack_base > STACK_SIZE_MAX) | 
 | 		stack_base = STACK_SIZE_MAX; | 
 |  | 
 | 	/* Add space for stack randomization. */ | 
 | 	stack_base += (STACK_RND_MASK << PAGE_SHIFT); | 
 |  | 
 | 	/* Make sure we didn't let the argument array grow too large. */ | 
 | 	if (vma->vm_end - vma->vm_start > stack_base) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	stack_base = PAGE_ALIGN(stack_top - stack_base); | 
 |  | 
 | 	stack_shift = vma->vm_start - stack_base; | 
 | 	mm->arg_start = bprm->p - stack_shift; | 
 | 	bprm->p = vma->vm_end - stack_shift; | 
 | #else | 
 | 	stack_top = arch_align_stack(stack_top); | 
 | 	stack_top = PAGE_ALIGN(stack_top); | 
 |  | 
 | 	if (unlikely(stack_top < mmap_min_addr) || | 
 | 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	stack_shift = vma->vm_end - stack_top; | 
 |  | 
 | 	bprm->p -= stack_shift; | 
 | 	mm->arg_start = bprm->p; | 
 | #endif | 
 |  | 
 | 	if (bprm->loader) | 
 | 		bprm->loader -= stack_shift; | 
 | 	bprm->exec -= stack_shift; | 
 |  | 
 | 	if (down_write_killable(&mm->mmap_sem)) | 
 | 		return -EINTR; | 
 |  | 
 | 	vm_flags = VM_STACK_FLAGS; | 
 |  | 
 | 	/* | 
 | 	 * Adjust stack execute permissions; explicitly enable for | 
 | 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | 
 | 	 * (arch default) otherwise. | 
 | 	 */ | 
 | 	if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | 
 | 		vm_flags |= VM_EXEC; | 
 | 	else if (executable_stack == EXSTACK_DISABLE_X) | 
 | 		vm_flags &= ~VM_EXEC; | 
 | 	vm_flags |= mm->def_flags; | 
 | 	vm_flags |= VM_STACK_INCOMPLETE_SETUP; | 
 |  | 
 | 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | 
 | 			vm_flags); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 | 	BUG_ON(prev != vma); | 
 |  | 
 | 	/* Move stack pages down in memory. */ | 
 | 	if (stack_shift) { | 
 | 		ret = shift_arg_pages(vma, stack_shift); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* mprotect_fixup is overkill to remove the temporary stack flags */ | 
 | 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; | 
 |  | 
 | 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ | 
 | 	stack_size = vma->vm_end - vma->vm_start; | 
 | 	/* | 
 | 	 * Align this down to a page boundary as expand_stack | 
 | 	 * will align it up. | 
 | 	 */ | 
 | 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	if (stack_size + stack_expand > rlim_stack) | 
 | 		stack_base = vma->vm_start + rlim_stack; | 
 | 	else | 
 | 		stack_base = vma->vm_end + stack_expand; | 
 | #else | 
 | 	if (stack_size + stack_expand > rlim_stack) | 
 | 		stack_base = vma->vm_end - rlim_stack; | 
 | 	else | 
 | 		stack_base = vma->vm_start - stack_expand; | 
 | #endif | 
 | 	current->mm->start_stack = bprm->p; | 
 | 	ret = expand_stack(vma, stack_base); | 
 | 	if (ret) | 
 | 		ret = -EFAULT; | 
 |  | 
 | out_unlock: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(setup_arg_pages); | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * Transfer the program arguments and environment from the holding pages | 
 |  * onto the stack. The provided stack pointer is adjusted accordingly. | 
 |  */ | 
 | int transfer_args_to_stack(struct linux_binprm *bprm, | 
 | 			   unsigned long *sp_location) | 
 | { | 
 | 	unsigned long index, stop, sp; | 
 | 	int ret = 0; | 
 |  | 
 | 	stop = bprm->p >> PAGE_SHIFT; | 
 | 	sp = *sp_location; | 
 |  | 
 | 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { | 
 | 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; | 
 | 		char *src = kmap(bprm->page[index]) + offset; | 
 | 		sp -= PAGE_SIZE - offset; | 
 | 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) | 
 | 			ret = -EFAULT; | 
 | 		kunmap(bprm->page[index]); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	*sp_location = sp; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(transfer_args_to_stack); | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | static struct file *do_open_execat(int fd, struct filename *name, int flags) | 
 | { | 
 | 	struct file *file; | 
 | 	int err; | 
 | 	struct open_flags open_exec_flags = { | 
 | 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
 | 		.acc_mode = MAY_EXEC, | 
 | 		.intent = LOOKUP_OPEN, | 
 | 		.lookup_flags = LOOKUP_FOLLOW, | 
 | 	}; | 
 |  | 
 | 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	if (flags & AT_SYMLINK_NOFOLLOW) | 
 | 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; | 
 | 	if (flags & AT_EMPTY_PATH) | 
 | 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY; | 
 |  | 
 | 	file = do_filp_open(fd, name, &open_exec_flags); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out; | 
 |  | 
 | 	err = -EACCES; | 
 | 	if (!S_ISREG(file_inode(file)->i_mode)) | 
 | 		goto exit; | 
 |  | 
 | 	if (path_noexec(&file->f_path)) | 
 | 		goto exit; | 
 |  | 
 | 	err = deny_write_access(file); | 
 | 	if (err) | 
 | 		goto exit; | 
