|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_dquot_item.h" | 
|  | #include "xfs_dquot.h" | 
|  | #include "xfs_reflink.h" | 
|  |  | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/iversion.h> | 
|  |  | 
|  | /* | 
|  | * Allocate and initialise an xfs_inode. | 
|  | */ | 
|  | struct xfs_inode * | 
|  | xfs_inode_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_ino_t		ino) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | /* | 
|  | * if this didn't occur in transactions, we could use | 
|  | * KM_MAYFAIL and return NULL here on ENOMEM. Set the | 
|  | * code up to do this anyway. | 
|  | */ | 
|  | ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); | 
|  | if (!ip) | 
|  | return NULL; | 
|  | if (inode_init_always(mp->m_super, VFS_I(ip))) { | 
|  | kmem_zone_free(xfs_inode_zone, ip); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* VFS doesn't initialise i_mode! */ | 
|  | VFS_I(ip)->i_mode = 0; | 
|  |  | 
|  | XFS_STATS_INC(mp, vn_active); | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | ASSERT(!xfs_isiflocked(ip)); | 
|  | ASSERT(ip->i_ino == 0); | 
|  |  | 
|  | /* initialise the xfs inode */ | 
|  | ip->i_ino = ino; | 
|  | ip->i_mount = mp; | 
|  | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | 
|  | ip->i_afp = NULL; | 
|  | ip->i_cowfp = NULL; | 
|  | ip->i_cnextents = 0; | 
|  | ip->i_cformat = XFS_DINODE_FMT_EXTENTS; | 
|  | memset(&ip->i_df, 0, sizeof(ip->i_df)); | 
|  | ip->i_flags = 0; | 
|  | ip->i_delayed_blks = 0; | 
|  | memset(&ip->i_d, 0, sizeof(ip->i_d)); | 
|  |  | 
|  | return ip; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_inode_free_callback( | 
|  | struct rcu_head		*head) | 
|  | { | 
|  | struct inode		*inode = container_of(head, struct inode, i_rcu); | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  |  | 
|  | switch (VFS_I(ip)->i_mode & S_IFMT) { | 
|  | case S_IFREG: | 
|  | case S_IFDIR: | 
|  | case S_IFLNK: | 
|  | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ip->i_afp) | 
|  | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  | if (ip->i_cowfp) | 
|  | xfs_idestroy_fork(ip, XFS_COW_FORK); | 
|  |  | 
|  | if (ip->i_itemp) { | 
|  | ASSERT(!test_bit(XFS_LI_IN_AIL, | 
|  | &ip->i_itemp->ili_item.li_flags)); | 
|  | xfs_inode_item_destroy(ip); | 
|  | ip->i_itemp = NULL; | 
|  | } | 
|  |  | 
|  | kmem_zone_free(xfs_inode_zone, ip); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_inode_free( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | /* asserts to verify all state is correct here */ | 
|  | ASSERT(atomic_read(&ip->i_pincount) == 0); | 
|  | XFS_STATS_DEC(ip->i_mount, vn_active); | 
|  |  | 
|  | call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_free( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | ASSERT(!xfs_isiflocked(ip)); | 
|  |  | 
|  | /* | 
|  | * Because we use RCU freeing we need to ensure the inode always | 
|  | * appears to be reclaimed with an invalid inode number when in the | 
|  | * free state. The ip->i_flags_lock provides the barrier against lookup | 
|  | * races. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags = XFS_IRECLAIM; | 
|  | ip->i_ino = 0; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | __xfs_inode_free(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a new inode reclaim pass if there are reclaimable inodes and there | 
|  | * isn't a reclaim pass already in progress. By default it runs every 5s based | 
|  | * on the xfs periodic sync default of 30s. Perhaps this should have it's own | 
|  | * tunable, but that can be done if this method proves to be ineffective or too | 
|  | * aggressive. | 
|  | */ | 
|  | static void | 
|  | xfs_reclaim_work_queue( | 
|  | struct xfs_mount        *mp) | 
|  | { | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | 
|  | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, | 
|  | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a fast pass over the inode cache to try to get reclaim moving on as | 
|  | * many inodes as possible in a short period of time. It kicks itself every few | 
|  | * seconds, as well as being kicked by the inode cache shrinker when memory | 
|  | * goes low. It scans as quickly as possible avoiding locked inodes or those | 
|  | * already being flushed, and once done schedules a future pass. | 
|  | */ | 
|  | void | 
|  | xfs_reclaim_worker( | 
|  | struct work_struct *work) | 
|  | { | 
|  | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | struct xfs_mount, m_reclaim_work); | 
|  |  | 
|  | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | 
|  | xfs_reclaim_work_queue(mp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_perag_set_reclaim_tag( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  |  | 
|  | lockdep_assert_held(&pag->pag_ici_lock); | 
|  | if (pag->pag_ici_reclaimable++) | 
|  | return; | 
|  |  | 
|  | /* propagate the reclaim tag up into the perag radix tree */ | 
|  | spin_lock(&mp->m_perag_lock); | 
|  | radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | spin_unlock(&mp->m_perag_lock); | 
|  |  | 
|  | /* schedule periodic background inode reclaim */ | 
|  | xfs_reclaim_work_queue(mp); | 
|  |  | 
|  | trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_perag_clear_reclaim_tag( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  |  | 
|  | lockdep_assert_held(&pag->pag_ici_lock); | 
|  | if (--pag->pag_ici_reclaimable) | 
|  | return; | 
|  |  | 
|  | /* clear the reclaim tag from the perag radix tree */ | 
|  | spin_lock(&mp->m_perag_lock); | 
|  | radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | spin_unlock(&mp->m_perag_lock); | 
|  | trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We set the inode flag atomically with the radix tree tag. | 
|  | * Once we get tag lookups on the radix tree, this inode flag | 
|  | * can go away. | 
|  | */ | 
|  | void | 
|  | xfs_inode_set_reclaim_tag( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | xfs_perag_set_reclaim_tag(pag); | 
|  | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_inode_clear_reclaim_tag( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_ino_t		ino) | 
|  | { | 
|  | radix_tree_tag_clear(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(pag->pag_mount, ino), | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | xfs_perag_clear_reclaim_tag(pag); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_inew_wait( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT); | 
|  | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT); | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | if (!xfs_iflags_test(ip, XFS_INEW)) | 
|  | break; | 
|  | schedule(); | 
|  | } while (true); | 
|  | finish_wait(wq, &wait.wq_entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we recycle a reclaimable inode, we need to re-initialise the VFS inode | 
