|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * SLUB: A slab allocator that limits cache line use instead of queuing | 
|  | * objects in per cpu and per node lists. | 
|  | * | 
|  | * The allocator synchronizes using per slab locks or atomic operatios | 
|  | * and only uses a centralized lock to manage a pool of partial slabs. | 
|  | * | 
|  | * (C) 2007 SGI, Christoph Lameter | 
|  | * (C) 2011 Linux Foundation, Christoph Lameter | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> /* struct reclaim_state */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include "slab.h" | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/fault-inject.h> | 
|  | #include <linux/stacktrace.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/random.h> | 
|  |  | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Lock order: | 
|  | *   1. slab_mutex (Global Mutex) | 
|  | *   2. node->list_lock | 
|  | *   3. slab_lock(page) (Only on some arches and for debugging) | 
|  | * | 
|  | *   slab_mutex | 
|  | * | 
|  | *   The role of the slab_mutex is to protect the list of all the slabs | 
|  | *   and to synchronize major metadata changes to slab cache structures. | 
|  | * | 
|  | *   The slab_lock is only used for debugging and on arches that do not | 
|  | *   have the ability to do a cmpxchg_double. It only protects: | 
|  | *	A. page->freelist	-> List of object free in a page | 
|  | *	B. page->inuse		-> Number of objects in use | 
|  | *	C. page->objects	-> Number of objects in page | 
|  | *	D. page->frozen		-> frozen state | 
|  | * | 
|  | *   If a slab is frozen then it is exempt from list management. It is not | 
|  | *   on any list. The processor that froze the slab is the one who can | 
|  | *   perform list operations on the page. Other processors may put objects | 
|  | *   onto the freelist but the processor that froze the slab is the only | 
|  | *   one that can retrieve the objects from the page's freelist. | 
|  | * | 
|  | *   The list_lock protects the partial and full list on each node and | 
|  | *   the partial slab counter. If taken then no new slabs may be added or | 
|  | *   removed from the lists nor make the number of partial slabs be modified. | 
|  | *   (Note that the total number of slabs is an atomic value that may be | 
|  | *   modified without taking the list lock). | 
|  | * | 
|  | *   The list_lock is a centralized lock and thus we avoid taking it as | 
|  | *   much as possible. As long as SLUB does not have to handle partial | 
|  | *   slabs, operations can continue without any centralized lock. F.e. | 
|  | *   allocating a long series of objects that fill up slabs does not require | 
|  | *   the list lock. | 
|  | *   Interrupts are disabled during allocation and deallocation in order to | 
|  | *   make the slab allocator safe to use in the context of an irq. In addition | 
|  | *   interrupts are disabled to ensure that the processor does not change | 
|  | *   while handling per_cpu slabs, due to kernel preemption. | 
|  | * | 
|  | * SLUB assigns one slab for allocation to each processor. | 
|  | * Allocations only occur from these slabs called cpu slabs. | 
|  | * | 
|  | * Slabs with free elements are kept on a partial list and during regular | 
|  | * operations no list for full slabs is used. If an object in a full slab is | 
|  | * freed then the slab will show up again on the partial lists. | 
|  | * We track full slabs for debugging purposes though because otherwise we | 
|  | * cannot scan all objects. | 
|  | * | 
|  | * Slabs are freed when they become empty. Teardown and setup is | 
|  | * minimal so we rely on the page allocators per cpu caches for | 
|  | * fast frees and allocs. | 
|  | * | 
|  | * Overloading of page flags that are otherwise used for LRU management. | 
|  | * | 
|  | * PageActive 		The slab is frozen and exempt from list processing. | 
|  | * 			This means that the slab is dedicated to a purpose | 
|  | * 			such as satisfying allocations for a specific | 
|  | * 			processor. Objects may be freed in the slab while | 
|  | * 			it is frozen but slab_free will then skip the usual | 
|  | * 			list operations. It is up to the processor holding | 
|  | * 			the slab to integrate the slab into the slab lists | 
|  | * 			when the slab is no longer needed. | 
|  | * | 
|  | * 			One use of this flag is to mark slabs that are | 
|  | * 			used for allocations. Then such a slab becomes a cpu | 
|  | * 			slab. The cpu slab may be equipped with an additional | 
|  | * 			freelist that allows lockless access to | 
|  | * 			free objects in addition to the regular freelist | 
|  | * 			that requires the slab lock. | 
|  | * | 
|  | * PageError		Slab requires special handling due to debug | 
|  | * 			options set. This moves	slab handling out of | 
|  | * 			the fast path and disables lockless freelists. | 
|  | */ | 
|  |  | 
|  | static inline int kmem_cache_debug(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | return unlikely(s->flags & SLAB_DEBUG_FLAGS); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void *fixup_red_left(struct kmem_cache *s, void *p) | 
|  | { | 
|  | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | 
|  | p += s->red_left_pad; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | return !kmem_cache_debug(s); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issues still to be resolved: | 
|  | * | 
|  | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
|  | * | 
|  | * - Variable sizing of the per node arrays | 
|  | */ | 
|  |  | 
|  | /* Enable to test recovery from slab corruption on boot */ | 
|  | #undef SLUB_RESILIENCY_TEST | 
|  |  | 
|  | /* Enable to log cmpxchg failures */ | 
|  | #undef SLUB_DEBUG_CMPXCHG | 
|  |  | 
|  | /* | 
|  | * Mininum number of partial slabs. These will be left on the partial | 
|  | * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
|  | */ | 
|  | #define MIN_PARTIAL 5 | 
|  |  | 
|  | /* | 
|  | * Maximum number of desirable partial slabs. | 
|  | * The existence of more partial slabs makes kmem_cache_shrink | 
|  | * sort the partial list by the number of objects in use. | 
|  | */ | 
|  | #define MAX_PARTIAL 10 | 
|  |  | 
|  | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ | 
|  | SLAB_POISON | SLAB_STORE_USER) | 
|  |  | 
|  | /* | 
|  | * These debug flags cannot use CMPXCHG because there might be consistency | 
|  | * issues when checking or reading debug information | 
|  | */ | 
|  | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Debugging flags that require metadata to be stored in the slab.  These get | 
|  | * disabled when slub_debug=O is used and a cache's min order increases with | 
|  | * metadata. | 
|  | */ | 
|  | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
|  |  | 
|  | #define OO_SHIFT	16 | 
|  | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
|  | #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */ | 
|  |  | 
|  | /* Internal SLUB flags */ | 
|  | /* Poison object */ | 
|  | #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U) | 
|  | /* Use cmpxchg_double */ | 
|  | #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U) | 
|  |  | 
|  | /* | 
|  | * Tracking user of a slab. | 
|  | */ | 
|  | #define TRACK_ADDRS_COUNT 16 | 
|  | struct track { | 
|  | unsigned long addr;	/* Called from address */ | 
|  | #ifdef CONFIG_STACKTRACE | 
|  | unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */ | 
|  | #endif | 
|  | int cpu;		/* Was running on cpu */ | 
|  | int pid;		/* Pid context */ | 
|  | unsigned long when;	/* When did the operation occur */ | 
|  | }; | 
|  |  | 
|  | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static int sysfs_slab_add(struct kmem_cache *); | 
|  | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
|  | static void memcg_propagate_slab_attrs(struct kmem_cache *s); | 
|  | static void sysfs_slab_remove(struct kmem_cache *s); | 
|  | #else | 
|  | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
|  | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
|  | { return 0; } | 
|  | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } | 
|  | static inline void sysfs_slab_remove(struct kmem_cache *s) { } | 
|  | #endif | 
|  |  | 
|  | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | /* | 
|  | * The rmw is racy on a preemptible kernel but this is acceptable, so | 
|  | * avoid this_cpu_add()'s irq-disable overhead. | 
|  | */ | 
|  | raw_cpu_inc(s->cpu_slab->stat[si]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * 			Core slab cache functions | 
|  | *******************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Returns freelist pointer (ptr). With hardening, this is obfuscated | 
|  | * with an XOR of the address where the pointer is held and a per-cache | 
|  | * random number. | 
|  | */ | 
|  | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | 
|  | unsigned long ptr_addr) | 
|  | { | 
|  | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | /* | 
|  | * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | 
|  | * Normally, this doesn't cause any issues, as both set_freepointer() | 
|  | * and get_freepointer() are called with a pointer with the same tag. | 
|  | * However, there are some issues with CONFIG_SLUB_DEBUG code. For | 
|  | * example, when __free_slub() iterates over objects in a cache, it | 
|  | * passes untagged pointers to check_object(). check_object() in turns | 
|  | * calls get_freepointer() with an untagged pointer, which causes the | 
|  | * freepointer to be restored incorrectly. | 
|  | */ | 
|  | return (void *)((unsigned long)ptr ^ s->random ^ | 
|  | (unsigned long)kasan_reset_tag((void *)ptr_addr)); | 
|  | #else | 
|  | return ptr; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Returns the freelist pointer recorded at location ptr_addr. */ | 
|  | static inline void *freelist_dereference(const struct kmem_cache *s, | 
|  | void *ptr_addr) | 
|  | { | 
|  | return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | 
|  | (unsigned long)ptr_addr); | 
|  | } | 
|  |  | 
|  | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
|  | { | 
|  | return freelist_dereference(s, object + s->offset); | 
|  | } | 
|  |  | 
|  | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | 
|  | { | 
|  | prefetch(object + s->offset); | 
|  | } | 
|  |  | 
|  | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | 
|  | { | 
|  | unsigned long freepointer_addr; | 
|  | void *p; | 
|  |  | 
|  | if (!debug_pagealloc_enabled()) | 
|  | return get_freepointer(s, object); | 
|  |  | 
|  | freepointer_addr = (unsigned long)object + s->offset; | 
|  | probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | 
|  | return freelist_ptr(s, p, freepointer_addr); | 
|  | } | 
|  |  | 
|  | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
|  | { | 
|  | unsigned long freeptr_addr = (unsigned long)object + s->offset; | 
|  |  | 
|  | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | BUG_ON(object == fp); /* naive detection of double free or corruption */ | 
|  | #endif | 
|  |  | 
|  | *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); | 
|  | } | 
|  |  | 
|  | /* Loop over all objects in a slab */ | 
|  | #define for_each_object(__p, __s, __addr, __objects) \ | 
|  | for (__p = fixup_red_left(__s, __addr); \ | 
|  | __p < (__addr) + (__objects) * (__s)->size; \ | 
|  | __p += (__s)->size) | 
|  |  | 
|  | /* Determine object index from a given position */ | 
|  | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) | 
|  | { | 
|  | return (kasan_reset_tag(p) - addr) / s->size; | 
|  | } | 
|  |  | 
|  | static inline unsigned int order_objects(unsigned int order, unsigned int size) | 
|  | { | 
|  | return ((unsigned int)PAGE_SIZE << order) / size; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache_order_objects oo_make(unsigned int order, | 
|  | unsigned int size) | 
|  | { | 
|  | struct kmem_cache_order_objects x = { | 
|  | (order << OO_SHIFT) + order_objects(order, size) | 
|  | }; | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static inline unsigned int oo_order(struct kmem_cache_order_objects x) | 
|  | { | 
|  | return x.x >> OO_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) | 
|  | { | 
|  | return x.x & OO_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per slab locking using the pagelock | 
|  | */ | 
|  | static __always_inline void slab_lock(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | bit_spin_lock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static __always_inline void slab_unlock(struct page *page) | 
|  | { | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | __bit_spin_unlock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | /* Interrupts must be disabled (for the fallback code to work right) */ | 
|  | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
|  | void *freelist_old, unsigned long counters_old, | 
|  | void *freelist_new, unsigned long counters_new, | 
|  | const char *n) | 
|  | { | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | if (s->flags & __CMPXCHG_DOUBLE) { | 
|  | if (cmpxchg_double(&page->freelist, &page->counters, | 
|  | freelist_old, counters_old, | 
|  | freelist_new, counters_new)) | 
|  | return true; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | slab_lock(page); | 
|  | if (page->freelist == freelist_old && | 
|  | page->counters == counters_old) { | 
|  | page->freelist = freelist_new; | 
|  | page->counters = counters_new; | 
|  | slab_unlock(page); | 
|  | return true; | 
|  | } | 
|  | slab_unlock(page); | 
|  | } | 
|  |  | 
|  | cpu_relax(); | 
|  | stat(s, CMPXCHG_DOUBLE_FAIL); | 
|  |  | 
|  | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
|  | #endif | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
|  | void *freelist_old, unsigned long counters_old, | 
|  | void *freelist_new, unsigned long counters_new, | 
|  | const char *n) | 
|  | { | 
|  | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | if (s->flags & __CMPXCHG_DOUBLE) { | 
|  | if (cmpxchg_double(&page->freelist, &page->counters, | 
|  | freelist_old, counters_old, | 
|  | freelist_new, counters_new)) | 
|  | return true; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | slab_lock(page); | 
|  | if (page->freelist == freelist_old && | 
|  | page->counters == counters_old) { | 
|  | page->freelist = freelist_new; | 
|  | page->counters = counters_new; | 
|  | slab_unlock(page); | 
|  | local_irq_restore(flags); | 
|  | return true; | 
|  | } | 
|  | slab_unlock(page); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | cpu_relax(); | 
|  | stat(s, CMPXCHG_DOUBLE_FAIL); | 
|  |  | 
|  | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
|  | #endif | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Determine a map of object in use on a page. | 
|  | * | 
|  | * Node listlock must be held to guarantee that the page does | 
|  | * not vanish from under us. | 
|  | */ | 
|  | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | 
|  | { | 
|  | void *p; | 
|  | void *addr = page_address(page); | 
|  |  | 
|  | for (p = page->freelist; p; p = get_freepointer(s, p)) | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  | } | 
|  |  | 
|  | static inline unsigned int size_from_object(struct kmem_cache *s) | 
|  | { | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | return s->size - s->red_left_pad; | 
|  |  | 
|  | return s->size; | 
|  | } | 
|  |  | 
|  | static inline void *restore_red_left(struct kmem_cache *s, void *p) | 
|  | { | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | p -= s->red_left_pad; | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Debug settings: | 
|  | */ | 
|  | #if defined(CONFIG_SLUB_DEBUG_ON) | 
|  | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | #else | 
|  | static slab_flags_t slub_debug; | 
|  | #endif | 
|  |  | 
|  | static char *slub_debug_slabs; | 
|  | static int disable_higher_order_debug; | 
|  |  | 
|  | /* | 
|  | * slub is about to manipulate internal object metadata.  This memory lies | 
|  | * outside the range of the allocated object, so accessing it would normally | 
|  | * be reported by kasan as a bounds error.  metadata_access_enable() is used | 
|  | * to tell kasan that these accesses are OK. | 
|  | */ | 
|  | static inline void metadata_access_enable(void) | 
|  | { | 
|  | kasan_disable_current(); | 
|  | } | 
|  |  | 
|  | static inline void metadata_access_disable(void) | 
|  | { | 
|  | kasan_enable_current(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Object debugging | 
|  | */ | 
|  |  | 
|  | /* Verify that a pointer has an address that is valid within a slab page */ | 
|  | static inline int check_valid_pointer(struct kmem_cache *s, | 
|  | struct page *page, void *object) | 
|  | { | 
|  | void *base; | 
|  |  | 
|  | if (!object) | 
|  | return 1; | 
|  |  | 
|  | base = page_address(page); | 
|  | object = kasan_reset_tag(object); | 
|  | object = restore_red_left(s, object); | 
|  | if (object < base || object >= base + page->objects * s->size || | 
|  | (object - base) % s->size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void print_section(char *level, char *text, u8 *addr, | 
|  | unsigned int length) | 
|  | { | 
|  | metadata_access_enable(); | 
|  | print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, | 
|  | length, 1); | 
|  | metadata_access_disable(); | 
|  | } | 
|  |  | 
|  | static struct track *get_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc) | 
|  | { | 
|  | struct track *p; | 
|  |  | 
|  | if (s->offset) | 
|  | p = object + s->offset + sizeof(void *); | 
|  | else | 
|  | p = object + s->inuse; | 
|  |  | 
|  | return p + alloc; | 
|  | } | 
|  |  | 
|  | static void set_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc, unsigned long addr) | 
|  | { | 
|  | struct track *p = get_track(s, object, alloc); | 
|  |  | 
|  | if (addr) { | 
|  | #ifdef CONFIG_STACKTRACE | 
|  | struct stack_trace trace; | 
|  | int i; | 
|  |  | 
|  | trace.nr_entries = 0; | 
|  | trace.max_entries = TRACK_ADDRS_COUNT; | 
|  | trace.entries = p->addrs; | 
|  | trace.skip = 3; | 
|  | metadata_access_enable(); | 
|  | save_stack_trace(&trace); | 
|  | metadata_access_disable(); | 
|  |  | 
|  | /* See rant in lockdep.c */ | 
|  | if (trace.nr_entries != 0 && | 
|  | trace.entries[trace.nr_entries - 1] == ULONG_MAX) | 
|  | trace.nr_entries--; | 
|  |  | 
|  | for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | 
|  | p->addrs[i] = 0; | 
|  | #endif | 
|  | p->addr = addr; | 
|  | p->cpu = smp_processor_id(); | 
|  | p->pid = current->pid; | 
|  | p->when = jiffies; | 
|  | } else | 
|  | memset(p, 0, sizeof(struct track)); | 
|  | } | 
|  |  | 
|  | static void init_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | set_track(s, object, TRACK_FREE, 0UL); | 
|  | set_track(s, object, TRACK_ALLOC, 0UL); | 
|  | } | 
|  |  | 
|  | static void print_track(const char *s, struct track *t, unsigned long pr_time) | 
|  | { | 
|  | if (!t->addr) | 
|  | return; | 
|  |  | 
|  | pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
|  | s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); | 
|  | #ifdef CONFIG_STACKTRACE | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < TRACK_ADDRS_COUNT; i++) | 
|  | if (t->addrs[i]) | 
|  | pr_err("\t%pS\n", (void *)t->addrs[i]); | 
|  | else | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void print_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | unsigned long pr_time = jiffies; | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); | 
|  | print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | 
|  | } | 
|  |  | 
|  | static void print_page_info(struct page *page) | 
|  | { | 
|  | pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
|  | page, page->objects, page->inuse, page->freelist, page->flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  | pr_err("=============================================================================\n"); | 
|  | pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); | 
|  | pr_err("-----------------------------------------------------------------------------\n\n"); | 
|  |  | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | struct va_format vaf; | 
|  | va_list args; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vaf.fmt = fmt; | 
|  | vaf.va = &args; | 
|  | pr_err("FIX %s: %pV\n", s->name, &vaf); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned int off;	/* Offset of last byte */ | 
|  | u8 *addr = page_address(page); | 
|  |  | 
|  | print_tracking(s, p); | 
|  |  | 
|  | print_page_info(page); | 
|  |  | 
|  | pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
|  | p, p - addr, get_freepointer(s, p)); | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, | 
|  | s->red_left_pad); | 
|  | else if (p > addr + 16) | 