 |  | 
 | 	if (name->name[0] != '\0') | 
 | 		fsnotify_open(file); | 
 |  | 
 | out: | 
 | 	return file; | 
 |  | 
 | exit: | 
 | 	fput(file); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | struct file *open_exec(const char *name) | 
 | { | 
 | 	struct filename *filename = getname_kernel(name); | 
 | 	struct file *f = ERR_CAST(filename); | 
 |  | 
 | 	if (!IS_ERR(filename)) { | 
 | 		f = do_open_execat(AT_FDCWD, filename, 0); | 
 | 		putname(filename); | 
 | 	} | 
 | 	return f; | 
 | } | 
 | EXPORT_SYMBOL(open_exec); | 
 |  | 
 | int kernel_read_file(struct file *file, void **buf, loff_t *size, | 
 | 		     loff_t max_size, enum kernel_read_file_id id) | 
 | { | 
 | 	loff_t i_size, pos; | 
 | 	ssize_t bytes = 0; | 
 | 	int ret; | 
 |  | 
 | 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = deny_write_access(file); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = security_kernel_read_file(file, id); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	i_size = i_size_read(file_inode(file)); | 
 | 	if (max_size > 0 && i_size > max_size) { | 
 | 		ret = -EFBIG; | 
 | 		goto out; | 
 | 	} | 
 | 	if (i_size <= 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (id != READING_FIRMWARE_PREALLOC_BUFFER) | 
 | 		*buf = vmalloc(i_size); | 
 | 	if (!*buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pos = 0; | 
 | 	while (pos < i_size) { | 
 | 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); | 
 | 		if (bytes < 0) { | 
 | 			ret = bytes; | 
 | 			goto out_free; | 
 | 		} | 
 |  | 
 | 		if (bytes == 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (pos != i_size) { | 
 | 		ret = -EIO; | 
 | 		goto out_free; | 
 | 	} | 
 |  | 
 | 	ret = security_kernel_post_read_file(file, *buf, i_size, id); | 
 | 	if (!ret) | 
 | 		*size = pos; | 
 |  | 
 | out_free: | 
 | 	if (ret < 0) { | 
 | 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) { | 
 | 			vfree(*buf); | 
 | 			*buf = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	allow_write_access(file); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernel_read_file); | 
 |  | 
 | int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, | 
 | 			       loff_t max_size, enum kernel_read_file_id id) | 
 | { | 
 | 	struct file *file; | 
 | 	int ret; | 
 |  | 
 | 	if (!path || !*path) | 
 | 		return -EINVAL; | 
 |  | 
 | 	file = filp_open(path, O_RDONLY, 0); | 
 | 	if (IS_ERR(file)) | 
 | 		return PTR_ERR(file); | 
 |  | 
 | 	ret = kernel_read_file(file, buf, size, max_size, id); | 
 | 	fput(file); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernel_read_file_from_path); | 
 |  | 
 | int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, | 
 | 			     enum kernel_read_file_id id) | 
 | { | 
 | 	struct fd f = fdget(fd); | 
 | 	int ret = -EBADF; | 
 |  | 
 | 	if (!f.file) | 
 | 		goto out; | 
 |  | 
 | 	ret = kernel_read_file(f.file, buf, size, max_size, id); | 
 | out: | 
 | 	fdput(f); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); | 
 |  | 
 | ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) | 
 | { | 
 | 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); | 
 | 	if (res > 0) | 
 | 		flush_icache_range(addr, addr + len); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(read_code); | 
 |  | 
 | static int exec_mmap(struct mm_struct *mm) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct *old_mm, *active_mm; | 
 |  | 
 | 	/* Notify parent that we're no longer interested in the old VM */ | 
 | 	tsk = current; | 
 | 	old_mm = current->mm; | 
 | 	mm_release(tsk, old_mm); | 
 |  | 
 | 	if (old_mm) { | 
 | 		sync_mm_rss(old_mm); | 
 | 		/* | 
 | 		 * Make sure that if there is a core dump in progress | 
 | 		 * for the old mm, we get out and die instead of going | 
 | 		 * through with the exec.  We must hold mmap_sem around | 
 | 		 * checking core_state and changing tsk->mm. | 
 | 		 */ | 
 | 		down_read(&old_mm->mmap_sem); | 
 | 		if (unlikely(old_mm->core_state)) { | 
 | 			up_read(&old_mm->mmap_sem); | 
 | 			return -EINTR; | 
 | 		} | 
 | 	} | 
 | 	task_lock(tsk); | 
 | 	active_mm = tsk->active_mm; | 
 | 	tsk->mm = mm; | 
 | 	tsk->active_mm = mm; | 
 | 	activate_mm(active_mm, mm); | 
 | 	tsk->mm->vmacache_seqnum = 0; | 
 | 	vmacache_flush(tsk); | 
 | 	task_unlock(tsk); | 
 | 	if (old_mm) { | 
 | 		up_read(&old_mm->mmap_sem); | 
 | 		BUG_ON(active_mm != old_mm); | 
 | 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); | 
 | 		mm_update_next_owner(old_mm); | 
 | 		mmput(old_mm); | 
 | 		return 0; | 
 | 	} | 
 | 	mmdrop(active_mm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function makes sure the current process has its own signal table, | 
 |  * so that flush_signal_handlers can later reset the handlers without | 
 |  * disturbing other processes.  (Other processes might share the signal | 