|  | * part of the structure. This is made more complex by the fact we store | 
|  | * information about the on-disk values in the VFS inode and so we can't just | 
|  | * overwrite the values unconditionally. Hence we save the parameters we | 
|  | * need to retain across reinitialisation, and rewrite them into the VFS inode | 
|  | * after reinitialisation even if it fails. | 
|  | */ | 
|  | static int | 
|  | xfs_reinit_inode( | 
|  | struct xfs_mount	*mp, | 
|  | struct inode		*inode) | 
|  | { | 
|  | int		error; | 
|  | uint32_t	nlink = inode->i_nlink; | 
|  | uint32_t	generation = inode->i_generation; | 
|  | uint64_t	version = inode_peek_iversion(inode); | 
|  | umode_t		mode = inode->i_mode; | 
|  | dev_t		dev = inode->i_rdev; | 
|  |  | 
|  | error = inode_init_always(mp->m_super, inode); | 
|  |  | 
|  | set_nlink(inode, nlink); | 
|  | inode->i_generation = generation; | 
|  | inode_set_iversion_queried(inode, version); | 
|  | inode->i_mode = mode; | 
|  | inode->i_rdev = dev; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are allocating a new inode, then check what was returned is | 
|  | * actually a free, empty inode. If we are not allocating an inode, | 
|  | * then check we didn't find a free inode. | 
|  | * | 
|  | * Returns: | 
|  | *	0		if the inode free state matches the lookup context | 
|  | *	-ENOENT		if the inode is free and we are not allocating | 
|  | *	-EFSCORRUPTED	if there is any state mismatch at all | 
|  | */ | 
|  | static int | 
|  | xfs_iget_check_free_state( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags) | 
|  | { | 
|  | if (flags & XFS_IGET_CREATE) { | 
|  | /* should be a free inode */ | 
|  | if (VFS_I(ip)->i_mode != 0) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", | 
|  | ip->i_ino, VFS_I(ip)->i_mode); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | if (ip->i_d.di_nblocks != 0) { | 
|  | xfs_warn(ip->i_mount, | 
|  | "Corruption detected! Free inode 0x%llx has blocks allocated!", | 
|  | ip->i_ino); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* should be an allocated inode */ | 
|  | if (VFS_I(ip)->i_mode == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the validity of the inode we just found it the cache | 
|  | */ | 
|  | static int | 
|  | xfs_iget_cache_hit( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*ip, | 
|  | xfs_ino_t		ino, | 
|  | int			flags, | 
|  | int			lock_flags) __releases(RCU) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * check for re-use of an inode within an RCU grace period due to the | 
|  | * radix tree nodes not being updated yet. We monitor for this by | 
|  | * setting the inode number to zero before freeing the inode structure. | 
|  | * If the inode has been reallocated and set up, then the inode number | 
|  | * will not match, so check for that, too. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (ip->i_ino != ino) { | 
|  | trace_xfs_iget_skip(ip); | 
|  | XFS_STATS_INC(mp, xs_ig_frecycle); | 
|  | error = -EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If we are racing with another cache hit that is currently | 
|  | * instantiating this inode or currently recycling it out of | 
|  | * reclaimabe state, wait for the initialisation to complete | 
|  | * before continuing. | 
|  | * | 
|  | * XXX(hch): eventually we should do something equivalent to | 
|  | *	     wait_on_inode to wait for these flags to be cleared | 
|  | *	     instead of polling for it. | 
|  | */ | 
|  | if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { | 
|  | trace_xfs_iget_skip(ip); | 
|  | XFS_STATS_INC(mp, xs_ig_frecycle); | 
|  | error = -EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the inode free state is valid. This also detects lookup | 
|  | * racing with unlinks. | 
|  | */ | 
|  | error = xfs_iget_check_free_state(ip, flags); | 
|  | if (error) | 
|  | goto out_error; | 
|  |  | 
|  | /* | 
|  | * If IRECLAIMABLE is set, we've torn down the VFS inode already. | 
|  | * Need to carefully get it back into useable state. | 
|  | */ | 
|  | if (ip->i_flags & XFS_IRECLAIMABLE) { | 
|  | trace_xfs_iget_reclaim(ip); | 
|  |  | 
|  | if (flags & XFS_IGET_INCORE) { | 
|  | error = -EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode | 
|  | * from stomping over us while we recycle the inode.  We can't | 
|  | * clear the radix tree reclaimable tag yet as it requires | 
|  | * pag_ici_lock to be held exclusive. | 
|  | */ | 
|  | ip->i_flags |= XFS_IRECLAIM; | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | error = xfs_reinit_inode(mp, inode); | 
|  | if (error) { | 
|  | bool wake; | 
|  | /* | 
|  | * Re-initializing the inode failed, and we are in deep | 
|  | * trouble.  Try to re-add it to the reclaim list. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | wake = !!__xfs_iflags_test(ip, XFS_INEW); | 
|  | ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); | 
|  | if (wake) | 
|  | wake_up_bit(&ip->i_flags, __XFS_INEW_BIT); | 
|  | ASSERT(ip->i_flags & XFS_IRECLAIMABLE); | 
|  | trace_xfs_iget_reclaim_fail(ip); | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | spin_lock(&ip->i_flags_lock); | 
|  |  | 
|  | /* | 
|  | * Clear the per-lifetime state in the inode as we are now | 
|  | * effectively a new inode and need to return to the initial | 
|  | * state before reuse occurs. | 
|  | */ | 
|  | ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; | 
|  | ip->i_flags |= XFS_INEW; | 
|  | xfs_inode_clear_reclaim_tag(pag, ip->i_ino); | 
|  | inode->i_state = I_NEW; | 
|  |  | 
|  | ASSERT(!rwsem_is_locked(&inode->i_rwsem)); | 
|  | init_rwsem(&inode->i_rwsem); | 
|  |  | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | } else { | 
|  | /* If the VFS inode is being torn down, pause and try again. */ | 
|  | if (!igrab(inode)) { | 
|  | trace_xfs_iget_skip(ip); | 
|  | error = -EAGAIN; | 
|  | goto out_error; | 
|  | } | 
|  |  | 
|  | /* We've got a live one. */ | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | trace_xfs_iget_hit(ip); | 
|  | } | 
|  |  | 
|  | if (lock_flags != 0) | 
|  | xfs_ilock(ip, lock_flags); | 
|  |  | 
|  | if (!(flags & XFS_IGET_INCORE)) | 
|  | xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); | 
|  | XFS_STATS_INC(mp, xs_ig_found); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_error: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | xfs_iget_cache_miss( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_trans_t		*tp, | 
|  | xfs_ino_t		ino, | 
|  | struct xfs_inode	**ipp, | 
|  | int			flags, | 
|  | int			lock_flags) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  | int			error; | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino); | 
|  | int			iflags; | 
|  |  | 
|  | ip = xfs_inode_alloc(mp, ino); | 
|  | if (!ip) | 
|  | return -ENOMEM; | 
|  |  | 