|  | print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); | 
|  |  | 
|  | print_section(KERN_ERR, "Object ", p, | 
|  | min_t(unsigned int, s->object_size, PAGE_SIZE)); | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | print_section(KERN_ERR, "Redzone ", p + s->object_size, | 
|  | s->inuse - s->object_size); | 
|  |  | 
|  | if (s->offset) | 
|  | off = s->offset + sizeof(void *); | 
|  | else | 
|  | off = s->inuse; | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | off += kasan_metadata_size(s); | 
|  |  | 
|  | if (off != size_from_object(s)) | 
|  | /* Beginning of the filler is the free pointer */ | 
|  | print_section(KERN_ERR, "Padding ", p + off, | 
|  | size_from_object(s) - off); | 
|  |  | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | void object_err(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *reason) | 
|  | { | 
|  | slab_bug(s, "%s", reason); | 
|  | print_trailer(s, page, object); | 
|  | } | 
|  |  | 
|  | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | slab_bug(s, "%s", buf); | 
|  | print_page_info(page); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
|  | { | 
|  | u8 *p = object; | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | memset(p - s->red_left_pad, val, s->red_left_pad); | 
|  |  | 
|  | if (s->flags & __OBJECT_POISON) { | 
|  | memset(p, POISON_FREE, s->object_size - 1); | 
|  | p[s->object_size - 1] = POISON_END; | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | memset(p + s->object_size, val, s->inuse - s->object_size); | 
|  | } | 
|  |  | 
|  | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
|  | void *from, void *to) | 
|  | { | 
|  | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
|  | memset(from, data, to - from); | 
|  | } | 
|  |  | 
|  | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *what, | 
|  | u8 *start, unsigned int value, unsigned int bytes) | 
|  | { | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  |  | 
|  | metadata_access_enable(); | 
|  | fault = memchr_inv(start, value, bytes); | 
|  | metadata_access_disable(); | 
|  | if (!fault) | 
|  | return 1; | 
|  |  | 
|  | end = start + bytes; | 
|  | while (end > fault && end[-1] == value) | 
|  | end--; | 
|  |  | 
|  | slab_bug(s, "%s overwritten", what); | 
|  | pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
|  | fault, end - 1, fault[0], value); | 
|  | print_trailer(s, page, object); | 
|  |  | 
|  | restore_bytes(s, what, value, fault, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Object layout: | 
|  | * | 
|  | * object address | 
|  | * 	Bytes of the object to be managed. | 
|  | * 	If the freepointer may overlay the object then the free | 
|  | * 	pointer is the first word of the object. | 
|  | * | 
|  | * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
|  | * 	0xa5 (POISON_END) | 
|  | * | 
|  | * object + s->object_size | 
|  | * 	Padding to reach word boundary. This is also used for Redzoning. | 
|  | * 	Padding is extended by another word if Redzoning is enabled and | 
|  | * 	object_size == inuse. | 
|  | * | 
|  | * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
|  | * 	0xcc (RED_ACTIVE) for objects in use. | 
|  | * | 
|  | * object + s->inuse | 
|  | * 	Meta data starts here. | 
|  | * | 
|  | * 	A. Free pointer (if we cannot overwrite object on free) | 
|  | * 	B. Tracking data for SLAB_STORE_USER | 
|  | * 	C. Padding to reach required alignment boundary or at mininum | 
|  | * 		one word if debugging is on to be able to detect writes | 
|  | * 		before the word boundary. | 
|  | * | 
|  | *	Padding is done using 0x5a (POISON_INUSE) | 
|  | * | 
|  | * object + s->size | 
|  | * 	Nothing is used beyond s->size. | 
|  | * | 
|  | * If slabcaches are merged then the object_size and inuse boundaries are mostly | 
|  | * ignored. And therefore no slab options that rely on these boundaries | 
|  | * may be used with merged slabcaches. | 
|  | */ | 
|  |  | 
|  | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned long off = s->inuse;	/* The end of info */ | 
|  |  | 
|  | if (s->offset) | 
|  | /* Freepointer is placed after the object. */ | 
|  | off += sizeof(void *); | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | /* We also have user information there */ | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | off += kasan_metadata_size(s); | 
|  |  | 
|  | if (size_from_object(s) == off) | 
|  | return 1; | 
|  |  | 
|  | return check_bytes_and_report(s, page, p, "Object padding", | 
|  | p + off, POISON_INUSE, size_from_object(s) - off); | 
|  | } | 
|  |  | 
|  | /* Check the pad bytes at the end of a slab page */ | 
|  | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | u8 *start; | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  | u8 *pad; | 
|  | int length; | 
|  | int remainder; | 
|  |  | 
|  | if (!(s->flags & SLAB_POISON)) | 
|  | return 1; | 
|  |  | 
|  | start = page_address(page); | 
|  | length = PAGE_SIZE << compound_order(page); | 
|  | end = start + length; | 
|  | remainder = length % s->size; | 
|  | if (!remainder) | 
|  | return 1; | 
|  |  | 
|  | pad = end - remainder; | 
|  | metadata_access_enable(); | 
|  | fault = memchr_inv(pad, POISON_INUSE, remainder); | 
|  | metadata_access_disable(); | 
|  | if (!fault) | 
|  | return 1; | 
|  | while (end > fault && end[-1] == POISON_INUSE) | 
|  | end--; | 
|  |  | 
|  | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
|  | print_section(KERN_ERR, "Padding ", pad, remainder); | 
|  |  | 
|  | restore_bytes(s, "slab padding", POISON_INUSE, fault, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, u8 val) | 
|  | { | 
|  | u8 *p = object; | 
|  | u8 *endobject = object + s->object_size; | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) { | 
|  | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | object - s->red_left_pad, val, s->red_left_pad)) | 
|  | return 0; | 
|  |  | 
|  | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | endobject, val, s->inuse - s->object_size)) | 
|  | return 0; | 
|  | } else { | 
|  | if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { | 
|  | check_bytes_and_report(s, page, p, "Alignment padding", | 
|  | endobject, POISON_INUSE, | 
|  | s->inuse - s->object_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_POISON) { | 
|  | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
|  | (!check_bytes_and_report(s, page, p, "Poison", p, | 
|  | POISON_FREE, s->object_size - 1) || | 
|  | !check_bytes_and_report(s, page, p, "Poison", | 
|  | p + s->object_size - 1, POISON_END, 1))) | 
|  | return 0; | 
|  | /* | 
|  | * check_pad_bytes cleans up on its own. | 
|  | */ | 
|  | check_pad_bytes(s, page, p); | 
|  | } | 
|  |  | 
|  | if (!s->offset && val == SLUB_RED_ACTIVE) | 
|  | /* | 
|  | * Object and freepointer overlap. Cannot check | 
|  | * freepointer while object is allocated. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | /* Check free pointer validity */ | 
|  | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
|  | object_err(s, page, p, "Freepointer corrupt"); | 
|  | /* | 
|  | * No choice but to zap it and thus lose the remainder | 
|  | * of the free objects in this slab. May cause | 
|  | * another error because the object count is now wrong. | 
|  | */ | 
|  | set_freepointer(s, p, NULL); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | int maxobj; | 
|  |  | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (!PageSlab(page)) { | 
|  | slab_err(s, page, "Not a valid slab page"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | maxobj = order_objects(compound_order(page), s->size); | 
|  | if (page->objects > maxobj) { | 
|  | slab_err(s, page, "objects %u > max %u", | 
|  | page->objects, maxobj); | 
|  | return 0; | 
|  | } | 
|  | if (page->inuse > page->objects) { | 
|  | slab_err(s, page, "inuse %u > max %u", | 
|  | page->inuse, page->objects); | 
|  | return 0; | 
|  | } | 
|  | /* Slab_pad_check fixes things up after itself */ | 
|  | slab_pad_check(s, page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a certain object on a page is on the freelist. Must hold the | 
|  | * slab lock to guarantee that the chains are in a consistent state. | 
|  | */ | 
|  | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
|  | { | 
|  | int nr = 0; | 
|  | void *fp; | 
|  | void *object = NULL; | 
|  | int max_objects; | 
|  |  | 
|  | fp = page->freelist; | 
|  | while (fp && nr <= page->objects) { | 
|  | if (fp == search) | 
|  | return 1; | 
|  | if (!check_valid_pointer(s, page, fp)) { | 
|  | if (object) { | 
|  | object_err(s, page, object, | 
|  | "Freechain corrupt"); | 
|  | set_freepointer(s, object, NULL); | 
|  | } else { | 
|  | slab_err(s, page, "Freepointer corrupt"); | 
|  | page->freelist = NULL; | 
|  | page->inuse = page->objects; | 
|  | slab_fix(s, "Freelist cleared"); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | object = fp; | 
|  | fp = get_freepointer(s, object); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | max_objects = order_objects(compound_order(page), s->size); | 
|  | if (max_objects > MAX_OBJS_PER_PAGE) | 
|  | max_objects = MAX_OBJS_PER_PAGE; | 
|  |  | 
|  | if (page->objects != max_objects) { | 
|  | slab_err(s, page, "Wrong number of objects. Found %d but should be %d", | 
|  | page->objects, max_objects); | 
|  | page->objects = max_objects; | 
|  | slab_fix(s, "Number of objects adjusted."); | 
|  | } | 
|  | if (page->inuse != page->objects - nr) { | 
|  | slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", | 
|  | page->inuse, page->objects - nr); | 
|  | page->inuse = page->objects - nr; | 
|  | slab_fix(s, "Object count adjusted."); | 
|  | } | 
|  | return search == NULL; | 
|  | } | 
|  |  | 
|  | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
|  | int alloc) | 
|  | { | 
|  | if (s->flags & SLAB_TRACE) { | 
|  | pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
|  | s->name, | 
|  | alloc ? "alloc" : "free", | 
|  | object, page->inuse, | 
|  | page->freelist); | 
|  |  | 
|  | if (!alloc) | 
|  | print_section(KERN_INFO, "Object ", (void *)object, | 
|  | s->object_size); | 
|  |  | 
|  | WARN_ON(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tracking of fully allocated slabs for debugging purposes. | 
|  | */ | 
|  | static void add_full(struct kmem_cache *s, | 
|  | struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | lockdep_assert_held(&n->list_lock); | 
|  | list_add(&page->lru, &n->full); | 
|  | } | 
|  |  | 
|  | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | lockdep_assert_held(&n->list_lock); | 
|  | list_del(&page->lru); | 
|  | } | 
|  |  | 
|  | /* Tracking of the number of slabs for debugging purposes */ | 
|  | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | return atomic_long_read(&n->nr_slabs); | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | { | 
|  | return atomic_long_read(&n->nr_slabs); | 
|  | } | 
|  |  | 
|  | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | /* | 
|  | * May be called early in order to allocate a slab for the | 
|  | * kmem_cache_node structure. Solve the chicken-egg | 
|  | * dilemma by deferring the increment of the count during | 
|  | * bootstrap (see early_kmem_cache_node_alloc). | 
|  | */ | 
|  | if (likely(n)) { | 
|  | atomic_long_inc(&n->nr_slabs); | 
|  | atomic_long_add(objects, &n->total_objects); | 
|  | } | 
|  | } | 
|  | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | atomic_long_dec(&n->nr_slabs); | 
|  | atomic_long_sub(objects, &n->total_objects); | 
|  | } | 
|  |  | 
|  | /* Object debug checks for alloc/free paths */ | 
|  | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
|  | return; | 
|  |  | 
|  | init_object(s, object, SLUB_RED_INACTIVE); | 
|  | init_tracking(s, object); | 
|  | } | 
|  |  | 
|  | static void setup_page_debug(struct kmem_cache *s, void *addr, int order) | 
|  | { | 
|  | if (!(s->flags & SLAB_POISON)) | 
|  | return; | 
|  |  | 
|  | metadata_access_enable(); | 
|  | memset(addr, POISON_INUSE, PAGE_SIZE << order); | 
|  | metadata_access_disable(); | 
|  | } | 
|  |  | 
|  | static inline int alloc_consistency_checks(struct kmem_cache *s, | 
|  | struct page *page, | 
|  | void *object, unsigned long addr) | 
|  | { | 
|  | if (!check_slab(s, page)) | 
|  | return 0; | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | object_err(s, page, object, "Freelist Pointer check fails"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static noinline int alloc_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, | 
|  | void *object, unsigned long addr) | 
|  | { | 
|  | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | if (!alloc_consistency_checks(s, page, object, addr)) | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* Success perform special debug activities for allocs */ | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_ALLOC, addr); | 
|  | trace(s, page, object, 1); | 
|  | init_object(s, object, SLUB_RED_ACTIVE); | 
|  | return 1; | 
|  |  | 
|  | bad: | 
|  | if (PageSlab(page)) { | 
|  | /* | 
|  | * If this is a slab page then lets do the best we can | 
|  | * to avoid issues in the future. Marking all objects | 
|  | * as used avoids touching the remaining objects. | 
|  | */ | 
|  | slab_fix(s, "Marking all objects used"); | 
|  | page->inuse = page->objects; | 
|  | page->freelist = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int free_consistency_checks(struct kmem_cache *s, | 
|  | struct page *page, void *object, unsigned long addr) | 
|  | { | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | slab_err(s, page, "Invalid object pointer 0x%p", object); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (on_freelist(s, page, object)) { | 
|  | object_err(s, page, object, "Object already free"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(s != page->slab_cache)) { | 
|  | if (!PageSlab(page)) { | 
|  | slab_err(s, page, "Attempt to free object(0x%p) outside of slab", | 
|  | object); | 
|  | } else if (!page->slab_cache) { | 
|  | pr_err("SLUB <none>: no slab for object 0x%p.\n", | 
|  | object); | 
|  | dump_stack(); | 
|  | } else | 
|  | object_err(s, page, object, | 
|  | "page slab pointer corrupt."); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Supports checking bulk free of a constructed freelist */ | 
|  | static noinline int free_debug_processing( | 
|  | struct kmem_cache *s, struct page *page, | 
|  | void *head, void *tail, int bulk_cnt, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | void *object = head; | 
|  | int cnt = 0; | 
|  | unsigned long uninitialized_var(flags); | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | slab_lock(page); | 
|  |  | 
|  | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | if (!check_slab(s, page)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | next_object: | 
|  | cnt++; | 
|  |  | 
|  | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | if (!free_consistency_checks(s, page, object, addr)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_FREE, addr); | 
|  | trace(s, page, object, 0); | 
|  | /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | 
|  | init_object(s, object, SLUB_RED_INACTIVE); | 
|  |  | 
|  | /* Reached end of constructed freelist yet? */ | 
|  | if (object != tail) { | 
|  | object = get_freepointer(s, object); | 
|  | goto next_object; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | out: | 
|  | if (cnt != bulk_cnt) | 
|  | slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | 
|  | bulk_cnt, cnt); | 
|  |  | 
|  | slab_unlock(page); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | if (!ret) | 
|  | slab_fix(s, "Object at 0x%p not freed", object); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init setup_slub_debug(char *str) | 
|  | { | 
|  | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | if (*str++ != '=' || !*str) | 
|  | /* | 
|  | * No options specified. Switch on full debugging. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | if (*str == ',') | 
|  | /* | 
|  | * No options but restriction on slabs. This means full | 
|  | * debugging for slabs matching a pattern. | 
|  | */ | 
|  | goto check_slabs; | 
|  |  | 
|  | slub_debug = 0; | 
|  | if (*str == '-') | 
|  | /* | 
|  | * Switch off all debugging measures. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine which debug features should be switched on | 
|  | */ | 
|  | for (; *str && *str != ','; str++) { | 
|  | switch (tolower(*str)) { | 
|  | case 'f': | 
|  | slub_debug |= SLAB_CONSISTENCY_CHECKS; | 
|  | break; | 
|  | case 'z': | 
|  | slub_debug |= SLAB_RED_ZONE; | 
|  | break; | 
|  | case 'p': | 
|  | slub_debug |= SLAB_POISON; | 
|  | break; | 
|  | case 'u': | 
|  | slub_debug |= SLAB_STORE_USER; | 
|  | break; | 
|  | case 't': | 
|  | slub_debug |= SLAB_TRACE; | 
|  | break; | 
|  | case 'a': | 
|  | slub_debug |= SLAB_FAILSLAB; | 
|  | break; | 
|  | case 'o': | 
|  | /* | 
|  | * Avoid enabling debugging on caches if its minimum | 
|  | * order would increase as a result. | 
|  | */ | 
|  | disable_higher_order_debug = 1; | 
|  | break; | 
|  | default: | 
|  | pr_err("slub_debug option '%c' unknown. skipped\n", | 
|  | *str); | 
|  | } | 
|  | } | 
|  |  | 
|  | check_slabs: | 
|  | if (*str == ',') | 
|  | slub_debug_slabs = str + 1; | 
|  | out: | 
|  | if ((static_branch_unlikely(&init_on_alloc) || | 
|  | static_branch_unlikely(&init_on_free)) && | 
|  | (slub_debug & SLAB_POISON)) | 
|  | pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_debug", setup_slub_debug); | 
|  |  | 
|  | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
|  | slab_flags_t flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | /* | 
|  | * Enable debugging if selected on the kernel commandline. | 
|  | */ | 
|  | if (slub_debug && (!slub_debug_slabs || (name && | 
|  | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | 
|  | flags |= slub_debug; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  | #else /* !CONFIG_SLUB_DEBUG */ | 
|  | static inline void setup_object_debug(struct kmem_cache *s, | 
|  | struct page *page, void *object) {} | 
|  | static inline void setup_page_debug(struct kmem_cache *s, | 
|  | void *addr, int order) {} | 
|  |  | 
|  | static inline int alloc_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, unsigned long addr) { return 0; } | 
|  |  | 
|  | static inline int free_debug_processing( | 
|  | struct kmem_cache *s, struct page *page, | 
|  | void *head, void *tail, int bulk_cnt, | 
|  | unsigned long addr) { return 0; } | 
|  |  | 
|  | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { return 1; } | 
|  | static inline int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, u8 val) { return 1; } | 
|  | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | struct page *page) {} | 
|  | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | struct page *page) {} | 
|  | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
|  | slab_flags_t flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | return flags; | 
|  | } | 
|  | #define slub_debug 0 | 
|  |  | 
|  | #define disable_higher_order_debug 0 | 
|  |  | 
|  | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | { return 0; } | 
|  | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | { return 0; } | 
|  | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
|  | int objects) {} | 
|  | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
|  | int objects) {} | 
|  |  | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | /* | 
|  | * Hooks for other subsystems that check memory allocations. In a typical | 
|  | * production configuration these hooks all should produce no code at all. | 
|  | */ | 
|  | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) | 
|  | { | 
|  | ptr = kasan_kmalloc_large(ptr, size, flags); | 
|  | kmemleak_alloc(ptr, size, 1, flags); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static __always_inline void kfree_hook(void *x) | 
|  | { | 
|  | kmemleak_free(x); | 
|  | kasan_kfree_large(x, _RET_IP_); | 
|  | } | 
|  |  | 
|  | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) | 
|  | { | 
|  | kmemleak_free_recursive(x, s->flags); | 
|  |  | 
|  | /* | 
|  | * Trouble is that we may no longer disable interrupts in the fast path | 
|  | * So in order to make the debug calls that expect irqs to be | 
|  | * disabled we need to disable interrupts temporarily. | 
|  | */ | 
|  | #ifdef CONFIG_LOCKDEP | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | debug_check_no_locks_freed(x, s->object_size); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
|  | debug_check_no_obj_freed(x, s->object_size); | 
|  |  | 
|  | /* KASAN might put x into memory quarantine, delaying its reuse */ | 
|  | return kasan_slab_free(s, x, _RET_IP_); | 
|  | } | 
|  |  | 