 |  * table via the CLONE_SIGHAND option to clone().) | 
 |  */ | 
 | static int de_thread(struct task_struct *tsk) | 
 | { | 
 | 	struct signal_struct *sig = tsk->signal; | 
 | 	struct sighand_struct *oldsighand = tsk->sighand; | 
 | 	spinlock_t *lock = &oldsighand->siglock; | 
 |  | 
 | 	if (thread_group_empty(tsk)) | 
 | 		goto no_thread_group; | 
 |  | 
 | 	/* | 
 | 	 * Kill all other threads in the thread group. | 
 | 	 */ | 
 | 	spin_lock_irq(lock); | 
 | 	if (signal_group_exit(sig)) { | 
 | 		/* | 
 | 		 * Another group action in progress, just | 
 | 		 * return so that the signal is processed. | 
 | 		 */ | 
 | 		spin_unlock_irq(lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	sig->group_exit_task = tsk; | 
 | 	sig->notify_count = zap_other_threads(tsk); | 
 | 	if (!thread_group_leader(tsk)) | 
 | 		sig->notify_count--; | 
 |  | 
 | 	while (sig->notify_count) { | 
 | 		__set_current_state(TASK_KILLABLE); | 
 | 		spin_unlock_irq(lock); | 
 | 		schedule(); | 
 | 		if (unlikely(__fatal_signal_pending(tsk))) | 
 | 			goto killed; | 
 | 		spin_lock_irq(lock); | 
 | 	} | 
 | 	spin_unlock_irq(lock); | 
 |  | 
 | 	/* | 
 | 	 * At this point all other threads have exited, all we have to | 
 | 	 * do is to wait for the thread group leader to become inactive, | 
 | 	 * and to assume its PID: | 
 | 	 */ | 
 | 	if (!thread_group_leader(tsk)) { | 
 | 		struct task_struct *leader = tsk->group_leader; | 
 |  | 
 | 		for (;;) { | 
 | 			cgroup_threadgroup_change_begin(tsk); | 
 | 			write_lock_irq(&tasklist_lock); | 
 | 			/* | 
 | 			 * Do this under tasklist_lock to ensure that | 
 | 			 * exit_notify() can't miss ->group_exit_task | 
 | 			 */ | 
 | 			sig->notify_count = -1; | 
 | 			if (likely(leader->exit_state)) | 
 | 				break; | 
 | 			__set_current_state(TASK_KILLABLE); | 
 | 			write_unlock_irq(&tasklist_lock); | 
 | 			cgroup_threadgroup_change_end(tsk); | 
 | 			schedule(); | 
 | 			if (unlikely(__fatal_signal_pending(tsk))) | 
 | 				goto killed; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The only record we have of the real-time age of a | 
 | 		 * process, regardless of execs it's done, is start_time. | 
 | 		 * All the past CPU time is accumulated in signal_struct | 
 | 		 * from sister threads now dead.  But in this non-leader | 
 | 		 * exec, nothing survives from the original leader thread, | 
 | 		 * whose birth marks the true age of this process now. | 
 | 		 * When we take on its identity by switching to its PID, we | 
 | 		 * also take its birthdate (always earlier than our own). | 
 | 		 */ | 
 | 		tsk->start_time = leader->start_time; | 
 | 		tsk->real_start_time = leader->real_start_time; | 
 |  | 
 | 		BUG_ON(!same_thread_group(leader, tsk)); | 
 | 		BUG_ON(has_group_leader_pid(tsk)); | 
 | 		/* | 
 | 		 * An exec() starts a new thread group with the | 
 | 		 * TGID of the previous thread group. Rehash the | 
 | 		 * two threads with a switched PID, and release | 
 | 		 * the former thread group leader: | 
 | 		 */ | 
 |  | 
 | 		/* Become a process group leader with the old leader's pid. | 
 | 		 * The old leader becomes a thread of the this thread group. | 
 | 		 * Note: The old leader also uses this pid until release_task | 
 | 		 *       is called.  Odd but simple and correct. | 
 | 		 */ | 
 | 		tsk->pid = leader->pid; | 
 | 		change_pid(tsk, PIDTYPE_PID, task_pid(leader)); | 
 | 		transfer_pid(leader, tsk, PIDTYPE_TGID); | 
 | 		transfer_pid(leader, tsk, PIDTYPE_PGID); | 
 | 		transfer_pid(leader, tsk, PIDTYPE_SID); | 
 |  | 
 | 		list_replace_rcu(&leader->tasks, &tsk->tasks); | 
 | 		list_replace_init(&leader->sibling, &tsk->sibling); | 
 |  | 
 | 		tsk->group_leader = tsk; | 
 | 		leader->group_leader = tsk; | 
 |  | 
 | 		tsk->exit_signal = SIGCHLD; | 
 | 		leader->exit_signal = -1; | 
 |  | 
 | 		BUG_ON(leader->exit_state != EXIT_ZOMBIE); | 
 | 		leader->exit_state = EXIT_DEAD; | 
 |  | 
 | 		/* | 
 | 		 * We are going to release_task()->ptrace_unlink() silently, | 
 | 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees | 
 | 		 * the tracer wont't block again waiting for this thread. | 
 | 		 */ | 
 | 		if (unlikely(leader->ptrace)) | 
 | 			__wake_up_parent(leader, leader->parent); | 
 | 		write_unlock_irq(&tasklist_lock); | 
 | 		cgroup_threadgroup_change_end(tsk); | 
 |  | 
 | 		release_task(leader); | 
 | 	} | 
 |  | 
 | 	sig->group_exit_task = NULL; | 
 | 	sig->notify_count = 0; | 
 |  | 
 | no_thread_group: | 
 | 	/* we have changed execution domain */ | 
 | 	tsk->exit_signal = SIGCHLD; | 
 |  | 
 | #ifdef CONFIG_POSIX_TIMERS | 
 | 	exit_itimers(sig); | 
 | 	flush_itimer_signals(); | 
 | #endif | 
 |  | 
 | 	if (atomic_read(&oldsighand->count) != 1) { | 
 | 		struct sighand_struct *newsighand; | 
 | 		/* | 
 | 		 * This ->sighand is shared with the CLONE_SIGHAND | 
 | 		 * but not CLONE_THREAD task, switch to the new one. | 