|  | error = xfs_iread(mp, tp, ip, flags); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | if (!xfs_inode_verify_forks(ip)) { | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | trace_xfs_iget_miss(ip); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Check the inode free state is valid. This also detects lookup | 
|  | * racing with unlinks. | 
|  | */ | 
|  | error = xfs_iget_check_free_state(ip, flags); | 
|  | if (error) | 
|  | goto out_destroy; | 
|  |  | 
|  | /* | 
|  | * Preload the radix tree so we can insert safely under the | 
|  | * write spinlock. Note that we cannot sleep inside the preload | 
|  | * region. Since we can be called from transaction context, don't | 
|  | * recurse into the file system. | 
|  | */ | 
|  | if (radix_tree_preload(GFP_NOFS)) { | 
|  | error = -EAGAIN; | 
|  | goto out_destroy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the inode hasn't been added to the radix-tree yet it can't | 
|  | * be found by another thread, so we can do the non-sleeping lock here. | 
|  | */ | 
|  | if (lock_flags) { | 
|  | if (!xfs_ilock_nowait(ip, lock_flags)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These values must be set before inserting the inode into the radix | 
|  | * tree as the moment it is inserted a concurrent lookup (allowed by the | 
|  | * RCU locking mechanism) can find it and that lookup must see that this | 
|  | * is an inode currently under construction (i.e. that XFS_INEW is set). | 
|  | * The ip->i_flags_lock that protects the XFS_INEW flag forms the | 
|  | * memory barrier that ensures this detection works correctly at lookup | 
|  | * time. | 
|  | */ | 
|  | iflags = XFS_INEW; | 
|  | if (flags & XFS_IGET_DONTCACHE) | 
|  | iflags |= XFS_IDONTCACHE; | 
|  | ip->i_udquot = NULL; | 
|  | ip->i_gdquot = NULL; | 
|  | ip->i_pdquot = NULL; | 
|  | xfs_iflags_set(ip, iflags); | 
|  |  | 
|  | /* insert the new inode */ | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | 
|  | if (unlikely(error)) { | 
|  | WARN_ON(error != -EEXIST); | 
|  | XFS_STATS_INC(mp, xs_ig_dup); | 
|  | error = -EAGAIN; | 
|  | goto out_preload_end; | 
|  | } | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  |  | 
|  | out_preload_end: | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | radix_tree_preload_end(); | 
|  | if (lock_flags) | 
|  | xfs_iunlock(ip, lock_flags); | 
|  | out_destroy: | 
|  | __destroy_inode(VFS_I(ip)); | 
|  | xfs_inode_free(ip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up an inode by number in the given file system. | 
|  | * The inode is looked up in the cache held in each AG. | 
|  | * If the inode is found in the cache, initialise the vfs inode | 
|  | * if necessary. | 
|  | * | 
|  | * If it is not in core, read it in from the file system's device, | 
|  | * add it to the cache and initialise the vfs inode. | 
|  | * | 
|  | * The inode is locked according to the value of the lock_flags parameter. | 
|  | * This flag parameter indicates how and if the inode's IO lock and inode lock | 
|  | * should be taken. | 
|  | * | 
|  | * mp -- the mount point structure for the current file system.  It points | 
|  | *       to the inode hash table. | 
|  | * tp -- a pointer to the current transaction if there is one.  This is | 
|  | *       simply passed through to the xfs_iread() call. | 
|  | * ino -- the number of the inode desired.  This is the unique identifier | 
|  | *        within the file system for the inode being requested. | 
|  | * lock_flags -- flags indicating how to lock the inode.  See the comment | 
|  | *		 for xfs_ilock() for a list of valid values. | 
|  | */ | 
|  | int | 
|  | xfs_iget( | 
|  | xfs_mount_t	*mp, | 
|  | xfs_trans_t	*tp, | 
|  | xfs_ino_t	ino, | 
|  | uint		flags, | 
|  | uint		lock_flags, | 
|  | xfs_inode_t	**ipp) | 
|  | { | 
|  | xfs_inode_t	*ip; | 
|  | int		error; | 
|  | xfs_perag_t	*pag; | 
|  | xfs_agino_t	agino; | 
|  |  | 
|  | /* | 
|  | * xfs_reclaim_inode() uses the ILOCK to ensure an inode | 
|  | * doesn't get freed while it's being referenced during a | 
|  | * radix tree traversal here.  It assumes this function | 
|  | * aqcuires only the ILOCK (and therefore it has no need to | 
|  | * involve the IOLOCK in this synchronization). | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); | 
|  |  | 
|  | /* reject inode numbers outside existing AGs */ | 
|  | if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) | 
|  | return -EINVAL; | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_ig_attempts); | 
|  |  | 
|  | /* get the perag structure and ensure that it's inode capable */ | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); | 
|  | agino = XFS_INO_TO_AGINO(mp, ino); | 
|  |  | 
|  | again: | 
|  | error = 0; | 
|  | rcu_read_lock(); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | 
|  |  | 
|  | if (ip) { | 
|  | error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } else { | 
|  | rcu_read_unlock(); | 
|  | if (flags & XFS_IGET_INCORE) { | 
|  | error = -ENODATA; | 
|  | goto out_error_or_again; | 
|  | } | 
|  | XFS_STATS_INC(mp, xs_ig_missed); | 
|  |  | 
|  | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, | 
|  | flags, lock_flags); | 
|  | if (error) | 
|  | goto out_error_or_again; | 
|  | } | 
|  | xfs_perag_put(pag); | 
|  |  | 
|  | *ipp = ip; | 
|  |  | 
|  | /* | 
|  | * If we have a real type for an on-disk inode, we can setup the inode | 
|  | * now.	 If it's a new inode being created, xfs_ialloc will handle it. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) | 
|  | xfs_setup_existing_inode(ip); | 
|  | return 0; | 
|  |  | 
|  | out_error_or_again: | 
|  | if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) { | 
|  | delay(1); | 
|  | goto again; | 
|  | } | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "Is this a cached inode that's also allocated?" | 
|  | * | 
|  | * Look up an inode by number in the given file system.  If the inode is | 
|  | * in cache and isn't in purgatory, return 1 if the inode is allocated | 
|  | * and 0 if it is not.  For all other cases (not in cache, being torn | 
|  | * down, etc.), return a negative error code. | 
|  | * | 
|  | * The caller has to prevent inode allocation and freeing activity, | 
|  | * presumably by locking the AGI buffer.   This is to ensure that an | 
|  | * inode cannot transition from allocated to freed until the caller is | 
|  | * ready to allow that.  If the inode is in an intermediate state (new, | 
|  | * reclaimable, or being reclaimed), -EAGAIN will be returned; if the | 
|  | * inode is not in the cache, -ENOENT will be returned.  The caller must | 
|  | * deal with these scenarios appropriately. | 
|  | * | 
|  | * This is a specialized use case for the online scrubber; if you're | 
|  | * reading this, you probably want xfs_iget. | 
|  | */ | 
|  | int | 
|  | xfs_icache_inode_is_allocated( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_ino_t		ino, | 