|  | static inline bool slab_free_freelist_hook(struct kmem_cache *s, | 
|  | void **head, void **tail) | 
|  | { | 
|  |  | 
|  | void *object; | 
|  | void *next = *head; | 
|  | void *old_tail = *tail ? *tail : *head; | 
|  | int rsize; | 
|  |  | 
|  | /* Head and tail of the reconstructed freelist */ | 
|  | *head = NULL; | 
|  | *tail = NULL; | 
|  |  | 
|  | do { | 
|  | object = next; | 
|  | next = get_freepointer(s, object); | 
|  |  | 
|  | if (slab_want_init_on_free(s)) { | 
|  | /* | 
|  | * Clear the object and the metadata, but don't touch | 
|  | * the redzone. | 
|  | */ | 
|  | memset(object, 0, s->object_size); | 
|  | rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | 
|  | : 0; | 
|  | memset((char *)object + s->inuse, 0, | 
|  | s->size - s->inuse - rsize); | 
|  |  | 
|  | } | 
|  | /* If object's reuse doesn't have to be delayed */ | 
|  | if (!slab_free_hook(s, object)) { | 
|  | /* Move object to the new freelist */ | 
|  | set_freepointer(s, object, *head); | 
|  | *head = object; | 
|  | if (!*tail) | 
|  | *tail = object; | 
|  | } | 
|  | } while (object != old_tail); | 
|  |  | 
|  | if (*head == *tail) | 
|  | *tail = NULL; | 
|  |  | 
|  | return *head != NULL; | 
|  | } | 
|  |  | 
|  | static void *setup_object(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | setup_object_debug(s, page, object); | 
|  | object = kasan_init_slab_obj(s, object); | 
|  | if (unlikely(s->ctor)) { | 
|  | kasan_unpoison_object_data(s, object); | 
|  | s->ctor(object); | 
|  | kasan_poison_object_data(s, object); | 
|  | } | 
|  | return object; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slab allocation and freeing | 
|  | */ | 
|  | static inline struct page *alloc_slab_page(struct kmem_cache *s, | 
|  | gfp_t flags, int node, struct kmem_cache_order_objects oo) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int order = oo_order(oo); | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | page = alloc_pages(flags, order); | 
|  | else | 
|  | page = __alloc_pages_node(node, flags, order); | 
|  |  | 
|  | if (page && memcg_charge_slab(page, flags, order, s)) { | 
|  | __free_pages(page, order); | 
|  | page = NULL; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
|  | /* Pre-initialize the random sequence cache */ | 
|  | static int init_cache_random_seq(struct kmem_cache *s) | 
|  | { | 
|  | unsigned int count = oo_objects(s->oo); | 
|  | int err; | 
|  |  | 
|  | /* Bailout if already initialised */ | 
|  | if (s->random_seq) | 
|  | return 0; | 
|  |  | 
|  | err = cache_random_seq_create(s, count, GFP_KERNEL); | 
|  | if (err) { | 
|  | pr_err("SLUB: Unable to initialize free list for %s\n", | 
|  | s->name); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Transform to an offset on the set of pages */ | 
|  | if (s->random_seq) { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | s->random_seq[i] *= s->size; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialize each random sequence freelist per cache */ | 
|  | static void __init init_freelist_randomization(void) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) | 
|  | init_cache_random_seq(s); | 
|  |  | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | /* Get the next entry on the pre-computed freelist randomized */ | 
|  | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *pos, void *start, | 
|  | unsigned long page_limit, | 
|  | unsigned long freelist_count) | 
|  | { | 
|  | unsigned int idx; | 
|  |  | 
|  | /* | 
|  | * If the target page allocation failed, the number of objects on the | 
|  | * page might be smaller than the usual size defined by the cache. | 
|  | */ | 
|  | do { | 
|  | idx = s->random_seq[*pos]; | 
|  | *pos += 1; | 
|  | if (*pos >= freelist_count) | 
|  | *pos = 0; | 
|  | } while (unlikely(idx >= page_limit)); | 
|  |  | 
|  | return (char *)start + idx; | 
|  | } | 
|  |  | 
|  | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | 
|  | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | void *start; | 
|  | void *cur; | 
|  | void *next; | 
|  | unsigned long idx, pos, page_limit, freelist_count; | 
|  |  | 
|  | if (page->objects < 2 || !s->random_seq) | 
|  | return false; | 
|  |  | 
|  | freelist_count = oo_objects(s->oo); | 
|  | pos = get_random_int() % freelist_count; | 
|  |  | 
|  | page_limit = page->objects * s->size; | 
|  | start = fixup_red_left(s, page_address(page)); | 
|  |  | 
|  | /* First entry is used as the base of the freelist */ | 
|  | cur = next_freelist_entry(s, page, &pos, start, page_limit, | 
|  | freelist_count); | 
|  | cur = setup_object(s, page, cur); | 
|  | page->freelist = cur; | 
|  |  | 
|  | for (idx = 1; idx < page->objects; idx++) { | 
|  | next = next_freelist_entry(s, page, &pos, start, page_limit, | 
|  | freelist_count); | 
|  | next = setup_object(s, page, next); | 
|  | set_freepointer(s, cur, next); | 
|  | cur = next; | 
|  | } | 
|  | set_freepointer(s, cur, NULL); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static inline int init_cache_random_seq(struct kmem_cache *s) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void init_freelist_randomization(void) { } | 
|  | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
|  |  | 
|  | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_order_objects oo = s->oo; | 
|  | gfp_t alloc_gfp; | 
|  | void *start, *p, *next; | 
|  | int idx, order; | 
|  | bool shuffle; | 
|  |  | 
|  | flags &= gfp_allowed_mask; | 
|  |  | 
|  | if (gfpflags_allow_blocking(flags)) | 
|  | local_irq_enable(); | 
|  |  | 
|  | flags |= s->allocflags; | 
|  |  | 
|  | /* | 
|  | * Let the initial higher-order allocation fail under memory pressure | 
|  | * so we fall-back to the minimum order allocation. | 
|  | */ | 
|  | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
|  | if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) | 
|  | alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); | 
|  |  | 
|  | page = alloc_slab_page(s, alloc_gfp, node, oo); | 
|  | if (unlikely(!page)) { | 
|  | oo = s->min; | 
|  | alloc_gfp = flags; | 
|  | /* | 
|  | * Allocation may have failed due to fragmentation. | 
|  | * Try a lower order alloc if possible | 
|  | */ | 
|  | page = alloc_slab_page(s, alloc_gfp, node, oo); | 
|  | if (unlikely(!page)) | 
|  | goto out; | 
|  | stat(s, ORDER_FALLBACK); | 
|  | } | 
|  |  | 
|  | page->objects = oo_objects(oo); | 
|  |  | 
|  | order = compound_order(page); | 
|  | page->slab_cache = s; | 
|  | __SetPageSlab(page); | 
|  | if (page_is_pfmemalloc(page)) | 
|  | SetPageSlabPfmemalloc(page); | 
|  |  | 
|  | kasan_poison_slab(page); | 
|  |  | 
|  | start = page_address(page); | 
|  |  | 
|  | setup_page_debug(s, start, order); | 
|  |  | 
|  | shuffle = shuffle_freelist(s, page); | 
|  |  | 
|  | if (!shuffle) { | 
|  | start = fixup_red_left(s, start); | 
|  | start = setup_object(s, page, start); | 
|  | page->freelist = start; | 
|  | for (idx = 0, p = start; idx < page->objects - 1; idx++) { | 
|  | next = p + s->size; | 
|  | next = setup_object(s, page, next); | 
|  | set_freepointer(s, p, next); | 
|  | p = next; | 
|  | } | 
|  | set_freepointer(s, p, NULL); | 
|  | } | 
|  |  | 
|  | page->inuse = page->objects; | 
|  | page->frozen = 1; | 
|  |  | 
|  | out: | 
|  | if (gfpflags_allow_blocking(flags)) | 
|  | local_irq_disable(); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | mod_lruvec_page_state(page, | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 1 << oo_order(oo)); | 
|  |  | 
|  | inc_slabs_node(s, page_to_nid(page), page->objects); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | 
|  | gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | 
|  | flags &= ~GFP_SLAB_BUG_MASK; | 
|  | pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | 
|  | invalid_mask, &invalid_mask, flags, &flags); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | return allocate_slab(s, | 
|  | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
|  | } | 
|  |  | 
|  | static void __free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | int order = compound_order(page); | 
|  | int pages = 1 << order; | 
|  |  | 
|  | if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
|  | void *p; | 
|  |  | 
|  | slab_pad_check(s, page); | 
|  | for_each_object(p, s, page_address(page), | 
|  | page->objects) | 
|  | check_object(s, page, p, SLUB_RED_INACTIVE); | 
|  | } | 
|  |  | 
|  | mod_lruvec_page_state(page, | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | -pages); | 
|  |  | 
|  | __ClearPageSlabPfmemalloc(page); | 
|  | __ClearPageSlab(page); | 
|  |  | 
|  | page->mapping = NULL; | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += pages; | 
|  | memcg_uncharge_slab(page, order, s); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | static void rcu_free_slab(struct rcu_head *h) | 
|  | { | 
|  | struct page *page = container_of(h, struct page, rcu_head); | 
|  |  | 
|  | __free_slab(page->slab_cache, page); | 
|  | } | 
|  |  | 
|  | static void free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { | 
|  | call_rcu(&page->rcu_head, rcu_free_slab); | 
|  | } else | 
|  | __free_slab(s, page); | 
|  | } | 
|  |  | 
|  | static void discard_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | dec_slabs_node(s, page_to_nid(page), page->objects); | 
|  | free_slab(s, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Management of partially allocated slabs. | 
|  | */ | 
|  | static inline void | 
|  | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | 
|  | { | 
|  | n->nr_partial++; | 
|  | if (tail == DEACTIVATE_TO_TAIL) | 
|  | list_add_tail(&page->lru, &n->partial); | 
|  | else | 
|  | list_add(&page->lru, &n->partial); | 
|  | } | 
|  |  | 
|  | static inline void add_partial(struct kmem_cache_node *n, | 
|  | struct page *page, int tail) | 
|  | { | 
|  | lockdep_assert_held(&n->list_lock); | 
|  | __add_partial(n, page, tail); | 
|  | } | 
|  |  | 
|  | static inline void remove_partial(struct kmem_cache_node *n, | 
|  | struct page *page) | 
|  | { | 
|  | lockdep_assert_held(&n->list_lock); | 
|  | list_del(&page->lru); | 
|  | n->nr_partial--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove slab from the partial list, freeze it and | 
|  | * return the pointer to the freelist. | 
|  | * | 
|  | * Returns a list of objects or NULL if it fails. | 
|  | */ | 
|  | static inline void *acquire_slab(struct kmem_cache *s, | 
|  | struct kmem_cache_node *n, struct page *page, | 
|  | int mode, int *objects) | 
|  | { | 
|  | void *freelist; | 
|  | unsigned long counters; | 
|  | struct page new; | 
|  |  | 
|  | lockdep_assert_held(&n->list_lock); | 
|  |  | 
|  | /* | 
|  | * Zap the freelist and set the frozen bit. | 
|  | * The old freelist is the list of objects for the | 
|  | * per cpu allocation list. | 
|  | */ | 
|  | freelist = page->freelist; | 
|  | counters = page->counters; | 
|  | new.counters = counters; | 
|  | *objects = new.objects - new.inuse; | 
|  | if (mode) { | 
|  | new.inuse = page->objects; | 
|  | new.freelist = NULL; | 
|  | } else { | 
|  | new.freelist = freelist; | 
|  | } | 
|  |  | 
|  | VM_BUG_ON(new.frozen); | 
|  | new.frozen = 1; | 
|  |  | 
|  | if (!__cmpxchg_double_slab(s, page, | 
|  | freelist, counters, | 
|  | new.freelist, new.counters, | 
|  | "acquire_slab")) | 
|  | return NULL; | 
|  |  | 
|  | remove_partial(n, page); | 
|  | WARN_ON(!freelist); | 
|  | return freelist; | 
|  | } | 
|  |  | 
|  | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 
|  | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); | 
|  |  | 
|  | /* | 
|  | * Try to allocate a partial slab from a specific node. | 
|  | */ | 
|  | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | 
|  | struct kmem_cache_cpu *c, gfp_t flags) | 
|  | { | 
|  | struct page *page, *page2; | 
|  | void *object = NULL; | 
|  | unsigned int available = 0; | 
|  | int objects; | 
|  |  | 
|  | /* | 
|  | * Racy check. If we mistakenly see no partial slabs then we | 
|  | * just allocate an empty slab. If we mistakenly try to get a | 
|  | * partial slab and there is none available then get_partials() | 
|  | * will return NULL. | 
|  | */ | 
|  | if (!n || !n->nr_partial) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_for_each_entry_safe(page, page2, &n->partial, lru) { | 
|  | void *t; | 
|  |  | 
|  | if (!pfmemalloc_match(page, flags)) | 
|  | continue; | 
|  |  | 
|  | t = acquire_slab(s, n, page, object == NULL, &objects); | 
|  | if (!t) | 
|  | break; | 
|  |  | 
|  | available += objects; | 
|  | if (!object) { | 
|  | c->page = page; | 
|  | stat(s, ALLOC_FROM_PARTIAL); | 
|  | object = t; | 
|  | } else { | 
|  | put_cpu_partial(s, page, 0); | 
|  | stat(s, CPU_PARTIAL_NODE); | 
|  | } | 
|  | if (!kmem_cache_has_cpu_partial(s) | 
|  | || available > slub_cpu_partial(s) / 2) | 
|  | break; | 
|  |  | 
|  | } | 
|  | spin_unlock(&n->list_lock); | 
|  | return object; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page from somewhere. Search in increasing NUMA distances. | 
|  | */ | 
|  | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, | 
|  | struct kmem_cache_cpu *c) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | struct zonelist *zonelist; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | enum zone_type high_zoneidx = gfp_zone(flags); | 
|  | void *object; | 
|  | unsigned int cpuset_mems_cookie; | 
|  |  | 
|  | /* | 
|  | * The defrag ratio allows a configuration of the tradeoffs between | 
|  | * inter node defragmentation and node local allocations. A lower | 
|  | * defrag_ratio increases the tendency to do local allocations | 
|  | * instead of attempting to obtain partial slabs from other nodes. | 
|  | * | 
|  | * If the defrag_ratio is set to 0 then kmalloc() always | 
|  | * returns node local objects. If the ratio is higher then kmalloc() | 
|  | * may return off node objects because partial slabs are obtained | 
|  | * from other nodes and filled up. | 
|  | * | 
|  | * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 | 
|  | * (which makes defrag_ratio = 1000) then every (well almost) | 
|  | * allocation will first attempt to defrag slab caches on other nodes. | 
|  | * This means scanning over all nodes to look for partial slabs which | 
|  | * may be expensive if we do it every time we are trying to find a slab | 
|  | * with available objects. | 
|  | */ | 
|  | if (!s->remote_node_defrag_ratio || | 
|  | get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
|  | return NULL; | 
|  |  | 
|  | do { | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
|  | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | n = get_node(s, zone_to_nid(zone)); | 
|  |  | 
|  | if (n && cpuset_zone_allowed(zone, flags) && | 
|  | n->nr_partial > s->min_partial) { | 
|  | object = get_partial_node(s, n, c, flags); | 
|  | if (object) { | 
|  | /* | 
|  | * Don't check read_mems_allowed_retry() | 
|  | * here - if mems_allowed was updated in | 
|  | * parallel, that was a harmless race | 
|  | * between allocation and the cpuset | 
|  | * update | 
|  | */ | 
|  | return object; | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a partial page, lock it and return it. | 
|  | */ | 
|  | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, | 
|  | struct kmem_cache_cpu *c) | 
|  | { | 
|  | void *object; | 
|  | int searchnode = node; | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | searchnode = numa_mem_id(); | 
|  | else if (!node_present_pages(node)) | 
|  | searchnode = node_to_mem_node(node); | 
|  |  | 
|  | object = get_partial_node(s, get_node(s, searchnode), c, flags); | 
|  | if (object || node != NUMA_NO_NODE) | 
|  | return object; | 
|  |  | 
|  | return get_any_partial(s, flags, c); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * Calculate the next globally unique transaction for disambiguiation | 
|  | * during cmpxchg. The transactions start with the cpu number and are then | 
|  | * incremented by CONFIG_NR_CPUS. | 
|  | */ | 
|  | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
|  | #else | 
|  | /* | 
|  | * No preemption supported therefore also no need to check for | 
|  | * different cpus. | 
|  | */ | 
|  | #define TID_STEP 1 | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long next_tid(unsigned long tid) | 
|  | { | 
|  | return tid + TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned int tid_to_cpu(unsigned long tid) | 
|  | { | 
|  | return tid % TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned long tid_to_event(unsigned long tid) | 
|  | { | 
|  | return tid / TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned int init_tid(int cpu) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static inline void note_cmpxchg_failure(const char *n, | 
|  | const struct kmem_cache *s, unsigned long tid) | 
|  | { | 
|  | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
|  |  | 
|  | pr_info("%s %s: cmpxchg redo ", n, s->name); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
|  | pr_warn("due to cpu change %d -> %d\n", | 
|  | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
|  | else | 
|  | #endif | 
|  | if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
|  | pr_warn("due to cpu running other code. Event %ld->%ld\n", | 
|  | tid_to_event(tid), tid_to_event(actual_tid)); | 
|  | else | 
|  | pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
|  | actual_tid, tid, next_tid(tid)); | 
|  | #endif | 
|  | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
|  | } | 
|  |  | 
|  | static void init_kmem_cache_cpus(struct kmem_cache *s) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | pr_info("s=%s, pcpuptr=%p\n", s->name, | 
|  | per_cpu_ptr(s->cpu_slab, cpu)); | 
|  | #endif | 
|  | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the cpu slab | 
|  | */ | 
|  | static void deactivate_slab(struct kmem_cache *s, struct page *page, | 
|  | void *freelist, struct kmem_cache_cpu *c) | 
|  | { | 
|  | enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  | int lock = 0; | 
|  | enum slab_modes l = M_NONE, m = M_NONE; | 
|  | void *nextfree; | 
|  | int tail = DEACTIVATE_TO_HEAD; | 
|  | struct page new; | 
|  | struct page old; | 
|  |  | 
|  | if (page->freelist) { | 
|  | stat(s, DEACTIVATE_REMOTE_FREES); | 
|  | tail = DEACTIVATE_TO_TAIL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stage one: Free all available per cpu objects back | 
|  | * to the page freelist while it is still frozen. Leave the | 
|  | * last one. | 
|  | * | 
|  | * There is no need to take the list->lock because the page | 
|  | * is still frozen. | 
|  | */ | 
|  | while (freelist && (nextfree = get_freepointer(s, freelist))) { | 
|  | void *prior; | 
|  | unsigned long counters; | 
|  |  | 
|  | do { | 
|  | prior = page->freelist; | 
|  | counters = page->counters; | 
|  | set_freepointer(s, freelist, prior); | 
|  | new.counters = counters; | 
|  | new.inuse--; | 
|  | VM_BUG_ON(!new.frozen); | 
|  |  | 
|  | } while (!__cmpxchg_double_slab(s, page, | 
|  | prior, counters, | 
|  | freelist, new.counters, | 
|  | "drain percpu freelist")); | 
|  |  | 
|  | freelist = nextfree; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stage two: Ensure that the page is unfrozen while the | 
|  | * list presence reflects the actual number of objects | 
|  | * during unfreeze. | 
|  | * | 
|  | * We setup the list membership and then perform a cmpxchg | 
|  | * with the count. If there is a mismatch then the page | 
|  | * is not unfrozen but the page is on the wrong list. | 
|  | * | 
|  | * Then we restart the process which may have to remove | 
|  | * the page from the list that we just put it on again | 
|  | * because the number of objects in the slab may have | 
|  | * changed. | 
|  | */ | 
|  | redo: | 
|  |  | 
|  | old.freelist = page->freelist; | 
|  | old.counters = page->counters; | 
|  | VM_BUG_ON(!old.frozen); | 
|  |  | 
|  | /* Determine target state of the slab */ | 
|  | new.counters = old.counters; | 
|  | if (freelist) { | 
|  | new.inuse--; | 
|  | set_freepointer(s, freelist, old.freelist); | 
|  | new.freelist = freelist; | 
|  | } else | 
|  | new.freelist = old.freelist; | 
|  |  | 
|  | new.frozen = 0; | 
|  |  | 
|  | if (!new.inuse && n->nr_partial >= s->min_partial) | 
|  | m = M_FREE; | 
|  | else if (new.freelist) { | 
|  | m = M_PARTIAL; | 
|  | if (!lock) { | 
|  | lock = 1; | 
|  | /* | 
|  | * Taking the spinlock removes the possiblity | 
|  | * that acquire_slab() will see a slab page that | 
|  | * is frozen | 
|  | */ | 
|  | spin_lock(&n->list_lock); | 
|  | } | 
|  | } else { | 
|  | m = M_FULL; | 
|  | if (kmem_cache_debug(s) && !lock) { | 
|  | lock = 1; | 
|  | /* | 
|  | * This also ensures that the scanning of full | 
|  | * slabs from diagnostic functions will not see | 