 | 		 */ | 
 | 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
 | 		if (!newsighand) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		atomic_set(&newsighand->count, 1); | 
 | 		memcpy(newsighand->action, oldsighand->action, | 
 | 		       sizeof(newsighand->action)); | 
 |  | 
 | 		write_lock_irq(&tasklist_lock); | 
 | 		spin_lock(&oldsighand->siglock); | 
 | 		rcu_assign_pointer(tsk->sighand, newsighand); | 
 | 		spin_unlock(&oldsighand->siglock); | 
 | 		write_unlock_irq(&tasklist_lock); | 
 |  | 
 | 		__cleanup_sighand(oldsighand); | 
 | 	} | 
 |  | 
 | 	BUG_ON(!thread_group_leader(tsk)); | 
 | 	return 0; | 
 |  | 
 | killed: | 
 | 	/* protects against exit_notify() and __exit_signal() */ | 
 | 	read_lock(&tasklist_lock); | 
 | 	sig->group_exit_task = NULL; | 
 | 	sig->notify_count = 0; | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) | 
 | { | 
 | 	task_lock(tsk); | 
 | 	strncpy(buf, tsk->comm, buf_size); | 
 | 	task_unlock(tsk); | 
 | 	return buf; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_task_comm); | 
 |  | 
 | /* | 
 |  * These functions flushes out all traces of the currently running executable | 
 |  * so that a new one can be started | 
 |  */ | 
 |  | 
 | void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) | 
 | { | 
 | 	task_lock(tsk); | 
 | 	trace_task_rename(tsk, buf); | 
 | 	strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | 
 | 	task_unlock(tsk); | 
 | 	perf_event_comm(tsk, exec); | 
 | } | 
 |  | 
 | /* | 
 |  * Calling this is the point of no return. None of the failures will be | 
 |  * seen by userspace since either the process is already taking a fatal | 
 |  * signal (via de_thread() or coredump), or will have SEGV raised | 
 |  * (after exec_mmap()) by search_binary_handlers (see below). | 
 |  */ | 
 | int flush_old_exec(struct linux_binprm * bprm) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we have a private signal table and that | 
 | 	 * we are unassociated from the previous thread group. | 
 | 	 */ | 
 | 	retval = de_thread(current); | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Must be called _before_ exec_mmap() as bprm->mm is | 
 | 	 * not visibile until then. This also enables the update | 
 | 	 * to be lockless. | 
 | 	 */ | 
 | 	set_mm_exe_file(bprm->mm, bprm->file); | 
 |  | 
 | 	/* | 
 | 	 * Release all of the old mmap stuff | 
 | 	 */ | 
 | 	acct_arg_size(bprm, 0); | 
 | 	retval = exec_mmap(bprm->mm); | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * After clearing bprm->mm (to mark that current is using the | 
 | 	 * prepared mm now), we have nothing left of the original | 
 | 	 * process. If anything from here on returns an error, the check | 
 | 	 * in search_binary_handler() will SEGV current. | 
 | 	 */ | 
 | 	bprm->mm = NULL; | 
 |  | 
 | 	set_fs(USER_DS); | 
 | 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | | 
 | 					PF_NOFREEZE | PF_NO_SETAFFINITY); | 
 | 	flush_thread(); | 
 | 	current->personality &= ~bprm->per_clear; | 
 |  | 
 | 	/* | 
 | 	 * We have to apply CLOEXEC before we change whether the process is | 
 | 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace | 
 | 	 * trying to access the should-be-closed file descriptors of a process | 
 | 	 * undergoing exec(2). | 
 | 	 */ | 
 | 	do_close_on_exec(current->files); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL(flush_old_exec); | 
 |  | 
 | void would_dump(struct linux_binprm *bprm, struct file *file) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) { | 
 | 		struct user_namespace *old, *user_ns; | 
 | 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; | 
 |  | 
 | 		/* Ensure mm->user_ns contains the executable */ | 
 | 		user_ns = old = bprm->mm->user_ns; | 
 | 		while ((user_ns != &init_user_ns) && | 
 | 		       !privileged_wrt_inode_uidgid(user_ns, inode)) | 
 | 			user_ns = user_ns->parent; | 
 |  | 
 | 		if (old != user_ns) { | 
 | 			bprm->mm->user_ns = get_user_ns(user_ns); | 
 | 			put_user_ns(old); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(would_dump); | 
 |  | 
 | void setup_new_exec(struct linux_binprm * bprm) | 
 | { | 
 | 	/* | 
 | 	 * Once here, prepare_binrpm() will not be called any more, so | 
 | 	 * the final state of setuid/setgid/fscaps can be merged into the | 
 | 	 * secureexec flag. | 
 | 	 */ | 
 | 	bprm->secureexec |= bprm->cap_elevated; | 
 |  | 
 | 	if (bprm->secureexec) { | 
 | 		/* Make sure parent cannot signal privileged process. */ | 
 | 		current->pdeath_signal = 0; | 
 |  | 
 | 		/* | 
 | 		 * For secureexec, reset the stack limit to sane default to | 
 | 		 * avoid bad behavior from the prior rlimits. This has to | 
 | 		 * happen before arch_pick_mmap_layout(), which examines | 
 | 		 * RLIMIT_STACK, but after the point of no return to avoid | 