|  | bool			*inuse) | 
|  | { | 
|  | struct xfs_inode	*ip; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | *inuse = !!(VFS_I(ip)->i_mode); | 
|  | xfs_irele(ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The inode lookup is done in batches to keep the amount of lock traffic and | 
|  | * radix tree lookups to a minimum. The batch size is a trade off between | 
|  | * lookup reduction and stack usage. This is in the reclaim path, so we can't | 
|  | * be too greedy. | 
|  | */ | 
|  | #define XFS_LOOKUP_BATCH	32 | 
|  |  | 
|  | STATIC int | 
|  | xfs_inode_ag_walk_grab( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags) | 
|  | { | 
|  | struct inode		*inode = VFS_I(ip); | 
|  | bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT); | 
|  |  | 
|  | ASSERT(rcu_read_lock_held()); | 
|  |  | 
|  | /* | 
|  | * check for stale RCU freed inode | 
|  | * | 
|  | * If the inode has been reallocated, it doesn't matter if it's not in | 
|  | * the AG we are walking - we are walking for writeback, so if it | 
|  | * passes all the "valid inode" checks and is dirty, then we'll write | 
|  | * it back anyway.  If it has been reallocated and still being | 
|  | * initialised, the XFS_INEW check below will catch it. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (!ip->i_ino) | 
|  | goto out_unlock_noent; | 
|  |  | 
|  | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | 
|  | if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) || | 
|  | __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)) | 
|  | goto out_unlock_noent; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | /* nothing to sync during shutdown */ | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | return -EFSCORRUPTED; | 
|  |  | 
|  | /* If we can't grab the inode, it must on it's way to reclaim. */ | 
|  | if (!igrab(inode)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* inode is valid */ | 
|  | return 0; | 
|  |  | 
|  | out_unlock_noent: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_inode_ag_walk( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_perag	*pag, | 
|  | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | void *args), | 
|  | int			flags, | 
|  | void			*args, | 
|  | int			tag, | 
|  | int			iter_flags) | 
|  | { | 
|  | uint32_t		first_index; | 
|  | int			last_error = 0; | 
|  | int			skipped; | 
|  | int			done; | 
|  | int			nr_found; | 
|  |  | 
|  | restart: | 
|  | done = 0; | 
|  | skipped = 0; | 
|  | first_index = 0; | 
|  | nr_found = 0; | 
|  | do { | 
|  | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
|  | int		error = 0; | 
|  | int		i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | if (tag == -1) | 
|  | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
|  | (void **)batch, first_index, | 
|  | XFS_LOOKUP_BATCH); | 
|  | else | 
|  | nr_found = radix_tree_gang_lookup_tag( | 
|  | &pag->pag_ici_root, | 
|  | (void **) batch, first_index, | 
|  | XFS_LOOKUP_BATCH, tag); | 
|  |  | 
|  | if (!nr_found) { | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the inodes before we drop the lock. if we found | 
|  | * nothing, nr == 0 and the loop will be skipped. | 
|  | */ | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct xfs_inode *ip = batch[i]; | 
|  |  | 
|  | if (done || xfs_inode_ag_walk_grab(ip, iter_flags)) | 
|  | batch[i] = NULL; | 
|  |  | 
|  | /* | 
|  | * Update the index for the next lookup. Catch | 
|  | * overflows into the next AG range which can occur if | 
|  | * we have inodes in the last block of the AG and we | 
|  | * are currently pointing to the last inode. | 
|  | * | 
|  | * Because we may see inodes that are from the wrong AG | 
|  | * due to RCU freeing and reallocation, only update the | 
|  | * index if it lies in this AG. It was a race that lead | 
|  | * us to see this inode, so another lookup from the | 
|  | * same index will not find it again. | 
|  | */ | 
|  | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | 
|  | continue; | 
|  | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
|  | done = 1; | 
|  | } | 
|  |  | 
|  | /* unlock now we've grabbed the inodes. */ | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | if (!batch[i]) | 
|  | continue; | 
|  | if ((iter_flags & XFS_AGITER_INEW_WAIT) && | 
|  | xfs_iflags_test(batch[i], XFS_INEW)) | 
|  | xfs_inew_wait(batch[i]); | 
|  | error = execute(batch[i], flags, args); | 
|  | xfs_irele(batch[i]); | 
|  | if (error == -EAGAIN) { | 
|  | skipped++; | 
|  | continue; | 
|  | } | 
|  | if (error && last_error != -EFSCORRUPTED) | 
|  | last_error = error; | 
|  | } | 
|  |  | 
|  | /* bail out if the filesystem is corrupted.  */ | 
|  | if (error == -EFSCORRUPTED) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | } while (nr_found && !done); | 
|  |  | 
|  | if (skipped) { | 
|  | delay(1); | 
|  | goto restart; | 
|  | } | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Background scanning to trim post-EOF preallocated space. This is queued | 
|  | * based on the 'speculative_prealloc_lifetime' tunable (5m by default). | 
|  | */ | 
|  | void | 
|  | xfs_queue_eofblocks( | 
|  | struct xfs_mount *mp) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) | 
|  | queue_delayed_work(mp->m_eofblocks_workqueue, | 
|  | &mp->m_eofblocks_work, | 
|  | msecs_to_jiffies(xfs_eofb_secs * 1000)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_eofblocks_worker( | 
|  | struct work_struct *work) | 
|  | { | 
|  | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | struct xfs_mount, m_eofblocks_work); | 
|  | xfs_icache_free_eofblocks(mp, NULL); | 
|  | xfs_queue_eofblocks(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Background scanning to trim preallocated CoW space. This is queued | 
|  | * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default). | 
|  | * (We'll just piggyback on the post-EOF prealloc space workqueue.) | 
|  | */ | 
|  | void | 
|  | xfs_queue_cowblocks( | 
|  | struct xfs_mount *mp) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG)) | 
|  | queue_delayed_work(mp->m_eofblocks_workqueue, | 
|  | &mp->m_cowblocks_work, | 
|  | msecs_to_jiffies(xfs_cowb_secs * 1000)); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_cowblocks_worker( | 
|  | struct work_struct *work) | 
|  | { | 
|  | struct xfs_mount *mp = container_of(to_delayed_work(work), | 
|  | struct xfs_mount, m_cowblocks_work); | 
|  | xfs_icache_free_cowblocks(mp, NULL); | 
|  | xfs_queue_cowblocks(mp); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_inode_ag_iterator_flags( | 
|  | struct xfs_mount	*mp, | 
|  | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | void *args), | 
|  | int			flags, | 
|  | void			*args, | 
|  | int			iter_flags) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | int			error = 0; | 
|  | int			last_error = 0; | 