|  | * any frozen slabs. | 
|  | */ | 
|  | spin_lock(&n->list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (l != m) { | 
|  |  | 
|  | if (l == M_PARTIAL) | 
|  |  | 
|  | remove_partial(n, page); | 
|  |  | 
|  | else if (l == M_FULL) | 
|  |  | 
|  | remove_full(s, n, page); | 
|  |  | 
|  | if (m == M_PARTIAL) { | 
|  |  | 
|  | add_partial(n, page, tail); | 
|  | stat(s, tail); | 
|  |  | 
|  | } else if (m == M_FULL) { | 
|  |  | 
|  | stat(s, DEACTIVATE_FULL); | 
|  | add_full(s, n, page); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | l = m; | 
|  | if (!__cmpxchg_double_slab(s, page, | 
|  | old.freelist, old.counters, | 
|  | new.freelist, new.counters, | 
|  | "unfreezing slab")) | 
|  | goto redo; | 
|  |  | 
|  | if (lock) | 
|  | spin_unlock(&n->list_lock); | 
|  |  | 
|  | if (m == M_FREE) { | 
|  | stat(s, DEACTIVATE_EMPTY); | 
|  | discard_slab(s, page); | 
|  | stat(s, FREE_SLAB); | 
|  | } | 
|  |  | 
|  | c->page = NULL; | 
|  | c->freelist = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unfreeze all the cpu partial slabs. | 
|  | * | 
|  | * This function must be called with interrupts disabled | 
|  | * for the cpu using c (or some other guarantee must be there | 
|  | * to guarantee no concurrent accesses). | 
|  | */ | 
|  | static void unfreeze_partials(struct kmem_cache *s, | 
|  | struct kmem_cache_cpu *c) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | struct kmem_cache_node *n = NULL, *n2 = NULL; | 
|  | struct page *page, *discard_page = NULL; | 
|  |  | 
|  | while ((page = c->partial)) { | 
|  | struct page new; | 
|  | struct page old; | 
|  |  | 
|  | c->partial = page->next; | 
|  |  | 
|  | n2 = get_node(s, page_to_nid(page)); | 
|  | if (n != n2) { | 
|  | if (n) | 
|  | spin_unlock(&n->list_lock); | 
|  |  | 
|  | n = n2; | 
|  | spin_lock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | do { | 
|  |  | 
|  | old.freelist = page->freelist; | 
|  | old.counters = page->counters; | 
|  | VM_BUG_ON(!old.frozen); | 
|  |  | 
|  | new.counters = old.counters; | 
|  | new.freelist = old.freelist; | 
|  |  | 
|  | new.frozen = 0; | 
|  |  | 
|  | } while (!__cmpxchg_double_slab(s, page, | 
|  | old.freelist, old.counters, | 
|  | new.freelist, new.counters, | 
|  | "unfreezing slab")); | 
|  |  | 
|  | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { | 
|  | page->next = discard_page; | 
|  | discard_page = page; | 
|  | } else { | 
|  | add_partial(n, page, DEACTIVATE_TO_TAIL); | 
|  | stat(s, FREE_ADD_PARTIAL); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (n) | 
|  | spin_unlock(&n->list_lock); | 
|  |  | 
|  | while (discard_page) { | 
|  | page = discard_page; | 
|  | discard_page = discard_page->next; | 
|  |  | 
|  | stat(s, DEACTIVATE_EMPTY); | 
|  | discard_slab(s, page); | 
|  | stat(s, FREE_SLAB); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put a page that was just frozen (in __slab_free) into a partial page | 
|  | * slot if available. | 
|  | * | 
|  | * If we did not find a slot then simply move all the partials to the | 
|  | * per node partial list. | 
|  | */ | 
|  | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | struct page *oldpage; | 
|  | int pages; | 
|  | int pobjects; | 
|  |  | 
|  | preempt_disable(); | 
|  | do { | 
|  | pages = 0; | 
|  | pobjects = 0; | 
|  | oldpage = this_cpu_read(s->cpu_slab->partial); | 
|  |  | 
|  | if (oldpage) { | 
|  | pobjects = oldpage->pobjects; | 
|  | pages = oldpage->pages; | 
|  | if (drain && pobjects > s->cpu_partial) { | 
|  | unsigned long flags; | 
|  | /* | 
|  | * partial array is full. Move the existing | 
|  | * set to the per node partial list. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
|  | local_irq_restore(flags); | 
|  | oldpage = NULL; | 
|  | pobjects = 0; | 
|  | pages = 0; | 
|  | stat(s, CPU_PARTIAL_DRAIN); | 
|  | } | 
|  | } | 
|  |  | 
|  | pages++; | 
|  | pobjects += page->objects - page->inuse; | 
|  |  | 
|  | page->pages = pages; | 
|  | page->pobjects = pobjects; | 
|  | page->next = oldpage; | 
|  |  | 
|  | } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) | 
|  | != oldpage); | 
|  | if (unlikely(!s->cpu_partial)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | preempt_enable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | { | 
|  | stat(s, CPUSLAB_FLUSH); | 
|  | deactivate_slab(s, c->page, c->freelist, c); | 
|  |  | 
|  | c->tid = next_tid(c->tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush cpu slab. | 
|  | * | 
|  | * Called from IPI handler with interrupts disabled. | 
|  | */ | 
|  | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | { | 
|  | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  |  | 
|  | if (likely(c)) { | 
|  | if (c->page) | 
|  | flush_slab(s, c); | 
|  |  | 
|  | unfreeze_partials(s, c); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void flush_cpu_slab(void *d) | 
|  | { | 
|  | struct kmem_cache *s = d; | 
|  |  | 
|  | __flush_cpu_slab(s, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static bool has_cpu_slab(int cpu, void *info) | 
|  | { | 
|  | struct kmem_cache *s = info; | 
|  | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  |  | 
|  | return c->page || slub_percpu_partial(c); | 
|  | } | 
|  |  | 
|  | static void flush_all(struct kmem_cache *s) | 
|  | { | 
|  | on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the cpu notifier to insure that the cpu slabs are flushed when | 
|  | * necessary. | 
|  | */ | 
|  | static int slub_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | unsigned long flags; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | local_irq_save(flags); | 
|  | __flush_cpu_slab(s, cpu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the objects in a per cpu structure fit numa | 
|  | * locality expectations. | 
|  | */ | 
|  | static inline int node_match(struct page *page, int node) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static int count_free(struct page *page) | 
|  | { | 
|  | return page->objects - page->inuse; | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
|  | { | 
|  | return atomic_long_read(&n->total_objects); | 
|  | } | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | 
|  | static unsigned long count_partial(struct kmem_cache_node *n, | 
|  | int (*get_count)(struct page *)) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long x = 0; | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | x += get_count(page); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return x; | 
|  | } | 
|  | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ | 
|  |  | 
|  | static noinline void | 
|  | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) | 
|  | return; | 
|  |  | 
|  | pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", | 
|  | nid, gfpflags, &gfpflags); | 
|  | pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", | 
|  | s->name, s->object_size, s->size, oo_order(s->oo), | 
|  | oo_order(s->min)); | 
|  |  | 
|  | if (oo_order(s->min) > get_order(s->object_size)) | 
|  | pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n", | 
|  | s->name); | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | unsigned long nr_slabs; | 
|  | unsigned long nr_objs; | 
|  | unsigned long nr_free; | 
|  |  | 
|  | nr_free  = count_partial(n, count_free); | 
|  | nr_slabs = node_nr_slabs(n); | 
|  | nr_objs  = node_nr_objs(n); | 
|  |  | 
|  | pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
|  | node, nr_slabs, nr_objs, nr_free); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, | 
|  | int node, struct kmem_cache_cpu **pc) | 
|  | { | 
|  | void *freelist; | 
|  | struct kmem_cache_cpu *c = *pc; | 
|  | struct page *page; | 
|  |  | 
|  | WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); | 
|  |  | 
|  | freelist = get_partial(s, flags, node, c); | 
|  |  | 
|  | if (freelist) | 
|  | return freelist; | 
|  |  | 
|  | page = new_slab(s, flags, node); | 
|  | if (page) { | 
|  | c = raw_cpu_ptr(s->cpu_slab); | 
|  | if (c->page) | 
|  | flush_slab(s, c); | 
|  |  | 
|  | /* | 
|  | * No other reference to the page yet so we can | 
|  | * muck around with it freely without cmpxchg | 
|  | */ | 
|  | freelist = page->freelist; | 
|  | page->freelist = NULL; | 
|  |  | 
|  | stat(s, ALLOC_SLAB); | 
|  | c->page = page; | 
|  | *pc = c; | 
|  | } else | 
|  | freelist = NULL; | 
|  |  | 
|  | return freelist; | 
|  | } | 
|  |  | 
|  | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) | 
|  | { | 
|  | if (unlikely(PageSlabPfmemalloc(page))) | 
|  | return gfp_pfmemalloc_allowed(gfpflags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the page->freelist of a page and either transfer the freelist to the | 
|  | * per cpu freelist or deactivate the page. | 
|  | * | 
|  | * The page is still frozen if the return value is not NULL. | 
|  | * | 
|  | * If this function returns NULL then the page has been unfrozen. | 
|  | * | 
|  | * This function must be called with interrupt disabled. | 
|  | */ | 
|  | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct page new; | 
|  | unsigned long counters; | 
|  | void *freelist; | 
|  |  | 
|  | do { | 
|  | freelist = page->freelist; | 
|  | counters = page->counters; | 
|  |  | 
|  | new.counters = counters; | 
|  | VM_BUG_ON(!new.frozen); | 
|  |  | 
|  | new.inuse = page->objects; | 
|  | new.frozen = freelist != NULL; | 
|  |  | 
|  | } while (!__cmpxchg_double_slab(s, page, | 
|  | freelist, counters, | 
|  | NULL, new.counters, | 
|  | "get_freelist")); | 
|  |  | 
|  | return freelist; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slow path. The lockless freelist is empty or we need to perform | 
|  | * debugging duties. | 
|  | * | 
|  | * Processing is still very fast if new objects have been freed to the | 
|  | * regular freelist. In that case we simply take over the regular freelist | 
|  | * as the lockless freelist and zap the regular freelist. | 
|  | * | 
|  | * If that is not working then we fall back to the partial lists. We take the | 
|  | * first element of the freelist as the object to allocate now and move the | 
|  | * rest of the freelist to the lockless freelist. | 
|  | * | 
|  | * And if we were unable to get a new slab from the partial slab lists then | 
|  | * we need to allocate a new slab. This is the slowest path since it involves | 
|  | * a call to the page allocator and the setup of a new slab. | 
|  | * | 
|  | * Version of __slab_alloc to use when we know that interrupts are | 
|  | * already disabled (which is the case for bulk allocation). | 
|  | */ | 
|  | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
|  | unsigned long addr, struct kmem_cache_cpu *c) | 
|  | { | 
|  | void *freelist; | 
|  | struct page *page; | 
|  |  | 
|  | page = c->page; | 
|  | if (!page) | 
|  | goto new_slab; | 
|  | redo: | 
|  |  | 
|  | if (unlikely(!node_match(page, node))) { | 
|  | int searchnode = node; | 
|  |  | 
|  | if (node != NUMA_NO_NODE && !node_present_pages(node)) | 
|  | searchnode = node_to_mem_node(node); | 
|  |  | 
|  | if (unlikely(!node_match(page, searchnode))) { | 
|  | stat(s, ALLOC_NODE_MISMATCH); | 
|  | deactivate_slab(s, page, c->freelist, c); | 
|  | goto new_slab; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By rights, we should be searching for a slab page that was | 
|  | * PFMEMALLOC but right now, we are losing the pfmemalloc | 
|  | * information when the page leaves the per-cpu allocator | 
|  | */ | 
|  | if (unlikely(!pfmemalloc_match(page, gfpflags))) { | 
|  | deactivate_slab(s, page, c->freelist, c); | 
|  | goto new_slab; | 
|  | } | 
|  |  | 
|  | /* must check again c->freelist in case of cpu migration or IRQ */ | 
|  | freelist = c->freelist; | 
|  | if (freelist) | 
|  | goto load_freelist; | 
|  |  | 
|  | freelist = get_freelist(s, page); | 
|  |  | 
|  | if (!freelist) { | 
|  | c->page = NULL; | 
|  | stat(s, DEACTIVATE_BYPASS); | 
|  | goto new_slab; | 
|  | } | 
|  |  | 
|  | stat(s, ALLOC_REFILL); | 
|  |  | 
|  | load_freelist: | 
|  | /* | 
|  | * freelist is pointing to the list of objects to be used. | 
|  | * page is pointing to the page from which the objects are obtained. | 
|  | * That page must be frozen for per cpu allocations to work. | 
|  | */ | 
|  | VM_BUG_ON(!c->page->frozen); | 
|  | c->freelist = get_freepointer(s, freelist); | 
|  | c->tid = next_tid(c->tid); | 
|  | return freelist; | 
|  |  | 
|  | new_slab: | 
|  |  | 
|  | if (slub_percpu_partial(c)) { | 
|  | page = c->page = slub_percpu_partial(c); | 
|  | slub_set_percpu_partial(c, page); | 
|  | stat(s, CPU_PARTIAL_ALLOC); | 
|  | goto redo; | 
|  | } | 
|  |  | 
|  | freelist = new_slab_objects(s, gfpflags, node, &c); | 
|  |  | 
|  | if (unlikely(!freelist)) { | 
|  | slab_out_of_memory(s, gfpflags, node); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | page = c->page; | 
|  | if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) | 
|  | goto load_freelist; | 
|  |  | 
|  | /* Only entered in the debug case */ | 
|  | if (kmem_cache_debug(s) && | 
|  | !alloc_debug_processing(s, page, freelist, addr)) | 
|  | goto new_slab;	/* Slab failed checks. Next slab needed */ | 
|  |  | 
|  | deactivate_slab(s, page, get_freepointer(s, freelist), c); | 
|  | return freelist; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Another one that disabled interrupt and compensates for possible | 
|  | * cpu changes by refetching the per cpu area pointer. | 
|  | */ | 
|  | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
|  | unsigned long addr, struct kmem_cache_cpu *c) | 
|  | { | 
|  | void *p; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * We may have been preempted and rescheduled on a different | 
|  | * cpu before disabling interrupts. Need to reload cpu area | 
|  | * pointer. | 
|  | */ | 
|  | c = this_cpu_ptr(s->cpu_slab); | 
|  | #endif | 
|  |  | 
|  | p = ___slab_alloc(s, gfpflags, node, addr, c); | 
|  | local_irq_restore(flags); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
|  | * have the fastpath folded into their functions. So no function call | 
|  | * overhead for requests that can be satisfied on the fastpath. | 
|  | * | 
|  | * The fastpath works by first checking if the lockless freelist can be used. | 
|  | * If not then __slab_alloc is called for slow processing. | 
|  | * | 
|  | * Otherwise we can simply pick the next object from the lockless free list. | 
|  | */ | 
|  | static __always_inline void *slab_alloc_node(struct kmem_cache *s, | 
|  | gfp_t gfpflags, int node, unsigned long addr) | 
|  | { | 
|  | void *object; | 
|  | struct kmem_cache_cpu *c; | 
|  | struct page *page; | 
|  | unsigned long tid; | 
|  |  | 
|  | s = slab_pre_alloc_hook(s, gfpflags); | 
|  | if (!s) | 
|  | return NULL; | 
|  | redo: | 
|  | /* | 
|  | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
|  | * enabled. We may switch back and forth between cpus while | 
|  | * reading from one cpu area. That does not matter as long | 
|  | * as we end up on the original cpu again when doing the cmpxchg. | 
|  | * | 
|  | * We should guarantee that tid and kmem_cache are retrieved on | 
|  | * the same cpu. It could be different if CONFIG_PREEMPT so we need | 
|  | * to check if it is matched or not. | 
|  | */ | 
|  | do { | 
|  | tid = this_cpu_read(s->cpu_slab->tid); | 
|  | c = raw_cpu_ptr(s->cpu_slab); | 
|  | } while (IS_ENABLED(CONFIG_PREEMPT) && | 
|  | unlikely(tid != READ_ONCE(c->tid))); | 
|  |  | 
|  | /* | 
|  | * Irqless object alloc/free algorithm used here depends on sequence | 
|  | * of fetching cpu_slab's data. tid should be fetched before anything | 
|  | * on c to guarantee that object and page associated with previous tid | 
|  | * won't be used with current tid. If we fetch tid first, object and | 
|  | * page could be one associated with next tid and our alloc/free | 
|  | * request will be failed. In this case, we will retry. So, no problem. | 
|  | */ | 
|  | barrier(); | 
|  |  | 
|  | /* | 
|  | * The transaction ids are globally unique per cpu and per operation on | 
|  | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
|  | * occurs on the right processor and that there was no operation on the | 
|  | * linked list in between. | 
|  | */ | 
|  |  | 
|  | object = c->freelist; | 
|  | page = c->page; | 
|  | if (unlikely(!object || !node_match(page, node))) { | 
|  | object = __slab_alloc(s, gfpflags, node, addr, c); | 
|  | stat(s, ALLOC_SLOWPATH); | 
|  | } else { | 
|  | void *next_object = get_freepointer_safe(s, object); | 
|  |  | 
|  | /* | 
|  | * The cmpxchg will only match if there was no additional | 
|  | * operation and if we are on the right processor. | 
|  | * | 
|  | * The cmpxchg does the following atomically (without lock | 
|  | * semantics!) | 
|  | * 1. Relocate first pointer to the current per cpu area. | 
|  | * 2. Verify that tid and freelist have not been changed | 
|  | * 3. If they were not changed replace tid and freelist | 
|  | * | 
|  | * Since this is without lock semantics the protection is only | 
|  | * against code executing on this cpu *not* from access by | 
|  | * other cpus. | 
|  | */ | 
|  | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | object, tid, | 
|  | next_object, next_tid(tid)))) { | 
|  |  | 
|  | note_cmpxchg_failure("slab_alloc", s, tid); | 
|  | goto redo; | 
|  | } | 
|  | prefetch_freepointer(s, next_object); | 
|  | stat(s, ALLOC_FASTPATH); | 
|  | } | 
|  | /* | 
|  | * If the object has been wiped upon free, make sure it's fully | 
|  | * initialized by zeroing out freelist pointer. | 
|  | */ | 
|  | if (unlikely(slab_want_init_on_free(s)) && object) | 
|  | memset(object + s->offset, 0, sizeof(void *)); | 
|  |  | 
|  | if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) | 
|  | memset(object, 0, s->object_size); | 
|  |  | 
|  | slab_post_alloc_hook(s, gfpflags, 1, &object); | 
|  |  | 
|  | return object; | 
|  | } | 
|  |  | 
|  | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
|  | gfp_t gfpflags, unsigned long addr) | 
|  | { | 
|  | return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | 
|  | } | 
|  |  | 
|  | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, | 
|  | s->size, gfpflags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
|  | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
|  | ret = kasan_kmalloc(s, ret, size, gfpflags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
|  | { | 
|  | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
|  | s->object_size, s->size, gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
|  | gfp_t gfpflags, | 
|  | int node, size_t size) | 
|  | { | 
|  | void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, | 
|  | size, s->size, gfpflags, node); | 
|  |  | 
|  | ret = kasan_kmalloc(s, ret, size, gfpflags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Slow path handling. This may still be called frequently since objects | 
|  | * have a longer lifetime than the cpu slabs in most processing loads. | 
|  | * | 
|  | * So we still attempt to reduce cache line usage. Just take the slab | 
|  | * lock and free the item. If there is no additional partial page | 
|  | * handling required then we can return immediately. | 
|  | */ | 
|  | static void __slab_free(struct kmem_cache *s, struct page *page, | 
|  | void *head, void *tail, int cnt, | 
|  | unsigned long addr) | 
|  |  | 
|  | { | 
|  | void *prior; | 
|  | int was_frozen; | 
|  | struct page new; | 
|  | unsigned long counters; | 
|  | struct kmem_cache_node *n = NULL; | 
|  | unsigned long uninitialized_var(flags); | 
|  |  | 
|  | stat(s, FREE_SLOWPATH); | 
|  |  | 
|  | if (kmem_cache_debug(s) && | 
|  | !free_debug_processing(s, page, head, tail, cnt, addr)) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | if (unlikely(n)) { | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | n = NULL; | 
|  | } | 
|  | prior = page->freelist; | 
|  | counters = page->counters; | 
|  | set_freepointer(s, tail, prior); | 
|  | new.counters = counters; | 
|  | was_frozen = new.frozen; | 
|  | new.inuse -= cnt; | 
|  | if ((!new.inuse || !prior) && !was_frozen) { | 
|  |  | 
|  | if (kmem_cache_has_cpu_partial(s) && !prior) { | 
|  |  | 
|  | /* | 
|  | * Slab was on no list before and will be | 
|  | * partially empty | 
|  | * We can defer the list move and instead | 
|  | * freeze it. | 
|  | */ | 
|  | new.frozen = 1; | 
|  |  | 
|  | } else { /* Needs to be taken off a list */ | 
|  |  | 
|  | n = get_node(s, page_to_nid(page)); | 
|  | /* | 
|  | * Speculatively acquire the list_lock. | 
|  | * If the cmpxchg does not succeed then we may | 
|  | * drop the list_lock without any processing. | 
|  | * | 
|  | * Otherwise the list_lock will synchronize with | 
|  | * other processors updating the list of slabs. | 