 | 		 * needing to clean up the change on failure. | 
 | 		 */ | 
 | 		if (bprm->rlim_stack.rlim_cur > _STK_LIM) | 
 | 			bprm->rlim_stack.rlim_cur = _STK_LIM; | 
 | 	} | 
 |  | 
 | 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); | 
 |  | 
 | 	current->sas_ss_sp = current->sas_ss_size = 0; | 
 |  | 
 | 	/* | 
 | 	 * Figure out dumpability. Note that this checking only of current | 
 | 	 * is wrong, but userspace depends on it. This should be testing | 
 | 	 * bprm->secureexec instead. | 
 | 	 */ | 
 | 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || | 
 | 	    !(uid_eq(current_euid(), current_uid()) && | 
 | 	      gid_eq(current_egid(), current_gid()))) | 
 | 		set_dumpable(current->mm, suid_dumpable); | 
 | 	else | 
 | 		set_dumpable(current->mm, SUID_DUMP_USER); | 
 |  | 
 | 	arch_setup_new_exec(); | 
 | 	perf_event_exec(); | 
 | 	__set_task_comm(current, kbasename(bprm->filename), true); | 
 |  | 
 | 	/* Set the new mm task size. We have to do that late because it may | 
 | 	 * depend on TIF_32BIT which is only updated in flush_thread() on | 
 | 	 * some architectures like powerpc | 
 | 	 */ | 
 | 	current->mm->task_size = TASK_SIZE; | 
 |  | 
 | 	/* An exec changes our domain. We are no longer part of the thread | 
 | 	   group */ | 
 | 	current->self_exec_id++; | 
 | 	flush_signal_handlers(current, 0); | 
 | } | 
 | EXPORT_SYMBOL(setup_new_exec); | 
 |  | 
 | /* Runs immediately before start_thread() takes over. */ | 
 | void finalize_exec(struct linux_binprm *bprm) | 
 | { | 
 | 	/* Store any stack rlimit changes before starting thread. */ | 
 | 	task_lock(current->group_leader); | 
 | 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; | 
 | 	task_unlock(current->group_leader); | 
 | } | 
 | EXPORT_SYMBOL(finalize_exec); | 
 |  | 
 | /* | 
 |  * Prepare credentials and lock ->cred_guard_mutex. | 
 |  * install_exec_creds() commits the new creds and drops the lock. | 
 |  * Or, if exec fails before, free_bprm() should release ->cred and | 
 |  * and unlock. | 
 |  */ | 
 | int prepare_bprm_creds(struct linux_binprm *bprm) | 
 | { | 
 | 	if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) | 
 | 		return -ERESTARTNOINTR; | 
 |  | 
 | 	bprm->cred = prepare_exec_creds(); | 
 | 	if (likely(bprm->cred)) | 
 | 		return 0; | 
 |  | 
 | 	mutex_unlock(¤t->signal->cred_guard_mutex); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void free_bprm(struct linux_binprm *bprm) | 
 | { | 
 | 	free_arg_pages(bprm); | 
 | 	if (bprm->cred) { | 
 | 		mutex_unlock(¤t->signal->cred_guard_mutex); | 
 | 		abort_creds(bprm->cred); | 
 | 	} | 
 | 	if (bprm->file) { | 
 | 		allow_write_access(bprm->file); | 
 | 		fput(bprm->file); | 
 | 	} | 
 | 	/* If a binfmt changed the interp, free it. */ | 
 | 	if (bprm->interp != bprm->filename) | 
 | 		kfree(bprm->interp); | 
 | 	kfree(bprm); | 
 | } | 
 |  | 
 | int bprm_change_interp(const char *interp, struct linux_binprm *bprm) | 
 | { | 
 | 	/* If a binfmt changed the interp, free it first. */ | 
 | 	if (bprm->interp != bprm->filename) | 
 | 		kfree(bprm->interp); | 
 | 	bprm->interp = kstrdup(interp, GFP_KERNEL); | 
 | 	if (!bprm->interp) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(bprm_change_interp); | 
 |  | 
 | /* | 
 |  * install the new credentials for this executable | 
 |  */ | 
 | void install_exec_creds(struct linux_binprm *bprm) | 
 | { | 
 | 	security_bprm_committing_creds(bprm); | 
 |  | 
 | 	commit_creds(bprm->cred); | 
 | 	bprm->cred = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Disable monitoring for regular users | 
 | 	 * when executing setuid binaries. Must | 
 | 	 * wait until new credentials are committed | 
 | 	 * by commit_creds() above | 
 | 	 */ | 
 | 	if (get_dumpable(current->mm) != SUID_DUMP_USER) | 
 | 		perf_event_exit_task(current); | 
 | 	/* | 
 | 	 * cred_guard_mutex must be held at least to this point to prevent | 
 | 	 * ptrace_attach() from altering our determination of the task's | 
 | 	 * credentials; any time after this it may be unlocked. | 
 | 	 */ | 
 | 	security_bprm_committed_creds(bprm); | 
 | 	mutex_unlock(¤t->signal->cred_guard_mutex); | 
 | } | 
 | EXPORT_SYMBOL(install_exec_creds); | 
 |  | 
 | /* | 
 |  * determine how safe it is to execute the proposed program | 
 |  * - the caller must hold ->cred_guard_mutex to protect against | 
 |  *   PTRACE_ATTACH or seccomp thread-sync | 
 |  */ | 
 | static void check_unsafe_exec(struct linux_binprm *bprm) | 
 | { | 
 | 	struct task_struct *p = current, *t; | 
 | 	unsigned n_fs; | 
 |  | 
 | 	if (p->ptrace) | 
 | 		bprm->unsafe |= LSM_UNSAFE_PTRACE; | 
 |  | 
 | 	/* | 
 | 	 * This isn't strictly necessary, but it makes it harder for LSMs to | 
 | 	 * mess up. | 
 | 	 */ | 
 | 	if (task_no_new_privs(current)) | 
 | 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; | 
 |  | 
 | 	t = p; | 