|  | xfs_agnumber_t		ag; | 
|  |  | 
|  | ag = 0; | 
|  | while ((pag = xfs_perag_get(mp, ag))) { | 
|  | ag = pag->pag_agno + 1; | 
|  | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1, | 
|  | iter_flags); | 
|  | xfs_perag_put(pag); | 
|  | if (error) { | 
|  | last_error = error; | 
|  | if (error == -EFSCORRUPTED) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_inode_ag_iterator( | 
|  | struct xfs_mount	*mp, | 
|  | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | void *args), | 
|  | int			flags, | 
|  | void			*args) | 
|  | { | 
|  | return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_inode_ag_iterator_tag( | 
|  | struct xfs_mount	*mp, | 
|  | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | void *args), | 
|  | int			flags, | 
|  | void			*args, | 
|  | int			tag) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | int			error = 0; | 
|  | int			last_error = 0; | 
|  | xfs_agnumber_t		ag; | 
|  |  | 
|  | ag = 0; | 
|  | while ((pag = xfs_perag_get_tag(mp, ag, tag))) { | 
|  | ag = pag->pag_agno + 1; | 
|  | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag, | 
|  | 0); | 
|  | xfs_perag_put(pag); | 
|  | if (error) { | 
|  | last_error = error; | 
|  | if (error == -EFSCORRUPTED) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the inode for reclaim exclusively. | 
|  | * Return 0 if we grabbed it, non-zero otherwise. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_reclaim_inode_grab( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags) | 
|  | { | 
|  | ASSERT(rcu_read_lock_held()); | 
|  |  | 
|  | /* quick check for stale RCU freed inode */ | 
|  | if (!ip->i_ino) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * If we are asked for non-blocking operation, do unlocked checks to | 
|  | * see if the inode already is being flushed or in reclaim to avoid | 
|  | * lock traffic. | 
|  | */ | 
|  | if ((flags & SYNC_TRYLOCK) && | 
|  | __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The radix tree lock here protects a thread in xfs_iget from racing | 
|  | * with us starting reclaim on the inode.  Once we have the | 
|  | * XFS_IRECLAIM flag set it will not touch us. | 
|  | * | 
|  | * Due to RCU lookup, we may find inodes that have been freed and only | 
|  | * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that | 
|  | * aren't candidates for reclaim at all, so we must check the | 
|  | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | 
|  | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
|  | /* not a reclaim candidate. */ | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return 1; | 
|  | } | 
|  | __xfs_iflags_set(ip, XFS_IRECLAIM); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inodes in different states need to be treated differently. The following | 
|  | * table lists the inode states and the reclaim actions necessary: | 
|  | * | 
|  | *	inode state	     iflush ret		required action | 
|  | *      ---------------      ----------         --------------- | 
|  | *	bad			-		reclaim | 
|  | *	shutdown		EIO		unpin and reclaim | 
|  | *	clean, unpinned		0		reclaim | 
|  | *	stale, unpinned		0		reclaim | 
|  | *	clean, pinned(*)	0		requeue | 
|  | *	stale, pinned		EAGAIN		requeue | 
|  | *	dirty, async		-		requeue | 
|  | *	dirty, sync		0		reclaim | 
|  | * | 
|  | * (*) dgc: I don't think the clean, pinned state is possible but it gets | 
|  | * handled anyway given the order of checks implemented. | 
|  | * | 
|  | * Also, because we get the flush lock first, we know that any inode that has | 
|  | * been flushed delwri has had the flush completed by the time we check that | 
|  | * the inode is clean. | 
|  | * | 
|  | * Note that because the inode is flushed delayed write by AIL pushing, the | 
|  | * flush lock may already be held here and waiting on it can result in very | 
|  | * long latencies.  Hence for sync reclaims, where we wait on the flush lock, | 
|  | * the caller should push the AIL first before trying to reclaim inodes to | 
|  | * minimise the amount of time spent waiting.  For background relaim, we only | 
|  | * bother to reclaim clean inodes anyway. | 
|  | * | 
|  | * Hence the order of actions after gaining the locks should be: | 
|  | *	bad		=> reclaim | 
|  | *	shutdown	=> unpin and reclaim | 
|  | *	pinned, async	=> requeue | 
|  | *	pinned, sync	=> unpin | 
|  | *	stale		=> reclaim | 
|  | *	clean		=> reclaim | 
|  | *	dirty, async	=> requeue | 
|  | *	dirty, sync	=> flush, wait and reclaim | 
|  | */ | 
|  | STATIC int | 
|  | xfs_reclaim_inode( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_perag	*pag, | 
|  | int			sync_mode) | 
|  | { | 
|  | struct xfs_buf		*bp = NULL; | 
|  | xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */ | 
|  | int			error; | 
|  |  | 
|  | restart: | 
|  | error = 0; | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | if (!xfs_iflock_nowait(ip)) { | 
|  | if (!(sync_mode & SYNC_WAIT)) | 
|  | goto out; | 
|  | xfs_iflock(ip); | 
|  | } | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | xfs_iunpin_wait(ip); | 
|  | /* xfs_iflush_abort() drops the flush lock */ | 
|  | xfs_iflush_abort(ip, false); | 
|  | goto reclaim; | 
|  | } | 
|  | if (xfs_ipincount(ip)) { | 
|  | if (!(sync_mode & SYNC_WAIT)) | 
|  | goto out_ifunlock; | 
|  | xfs_iunpin_wait(ip); | 
|  | } | 
|  | if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) { | 
|  | xfs_ifunlock(ip); | 
|  | goto reclaim; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Never flush out dirty data during non-blocking reclaim, as it would | 
|  | * just contend with AIL pushing trying to do the same job. | 
|  | */ | 
|  | if (!(sync_mode & SYNC_WAIT)) | 
|  | goto out_ifunlock; | 
|  |  | 
|  | /* | 
|  | * Now we have an inode that needs flushing. | 
|  | * | 
|  | * Note that xfs_iflush will never block on the inode buffer lock, as | 
|  | * xfs_ifree_cluster() can lock the inode buffer before it locks the | 
|  | * ip->i_lock, and we are doing the exact opposite here.  As a result, | 
|  | * doing a blocking xfs_imap_to_bp() to get the cluster buffer would | 
|  | * result in an ABBA deadlock with xfs_ifree_cluster(). | 
|  | * | 
|  | * As xfs_ifree_cluser() must gather all inodes that are active in the | 
|  | * cache to mark them stale, if we hit this case we don't actually want | 
|  | * to do IO here - we want the inode marked stale so we can simply | 
|  | * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the | 
|  | * inode, back off and try again.  Hopefully the next pass through will | 
|  | * see the stale flag set on the inode. | 
|  | */ | 
|  | error = xfs_iflush(ip, &bp); | 
|  | if (error == -EAGAIN) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | /* backoff longer than in xfs_ifree_cluster */ | 
|  | delay(2); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | if (!error) { | 