|  | */ | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | } while (!cmpxchg_double_slab(s, page, | 
|  | prior, counters, | 
|  | head, new.counters, | 
|  | "__slab_free")); | 
|  |  | 
|  | if (likely(!n)) { | 
|  |  | 
|  | /* | 
|  | * If we just froze the page then put it onto the | 
|  | * per cpu partial list. | 
|  | */ | 
|  | if (new.frozen && !was_frozen) { | 
|  | put_cpu_partial(s, page, 1); | 
|  | stat(s, CPU_PARTIAL_FREE); | 
|  | } | 
|  | /* | 
|  | * The list lock was not taken therefore no list | 
|  | * activity can be necessary. | 
|  | */ | 
|  | if (was_frozen) | 
|  | stat(s, FREE_FROZEN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) | 
|  | goto slab_empty; | 
|  |  | 
|  | /* | 
|  | * Objects left in the slab. If it was not on the partial list before | 
|  | * then add it. | 
|  | */ | 
|  | if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { | 
|  | if (kmem_cache_debug(s)) | 
|  | remove_full(s, n, page); | 
|  | add_partial(n, page, DEACTIVATE_TO_TAIL); | 
|  | stat(s, FREE_ADD_PARTIAL); | 
|  | } | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return; | 
|  |  | 
|  | slab_empty: | 
|  | if (prior) { | 
|  | /* | 
|  | * Slab on the partial list. | 
|  | */ | 
|  | remove_partial(n, page); | 
|  | stat(s, FREE_REMOVE_PARTIAL); | 
|  | } else { | 
|  | /* Slab must be on the full list */ | 
|  | remove_full(s, n, page); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | stat(s, FREE_SLAB); | 
|  | discard_slab(s, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
|  | * can perform fastpath freeing without additional function calls. | 
|  | * | 
|  | * The fastpath is only possible if we are freeing to the current cpu slab | 
|  | * of this processor. This typically the case if we have just allocated | 
|  | * the item before. | 
|  | * | 
|  | * If fastpath is not possible then fall back to __slab_free where we deal | 
|  | * with all sorts of special processing. | 
|  | * | 
|  | * Bulk free of a freelist with several objects (all pointing to the | 
|  | * same page) possible by specifying head and tail ptr, plus objects | 
|  | * count (cnt). Bulk free indicated by tail pointer being set. | 
|  | */ | 
|  | static __always_inline void do_slab_free(struct kmem_cache *s, | 
|  | struct page *page, void *head, void *tail, | 
|  | int cnt, unsigned long addr) | 
|  | { | 
|  | void *tail_obj = tail ? : head; | 
|  | struct kmem_cache_cpu *c; | 
|  | unsigned long tid; | 
|  | redo: | 
|  | /* | 
|  | * Determine the currently cpus per cpu slab. | 
|  | * The cpu may change afterward. However that does not matter since | 
|  | * data is retrieved via this pointer. If we are on the same cpu | 
|  | * during the cmpxchg then the free will succeed. | 
|  | */ | 
|  | do { | 
|  | tid = this_cpu_read(s->cpu_slab->tid); | 
|  | c = raw_cpu_ptr(s->cpu_slab); | 
|  | } while (IS_ENABLED(CONFIG_PREEMPT) && | 
|  | unlikely(tid != READ_ONCE(c->tid))); | 
|  |  | 
|  | /* Same with comment on barrier() in slab_alloc_node() */ | 
|  | barrier(); | 
|  |  | 
|  | if (likely(page == c->page)) { | 
|  | set_freepointer(s, tail_obj, c->freelist); | 
|  |  | 
|  | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | c->freelist, tid, | 
|  | head, next_tid(tid)))) { | 
|  |  | 
|  | note_cmpxchg_failure("slab_free", s, tid); | 
|  | goto redo; | 
|  | } | 
|  | stat(s, FREE_FASTPATH); | 
|  | } else | 
|  | __slab_free(s, page, head, tail_obj, cnt, addr); | 
|  |  | 
|  | } | 
|  |  | 
|  | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, | 
|  | void *head, void *tail, int cnt, | 
|  | unsigned long addr) | 
|  | { | 
|  | /* | 
|  | * With KASAN enabled slab_free_freelist_hook modifies the freelist | 
|  | * to remove objects, whose reuse must be delayed. | 
|  | */ | 
|  | if (slab_free_freelist_hook(s, &head, &tail)) | 
|  | do_slab_free(s, page, head, tail, cnt, addr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KASAN_GENERIC | 
|  | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | 
|  | { | 
|  | do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void kmem_cache_free(struct kmem_cache *s, void *x) | 
|  | { | 
|  | s = cache_from_obj(s, x); | 
|  | if (!s) | 
|  | return; | 
|  | slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); | 
|  | trace_kmem_cache_free(_RET_IP_, x); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | struct detached_freelist { | 
|  | struct page *page; | 
|  | void *tail; | 
|  | void *freelist; | 
|  | int cnt; | 
|  | struct kmem_cache *s; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This function progressively scans the array with free objects (with | 
|  | * a limited look ahead) and extract objects belonging to the same | 
|  | * page.  It builds a detached freelist directly within the given | 
|  | * page/objects.  This can happen without any need for | 
|  | * synchronization, because the objects are owned by running process. | 
|  | * The freelist is build up as a single linked list in the objects. | 
|  | * The idea is, that this detached freelist can then be bulk | 
|  | * transferred to the real freelist(s), but only requiring a single | 
|  | * synchronization primitive.  Look ahead in the array is limited due | 
|  | * to performance reasons. | 
|  | */ | 
|  | static inline | 
|  | int build_detached_freelist(struct kmem_cache *s, size_t size, | 
|  | void **p, struct detached_freelist *df) | 
|  | { | 
|  | size_t first_skipped_index = 0; | 
|  | int lookahead = 3; | 
|  | void *object; | 
|  | struct page *page; | 
|  |  | 
|  | /* Always re-init detached_freelist */ | 
|  | df->page = NULL; | 
|  |  | 
|  | do { | 
|  | object = p[--size]; | 
|  | /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ | 
|  | } while (!object && size); | 
|  |  | 
|  | if (!object) | 
|  | return 0; | 
|  |  | 
|  | page = virt_to_head_page(object); | 
|  | if (!s) { | 
|  | /* Handle kalloc'ed objects */ | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | BUG_ON(!PageCompound(page)); | 
|  | kfree_hook(object); | 
|  | __free_pages(page, compound_order(page)); | 
|  | p[size] = NULL; /* mark object processed */ | 
|  | return size; | 
|  | } | 
|  | /* Derive kmem_cache from object */ | 
|  | df->s = page->slab_cache; | 
|  | } else { | 
|  | df->s = cache_from_obj(s, object); /* Support for memcg */ | 
|  | } | 
|  |  | 
|  | /* Start new detached freelist */ | 
|  | df->page = page; | 
|  | set_freepointer(df->s, object, NULL); | 
|  | df->tail = object; | 
|  | df->freelist = object; | 
|  | p[size] = NULL; /* mark object processed */ | 
|  | df->cnt = 1; | 
|  |  | 
|  | while (size) { | 
|  | object = p[--size]; | 
|  | if (!object) | 
|  | continue; /* Skip processed objects */ | 
|  |  | 
|  | /* df->page is always set at this point */ | 
|  | if (df->page == virt_to_head_page(object)) { | 
|  | /* Opportunity build freelist */ | 
|  | set_freepointer(df->s, object, df->freelist); | 
|  | df->freelist = object; | 
|  | df->cnt++; | 
|  | p[size] = NULL; /* mark object processed */ | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Limit look ahead search */ | 
|  | if (!--lookahead) | 
|  | break; | 
|  |  | 
|  | if (!first_skipped_index) | 
|  | first_skipped_index = size + 1; | 
|  | } | 
|  |  | 
|  | return first_skipped_index; | 
|  | } | 
|  |  | 
|  | /* Note that interrupts must be enabled when calling this function. */ | 
|  | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | 
|  | { | 
|  | if (WARN_ON(!size)) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | struct detached_freelist df; | 
|  |  | 
|  | size = build_detached_freelist(s, size, p, &df); | 
|  | if (!df.page) | 
|  | continue; | 
|  |  | 
|  | slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); | 
|  | } while (likely(size)); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free_bulk); | 
|  |  | 
|  | /* Note that interrupts must be enabled when calling this function. */ | 
|  | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | 
|  | void **p) | 
|  | { | 
|  | struct kmem_cache_cpu *c; | 
|  | int i; | 
|  |  | 
|  | /* memcg and kmem_cache debug support */ | 
|  | s = slab_pre_alloc_hook(s, flags); | 
|  | if (unlikely(!s)) | 
|  | return false; | 
|  | /* | 
|  | * Drain objects in the per cpu slab, while disabling local | 
|  | * IRQs, which protects against PREEMPT and interrupts | 
|  | * handlers invoking normal fastpath. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | c = this_cpu_ptr(s->cpu_slab); | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | void *object = c->freelist; | 
|  |  | 
|  | if (unlikely(!object)) { | 
|  | /* | 
|  | * Invoking slow path likely have side-effect | 
|  | * of re-populating per CPU c->freelist | 
|  | */ | 
|  | p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, | 
|  | _RET_IP_, c); | 
|  | if (unlikely(!p[i])) | 
|  | goto error; | 
|  |  | 
|  | c = this_cpu_ptr(s->cpu_slab); | 
|  | continue; /* goto for-loop */ | 
|  | } | 
|  | c->freelist = get_freepointer(s, object); | 
|  | p[i] = object; | 
|  | } | 
|  | c->tid = next_tid(c->tid); | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* Clear memory outside IRQ disabled fastpath loop */ | 
|  | if (unlikely(slab_want_init_on_alloc(flags, s))) { | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < i; j++) | 
|  | memset(p[j], 0, s->object_size); | 
|  | } | 
|  |  | 
|  | /* memcg and kmem_cache debug support */ | 
|  | slab_post_alloc_hook(s, flags, size, p); | 
|  | return i; | 
|  | error: | 
|  | local_irq_enable(); | 
|  | slab_post_alloc_hook(s, flags, i, p); | 
|  | __kmem_cache_free_bulk(s, i, p); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Object placement in a slab is made very easy because we always start at | 
|  | * offset 0. If we tune the size of the object to the alignment then we can | 
|  | * get the required alignment by putting one properly sized object after | 
|  | * another. | 
|  | * | 
|  | * Notice that the allocation order determines the sizes of the per cpu | 
|  | * caches. Each processor has always one slab available for allocations. | 
|  | * Increasing the allocation order reduces the number of times that slabs | 
|  | * must be moved on and off the partial lists and is therefore a factor in | 
|  | * locking overhead. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Mininum / Maximum order of slab pages. This influences locking overhead | 
|  | * and slab fragmentation. A higher order reduces the number of partial slabs | 
|  | * and increases the number of allocations possible without having to | 
|  | * take the list_lock. | 
|  | */ | 
|  | static unsigned int slub_min_order; | 
|  | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
|  | static unsigned int slub_min_objects; | 
|  |  | 
|  | /* | 
|  | * Calculate the order of allocation given an slab object size. | 
|  | * | 
|  | * The order of allocation has significant impact on performance and other | 
|  | * system components. Generally order 0 allocations should be preferred since | 
|  | * order 0 does not cause fragmentation in the page allocator. Larger objects | 
|  | * be problematic to put into order 0 slabs because there may be too much | 
|  | * unused space left. We go to a higher order if more than 1/16th of the slab | 
|  | * would be wasted. | 
|  | * | 
|  | * In order to reach satisfactory performance we must ensure that a minimum | 
|  | * number of objects is in one slab. Otherwise we may generate too much | 
|  | * activity on the partial lists which requires taking the list_lock. This is | 
|  | * less a concern for large slabs though which are rarely used. | 
|  | * | 
|  | * slub_max_order specifies the order where we begin to stop considering the | 
|  | * number of objects in a slab as critical. If we reach slub_max_order then | 
|  | * we try to keep the page order as low as possible. So we accept more waste | 
|  | * of space in favor of a small page order. | 
|  | * | 
|  | * Higher order allocations also allow the placement of more objects in a | 
|  | * slab and thereby reduce object handling overhead. If the user has | 
|  | * requested a higher mininum order then we start with that one instead of | 
|  | * the smallest order which will fit the object. | 
|  | */ | 
|  | static inline unsigned int slab_order(unsigned int size, | 
|  | unsigned int min_objects, unsigned int max_order, | 
|  | unsigned int fract_leftover) | 
|  | { | 
|  | unsigned int min_order = slub_min_order; | 
|  | unsigned int order; | 
|  |  | 
|  | if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | 
|  | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
|  |  | 
|  | for (order = max(min_order, (unsigned int)get_order(min_objects * size)); | 
|  | order <= max_order; order++) { | 
|  |  | 
|  | unsigned int slab_size = (unsigned int)PAGE_SIZE << order; | 
|  | unsigned int rem; | 
|  |  | 
|  | rem = slab_size % size; | 
|  |  | 
|  | if (rem <= slab_size / fract_leftover) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return order; | 
|  | } | 
|  |  | 
|  | static inline int calculate_order(unsigned int size) | 
|  | { | 
|  | unsigned int order; | 
|  | unsigned int min_objects; | 
|  | unsigned int max_objects; | 
|  |  | 
|  | /* | 
|  | * Attempt to find best configuration for a slab. This | 
|  | * works by first attempting to generate a layout with | 
|  | * the best configuration and backing off gradually. | 
|  | * | 
|  | * First we increase the acceptable waste in a slab. Then | 
|  | * we reduce the minimum objects required in a slab. | 
|  | */ | 
|  | min_objects = slub_min_objects; | 
|  | if (!min_objects) | 
|  | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
|  | max_objects = order_objects(slub_max_order, size); | 
|  | min_objects = min(min_objects, max_objects); | 
|  |  | 
|  | while (min_objects > 1) { | 
|  | unsigned int fraction; | 
|  |  | 
|  | fraction = 16; | 
|  | while (fraction >= 4) { | 
|  | order = slab_order(size, min_objects, | 
|  | slub_max_order, fraction); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  | fraction /= 2; | 
|  | } | 
|  | min_objects--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We were unable to place multiple objects in a slab. Now | 
|  | * lets see if we can place a single object there. | 
|  | */ | 
|  | order = slab_order(size, 1, slub_max_order, 1); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  |  | 
|  | /* | 
|  | * Doh this slab cannot be placed using slub_max_order. | 
|  | */ | 
|  | order = slab_order(size, 1, MAX_ORDER, 1); | 
|  | if (order < MAX_ORDER) | 
|  | return order; | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static void | 
|  | init_kmem_cache_node(struct kmem_cache_node *n) | 
|  | { | 
|  | n->nr_partial = 0; | 
|  | spin_lock_init(&n->list_lock); | 
|  | INIT_LIST_HEAD(&n->partial); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | atomic_long_set(&n->nr_slabs, 0); | 
|  | atomic_long_set(&n->total_objects, 0); | 
|  | INIT_LIST_HEAD(&n->full); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | struct kmem_cache debug_kmem_cache = { | 
|  | .name = "debug_kmem_cache", | 
|  | }; | 
|  | #endif | 
|  | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
|  | { | 
|  | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
|  | KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); | 
|  |  | 
|  | /* | 
|  | * Must align to double word boundary for the double cmpxchg | 
|  | * instructions to work; see __pcpu_double_call_return_bool(). | 
|  | */ | 
|  | #ifdef CONFIG_MTK_MM_DEBUG | 
|  | if (!strcmp(s->name, "kmalloc-256")) { | 
|  | debug_kmem_cache.cpu_slab = __alloc_percpu( | 
|  | sizeof(struct kmem_cache_cpu), | 
|  | 2 * sizeof(void *)); | 
|  | init_kmem_cache_cpus(&debug_kmem_cache); | 
|  | } | 
|  | #endif | 
|  | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | 
|  | 2 * sizeof(void *)); | 
|  |  | 
|  | if (!s->cpu_slab) | 
|  | return 0; | 
|  |  | 
|  | init_kmem_cache_cpus(s); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *kmem_cache_node; | 
|  |  | 
|  | /* | 
|  | * No kmalloc_node yet so do it by hand. We know that this is the first | 
|  | * slab on the node for this slabcache. There are no concurrent accesses | 
|  | * possible. | 
|  | * | 
|  | * Note that this function only works on the kmem_cache_node | 
|  | * when allocating for the kmem_cache_node. This is used for bootstrapping | 
|  | * memory on a fresh node that has no slab structures yet. | 
|  | */ | 
|  | static void early_kmem_cache_node_alloc(int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
|  |  | 
|  | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
|  |  | 
|  | BUG_ON(!page); | 
|  | if (page_to_nid(page) != node) { | 
|  | pr_err("SLUB: Unable to allocate memory from node %d\n", node); | 
|  | pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | 
|  | } | 
|  |  | 
|  | n = page->freelist; | 
|  | BUG_ON(!n); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
|  | init_tracking(kmem_cache_node, n); | 
|  | #endif | 
|  | n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), | 
|  | GFP_KERNEL); | 
|  | page->freelist = get_freepointer(kmem_cache_node, n); | 
|  | page->inuse = 1; | 
|  | page->frozen = 0; | 
|  | kmem_cache_node->node[node] = n; | 
|  | init_kmem_cache_node(n); | 
|  | inc_slabs_node(kmem_cache_node, node, page->objects); | 
|  |  | 
|  | /* | 
|  | * No locks need to be taken here as it has just been | 
|  | * initialized and there is no concurrent access. | 
|  | */ | 
|  | __add_partial(n, page, DEACTIVATE_TO_HEAD); | 
|  | } | 
|  |  | 
|  | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | s->node[node] = NULL; | 
|  | kmem_cache_free(kmem_cache_node, n); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __kmem_cache_release(struct kmem_cache *s) | 
|  | { | 
|  | cache_random_seq_destroy(s); | 
|  | free_percpu(s->cpu_slab); | 
|  | free_kmem_cache_nodes(s); | 
|  | } | 
|  |  | 
|  | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (slab_state == DOWN) { | 
|  | early_kmem_cache_node_alloc(node); | 
|  | continue; | 
|  | } | 
|  | n = kmem_cache_alloc_node(kmem_cache_node, | 
|  | GFP_KERNEL, node); | 
|  |  | 
|  | if (!n) { | 
|  | free_kmem_cache_nodes(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | init_kmem_cache_node(n); | 
|  | s->node[node] = n; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
|  | { | 
|  | if (min < MIN_PARTIAL) | 
|  | min = MIN_PARTIAL; | 
|  | else if (min > MAX_PARTIAL) | 
|  | min = MAX_PARTIAL; | 
|  | s->min_partial = min; | 
|  | } | 
|  |  | 
|  | static void set_cpu_partial(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
|  | /* | 
|  | * cpu_partial determined the maximum number of objects kept in the | 
|  | * per cpu partial lists of a processor. | 
|  | * | 
|  | * Per cpu partial lists mainly contain slabs that just have one | 
|  | * object freed. If they are used for allocation then they can be | 
|  | * filled up again with minimal effort. The slab will never hit the | 
|  | * per node partial lists and therefore no locking will be required. | 
|  | * | 
|  | * This setting also determines | 
|  | * | 
|  | * A) The number of objects from per cpu partial slabs dumped to the | 
|  | *    per node list when we reach the limit. | 
|  | * B) The number of objects in cpu partial slabs to extract from the | 
|  | *    per node list when we run out of per cpu objects. We only fetch | 
|  | *    50% to keep some capacity around for frees. | 
|  | */ | 
|  | if (!kmem_cache_has_cpu_partial(s)) | 
|  | s->cpu_partial = 0; | 
|  | else if (s->size >= PAGE_SIZE) | 
|  | s->cpu_partial = 2; | 
|  | else if (s->size >= 1024) | 
|  | s->cpu_partial = 6; | 
|  | else if (s->size >= 256) | 
|  | s->cpu_partial = 13; | 
|  | else | 
|  | s->cpu_partial = 30; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate_sizes() determines the order and the distribution of data within | 
|  | * a slab object. | 
|  | */ | 
|  | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
|  | { | 
|  | slab_flags_t flags = s->flags; | 
|  | unsigned int size = s->object_size; | 
|  | unsigned int order; | 
|  |  | 
|  | /* | 
|  | * Round up object size to the next word boundary. We can only | 
|  | * place the free pointer at word boundaries and this determines | 
|  | * the possible location of the free pointer. | 
|  | */ | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Determine if we can poison the object itself. If the user of | 
|  | * the slab may touch the object after free or before allocation | 
|  | * then we should never poison the object itself. | 
|  | */ | 
|  | if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && | 
|  | !s->ctor) | 
|  | s->flags |= __OBJECT_POISON; | 
|  | else | 
|  | s->flags &= ~__OBJECT_POISON; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If we are Redzoning then check if there is some space between the | 