 | 	n_fs = 1; | 
 | 	spin_lock(&p->fs->lock); | 
 | 	rcu_read_lock(); | 
 | 	while_each_thread(p, t) { | 
 | 		if (t->fs == p->fs) | 
 | 			n_fs++; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (p->fs->users > n_fs) | 
 | 		bprm->unsafe |= LSM_UNSAFE_SHARE; | 
 | 	else | 
 | 		p->fs->in_exec = 1; | 
 | 	spin_unlock(&p->fs->lock); | 
 | } | 
 |  | 
 | static void bprm_fill_uid(struct linux_binprm *bprm) | 
 | { | 
 | 	struct inode *inode; | 
 | 	unsigned int mode; | 
 | 	kuid_t uid; | 
 | 	kgid_t gid; | 
 |  | 
 | 	/* | 
 | 	 * Since this can be called multiple times (via prepare_binprm), | 
 | 	 * we must clear any previous work done when setting set[ug]id | 
 | 	 * bits from any earlier bprm->file uses (for example when run | 
 | 	 * first for a setuid script then again for its interpreter). | 
 | 	 */ | 
 | 	bprm->cred->euid = current_euid(); | 
 | 	bprm->cred->egid = current_egid(); | 
 |  | 
 | 	if (!mnt_may_suid(bprm->file->f_path.mnt)) | 
 | 		return; | 
 |  | 
 | 	if (task_no_new_privs(current)) | 
 | 		return; | 
 |  | 
 | 	inode = bprm->file->f_path.dentry->d_inode; | 
 | 	mode = READ_ONCE(inode->i_mode); | 
 | 	if (!(mode & (S_ISUID|S_ISGID))) | 
 | 		return; | 
 |  | 
 | 	/* Be careful if suid/sgid is set */ | 
 | 	inode_lock(inode); | 
 |  | 
 | 	/* reload atomically mode/uid/gid now that lock held */ | 
 | 	mode = inode->i_mode; | 
 | 	uid = inode->i_uid; | 
 | 	gid = inode->i_gid; | 
 | 	inode_unlock(inode); | 
 |  | 
 | 	/* We ignore suid/sgid if there are no mappings for them in the ns */ | 
 | 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) || | 
 | 		 !kgid_has_mapping(bprm->cred->user_ns, gid)) | 
 | 		return; | 
 |  | 
 | 	if (mode & S_ISUID) { | 
 | 		bprm->per_clear |= PER_CLEAR_ON_SETID; | 
 | 		bprm->cred->euid = uid; | 
 | 	} | 
 |  | 
 | 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | 
 | 		bprm->per_clear |= PER_CLEAR_ON_SETID; | 
 | 		bprm->cred->egid = gid; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Fill the binprm structure from the inode. | 
 |  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | 
 |  * | 
 |  * This may be called multiple times for binary chains (scripts for example). | 
 |  */ | 
 | int prepare_binprm(struct linux_binprm *bprm) | 
 | { | 
 | 	int retval; | 
 | 	loff_t pos = 0; | 
 |  | 
 | 	bprm_fill_uid(bprm); | 
 |  | 
 | 	/* fill in binprm security blob */ | 
 | 	retval = security_bprm_set_creds(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	bprm->called_set_creds = 1; | 
 |  | 
 | 	memset(bprm->buf, 0, BINPRM_BUF_SIZE); | 
 | 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(prepare_binprm); | 
 |  | 
 | /* | 
 |  * Arguments are '\0' separated strings found at the location bprm->p | 
 |  * points to; chop off the first by relocating brpm->p to right after | 
 |  * the first '\0' encountered. | 
 |  */ | 
 | int remove_arg_zero(struct linux_binprm *bprm) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long offset; | 
 | 	char *kaddr; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!bprm->argc) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		offset = bprm->p & ~PAGE_MASK; | 
 | 		page = get_arg_page(bprm, bprm->p, 0); | 
 | 		if (!page) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		kaddr = kmap_atomic(page); | 
 |  | 
 | 		for (; offset < PAGE_SIZE && kaddr[offset]; | 
 | 				offset++, bprm->p++) | 
 | 			; | 
 |  | 
 | 		kunmap_atomic(kaddr); | 
 | 		put_arg_page(page); | 
 | 	} while (offset == PAGE_SIZE); | 
 |  | 
 | 	bprm->p++; | 
 | 	bprm->argc--; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(remove_arg_zero); | 
 |  | 
 | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | 
 | /* | 
 |  * cycle the list of binary formats handler, until one recognizes the image | 
 |  */ | 
 | int search_binary_handler(struct linux_binprm *bprm) | 
 | { | 
 | 	bool need_retry = IS_ENABLED(CONFIG_MODULES); | 
 | 	struct linux_binfmt *fmt; | 
 | 	int retval; | 
 |  | 
 | 	/* This allows 4 levels of binfmt rewrites before failing hard. */ | 
 | 	if (bprm->recursion_depth > 5) | 
 | 		return -ELOOP; | 
 |  | 
 | 	retval = security_bprm_check(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	retval = -ENOENT; | 
 |  retry: | 
 | 	read_lock(&binfmt_lock); | 
 | 	list_for_each_entry(fmt, &formats, lh) { | 
 | 		if (!try_module_get(fmt->module)) | 
 | 			continue; | 
 | 		read_unlock(&binfmt_lock); | 
 | 		bprm->recursion_depth++; | 
 | 		retval = fmt->load_binary(bprm); | 
 | 		read_lock(&binfmt_lock); | 
 | 		put_binfmt(fmt); | 
 | 		bprm->recursion_depth--; | 
 | 		if (retval < 0 && !bprm->mm) { | 
 | 			/* we got to flush_old_exec() and failed after it */ | 
 | 			read_unlock(&binfmt_lock); | 
 | 			force_sigsegv(SIGSEGV, current); | 
 | 			return retval; | 
 | 		} | 
 | 		if (retval != -ENOEXEC || !bprm->file) { | 