|  | error = xfs_bwrite(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | reclaim: | 
|  | ASSERT(!xfs_isiflocked(ip)); | 
|  |  | 
|  | /* | 
|  | * Because we use RCU freeing we need to ensure the inode always appears | 
|  | * to be reclaimed with an invalid inode number when in the free state. | 
|  | * We do this as early as possible under the ILOCK so that | 
|  | * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to | 
|  | * detect races with us here. By doing this, we guarantee that once | 
|  | * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that | 
|  | * it will see either a valid inode that will serialise correctly, or it | 
|  | * will see an invalid inode that it can skip. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags = XFS_IRECLAIM; | 
|  | ip->i_ino = 0; | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); | 
|  | /* | 
|  | * Remove the inode from the per-AG radix tree. | 
|  | * | 
|  | * Because radix_tree_delete won't complain even if the item was never | 
|  | * added to the tree assert that it's been there before to catch | 
|  | * problems with the inode life time early on. | 
|  | */ | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  | if (!radix_tree_delete(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(ip->i_mount, ino))) | 
|  | ASSERT(0); | 
|  | xfs_perag_clear_reclaim_tag(pag); | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  |  | 
|  | /* | 
|  | * Here we do an (almost) spurious inode lock in order to coordinate | 
|  | * with inode cache radix tree lookups.  This is because the lookup | 
|  | * can reference the inodes in the cache without taking references. | 
|  | * | 
|  | * We make that OK here by ensuring that we wait until the inode is | 
|  | * unlocked after the lookup before we go ahead and free it. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_qm_dqdetach(ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | __xfs_inode_free(ip); | 
|  | return error; | 
|  |  | 
|  | out_ifunlock: | 
|  | xfs_ifunlock(ip); | 
|  | out: | 
|  | xfs_iflags_clear(ip, XFS_IRECLAIM); | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | /* | 
|  | * We could return -EAGAIN here to make reclaim rescan the inode tree in | 
|  | * a short while. However, this just burns CPU time scanning the tree | 
|  | * waiting for IO to complete and the reclaim work never goes back to | 
|  | * the idle state. Instead, return 0 to let the next scheduled | 
|  | * background reclaim attempt to reclaim the inode again. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | 
|  | * corrupted, we still want to try to reclaim all the inodes. If we don't, | 
|  | * then a shut down during filesystem unmount reclaim walk leak all the | 
|  | * unreclaimed inodes. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_reclaim_inodes_ag( | 
|  | struct xfs_mount	*mp, | 
|  | int			flags, | 
|  | int			*nr_to_scan) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | int			error = 0; | 
|  | int			last_error = 0; | 
|  | xfs_agnumber_t		ag; | 
|  | int			trylock = flags & SYNC_TRYLOCK; | 
|  | int			skipped; | 
|  |  | 
|  | restart: | 
|  | ag = 0; | 
|  | skipped = 0; | 
|  | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
|  | unsigned long	first_index = 0; | 
|  | int		done = 0; | 
|  | int		nr_found = 0; | 
|  |  | 
|  | ag = pag->pag_agno + 1; | 
|  |  | 
|  | if (trylock) { | 
|  | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | 
|  | skipped++; | 
|  | xfs_perag_put(pag); | 
|  | continue; | 
|  | } | 
|  | first_index = pag->pag_ici_reclaim_cursor; | 
|  | } else | 
|  | mutex_lock(&pag->pag_ici_reclaim_lock); | 
|  |  | 
|  | do { | 
|  | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | 
|  | int	i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | nr_found = radix_tree_gang_lookup_tag( | 
|  | &pag->pag_ici_root, | 
|  | (void **)batch, first_index, | 
|  | XFS_LOOKUP_BATCH, | 
|  | XFS_ICI_RECLAIM_TAG); | 
|  | if (!nr_found) { | 
|  | done = 1; | 
|  | rcu_read_unlock(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the inodes before we drop the lock. if we found | 
|  | * nothing, nr == 0 and the loop will be skipped. | 
|  | */ | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | struct xfs_inode *ip = batch[i]; | 
|  |  | 
|  | if (done || xfs_reclaim_inode_grab(ip, flags)) | 
|  | batch[i] = NULL; | 
|  |  | 
|  | /* | 
|  | * Update the index for the next lookup. Catch | 
|  | * overflows into the next AG range which can | 
|  | * occur if we have inodes in the last block of | 
|  | * the AG and we are currently pointing to the | 
|  | * last inode. | 
|  | * | 
|  | * Because we may see inodes that are from the | 
|  | * wrong AG due to RCU freeing and | 
|  | * reallocation, only update the index if it | 
|  | * lies in this AG. It was a race that lead us | 
|  | * to see this inode, so another lookup from | 
|  | * the same index will not find it again. | 
|  | */ | 
|  | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | 
|  | pag->pag_agno) | 
|  | continue; | 
|  | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
|  | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
|  | done = 1; | 
|  | } | 
|  |  | 
|  | /* unlock now we've grabbed the inodes. */ | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | for (i = 0; i < nr_found; i++) { | 
|  | if (!batch[i]) | 
|  | continue; | 
|  | error = xfs_reclaim_inode(batch[i], pag, flags); | 
|  | if (error && last_error != -EFSCORRUPTED) | 
|  | last_error = error; | 
|  | } | 
|  |  | 
|  | *nr_to_scan -= XFS_LOOKUP_BATCH; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | } while (nr_found && !done && *nr_to_scan > 0); | 
|  |  | 
|  | if (trylock && !done) | 
|  | pag->pag_ici_reclaim_cursor = first_index; | 
|  | else | 
|  | pag->pag_ici_reclaim_cursor = 0; | 
|  | mutex_unlock(&pag->pag_ici_reclaim_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if we skipped any AG, and we still have scan count remaining, do | 
|  | * another pass this time using blocking reclaim semantics (i.e | 
|  | * waiting on the reclaim locks and ignoring the reclaim cursors). This | 
|  | * ensure that when we get more reclaimers than AGs we block rather | 
|  | * than spin trying to execute reclaim. | 
|  | */ | 
|  | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | 
|  | trylock = 0; | 
|  | goto restart; | 
|  | } | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_reclaim_inodes( | 
|  | xfs_mount_t	*mp, | 
|  | int		mode) | 
|  | { | 
|  | int		nr_to_scan = INT_MAX; | 
|  |  | 
|  | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan a certain number of inodes for reclaim. | 
|  | * | 
|  | * When called we make sure that there is a background (fast) inode reclaim in | 
|  | * progress, while we will throttle the speed of reclaim via doing synchronous | 