|  | * end of the object and the free pointer. If not then add an | 
|  | * additional word to have some bytes to store Redzone information. | 
|  | */ | 
|  | if ((flags & SLAB_RED_ZONE) && size == s->object_size) | 
|  | size += sizeof(void *); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * With that we have determined the number of bytes in actual use | 
|  | * by the object. This is the potential offset to the free pointer. | 
|  | */ | 
|  | s->inuse = size; | 
|  |  | 
|  | if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | 
|  | s->ctor)) { | 
|  | /* | 
|  | * Relocate free pointer after the object if it is not | 
|  | * permitted to overwrite the first word of the object on | 
|  | * kmem_cache_free. | 
|  | * | 
|  | * This is the case if we do RCU, have a constructor or | 
|  | * destructor or are poisoning the objects. | 
|  | */ | 
|  | s->offset = size; | 
|  | size += sizeof(void *); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SLAB_STORE_USER) | 
|  | /* | 
|  | * Need to store information about allocs and frees after | 
|  | * the object. | 
|  | */ | 
|  | size += 2 * sizeof(struct track); | 
|  | #endif | 
|  |  | 
|  | kasan_cache_create(s, &size, &s->flags); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SLAB_RED_ZONE) { | 
|  | /* | 
|  | * Add some empty padding so that we can catch | 
|  | * overwrites from earlier objects rather than let | 
|  | * tracking information or the free pointer be | 
|  | * corrupted if a user writes before the start | 
|  | * of the object. | 
|  | */ | 
|  | size += sizeof(void *); | 
|  |  | 
|  | s->red_left_pad = sizeof(void *); | 
|  | s->red_left_pad = ALIGN(s->red_left_pad, s->align); | 
|  | size += s->red_left_pad; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * SLUB stores one object immediately after another beginning from | 
|  | * offset 0. In order to align the objects we have to simply size | 
|  | * each object to conform to the alignment. | 
|  | */ | 
|  | size = ALIGN(size, s->align); | 
|  | s->size = size; | 
|  | if (forced_order >= 0) | 
|  | order = forced_order; | 
|  | else | 
|  | order = calculate_order(size); | 
|  |  | 
|  | if ((int)order < 0) | 
|  | return 0; | 
|  |  | 
|  | s->allocflags = 0; | 
|  | if (order) | 
|  | s->allocflags |= __GFP_COMP; | 
|  |  | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | s->allocflags |= GFP_DMA; | 
|  |  | 
|  | if (s->flags & SLAB_CACHE_DMA32) | 
|  | s->allocflags |= GFP_DMA32; | 
|  |  | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | s->allocflags |= __GFP_RECLAIMABLE; | 
|  |  | 
|  | /* | 
|  | * Determine the number of objects per slab | 
|  | */ | 
|  | s->oo = oo_make(order, size); | 
|  | s->min = oo_make(get_order(size), size); | 
|  | if (oo_objects(s->oo) > oo_objects(s->max)) | 
|  | s->max = s->oo; | 
|  |  | 
|  | return !!oo_objects(s->oo); | 
|  | } | 
|  |  | 
|  | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) | 
|  | { | 
|  | s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); | 
|  | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
|  | s->random = get_random_long(); | 
|  | #endif | 
|  |  | 
|  | if (!calculate_sizes(s, -1)) | 
|  | goto error; | 
|  | if (disable_higher_order_debug) { | 
|  | /* | 
|  | * Disable debugging flags that store metadata if the min slab | 
|  | * order increased. | 
|  | */ | 
|  | if (get_order(s->size) > get_order(s->object_size)) { | 
|  | s->flags &= ~DEBUG_METADATA_FLAGS; | 
|  | s->offset = 0; | 
|  | if (!calculate_sizes(s, -1)) | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
|  | defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
|  | if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) | 
|  | /* Enable fast mode */ | 
|  | s->flags |= __CMPXCHG_DOUBLE; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The larger the object size is, the more pages we want on the partial | 
|  | * list to avoid pounding the page allocator excessively. | 
|  | */ | 
|  | set_min_partial(s, ilog2(s->size) / 2); | 
|  |  | 
|  | set_cpu_partial(s); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | s->remote_node_defrag_ratio = 1000; | 
|  | #endif | 
|  |  | 
|  | /* Initialize the pre-computed randomized freelist if slab is up */ | 
|  | if (slab_state >= UP) { | 
|  | if (init_cache_random_seq(s)) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (!init_kmem_cache_nodes(s)) | 
|  | goto error; | 
|  |  | 
|  | if (alloc_kmem_cache_cpus(s)) | 
|  | return 0; | 
|  |  | 
|  | free_kmem_cache_nodes(s); | 
|  | error: | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", | 
|  | s->name, s->size, s->size, | 
|  | oo_order(s->oo), s->offset, (unsigned long)flags); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
|  | const char *text) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | void *addr = page_address(page); | 
|  | void *p; | 
|  | unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), | 
|  | sizeof(long), | 
|  | GFP_ATOMIC); | 
|  | if (!map) | 
|  | return; | 
|  | slab_err(s, page, text, s->name); | 
|  | slab_lock(page); | 
|  |  | 
|  | get_map(s, page, map); | 
|  | for_each_object(p, s, addr, page->objects) { | 
|  |  | 
|  | if (!test_bit(slab_index(p, s, addr), map)) { | 
|  | pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); | 
|  | print_tracking(s, p); | 
|  | } | 
|  | } | 
|  | slab_unlock(page); | 
|  | kfree(map); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to free all partial slabs on a node. | 
|  | * This is called from __kmem_cache_shutdown(). We must take list_lock | 
|  | * because sysfs file might still access partial list after the shutdowning. | 
|  | */ | 
|  | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
|  | { | 
|  | LIST_HEAD(discard); | 
|  | struct page *page, *h; | 
|  |  | 
|  | BUG_ON(irqs_disabled()); | 
|  | spin_lock_irq(&n->list_lock); | 
|  | list_for_each_entry_safe(page, h, &n->partial, lru) { | 
|  | if (!page->inuse) { | 
|  | remove_partial(n, page); | 
|  | list_add(&page->lru, &discard); | 
|  | } else { | 
|  | list_slab_objects(s, page, | 
|  | "Objects remaining in %s on __kmem_cache_shutdown()"); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&n->list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(page, h, &discard, lru) | 
|  | discard_slab(s, page); | 
|  | } | 
|  |  | 
|  | bool __kmem_cache_empty(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) | 
|  | if (n->nr_partial || slabs_node(s, node)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all resources used by a slab cache. | 
|  | */ | 
|  | int __kmem_cache_shutdown(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | flush_all(s); | 
|  | /* Attempt to free all objects */ | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | free_partial(s, n); | 
|  | if (n->nr_partial || slabs_node(s, node)) | 
|  | return 1; | 
|  | } | 
|  | sysfs_slab_remove(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | *		Kmalloc subsystem | 
|  | *******************************************************************/ | 
|  |  | 
|  | static int __init setup_slub_min_order(char *str) | 
|  | { | 
|  | get_option(&str, (int *)&slub_min_order); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_order=", setup_slub_min_order); | 
|  |  | 
|  | static int __init setup_slub_max_order(char *str) | 
|  | { | 
|  | get_option(&str, (int *)&slub_max_order); | 
|  | slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_max_order=", setup_slub_max_order); | 
|  |  | 
|  | static int __init setup_slub_min_objects(char *str) | 
|  | { | 
|  | get_option(&str, (int *)&slub_min_objects); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_objects=", setup_slub_min_objects); | 
|  |  | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
|  | return kmalloc_large(size, flags); | 
|  |  | 
|  | s = kmalloc_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, flags, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
|  |  | 
|  | ret = kasan_kmalloc(s, ret, size, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | void *ptr = NULL; | 
|  |  | 
|  | flags |= __GFP_COMP; | 
|  | page = alloc_pages_node(node, flags, get_order(size)); | 
|  | if (page) | 
|  | ptr = page_address(page); | 
|  |  | 
|  | return kmalloc_large_node_hook(ptr, size, flags); | 
|  | } | 
|  |  | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
|  | ret = kmalloc_large_node(size, flags, node); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, | 
|  | size, PAGE_SIZE << get_order(size), | 
|  | flags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | s = kmalloc_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc_node(s, flags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
|  |  | 
|  | ret = kasan_kmalloc(s, ret, size, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | /* | 
|  | * Rejects incorrectly sized objects and objects that are to be copied | 
|  | * to/from userspace but do not fall entirely within the containing slab | 
|  | * cache's usercopy region. | 
|  | * | 
|  | * Returns NULL if check passes, otherwise const char * to name of cache | 
|  | * to indicate an error. | 
|  | */ | 
|  | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, | 
|  | bool to_user) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | unsigned int offset; | 
|  | size_t object_size; | 
|  |  | 
|  | ptr = kasan_reset_tag(ptr); | 
|  |  | 
|  | /* Find object and usable object size. */ | 
|  | s = page->slab_cache; | 
|  |  | 
|  | /* Reject impossible pointers. */ | 
|  | if (ptr < page_address(page)) | 
|  | usercopy_abort("SLUB object not in SLUB page?!", NULL, | 
|  | to_user, 0, n); | 
|  |  | 
|  | /* Find offset within object. */ | 
|  | offset = (ptr - page_address(page)) % s->size; | 
|  |  | 
|  | /* Adjust for redzone and reject if within the redzone. */ | 
|  | if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | 
|  | if (offset < s->red_left_pad) | 
|  | usercopy_abort("SLUB object in left red zone", | 
|  | s->name, to_user, offset, n); | 
|  | offset -= s->red_left_pad; | 
|  | } | 
|  |  | 
|  | /* Allow address range falling entirely within usercopy region. */ | 
|  | if (offset >= s->useroffset && | 
|  | offset - s->useroffset <= s->usersize && | 
|  | n <= s->useroffset - offset + s->usersize) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the copy is still within the allocated object, produce | 
|  | * a warning instead of rejecting the copy. This is intended | 
|  | * to be a temporary method to find any missing usercopy | 
|  | * whitelists. | 
|  | */ | 
|  | object_size = slab_ksize(s); | 
|  | if (usercopy_fallback && | 
|  | offset <= object_size && n <= object_size - offset) { | 
|  | usercopy_warn("SLUB object", s->name, to_user, offset, n); | 
|  | return; | 
|  | } | 
|  |  | 
|  | usercopy_abort("SLUB object", s->name, to_user, offset, n); | 
|  | } | 
|  | #endif /* CONFIG_HARDENED_USERCOPY */ | 
|  |  | 
|  | static size_t __ksize(const void *object) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(object == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | page = virt_to_head_page(object); | 
|  |  | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | WARN_ON(!PageCompound(page)); | 
|  | return PAGE_SIZE << compound_order(page); | 
|  | } | 
|  |  | 
|  | return slab_ksize(page->slab_cache); | 
|  | } | 
|  |  | 
|  | size_t ksize(const void *object) | 
|  | { | 
|  | size_t size = __ksize(object); | 
|  | /* We assume that ksize callers could use whole allocated area, | 
|  | * so we need to unpoison this area. | 
|  | */ | 
|  | kasan_unpoison_shadow(object, size); | 
|  | return size; | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | void kfree(const void *x) | 
|  | { | 
|  | struct page *page; | 
|  | void *object = (void *)x; | 
|  |  | 
|  | trace_kfree(_RET_IP_, x); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(x))) | 
|  | return; | 
|  |  | 
|  | page = virt_to_head_page(x); | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | BUG_ON(!PageCompound(page)); | 
|  | kfree_hook(object); | 
|  | __free_pages(page, compound_order(page)); | 
|  | return; | 
|  | } | 
|  | slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | #define SHRINK_PROMOTE_MAX 32 | 
|  |  | 
|  | /* | 
|  | * kmem_cache_shrink discards empty slabs and promotes the slabs filled | 
|  | * up most to the head of the partial lists. New allocations will then | 
|  | * fill those up and thus they can be removed from the partial lists. | 
|  | * | 
|  | * The slabs with the least items are placed last. This results in them | 
|  | * being allocated from last increasing the chance that the last objects | 
|  | * are freed in them. | 
|  | */ | 
|  | int __kmem_cache_shrink(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | int i; | 
|  | struct kmem_cache_node *n; | 
|  | struct page *page; | 
|  | struct page *t; | 
|  | struct list_head discard; | 
|  | struct list_head promote[SHRINK_PROMOTE_MAX]; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | INIT_LIST_HEAD(&discard); | 
|  | for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | 
|  | INIT_LIST_HEAD(promote + i); | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Build lists of slabs to discard or promote. | 
|  | * | 
|  | * Note that concurrent frees may occur while we hold the | 
|  | * list_lock. page->inuse here is the upper limit. | 
|  | */ | 
|  | list_for_each_entry_safe(page, t, &n->partial, lru) { | 
|  | int free = page->objects - page->inuse; | 
|  |  | 
|  | /* Do not reread page->inuse */ | 
|  | barrier(); | 
|  |  | 
|  | /* We do not keep full slabs on the list */ | 
|  | BUG_ON(free <= 0); | 
|  |  | 
|  | if (free == page->objects) { | 
|  | list_move(&page->lru, &discard); | 
|  | n->nr_partial--; | 
|  | } else if (free <= SHRINK_PROMOTE_MAX) | 
|  | list_move(&page->lru, promote + free - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Promote the slabs filled up most to the head of the | 
|  | * partial list. | 
|  | */ | 
|  | for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) | 
|  | list_splice(promote + i, &n->partial); | 
|  |  | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  |  | 
|  | /* Release empty slabs */ | 
|  | list_for_each_entry_safe(page, t, &discard, lru) | 
|  | discard_slab(s, page); | 
|  |  | 
|  | if (slabs_node(s, node)) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) | 
|  | { | 
|  | /* | 
|  | * Called with all the locks held after a sched RCU grace period. | 
|  | * Even if @s becomes empty after shrinking, we can't know that @s | 
|  | * doesn't have allocations already in-flight and thus can't | 
|  | * destroy @s until the associated memcg is released. | 
|  | * | 
|  | * However, let's remove the sysfs files for empty caches here. | 
|  | * Each cache has a lot of interface files which aren't | 
|  | * particularly useful for empty draining caches; otherwise, we can | 
|  | * easily end up with millions of unnecessary sysfs files on | 
|  | * systems which have a lot of memory and transient cgroups. | 
|  | */ | 
|  | if (!__kmem_cache_shrink(s)) | 
|  | sysfs_slab_remove(s); | 
|  | } | 
|  |  | 
|  | void __kmemcg_cache_deactivate(struct kmem_cache *s) | 
|  | { | 
|  | /* | 
|  | * Disable empty slabs caching. Used to avoid pinning offline | 
|  | * memory cgroups by kmem pages that can be freed. | 
|  | */ | 
|  | slub_set_cpu_partial(s, 0); | 
|  | s->min_partial = 0; | 
|  |  | 
|  | /* | 
|  | * s->cpu_partial is checked locklessly (see put_cpu_partial), so | 
|  | * we have to make sure the change is visible before shrinking. | 
|  | */ | 
|  | slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int slab_mem_going_offline_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_caches, list) | 
|  | __kmem_cache_shrink(s); | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void slab_mem_offline_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | struct kmem_cache *s; | 
|  | struct memory_notify *marg = arg; | 
|  | int offline_node; | 
|  |  | 
|  | offline_node = marg->status_change_nid_normal; | 
|  |  | 
|  | /* | 
|  | * If the node still has available memory. we need kmem_cache_node | 
|  | * for it yet. | 
|  | */ | 
|  | if (offline_node < 0) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | n = get_node(s, offline_node); | 
|  | if (n) { | 
|  | /* | 
|  | * if n->nr_slabs > 0, slabs still exist on the node | 
|  | * that is going down. We were unable to free them, | 
|  | * and offline_pages() function shouldn't call this | 
|  | * callback. So, we must fail. | 
|  | */ | 
|  | BUG_ON(slabs_node(s, offline_node)); | 
|  |  | 
|  | s->node[offline_node] = NULL; | 
|  | kmem_cache_free(kmem_cache_node, n); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | static int slab_mem_going_online_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | struct kmem_cache *s; | 
|  | struct memory_notify *marg = arg; | 
|  | int nid = marg->status_change_nid_normal; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If the node's memory is already available, then kmem_cache_node is | 
|  | * already created. Nothing to do. | 
|  | */ | 
|  | if (nid < 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We are bringing a node online. No memory is available yet. We must | 
|  | * allocate a kmem_cache_node structure in order to bring the node | 
|  | * online. | 
|  | */ | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | /* | 
|  | * XXX: kmem_cache_alloc_node will fallback to other nodes | 
|  | *      since memory is not yet available from the node that | 
|  | *      is brought up. | 
|  | */ | 
|  | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
|  | if (!n) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | init_kmem_cache_node(n); | 
|  | s->node[nid] = n; | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&slab_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int slab_memory_callback(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_GOING_ONLINE: | 
|  | ret = slab_mem_going_online_callback(arg); | 
|  | break; | 
|  | case MEM_GOING_OFFLINE: | 
|  | ret = slab_mem_going_offline_callback(arg); | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | case MEM_CANCEL_ONLINE: | 
|  | slab_mem_offline_callback(arg); | 
|  | break; | 
|  | case MEM_ONLINE: | 
|  | case MEM_CANCEL_OFFLINE: | 
|  | break; | 
|  | } | 
|  | if (ret) | 
|  | ret = notifier_from_errno(ret); | 
|  | else | 
|  | ret = NOTIFY_OK; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct notifier_block slab_memory_callback_nb = { | 
|  | .notifier_call = slab_memory_callback, | 
|  | .priority = SLAB_CALLBACK_PRI, | 
|  | }; | 
|  |  | 
|  | /******************************************************************** | 
|  | *			Basic setup of slabs | 
|  | *******************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Used for early kmem_cache structures that were allocated using | 
|  | * the page allocator. Allocate them properly then fix up the pointers | 
|  | * that may be pointing to the wrong kmem_cache structure. | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | memcpy(s, static_cache, kmem_cache->object_size); | 
|  |  | 
|  | /* | 
|  | * This runs very early, and only the boot processor is supposed to be | 
|  | * up.  Even if it weren't true, IRQs are not up so we couldn't fire | 
|  | * IPIs around. | 
|  | */ | 
|  | __flush_cpu_slab(s, smp_processor_id()); | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | struct page *p; | 
|  |  | 
|  | list_for_each_entry(p, &n->partial, lru) | 
|  | p->slab_cache = s; | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | list_for_each_entry(p, &n->full, lru) | 
|  | p->slab_cache = s; | 
|  | #endif | 
|  | } | 
|  | slab_init_memcg_params(s); | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_link_cache(s); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | static __initdata struct kmem_cache boot_kmem_cache, | 
|  | boot_kmem_cache_node; | 
|  |  | 
|  | if (debug_guardpage_minorder()) | 
|  | slub_max_order = 0; | 
|  |  | 
|  | kmem_cache_node = &boot_kmem_cache_node; | 
|  | kmem_cache = &boot_kmem_cache; | 
|  |  | 
|  | create_boot_cache(kmem_cache_node, "kmem_cache_node", | 
|  | sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); | 
|  |  | 
|  | register_hotmemory_notifier(&slab_memory_callback_nb); | 
|  |  | 
|  | /* Able to allocate the per node structures */ | 
|  | slab_state = PARTIAL; | 
|  |  | 
|  | create_boot_cache(kmem_cache, "kmem_cache", | 
|  | offsetof(struct kmem_cache, node) + | 
|  | nr_node_ids * sizeof(struct kmem_cache_node *), | 
|  | SLAB_HWCACHE_ALIGN, 0, 0); | 
|  |  | 
|  | kmem_cache = bootstrap(&boot_kmem_cache); | 
|  | kmem_cache_node = bootstrap(&boot_kmem_cache_node); | 
|  |  | 
|  | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