 | 			read_unlock(&binfmt_lock); | 
 | 			return retval; | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&binfmt_lock); | 
 |  | 
 | 	if (need_retry) { | 
 | 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && | 
 | 		    printable(bprm->buf[2]) && printable(bprm->buf[3])) | 
 | 			return retval; | 
 | 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) | 
 | 			return retval; | 
 | 		need_retry = false; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL(search_binary_handler); | 
 |  | 
 | static int exec_binprm(struct linux_binprm *bprm) | 
 | { | 
 | 	pid_t old_pid, old_vpid; | 
 | 	int ret; | 
 |  | 
 | 	/* Need to fetch pid before load_binary changes it */ | 
 | 	old_pid = current->pid; | 
 | 	rcu_read_lock(); | 
 | 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	ret = search_binary_handler(bprm); | 
 | 	if (ret >= 0) { | 
 | 		audit_bprm(bprm); | 
 | 		trace_sched_process_exec(current, old_pid, bprm); | 
 | 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid); | 
 | 		proc_exec_connector(current); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * sys_execve() executes a new program. | 
 |  */ | 
 | static int __do_execve_file(int fd, struct filename *filename, | 
 | 			    struct user_arg_ptr argv, | 
 | 			    struct user_arg_ptr envp, | 
 | 			    int flags, struct file *file) | 
 | { | 
 | 	char *pathbuf = NULL; | 
 | 	struct linux_binprm *bprm; | 
 | 	struct files_struct *displaced; | 
 | 	int retval; | 
 |  | 
 | 	if (IS_ERR(filename)) | 
 | 		return PTR_ERR(filename); | 
 |  | 
 | 	/* | 
 | 	 * We move the actual failure in case of RLIMIT_NPROC excess from | 
 | 	 * set*uid() to execve() because too many poorly written programs | 
 | 	 * don't check setuid() return code.  Here we additionally recheck | 
 | 	 * whether NPROC limit is still exceeded. | 
 | 	 */ | 
 | 	if ((current->flags & PF_NPROC_EXCEEDED) && | 
 | 	    atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { | 
 | 		retval = -EAGAIN; | 
 | 		goto out_ret; | 
 | 	} | 
 |  | 
 | 	/* We're below the limit (still or again), so we don't want to make | 
 | 	 * further execve() calls fail. */ | 
 | 	current->flags &= ~PF_NPROC_EXCEEDED; | 
 |  | 
 | 	retval = unshare_files(&displaced); | 
 | 	if (retval) | 
 | 		goto out_ret; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | 
 | 	if (!bprm) | 
 | 		goto out_files; | 
 |  | 
 | 	retval = prepare_bprm_creds(bprm); | 
 | 	if (retval) | 
 | 		goto out_free; | 
 |  | 
 | 	check_unsafe_exec(bprm); | 
 | 	current->in_execve = 1; | 
 |  | 
 | 	if (!file) | 
 | 		file = do_open_execat(fd, filename, flags); | 
 | 	retval = PTR_ERR(file); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out_unmark; | 
 |  | 
 | 	sched_exec(); | 
 |  | 
 | 	bprm->file = file; | 
 | 	if (!filename) { | 
 | 		bprm->filename = "none"; | 
 | 	} else if (fd == AT_FDCWD || filename->name[0] == '/') { | 
 | 		bprm->filename = filename->name; | 
 | 	} else { | 
 | 		if (filename->name[0] == '\0') | 
 | 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); | 
 | 		else | 
 | 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", | 
 | 					    fd, filename->name); | 
 | 		if (!pathbuf) { | 
 | 			retval = -ENOMEM; | 
 | 			goto out_unmark; | 
 | 		} | 
 | 		/* | 
 | 		 * Record that a name derived from an O_CLOEXEC fd will be | 
 | 		 * inaccessible after exec. Relies on having exclusive access to | 
 | 		 * current->files (due to unshare_files above). | 
 | 		 */ | 
 | 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) | 
 | 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; | 
 | 		bprm->filename = pathbuf; | 
 | 	} | 
 | 	bprm->interp = bprm->filename; | 
 |  | 
 | 	retval = bprm_mm_init(bprm); | 
 | 	if (retval) | 
 | 		goto out_unmark; | 
 |  | 
 | 	bprm->argc = count(argv, MAX_ARG_STRINGS); | 
 | 	if ((retval = bprm->argc) < 0) | 
 | 		goto out; | 
 |  | 
 | 	bprm->envc = count(envp, MAX_ARG_STRINGS); | 
 | 	if ((retval = bprm->envc) < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = prepare_binprm(bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = copy_strings_kernel(1, &bprm->filename, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	bprm->exec = bprm->p; | 
 | 	retval = copy_strings(bprm->envc, envp, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = copy_strings(bprm->argc, argv, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	would_dump(bprm, bprm->file); | 
 |  | 
 | 	retval = exec_binprm(bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* execve succeeded */ | 
 | 	current->fs->in_exec = 0; | 
 | 	current->in_execve = 0; | 
 | 	membarrier_execve(current); | 
 | 	rseq_execve(current); | 
 | 	acct_update_integrals(current); | 
 | 	task_numa_free(current, false); | 
 | 	free_bprm(bprm); | 
 | 	kfree(pathbuf); | 
 | 	if (filename) | 
 | 		putname(filename); | 
 | 	if (displaced) | 