|  | * reclaim of inodes. That means if we come across dirty inodes, we wait for | 
|  | * them to be cleaned, which we hope will not be very long due to the | 
|  | * background walker having already kicked the IO off on those dirty inodes. | 
|  | */ | 
|  | long | 
|  | xfs_reclaim_inodes_nr( | 
|  | struct xfs_mount	*mp, | 
|  | int			nr_to_scan) | 
|  | { | 
|  | /* kick background reclaimer and push the AIL */ | 
|  | xfs_reclaim_work_queue(mp); | 
|  | xfs_ail_push_all(mp->m_ail); | 
|  |  | 
|  | return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of reclaimable inodes in the filesystem for | 
|  | * the shrinker to determine how much to reclaim. | 
|  | */ | 
|  | int | 
|  | xfs_reclaim_inodes_count( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_perag	*pag; | 
|  | xfs_agnumber_t		ag = 0; | 
|  | int			reclaimable = 0; | 
|  |  | 
|  | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | 
|  | ag = pag->pag_agno + 1; | 
|  | reclaimable += pag->pag_ici_reclaimable; | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  | return reclaimable; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_inode_match_id( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_eofblocks	*eofb) | 
|  | { | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
|  | !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
|  | return 0; | 
|  |  | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
|  | !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
|  | return 0; | 
|  |  | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
|  | xfs_get_projid(ip) != eofb->eof_prid) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A union-based inode filtering algorithm. Process the inode if any of the | 
|  | * criteria match. This is for global/internal scans only. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inode_match_id_union( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_eofblocks	*eofb) | 
|  | { | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | 
|  | uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | 
|  | return 1; | 
|  |  | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | 
|  | gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | 
|  | return 1; | 
|  |  | 
|  | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | 
|  | xfs_get_projid(ip) == eofb->eof_prid) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_inode_free_eofblocks( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags, | 
|  | void			*args) | 
|  | { | 
|  | int ret = 0; | 
|  | struct xfs_eofblocks *eofb = args; | 
|  | int match; | 
|  |  | 
|  | if (!xfs_can_free_eofblocks(ip, false)) { | 
|  | /* inode could be preallocated or append-only */ | 
|  | trace_xfs_inode_free_eofblocks_invalid(ip); | 
|  | xfs_inode_clear_eofblocks_tag(ip); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the mapping is dirty the operation can block and wait for some | 
|  | * time. Unless we are waiting, skip it. | 
|  | */ | 
|  | if (!(flags & SYNC_WAIT) && | 
|  | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) | 
|  | return 0; | 
|  |  | 
|  | if (eofb) { | 
|  | if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
|  | match = xfs_inode_match_id_union(ip, eofb); | 
|  | else | 
|  | match = xfs_inode_match_id(ip, eofb); | 
|  | if (!match) | 
|  | return 0; | 
|  |  | 
|  | /* skip the inode if the file size is too small */ | 
|  | if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
|  | XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the caller is waiting, return -EAGAIN to keep the background | 
|  | * scanner moving and revisit the inode in a subsequent pass. | 
|  | */ | 
|  | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { | 
|  | if (flags & SYNC_WAIT) | 
|  | ret = -EAGAIN; | 
|  | return ret; | 
|  | } | 
|  | ret = xfs_free_eofblocks(ip); | 
|  | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __xfs_icache_free_eofblocks( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_eofblocks	*eofb, | 
|  | int			(*execute)(struct xfs_inode *ip, int flags, | 
|  | void *args), | 
|  | int			tag) | 
|  | { | 
|  | int flags = SYNC_TRYLOCK; | 
|  |  | 
|  | if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) | 
|  | flags = SYNC_WAIT; | 
|  |  | 
|  | return xfs_inode_ag_iterator_tag(mp, execute, flags, | 
|  | eofb, tag); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_icache_free_eofblocks( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_eofblocks	*eofb) | 
|  | { | 
|  | return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks, | 
|  | XFS_ICI_EOFBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run eofblocks scans on the quotas applicable to the inode. For inodes with | 
|  | * multiple quotas, we don't know exactly which quota caused an allocation | 
|  | * failure. We make a best effort by including each quota under low free space | 
|  | * conditions (less than 1% free space) in the scan. | 
|  | */ | 
|  | static int | 
|  | __xfs_inode_free_quota_eofblocks( | 
|  | struct xfs_inode	*ip, | 
|  | int			(*execute)(struct xfs_mount *mp, | 
|  | struct xfs_eofblocks	*eofb)) | 
|  | { | 
|  | int scan = 0; | 
|  | struct xfs_eofblocks eofb = {0}; | 
|  | struct xfs_dquot *dq; | 
|  |  | 
|  | /* | 
|  | * Run a sync scan to increase effectiveness and use the union filter to | 
|  | * cover all applicable quotas in a single scan. | 
|  | */ | 
|  | eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; | 
|  |  | 
|  | if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { | 
|  | dq = xfs_inode_dquot(ip, XFS_DQ_USER); | 
|  | if (dq && xfs_dquot_lowsp(dq)) { | 
|  | eofb.eof_uid = VFS_I(ip)->i_uid; | 
|  | eofb.eof_flags |= XFS_EOF_FLAGS_UID; | 
|  | scan = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { | 
|  | dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); | 
|  | if (dq && xfs_dquot_lowsp(dq)) { | 
|  | eofb.eof_gid = VFS_I(ip)->i_gid; | 
|  | eofb.eof_flags |= XFS_EOF_FLAGS_GID; | 
|  | scan = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (scan) | 
|  | execute(ip->i_mount, &eofb); | 
|  |  | 
|  | return scan; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_inode_free_quota_eofblocks( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | xfs_iflag_for_tag( | 
|  | int		tag) | 
|  | { | 
|  | switch (tag) { | 
|  | case XFS_ICI_EOFBLOCKS_TAG: | 
|  | return XFS_IEOFBLOCKS; | 
|  | case XFS_ICI_COWBLOCKS_TAG: | 
|  | return XFS_ICOWBLOCKS; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_inode_set_blocks_tag( | 
|  | xfs_inode_t	*ip, | 
|  | void		(*execute)(struct xfs_mount *mp), | 
|  | void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
|  | int error, unsigned long caller_ip), | 
|  | int		tag) | 
|  | { | 
|  | struct xfs_mount *mp = ip->i_mount; | 
|  | struct xfs_perag *pag; | 
|  | int tagged; | 
|  |  | 
|  | /* | 
|  | * Don't bother locking the AG and looking up in the radix trees | 