|  | setup_kmalloc_cache_index_table(); | 
|  | create_kmalloc_caches(0); | 
|  |  | 
|  | /* Setup random freelists for each cache */ | 
|  | init_freelist_randomization(); | 
|  |  | 
|  | cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, | 
|  | slub_cpu_dead); | 
|  |  | 
|  | pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", | 
|  | cache_line_size(), | 
|  | slub_min_order, slub_max_order, slub_min_objects, | 
|  | nr_cpu_ids, nr_node_ids); | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init_late(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | struct kmem_cache * | 
|  | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | 
|  | slab_flags_t flags, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s, *c; | 
|  |  | 
|  | s = find_mergeable(size, align, flags, name, ctor); | 
|  | if (s) { | 
|  | s->refcount++; | 
|  |  | 
|  | /* | 
|  | * Adjust the object sizes so that we clear | 
|  | * the complete object on kzalloc. | 
|  | */ | 
|  | s->object_size = max(s->object_size, size); | 
|  | s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); | 
|  |  | 
|  | for_each_memcg_cache(c, s) { | 
|  | c->object_size = s->object_size; | 
|  | c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); | 
|  | } | 
|  |  | 
|  | if (sysfs_slab_alias(s, name)) { | 
|  | s->refcount--; | 
|  | s = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = kmem_cache_open(s, flags); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Mutex is not taken during early boot */ | 
|  | if (slab_state <= UP) | 
|  | return 0; | 
|  |  | 
|  | memcg_propagate_slab_attrs(s); | 
|  | err = sysfs_slab_add(s); | 
|  | if (err) | 
|  | __kmem_cache_release(s); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
|  | return kmalloc_large(size, gfpflags); | 
|  |  | 
|  | s = kmalloc_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, gfpflags, caller); | 
|  |  | 
|  | /* Honor the call site pointer we received. */ | 
|  | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
|  | int node, unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
|  | ret = kmalloc_large_node(size, gfpflags, node); | 
|  |  | 
|  | trace_kmalloc_node(caller, ret, | 
|  | size, PAGE_SIZE << get_order(size), | 
|  | gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | s = kmalloc_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc_node(s, gfpflags, node, caller); | 
|  |  | 
|  | /* Honor the call site pointer we received. */ | 
|  | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static int count_inuse(struct page *page) | 
|  | { | 
|  | return page->inuse; | 
|  | } | 
|  |  | 
|  | static int count_total(struct page *page) | 
|  | { | 
|  | return page->objects; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static int validate_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | void *p; | 
|  | void *addr = page_address(page); | 
|  |  | 
|  | if (!check_slab(s, page) || | 
|  | !on_freelist(s, page, NULL)) | 
|  | return 0; | 
|  |  | 
|  | /* Now we know that a valid freelist exists */ | 
|  | bitmap_zero(map, page->objects); | 
|  |  | 
|  | get_map(s, page, map); | 
|  | for_each_object(p, s, addr, page->objects) { | 
|  | if (test_bit(slab_index(p, s, addr), map)) | 
|  | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for_each_object(p, s, addr, page->objects) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | slab_lock(page); | 
|  | validate_slab(s, page, map); | 
|  | slab_unlock(page); | 
|  | } | 
|  |  | 
|  | static int validate_slab_node(struct kmem_cache *s, | 
|  | struct kmem_cache_node *n, unsigned long *map) | 
|  | { | 
|  | unsigned long count = 0; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(page, &n->partial, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != n->nr_partial) | 
|  | pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", | 
|  | s->name, count, n->nr_partial); | 
|  |  | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(page, &n->full, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != atomic_long_read(&n->nr_slabs)) | 
|  | pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", | 
|  | s->name, count, atomic_long_read(&n->nr_slabs)); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static long validate_slab_cache(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | unsigned long count = 0; | 
|  | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
|  | sizeof(unsigned long), | 
|  | GFP_KERNEL); | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_kmem_cache_node(s, node, n) | 
|  | count += validate_slab_node(s, n, map); | 
|  | kfree(map); | 
|  | return count; | 
|  | } | 
|  | /* | 
|  | * Generate lists of code addresses where slabcache objects are allocated | 
|  | * and freed. | 
|  | */ | 
|  |  | 
|  | struct location { | 
|  | unsigned long count; | 
|  | unsigned long addr; | 
|  | long long sum_time; | 
|  | long min_time; | 
|  | long max_time; | 
|  | long min_pid; | 
|  | long max_pid; | 
|  | DECLARE_BITMAP(cpus, NR_CPUS); | 
|  | nodemask_t nodes; | 
|  | }; | 
|  |  | 
|  | struct loc_track { | 
|  | unsigned long max; | 
|  | unsigned long count; | 
|  | struct location *loc; | 
|  | }; | 
|  |  | 
|  | static void free_loc_track(struct loc_track *t) | 
|  | { | 
|  | if (t->max) | 
|  | free_pages((unsigned long)t->loc, | 
|  | get_order(sizeof(struct location) * t->max)); | 
|  | } | 
|  |  | 
|  | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
|  | { | 
|  | struct location *l; | 
|  | int order; | 
|  |  | 
|  | order = get_order(sizeof(struct location) * max); | 
|  |  | 
|  | l = (void *)__get_free_pages(flags, order); | 
|  | if (!l) | 
|  | return 0; | 
|  |  | 
|  | if (t->count) { | 
|  | memcpy(l, t->loc, sizeof(struct location) * t->count); | 
|  | free_loc_track(t); | 
|  | } | 
|  | t->max = max; | 
|  | t->loc = l; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
|  | const struct track *track) | 
|  | { | 
|  | long start, end, pos; | 
|  | struct location *l; | 
|  | unsigned long caddr; | 
|  | unsigned long age = jiffies - track->when; | 
|  |  | 
|  | start = -1; | 
|  | end = t->count; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | pos = start + (end - start + 1) / 2; | 
|  |  | 
|  | /* | 
|  | * There is nothing at "end". If we end up there | 
|  | * we need to add something to before end. | 
|  | */ | 
|  | if (pos == end) | 
|  | break; | 
|  |  | 
|  | caddr = t->loc[pos].addr; | 
|  | if (track->addr == caddr) { | 
|  |  | 
|  | l = &t->loc[pos]; | 
|  | l->count++; | 
|  | if (track->when) { | 
|  | l->sum_time += age; | 
|  | if (age < l->min_time) | 
|  | l->min_time = age; | 
|  | if (age > l->max_time) | 
|  | l->max_time = age; | 
|  |  | 
|  | if (track->pid < l->min_pid) | 
|  | l->min_pid = track->pid; | 
|  | if (track->pid > l->max_pid) | 
|  | l->max_pid = track->pid; | 
|  |  | 
|  | cpumask_set_cpu(track->cpu, | 
|  | to_cpumask(l->cpus)); | 
|  | } | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (track->addr < caddr) | 
|  | end = pos; | 
|  | else | 
|  | start = pos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not found. Insert new tracking element. | 
|  | */ | 
|  | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
|  | return 0; | 
|  |  | 
|  | l = t->loc + pos; | 
|  | if (pos < t->count) | 
|  | memmove(l + 1, l, | 
|  | (t->count - pos) * sizeof(struct location)); | 
|  | t->count++; | 
|  | l->count = 1; | 
|  | l->addr = track->addr; | 
|  | l->sum_time = age; | 
|  | l->min_time = age; | 
|  | l->max_time = age; | 
|  | l->min_pid = track->pid; | 
|  | l->max_pid = track->pid; | 
|  | cpumask_clear(to_cpumask(l->cpus)); | 
|  | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
|  | nodes_clear(l->nodes); | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
|  | struct page *page, enum track_item alloc, | 
|  | unsigned long *map) | 
|  | { | 
|  | void *addr = page_address(page); | 
|  | void *p; | 
|  |  | 
|  | bitmap_zero(map, page->objects); | 
|  | get_map(s, page, map); | 
|  |  | 
|  | for_each_object(p, s, addr, page->objects) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | add_location(t, s, get_track(s, p, alloc)); | 
|  | } | 
|  |  | 
|  | static int list_locations(struct kmem_cache *s, char *buf, | 
|  | enum track_item alloc) | 
|  | { | 
|  | int len = 0; | 
|  | unsigned long i; | 
|  | struct loc_track t = { 0, 0, NULL }; | 
|  | int node; | 
|  | unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
|  | sizeof(unsigned long), | 
|  | GFP_KERNEL); | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
|  | GFP_KERNEL)) { | 
|  | kfree(map); | 
|  | return sprintf(buf, "Out of memory\n"); | 
|  | } | 
|  | /* Push back cpu slabs */ | 
|  | flush_all(s); | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  |  | 
|  | if (!atomic_long_read(&n->nr_slabs)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | process_slab(&t, s, page, alloc, map); | 
|  | list_for_each_entry(page, &n->full, lru) | 
|  | process_slab(&t, s, page, alloc, map); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < t.count; i++) { | 
|  | struct location *l = &t.loc[i]; | 
|  |  | 
|  | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 
|  | break; | 
|  | len += sprintf(buf + len, "%7ld ", l->count); | 
|  |  | 
|  | if (l->addr) | 
|  | len += sprintf(buf + len, "%pS", (void *)l->addr); | 
|  | else | 
|  | len += sprintf(buf + len, "<not-available>"); | 
|  |  | 
|  | if (l->sum_time != l->min_time) { | 
|  | len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
|  | l->min_time, | 
|  | (long)div_u64(l->sum_time, l->count), | 
|  | l->max_time); | 
|  | } else | 
|  | len += sprintf(buf + len, " age=%ld", | 
|  | l->min_time); | 
|  |  | 
|  | if (l->min_pid != l->max_pid) | 
|  | len += sprintf(buf + len, " pid=%ld-%ld", | 
|  | l->min_pid, l->max_pid); | 
|  | else | 
|  | len += sprintf(buf + len, " pid=%ld", | 
|  | l->min_pid); | 
|  |  | 
|  | if (num_online_cpus() > 1 && | 
|  | !cpumask_empty(to_cpumask(l->cpus)) && | 
|  | len < PAGE_SIZE - 60) | 
|  | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | " cpus=%*pbl", | 
|  | cpumask_pr_args(to_cpumask(l->cpus))); | 
|  |  | 
|  | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && | 
|  | len < PAGE_SIZE - 60) | 
|  | len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | " nodes=%*pbl", | 
|  | nodemask_pr_args(&l->nodes)); | 
|  |  | 
|  | len += sprintf(buf + len, "\n"); | 
|  | } | 
|  |  | 
|  | free_loc_track(&t); | 
|  | kfree(map); | 
|  | if (!t.count) | 
|  | len += sprintf(buf, "No data\n"); | 
|  | return len; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef SLUB_RESILIENCY_TEST | 
|  | static void __init resiliency_test(void) | 
|  | { | 
|  | u8 *p; | 
|  | int type = KMALLOC_NORMAL; | 
|  |  | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); | 
|  |  | 
|  | pr_err("SLUB resiliency testing\n"); | 
|  | pr_err("-----------------------\n"); | 
|  | pr_err("A. Corruption after allocation\n"); | 
|  |  | 
|  | p = kzalloc(16, GFP_KERNEL); | 
|  | p[16] = 0x12; | 
|  | pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", | 
|  | p + 16); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches[type][4]); | 
|  |  | 
|  | /* Hmmm... The next two are dangerous */ | 
|  | p = kzalloc(32, GFP_KERNEL); | 
|  | p[32 + sizeof(void *)] = 0x34; | 
|  | pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", | 
|  | p); | 
|  | pr_err("If allocated object is overwritten then not detectable\n\n"); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches[type][5]); | 
|  | p = kzalloc(64, GFP_KERNEL); | 
|  | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
|  | *p = 0x56; | 
|  | pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
|  | p); | 
|  | pr_err("If allocated object is overwritten then not detectable\n\n"); | 
|  | validate_slab_cache(kmalloc_caches[type][6]); | 
|  |  | 
|  | pr_err("\nB. Corruption after free\n"); | 
|  | p = kzalloc(128, GFP_KERNEL); | 
|  | kfree(p); | 
|  | *p = 0x78; | 
|  | pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches[type][7]); | 
|  |  | 
|  | p = kzalloc(256, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[50] = 0x9a; | 
|  | pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches[type][8]); | 
|  |  | 
|  | p = kzalloc(512, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[512] = 0xab; | 
|  | pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches[type][9]); | 
|  | } | 
|  | #else | 
|  | #ifdef CONFIG_SYSFS | 
|  | static void resiliency_test(void) {}; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | enum slab_stat_type { | 
|  | SL_ALL,			/* All slabs */ | 
|  | SL_PARTIAL,		/* Only partially allocated slabs */ | 
|  | SL_CPU,			/* Only slabs used for cpu caches */ | 
|  | SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
|  | SL_TOTAL		/* Determine object capacity not slabs */ | 
|  | }; | 
|  |  | 
|  | #define SO_ALL		(1 << SL_ALL) | 
|  | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
|  | #define SO_CPU		(1 << SL_CPU) | 
|  | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
|  | #define SO_TOTAL	(1 << SL_TOTAL) | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | 
|  |  | 
|  | static int __init setup_slub_memcg_sysfs(char *str) | 
|  | { | 
|  | int v; | 
|  |  | 
|  | if (get_option(&str, &v) > 0) | 
|  | memcg_sysfs_enabled = v; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | 
|  | #endif | 
|  |  | 
|  | static ssize_t show_slab_objects(struct kmem_cache *s, | 
|  | char *buf, unsigned long flags) | 
|  | { | 
|  | unsigned long total = 0; | 
|  | int node; | 
|  | int x; | 
|  | unsigned long *nodes; | 
|  |  | 
|  | nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!nodes) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & SO_CPU) { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, | 
|  | cpu); | 
|  | int node; | 
|  | struct page *page; | 
|  |  | 
|  | page = READ_ONCE(c->page); | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | node = page_to_nid(page); | 
|  | if (flags & SO_TOTAL) | 
|  | x = page->objects; | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = page->inuse; | 
|  | else | 
|  | x = 1; | 
|  |  | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  |  | 
|  | page = slub_percpu_partial_read_once(c); | 
|  | if (page) { | 
|  | node = page_to_nid(page); | 
|  | if (flags & SO_TOTAL) | 
|  | WARN_ON_ONCE(1); | 
|  | else if (flags & SO_OBJECTS) | 
|  | WARN_ON_ONCE(1); | 
|  | else | 
|  | x = page->pages; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | 
|  | * already held which will conflict with an existing lock order: | 
|  | * | 
|  | * mem_hotplug_lock->slab_mutex->kernfs_mutex | 
|  | * | 
|  | * We don't really need mem_hotplug_lock (to hold off | 
|  | * slab_mem_going_offline_callback) here because slab's memory hot | 
|  | * unplug code doesn't destroy the kmem_cache->node[] data. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SO_ALL) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  |  | 
|  | if (flags & SO_TOTAL) | 
|  | x = atomic_long_read(&n->total_objects); | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = atomic_long_read(&n->total_objects) - | 
|  | count_partial(n, count_free); | 
|  | else | 
|  | x = atomic_long_read(&n->nr_slabs); | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  |  | 
|  | } else | 
|  | #endif | 
|  | if (flags & SO_PARTIAL) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | if (flags & SO_TOTAL) | 
|  | x = count_partial(n, count_total); | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = count_partial(n, count_inuse); | 
|  | else | 
|  | x = n->nr_partial; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  | } | 
|  | x = sprintf(buf, "%lu", total); | 
|  | #ifdef CONFIG_NUMA | 
|  | for (node = 0; node < nr_node_ids; node++) | 
|  | if (nodes[node]) | 
|  | x += sprintf(buf + x, " N%d=%lu", | 
|  | node, nodes[node]); | 
|  | #endif | 
|  | kfree(nodes); | 
|  | return x + sprintf(buf + x, "\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static int any_slab_objects(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) | 
|  | if (atomic_long_read(&n->total_objects)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
|  | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | 
|  |  | 
|  | struct slab_attribute { | 
|  | struct attribute attr; | 
|  | ssize_t (*show)(struct kmem_cache *s, char *buf); | 
|  | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
|  | }; | 
|  |  | 
|  | #define SLAB_ATTR_RO(_name) \ | 
|  | static struct slab_attribute _name##_attr = \ | 
|  | __ATTR(_name, 0400, _name##_show, NULL) | 
|  |  | 
|  | #define SLAB_ATTR(_name) \ | 
|  | static struct slab_attribute _name##_attr =  \ | 
|  | __ATTR(_name, 0600, _name##_show, _name##_store) | 
|  |  | 
|  | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", s->size); | 
|  | } | 
|  | SLAB_ATTR_RO(slab_size); | 
|  |  | 
|  | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", s->align); | 
|  | } | 
|  | SLAB_ATTR_RO(align); | 
|  |  | 
|  | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", s->object_size); | 
|  | } | 
|  | SLAB_ATTR_RO(object_size); | 
|  |  | 
|  | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", oo_objects(s->oo)); | 
|  | } | 
|  | SLAB_ATTR_RO(objs_per_slab); | 
|  |  | 
|  | static ssize_t order_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | unsigned int order; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &order); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (order > slub_max_order || order < slub_min_order) | 
|  | return -EINVAL; | 
|  |  | 
|  | calculate_sizes(s, order); | 
|  | return length; | 
|  | } | 
|  |  | 
|  | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", oo_order(s->oo)); | 
|  | } | 
|  | SLAB_ATTR(order); | 
|  |  | 
|  | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%lu\n", s->min_partial); | 
|  | } | 
|  |  | 
|  | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | unsigned long min; | 
|  | int err; | 
|  |  | 
|  | err = kstrtoul(buf, 10, &min); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | set_min_partial(s, min); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(min_partial); | 
|  |  | 
|  | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", slub_cpu_partial(s)); | 
|  | } | 
|  |  | 
|  | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | unsigned int objects; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &objects); | 
|  | if (err) | 
|  | return err; | 
|  | if (objects && !kmem_cache_has_cpu_partial(s)) | 
|  | return -EINVAL; | 
|  |  | 
|  | slub_set_cpu_partial(s, objects); | 
|  | flush_all(s); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(cpu_partial); | 
|  |  | 
|  | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!s->ctor) | 
|  | return 0; | 
|  | return sprintf(buf, "%pS\n", s->ctor); | 
|  | } | 
|  | SLAB_ATTR_RO(ctor); | 
|  |  | 
|  | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); | 
|  | } | 
|  | SLAB_ATTR_RO(aliases); | 
|  |  | 
|  | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_PARTIAL); | 
|  | } | 
|  | SLAB_ATTR_RO(partial); | 
|  |  | 
|  | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_CPU); | 
|  | } | 
|  | SLAB_ATTR_RO(cpu_slabs); | 
|  |  | 
|  | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
|  | } | 
|  | SLAB_ATTR_RO(objects); | 
|  |  | 
|  | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
|  | } | 
|  | SLAB_ATTR_RO(objects_partial); | 
|  |  | 
|  | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | int objects = 0; | 
|  | int pages = 0; | 
|  | int cpu; | 
|  | int len; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct page *page; | 
|  |  | 
|  | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
|  |  | 
|  | if (page) { | 
|  | pages += page->pages; | 
|  | objects += page->pobjects; | 
|  | } | 
|  | } | 
|  |  | 
|  | len = sprintf(buf, "%d(%d)", objects, pages); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | for_each_online_cpu(cpu) { | 
|  | struct page *page; | 
|  |  | 
|  | page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
|  |  | 
|  | if (page && len < PAGE_SIZE - 20) | 
|  | len += sprintf(buf + len, " C%d=%d(%d)", cpu, | 
|  | page->pobjects, page->pages); | 
|  | } | 
|  | #endif | 
|  | return len + sprintf(buf + len, "\n"); | 
|  | } | 
|  | SLAB_ATTR_RO(slabs_cpu_partial); | 
|  |  | 
|  | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
|  | } | 
|  |  | 
|  | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(reclaim_account); | 
|  |  | 
|  | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
|  | } | 
|  | SLAB_ATTR_RO(hwcache_align); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
|  | } | 