 | 		put_files_struct(displaced); | 
 | 	return retval; | 
 |  | 
 | out: | 
 | 	if (bprm->mm) { | 
 | 		acct_arg_size(bprm, 0); | 
 | 		mmput(bprm->mm); | 
 | 	} | 
 |  | 
 | out_unmark: | 
 | 	current->fs->in_exec = 0; | 
 | 	current->in_execve = 0; | 
 |  | 
 | out_free: | 
 | 	free_bprm(bprm); | 
 | 	kfree(pathbuf); | 
 |  | 
 | out_files: | 
 | 	if (displaced) | 
 | 		reset_files_struct(displaced); | 
 | out_ret: | 
 | 	if (filename) | 
 | 		putname(filename); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int do_execveat_common(int fd, struct filename *filename, | 
 | 			      struct user_arg_ptr argv, | 
 | 			      struct user_arg_ptr envp, | 
 | 			      int flags) | 
 | { | 
 | 	return __do_execve_file(fd, filename, argv, envp, flags, NULL); | 
 | } | 
 |  | 
 | int do_execve_file(struct file *file, void *__argv, void *__envp) | 
 | { | 
 | 	struct user_arg_ptr argv = { .ptr.native = __argv }; | 
 | 	struct user_arg_ptr envp = { .ptr.native = __envp }; | 
 |  | 
 | 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); | 
 | } | 
 |  | 
 | int do_execve(struct filename *filename, | 
 | 	const char __user *const __user *__argv, | 
 | 	const char __user *const __user *__envp) | 
 | { | 
 | 	struct user_arg_ptr argv = { .ptr.native = __argv }; | 
 | 	struct user_arg_ptr envp = { .ptr.native = __envp }; | 
 | 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); | 
 | } | 
 |  | 
 | int do_execveat(int fd, struct filename *filename, | 
 | 		const char __user *const __user *__argv, | 
 | 		const char __user *const __user *__envp, | 
 | 		int flags) | 
 | { | 
 | 	struct user_arg_ptr argv = { .ptr.native = __argv }; | 
 | 	struct user_arg_ptr envp = { .ptr.native = __envp }; | 
 |  | 
 | 	return do_execveat_common(fd, filename, argv, envp, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static int compat_do_execve(struct filename *filename, | 
 | 	const compat_uptr_t __user *__argv, | 
 | 	const compat_uptr_t __user *__envp) | 
 | { | 
 | 	struct user_arg_ptr argv = { | 
 | 		.is_compat = true, | 
 | 		.ptr.compat = __argv, | 
 | 	}; | 
 | 	struct user_arg_ptr envp = { | 
 | 		.is_compat = true, | 
 | 		.ptr.compat = __envp, | 
 | 	}; | 
 | 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); | 
 | } | 
 |  | 
 | static int compat_do_execveat(int fd, struct filename *filename, | 
 | 			      const compat_uptr_t __user *__argv, | 
 | 			      const compat_uptr_t __user *__envp, | 
 | 			      int flags) | 
 | { | 
 | 	struct user_arg_ptr argv = { | 
 | 		.is_compat = true, | 
 | 		.ptr.compat = __argv, | 
 | 	}; | 
 | 	struct user_arg_ptr envp = { | 
 | 		.is_compat = true, | 
 | 		.ptr.compat = __envp, | 
 | 	}; | 
 | 	return do_execveat_common(fd, filename, argv, envp, flags); | 
 | } | 
 | #endif | 
 |  | 
 | void set_binfmt(struct linux_binfmt *new) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 |  | 
 | 	if (mm->binfmt) | 
 | 		module_put(mm->binfmt->module); | 
 |  | 
 | 	mm->binfmt = new; | 
 | 	if (new) | 
 | 		__module_get(new->module); | 
 | } | 
 | EXPORT_SYMBOL(set_binfmt); | 
 |  | 
 | /* | 
 |  * set_dumpable stores three-value SUID_DUMP_* into mm->flags. | 
 |  */ | 
 | void set_dumpable(struct mm_struct *mm, int value) | 
 | { | 
 | 	unsigned long old, new; | 
 |  | 
 | 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		old = READ_ONCE(mm->flags); | 
 | 		new = (old & ~MMF_DUMPABLE_MASK) | value; | 
 | 	} while (cmpxchg(&mm->flags, old, new) != old); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE3(execve, | 
 | 		const char __user *, filename, | 
 | 		const char __user *const __user *, argv, | 
 | 		const char __user *const __user *, envp) | 
 | { | 
 | 	return do_execve(getname(filename), argv, envp); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE5(execveat, | 
 | 		int, fd, const char __user *, filename, | 
 | 		const char __user *const __user *, argv, | 
 | 		const char __user *const __user *, envp, | 
 | 		int, flags) | 
 | { | 
 | 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; | 
 |  | 
 | 	return do_execveat(fd, | 
 | 			   getname_flags(filename, lookup_flags, NULL), | 
 | 			   argv, envp, flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, | 
 | 	const compat_uptr_t __user *, argv, | 
 | 	const compat_uptr_t __user *, envp) | 
 | { | 
 | 	return compat_do_execve(getname(filename), argv, envp); | 
 | } | 
 |  | 
 | COMPAT_SYSCALL_DEFINE5(execveat, int, fd, | 
 | 		       const char __user *, filename, | 
 | 		       const compat_uptr_t __user *, argv, | 
 | 		       const compat_uptr_t __user *, envp, | 
 | 		       int,  flags) | 
 | { | 
 | 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; | 
 |  | 
 | 	return compat_do_execveat(fd, | 
 | 				  getname_flags(filename, lookup_flags, NULL), | 
 | 				  argv, envp, flags); | 
 | } | 
 | #endif |