|  | * if we already know that we have the tag set. | 
|  | */ | 
|  | if (ip->i_flags & xfs_iflag_for_tag(tag)) | 
|  | return; | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags |= xfs_iflag_for_tag(tag); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  |  | 
|  | tagged = radix_tree_tagged(&pag->pag_ici_root, tag); | 
|  | radix_tree_tag_set(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
|  | if (!tagged) { | 
|  | /* propagate the eofblocks tag up into the perag radix tree */ | 
|  | spin_lock(&ip->i_mount->m_perag_lock); | 
|  | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | 
|  | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | tag); | 
|  | spin_unlock(&ip->i_mount->m_perag_lock); | 
|  |  | 
|  | /* kick off background trimming */ | 
|  | execute(ip->i_mount); | 
|  |  | 
|  | set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
|  | } | 
|  |  | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_set_eofblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_set_eofblocks_tag(ip); | 
|  | return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks, | 
|  | trace_xfs_perag_set_eofblocks, | 
|  | XFS_ICI_EOFBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_inode_clear_blocks_tag( | 
|  | xfs_inode_t	*ip, | 
|  | void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno, | 
|  | int error, unsigned long caller_ip), | 
|  | int		tag) | 
|  | { | 
|  | struct xfs_mount *mp = ip->i_mount; | 
|  | struct xfs_perag *pag; | 
|  |  | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ip->i_flags &= ~xfs_iflag_for_tag(tag); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  | spin_lock(&pag->pag_ici_lock); | 
|  |  | 
|  | radix_tree_tag_clear(&pag->pag_ici_root, | 
|  | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag); | 
|  | if (!radix_tree_tagged(&pag->pag_ici_root, tag)) { | 
|  | /* clear the eofblocks tag from the perag radix tree */ | 
|  | spin_lock(&ip->i_mount->m_perag_lock); | 
|  | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | 
|  | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | 
|  | tag); | 
|  | spin_unlock(&ip->i_mount->m_perag_lock); | 
|  | clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_); | 
|  | } | 
|  |  | 
|  | spin_unlock(&pag->pag_ici_lock); | 
|  | xfs_perag_put(pag); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_clear_eofblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_clear_eofblocks_tag(ip); | 
|  | return __xfs_inode_clear_blocks_tag(ip, | 
|  | trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set ourselves up to free CoW blocks from this file.  If it's already clean | 
|  | * then we can bail out quickly, but otherwise we must back off if the file | 
|  | * is undergoing some kind of write. | 
|  | */ | 
|  | static bool | 
|  | xfs_prep_free_cowblocks( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | /* | 
|  | * Just clear the tag if we have an empty cow fork or none at all. It's | 
|  | * possible the inode was fully unshared since it was originally tagged. | 
|  | */ | 
|  | if (!xfs_inode_has_cow_data(ip)) { | 
|  | trace_xfs_inode_free_cowblocks_invalid(ip); | 
|  | xfs_inode_clear_cowblocks_tag(ip); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the mapping is dirty or under writeback we cannot touch the | 
|  | * CoW fork.  Leave it alone if we're in the midst of a directio. | 
|  | */ | 
|  | if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) || | 
|  | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) || | 
|  | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) || | 
|  | atomic_read(&VFS_I(ip)->i_dio_count)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Automatic CoW Reservation Freeing | 
|  | * | 
|  | * These functions automatically garbage collect leftover CoW reservations | 
|  | * that were made on behalf of a cowextsize hint when we start to run out | 
|  | * of quota or when the reservations sit around for too long.  If the file | 
|  | * has dirty pages or is undergoing writeback, its CoW reservations will | 
|  | * be retained. | 
|  | * | 
|  | * The actual garbage collection piggybacks off the same code that runs | 
|  | * the speculative EOF preallocation garbage collector. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inode_free_cowblocks( | 
|  | struct xfs_inode	*ip, | 
|  | int			flags, | 
|  | void			*args) | 
|  | { | 
|  | struct xfs_eofblocks	*eofb = args; | 
|  | int			match; | 
|  | int			ret = 0; | 
|  |  | 
|  | if (!xfs_prep_free_cowblocks(ip)) | 
|  | return 0; | 
|  |  | 
|  | if (eofb) { | 
|  | if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) | 
|  | match = xfs_inode_match_id_union(ip, eofb); | 
|  | else | 
|  | match = xfs_inode_match_id(ip, eofb); | 
|  | if (!match) | 
|  | return 0; | 
|  |  | 
|  | /* skip the inode if the file size is too small */ | 
|  | if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | 
|  | XFS_ISIZE(ip) < eofb->eof_min_file_size) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free the CoW blocks */ | 
|  | xfs_ilock(ip, XFS_IOLOCK_EXCL); | 
|  | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Check again, nobody else should be able to dirty blocks or change | 
|  | * the reflink iflag now that we have the first two locks held. | 
|  | */ | 
|  | if (xfs_prep_free_cowblocks(ip)) | 
|  | ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); | 
|  | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_icache_free_cowblocks( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_eofblocks	*eofb) | 
|  | { | 
|  | return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks, | 
|  | XFS_ICI_COWBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_inode_free_quota_cowblocks( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_set_cowblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_set_cowblocks_tag(ip); | 
|  | return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks, | 
|  | trace_xfs_perag_set_cowblocks, | 
|  | XFS_ICI_COWBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_inode_clear_cowblocks_tag( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | trace_xfs_inode_clear_cowblocks_tag(ip); | 
|  | return __xfs_inode_clear_blocks_tag(ip, | 
|  | trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG); | 
|  | } | 
|  |  | 
|  | /* Disable post-EOF and CoW block auto-reclamation. */ | 
|  | void | 
|  | xfs_icache_disable_reclaim( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | cancel_delayed_work_sync(&mp->m_eofblocks_work); | 
|  | cancel_delayed_work_sync(&mp->m_cowblocks_work); | 
|  | } | 
|  |  | 
|  | /* Enable post-EOF and CoW block auto-reclamation. */ | 
|  | void | 
|  | xfs_icache_enable_reclaim( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | xfs_queue_eofblocks(mp); | 
|  | xfs_queue_cowblocks(mp); | 
|  | } |