|  | SLAB_ATTR_RO(cache_dma); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | static ssize_t cache_dma32_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA32)); | 
|  | } | 
|  | SLAB_ATTR_RO(cache_dma32); | 
|  | #endif | 
|  |  | 
|  | static ssize_t usersize_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", s->usersize); | 
|  | } | 
|  | SLAB_ATTR_RO(usersize); | 
|  |  | 
|  | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); | 
|  | } | 
|  | SLAB_ATTR_RO(destroy_by_rcu); | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL); | 
|  | } | 
|  | SLAB_ATTR_RO(slabs); | 
|  |  | 
|  | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
|  | } | 
|  | SLAB_ATTR_RO(total_objects); | 
|  |  | 
|  | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); | 
|  | } | 
|  |  | 
|  | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_CONSISTENCY_CHECKS; | 
|  | if (buf[0] == '1') { | 
|  | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | s->flags |= SLAB_CONSISTENCY_CHECKS; | 
|  | } | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(sanity_checks); | 
|  |  | 
|  | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
|  | } | 
|  |  | 
|  | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | /* | 
|  | * Tracing a merged cache is going to give confusing results | 
|  | * as well as cause other issues like converting a mergeable | 
|  | * cache into an umergeable one. | 
|  | */ | 
|  | if (s->refcount > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | s->flags &= ~SLAB_TRACE; | 
|  | if (buf[0] == '1') { | 
|  | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | s->flags |= SLAB_TRACE; | 
|  | } | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(trace); | 
|  |  | 
|  | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
|  | } | 
|  |  | 
|  | static ssize_t red_zone_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_RED_ZONE; | 
|  | if (buf[0] == '1') { | 
|  | s->flags |= SLAB_RED_ZONE; | 
|  | } | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(red_zone); | 
|  |  | 
|  | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
|  | } | 
|  |  | 
|  | static ssize_t poison_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_POISON; | 
|  | if (buf[0] == '1') { | 
|  | s->flags |= SLAB_POISON; | 
|  | } | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(poison); | 
|  |  | 
|  | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
|  | } | 
|  |  | 
|  | static ssize_t store_user_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_STORE_USER; | 
|  | if (buf[0] == '1') { | 
|  | s->flags &= ~__CMPXCHG_DOUBLE; | 
|  | s->flags |= SLAB_STORE_USER; | 
|  | } | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(store_user); | 
|  |  | 
|  | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t validate_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (buf[0] == '1') { | 
|  | ret = validate_slab_cache(s); | 
|  | if (ret >= 0) | 
|  | ret = length; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | SLAB_ATTR(validate); | 
|  |  | 
|  | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_ALLOC); | 
|  | } | 
|  | SLAB_ATTR_RO(alloc_calls); | 
|  |  | 
|  | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_FREE); | 
|  | } | 
|  | SLAB_ATTR_RO(free_calls); | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | #ifdef CONFIG_FAILSLAB | 
|  | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
|  | } | 
|  |  | 
|  | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | if (s->refcount > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | s->flags &= ~SLAB_FAILSLAB; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_FAILSLAB; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(failslab); | 
|  | #endif | 
|  |  | 
|  | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t shrink_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (buf[0] == '1') | 
|  | kmem_cache_shrink(s); | 
|  | else | 
|  | return -EINVAL; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(shrink); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); | 
|  | } | 
|  |  | 
|  | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | unsigned int ratio; | 
|  | int err; | 
|  |  | 
|  | err = kstrtouint(buf, 10, &ratio); | 
|  | if (err) | 
|  | return err; | 
|  | if (ratio > 100) | 
|  | return -ERANGE; | 
|  |  | 
|  | s->remote_node_defrag_ratio = ratio * 10; | 
|  |  | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(remote_node_defrag_ratio); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
|  | { | 
|  | unsigned long sum  = 0; | 
|  | int cpu; | 
|  | int len; | 
|  | int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); | 
|  |  | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
|  |  | 
|  | data[cpu] = x; | 
|  | sum += x; | 
|  | } | 
|  |  | 
|  | len = sprintf(buf, "%lu", sum); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | for_each_online_cpu(cpu) { | 
|  | if (data[cpu] && len < PAGE_SIZE - 20) | 
|  | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
|  | } | 
|  | #endif | 
|  | kfree(data); | 
|  | return len + sprintf(buf + len, "\n"); | 
|  | } | 
|  |  | 
|  | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
|  | } | 
|  |  | 
|  | #define STAT_ATTR(si, text) 					\ | 
|  | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
|  | {								\ | 
|  | return show_stat(s, buf, si);				\ | 
|  | }								\ | 
|  | static ssize_t text##_store(struct kmem_cache *s,		\ | 
|  | const char *buf, size_t length)	\ | 
|  | {								\ | 
|  | if (buf[0] != '0')					\ | 
|  | return -EINVAL;					\ | 
|  | clear_stat(s, si);					\ | 
|  | return length;						\ | 
|  | }								\ | 
|  | SLAB_ATTR(text);						\ | 
|  |  | 
|  | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
|  | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
|  | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
|  | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
|  | STAT_ATTR(FREE_FROZEN, free_frozen); | 
|  | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
|  | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
|  | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
|  | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
|  | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
|  | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | 
|  | STAT_ATTR(FREE_SLAB, free_slab); | 
|  | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
|  | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
|  | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
|  | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
|  | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
|  | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
|  | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | 
|  | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
|  | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | 
|  | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | 
|  | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | 
|  | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | 
|  | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | 
|  | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | 
|  | #endif | 
|  |  | 
|  | static struct attribute *slab_attrs[] = { | 
|  | &slab_size_attr.attr, | 
|  | &object_size_attr.attr, | 
|  | &objs_per_slab_attr.attr, | 
|  | &order_attr.attr, | 
|  | &min_partial_attr.attr, | 
|  | &cpu_partial_attr.attr, | 
|  | &objects_attr.attr, | 
|  | &objects_partial_attr.attr, | 
|  | &partial_attr.attr, | 
|  | &cpu_slabs_attr.attr, | 
|  | &ctor_attr.attr, | 
|  | &aliases_attr.attr, | 
|  | &align_attr.attr, | 
|  | &hwcache_align_attr.attr, | 
|  | &reclaim_account_attr.attr, | 
|  | &destroy_by_rcu_attr.attr, | 
|  | &shrink_attr.attr, | 
|  | &slabs_cpu_partial_attr.attr, | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | &total_objects_attr.attr, | 
|  | &slabs_attr.attr, | 
|  | &sanity_checks_attr.attr, | 
|  | &trace_attr.attr, | 
|  | &red_zone_attr.attr, | 
|  | &poison_attr.attr, | 
|  | &store_user_attr.attr, | 
|  | &validate_attr.attr, | 
|  | &alloc_calls_attr.attr, | 
|  | &free_calls_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | &cache_dma_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA32 | 
|  | &cache_dma32_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | &remote_node_defrag_ratio_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | &alloc_fastpath_attr.attr, | 
|  | &alloc_slowpath_attr.attr, | 
|  | &free_fastpath_attr.attr, | 
|  | &free_slowpath_attr.attr, | 
|  | &free_frozen_attr.attr, | 
|  | &free_add_partial_attr.attr, | 
|  | &free_remove_partial_attr.attr, | 
|  | &alloc_from_partial_attr.attr, | 
|  | &alloc_slab_attr.attr, | 
|  | &alloc_refill_attr.attr, | 
|  | &alloc_node_mismatch_attr.attr, | 
|  | &free_slab_attr.attr, | 
|  | &cpuslab_flush_attr.attr, | 
|  | &deactivate_full_attr.attr, | 
|  | &deactivate_empty_attr.attr, | 
|  | &deactivate_to_head_attr.attr, | 
|  | &deactivate_to_tail_attr.attr, | 
|  | &deactivate_remote_frees_attr.attr, | 
|  | &deactivate_bypass_attr.attr, | 
|  | &order_fallback_attr.attr, | 
|  | &cmpxchg_double_fail_attr.attr, | 
|  | &cmpxchg_double_cpu_fail_attr.attr, | 
|  | &cpu_partial_alloc_attr.attr, | 
|  | &cpu_partial_free_attr.attr, | 
|  | &cpu_partial_node_attr.attr, | 
|  | &cpu_partial_drain_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_FAILSLAB | 
|  | &failslab_attr.attr, | 
|  | #endif | 
|  | &usersize_attr.attr, | 
|  |  | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group slab_attr_group = { | 
|  | .attrs = slab_attrs, | 
|  | }; | 
|  |  | 
|  | static ssize_t slab_attr_show(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->show) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->show(s, buf); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t slab_attr_store(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->store) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->store(s, buf, len); | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { | 
|  | struct kmem_cache *c; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | if (s->max_attr_size < len) | 
|  | s->max_attr_size = len; | 
|  |  | 
|  | /* | 
|  | * This is a best effort propagation, so this function's return | 
|  | * value will be determined by the parent cache only. This is | 
|  | * basically because not all attributes will have a well | 
|  | * defined semantics for rollbacks - most of the actions will | 
|  | * have permanent effects. | 
|  | * | 
|  | * Returning the error value of any of the children that fail | 
|  | * is not 100 % defined, in the sense that users seeing the | 
|  | * error code won't be able to know anything about the state of | 
|  | * the cache. | 
|  | * | 
|  | * Only returning the error code for the parent cache at least | 
|  | * has well defined semantics. The cache being written to | 
|  | * directly either failed or succeeded, in which case we loop | 
|  | * through the descendants with best-effort propagation. | 
|  | */ | 
|  | for_each_memcg_cache(c, s) | 
|  | attribute->store(c, buf, len); | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void memcg_propagate_slab_attrs(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | int i; | 
|  | char *buffer = NULL; | 
|  | struct kmem_cache *root_cache; | 
|  |  | 
|  | if (is_root_cache(s)) | 
|  | return; | 
|  |  | 
|  | root_cache = s->memcg_params.root_cache; | 
|  |  | 
|  | /* | 
|  | * This mean this cache had no attribute written. Therefore, no point | 
|  | * in copying default values around | 
|  | */ | 
|  | if (!root_cache->max_attr_size) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | 
|  | char mbuf[64]; | 
|  | char *buf; | 
|  | struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | 
|  | ssize_t len; | 
|  |  | 
|  | if (!attr || !attr->store || !attr->show) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * It is really bad that we have to allocate here, so we will | 
|  | * do it only as a fallback. If we actually allocate, though, | 
|  | * we can just use the allocated buffer until the end. | 
|  | * | 
|  | * Most of the slub attributes will tend to be very small in | 
|  | * size, but sysfs allows buffers up to a page, so they can | 
|  | * theoretically happen. | 
|  | */ | 
|  | if (buffer) | 
|  | buf = buffer; | 
|  | else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) | 
|  | buf = mbuf; | 
|  | else { | 
|  | buffer = (char *) get_zeroed_page(GFP_KERNEL); | 
|  | if (WARN_ON(!buffer)) | 
|  | continue; | 
|  | buf = buffer; | 
|  | } | 
|  |  | 
|  | len = attr->show(root_cache, buf); | 
|  | if (len > 0) | 
|  | attr->store(s, buf, len); | 
|  | } | 
|  |  | 
|  | if (buffer) | 
|  | free_page((unsigned long)buffer); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void kmem_cache_release(struct kobject *k) | 
|  | { | 
|  | slab_kmem_cache_release(to_slab(k)); | 
|  | } | 
|  |  | 
|  | static const struct sysfs_ops slab_sysfs_ops = { | 
|  | .show = slab_attr_show, | 
|  | .store = slab_attr_store, | 
|  | }; | 
|  |  | 
|  | static struct kobj_type slab_ktype = { | 
|  | .sysfs_ops = &slab_sysfs_ops, | 
|  | .release = kmem_cache_release, | 
|  | }; | 
|  |  | 
|  | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
|  | { | 
|  | struct kobj_type *ktype = get_ktype(kobj); | 
|  |  | 
|  | if (ktype == &slab_ktype) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct kset_uevent_ops slab_uevent_ops = { | 
|  | .filter = uevent_filter, | 
|  | }; | 
|  |  | 
|  | static struct kset *slab_kset; | 
|  |  | 
|  | static inline struct kset *cache_kset(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (!is_root_cache(s)) | 
|  | return s->memcg_params.root_cache->memcg_kset; | 
|  | #endif | 
|  | return slab_kset; | 
|  | } | 
|  |  | 
|  | #define ID_STR_LENGTH 64 | 
|  |  | 
|  | /* Create a unique string id for a slab cache: | 
|  | * | 
|  | * Format	:[flags-]size | 
|  | */ | 
|  | static char *create_unique_id(struct kmem_cache *s) | 
|  | { | 
|  | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
|  | char *p = name; | 
|  |  | 
|  | BUG_ON(!name); | 
|  |  | 
|  | *p++ = ':'; | 
|  | /* | 
|  | * First flags affecting slabcache operations. We will only | 
|  | * get here for aliasable slabs so we do not need to support | 
|  | * too many flags. The flags here must cover all flags that | 
|  | * are matched during merging to guarantee that the id is | 
|  | * unique. | 
|  | */ | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | *p++ = 'd'; | 
|  | if (s->flags & SLAB_CACHE_DMA32) | 
|  | *p++ = 'D'; | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | *p++ = 'a'; | 
|  | if (s->flags & SLAB_CONSISTENCY_CHECKS) | 
|  | *p++ = 'F'; | 
|  | if (s->flags & SLAB_ACCOUNT) | 
|  | *p++ = 'A'; | 
|  | if (p != name + 1) | 
|  | *p++ = '-'; | 
|  | p += sprintf(p, "%07u", s->size); | 
|  |  | 
|  | BUG_ON(p > name + ID_STR_LENGTH - 1); | 
|  | return name; | 
|  | } | 
|  |  | 
|  | static void sysfs_slab_remove_workfn(struct work_struct *work) | 
|  | { | 
|  | struct kmem_cache *s = | 
|  | container_of(work, struct kmem_cache, kobj_remove_work); | 
|  |  | 
|  | if (!s->kobj.state_in_sysfs) | 
|  | /* | 
|  | * For a memcg cache, this may be called during | 
|  | * deactivation and again on shutdown.  Remove only once. | 
|  | * A cache is never shut down before deactivation is | 
|  | * complete, so no need to worry about synchronization. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | kset_unregister(s->memcg_kset); | 
|  | #endif | 
|  | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
|  | out: | 
|  | kobject_put(&s->kobj); | 
|  | } | 
|  |  | 
|  | static int sysfs_slab_add(struct kmem_cache *s) | 
|  | { | 
|  | int err; | 
|  | const char *name; | 
|  | struct kset *kset = cache_kset(s); | 
|  | int unmergeable = slab_unmergeable(s); | 
|  |  | 
|  | INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); | 
|  |  | 
|  | if (!kset) { | 
|  | kobject_init(&s->kobj, &slab_ktype); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!unmergeable && disable_higher_order_debug && | 
|  | (slub_debug & DEBUG_METADATA_FLAGS)) | 
|  | unmergeable = 1; | 
|  |  | 
|  | if (unmergeable) { | 
|  | /* | 
|  | * Slabcache can never be merged so we can use the name proper. | 
|  | * This is typically the case for debug situations. In that | 
|  | * case we can catch duplicate names easily. | 
|  | */ | 
|  | sysfs_remove_link(&slab_kset->kobj, s->name); | 
|  | name = s->name; | 
|  | } else { | 
|  | /* | 
|  | * Create a unique name for the slab as a target | 
|  | * for the symlinks. | 
|  | */ | 
|  | name = create_unique_id(s); | 
|  | } | 
|  |  | 
|  | s->kobj.kset = kset; | 
|  | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
|  | if (err) | 
|  | goto out_del_kobj; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (is_root_cache(s) && memcg_sysfs_enabled) { | 
|  | s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); | 
|  | if (!s->memcg_kset) { | 
|  | err = -ENOMEM; | 
|  | goto out_del_kobj; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | kobject_uevent(&s->kobj, KOBJ_ADD); | 
|  | if (!unmergeable) { | 
|  | /* Setup first alias */ | 
|  | sysfs_slab_alias(s, s->name); | 
|  | } | 
|  | out: | 
|  | if (!unmergeable) | 
|  | kfree(name); | 
|  | return err; | 
|  | out_del_kobj: | 
|  | kobject_del(&s->kobj); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static void sysfs_slab_remove(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_state < FULL) | 
|  | /* | 
|  | * Sysfs has not been setup yet so no need to remove the | 
|  | * cache from sysfs. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | kobject_get(&s->kobj); | 
|  | schedule_work(&s->kobj_remove_work); | 
|  | } | 
|  |  | 
|  | void sysfs_slab_unlink(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_state >= FULL) | 
|  | kobject_del(&s->kobj); | 
|  | } | 
|  |  | 
|  | void sysfs_slab_release(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_state >= FULL) | 
|  | kobject_put(&s->kobj); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to buffer aliases during bootup until sysfs becomes | 
|  | * available lest we lose that information. | 
|  | */ | 
|  | struct saved_alias { | 
|  | struct kmem_cache *s; | 
|  | const char *name; | 
|  | struct saved_alias *next; | 
|  | }; | 
|  |  | 
|  | static struct saved_alias *alias_list; | 
|  |  | 
|  | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
|  | { | 
|  | struct saved_alias *al; | 
|  |  | 
|  | if (slab_state == FULL) { | 
|  | /* | 
|  | * If we have a leftover link then remove it. | 
|  | */ | 
|  | sysfs_remove_link(&slab_kset->kobj, name); | 
|  | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
|  | } | 
|  |  | 
|  | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
|  | if (!al) | 
|  | return -ENOMEM; | 
|  |  | 
|  | al->s = s; | 
|  | al->name = name; | 
|  | al->next = alias_list; | 
|  | alias_list = al; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init slab_sysfs_init(void) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
|  | if (!slab_kset) { | 
|  | mutex_unlock(&slab_mutex); | 
|  | pr_err("Cannot register slab subsystem.\n"); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | slab_state = FULL; | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | err = sysfs_slab_add(s); | 
|  | if (err) | 
|  | pr_err("SLUB: Unable to add boot slab %s to sysfs\n", | 
|  | s->name); | 
|  | } | 
|  |  | 
|  | while (alias_list) { | 
|  | struct saved_alias *al = alias_list; | 
|  |  | 
|  | alias_list = alias_list->next; | 
|  | err = sysfs_slab_alias(al->s, al->name); | 
|  | if (err) | 
|  | pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", | 
|  | al->name); | 
|  | kfree(al); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&slab_mutex); | 
|  | resiliency_test(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(slab_sysfs_init); | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | /* | 
|  | * The /proc/slabinfo ABI | 
|  | */ | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) | 
|  | { | 
|  | unsigned long nr_slabs = 0; | 
|  | unsigned long nr_objs = 0; | 
|  | unsigned long nr_free = 0; | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | for_each_kmem_cache_node(s, node, n) { | 
|  | nr_slabs += node_nr_slabs(n); | 
|  | nr_objs += node_nr_objs(n); | 
|  | nr_free += count_partial(n, count_free); | 
|  | } | 
|  |  | 
|  | sinfo->active_objs = nr_objs - nr_free; | 
|  | sinfo->num_objs = nr_objs; | 
|  | sinfo->active_slabs = nr_slabs; | 
|  | sinfo->num_slabs = nr_slabs; | 
|  | sinfo->objects_per_slab = oo_objects(s->oo); | 
|  | sinfo->cache_order = oo_order(s->oo); | 
|  | } | 
|  |  | 
|  | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | return -EIO; | 
|  | } | 
|  | #endif /* CONFIG_SLUB_DEBUG */ |