|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * KVM/MIPS MMU handling in the KVM module. | 
|  | * | 
|  | * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved. | 
|  | * Authors: Sanjay Lal <sanjayl@kymasys.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgalloc.h> | 
|  |  | 
|  | /* | 
|  | * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels | 
|  | * for which pages need to be cached. | 
|  | */ | 
|  | #if defined(__PAGETABLE_PMD_FOLDED) | 
|  | #define KVM_MMU_CACHE_MIN_PAGES 1 | 
|  | #else | 
|  | #define KVM_MMU_CACHE_MIN_PAGES 2 | 
|  | #endif | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | int min, int max) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | BUG_ON(max > KVM_NR_MEM_OBJS); | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < max) { | 
|  | page = (void *)__get_free_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc || !mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_pgd_init() - Initialise KVM GPA page directory. | 
|  | * @page:	Pointer to page directory (PGD) for KVM GPA. | 
|  | * | 
|  | * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. | 
|  | * representing no mappings. This is similar to pgd_init(), however it | 
|  | * initialises all the page directory pointers, not just the ones corresponding | 
|  | * to the userland address space (since it is for the guest physical address | 
|  | * space rather than a virtual address space). | 
|  | */ | 
|  | static void kvm_pgd_init(void *page) | 
|  | { | 
|  | unsigned long *p, *end; | 
|  | unsigned long entry; | 
|  |  | 
|  | #ifdef __PAGETABLE_PMD_FOLDED | 
|  | entry = (unsigned long)invalid_pte_table; | 
|  | #else | 
|  | entry = (unsigned long)invalid_pmd_table; | 
|  | #endif | 
|  |  | 
|  | p = (unsigned long *)page; | 
|  | end = p + PTRS_PER_PGD; | 
|  |  | 
|  | do { | 
|  | p[0] = entry; | 
|  | p[1] = entry; | 
|  | p[2] = entry; | 
|  | p[3] = entry; | 
|  | p[4] = entry; | 
|  | p += 8; | 
|  | p[-3] = entry; | 
|  | p[-2] = entry; | 
|  | p[-1] = entry; | 
|  | } while (p != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. | 
|  | * | 
|  | * Allocate a blank KVM GPA page directory (PGD) for representing guest physical | 
|  | * to host physical page mappings. | 
|  | * | 
|  | * Returns:	Pointer to new KVM GPA page directory. | 
|  | *		NULL on allocation failure. | 
|  | */ | 
|  | pgd_t *kvm_pgd_alloc(void) | 
|  | { | 
|  | pgd_t *ret; | 
|  |  | 
|  | ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); | 
|  | if (ret) | 
|  | kvm_pgd_init(ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_walk_pgd() - Walk page table with optional allocation. | 
|  | * @pgd:	Page directory pointer. | 
|  | * @addr:	Address to index page table using. | 
|  | * @cache:	MMU page cache to allocate new page tables from, or NULL. | 
|  | * | 
|  | * Walk the page tables pointed to by @pgd to find the PTE corresponding to the | 
|  | * address @addr. If page tables don't exist for @addr, they will be created | 
|  | * from the MMU cache if @cache is not NULL. | 
|  | * | 
|  | * Returns:	Pointer to pte_t corresponding to @addr. | 
|  | *		NULL if a page table doesn't exist for @addr and !@cache. | 
|  | *		NULL if a page table allocation failed. | 
|  | */ | 
|  | static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, | 
|  | unsigned long addr) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd += pgd_index(addr); | 
|  | if (pgd_none(*pgd)) { | 
|  | /* Not used on MIPS yet */ | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (pud_none(*pud)) { | 
|  | pmd_t *new_pmd; | 
|  |  | 
|  | if (!cache) | 
|  | return NULL; | 
|  | new_pmd = mmu_memory_cache_alloc(cache); | 
|  | pmd_init((unsigned long)new_pmd, | 
|  | (unsigned long)invalid_pte_table); | 
|  | pud_populate(NULL, pud, new_pmd); | 
|  | } | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *new_pte; | 
|  |  | 
|  | if (!cache) | 
|  | return NULL; | 
|  | new_pte = mmu_memory_cache_alloc(cache); | 
|  | clear_page(new_pte); | 
|  | pmd_populate_kernel(NULL, pmd, new_pte); | 
|  | } | 
|  | return pte_offset(pmd, addr); | 
|  | } | 
|  |  | 
|  | /* Caller must hold kvm->mm_lock */ | 
|  | static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, | 
|  | struct kvm_mmu_memory_cache *cache, | 
|  | unsigned long addr) | 
|  | { | 
|  | return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. | 
|  | * Flush a range of guest physical address space from the VM's GPA page tables. | 
|  | */ | 
|  |  | 
|  | static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, | 
|  | unsigned long end_gpa) | 
|  | { | 
|  | int i_min = __pte_offset(start_gpa); | 
|  | int i_max = __pte_offset(end_gpa); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i) { | 
|  | if (!pte_present(pte[i])) | 
|  | continue; | 
|  |  | 
|  | set_pte(pte + i, __pte(0)); | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, | 
|  | unsigned long end_gpa) | 
|  | { | 
|  | pte_t *pte; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = __pmd_offset(start_gpa); | 
|  | int i_max = __pmd_offset(end_gpa); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { | 
|  | if (!pmd_present(pmd[i])) | 
|  | continue; | 
|  |  | 
|  | pte = pte_offset(pmd + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gpa; | 
|  |  | 
|  | if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { | 
|  | pmd_clear(pmd + i); | 
|  | pte_free_kernel(NULL, pte); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, | 
|  | unsigned long end_gpa) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = __pud_offset(start_gpa); | 
|  | int i_max = __pud_offset(end_gpa); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { | 
|  | if (!pud_present(pud[i])) | 
|  | continue; | 
|  |  | 
|  | pmd = pmd_offset(pud + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gpa; | 
|  |  | 
|  | if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { | 
|  | pud_clear(pud + i); | 
|  | pmd_free(NULL, pmd); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, | 
|  | unsigned long end_gpa) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = pgd_index(start_gpa); | 
|  | int i_max = pgd_index(end_gpa); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gpa = 0) { | 
|  | if (!pgd_present(pgd[i])) | 
|  | continue; | 
|  |  | 
|  | pud = pud_offset(pgd + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gpa; | 
|  |  | 
|  | if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { | 
|  | pgd_clear(pgd + i); | 
|  | pud_free(NULL, pud); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. | 
|  | * @kvm:	KVM pointer. | 
|  | * @start_gfn:	Guest frame number of first page in GPA range to flush. | 
|  | * @end_gfn:	Guest frame number of last page in GPA range to flush. | 
|  | * | 
|  | * Flushes a range of GPA mappings from the GPA page tables. | 
|  | * | 
|  | * The caller must hold the @kvm->mmu_lock spinlock. | 
|  | * | 
|  | * Returns:	Whether its safe to remove the top level page directory because | 
|  | *		all lower levels have been removed. | 
|  | */ | 
|  | bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) | 
|  | { | 
|  | return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, | 
|  | start_gfn << PAGE_SHIFT, | 
|  | end_gfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | #define BUILD_PTE_RANGE_OP(name, op)					\ | 
|  | static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\ | 
|  | unsigned long end)			\ | 
|  | {									\ | 
|  | int ret = 0;							\ | 
|  | int i_min = __pte_offset(start);				\ | 
|  | int i_max = __pte_offset(end);					\ | 
|  | int i;								\ | 
|  | pte_t old, new;							\ | 
|  | \ | 
|  | for (i = i_min; i <= i_max; ++i) {				\ | 
|  | if (!pte_present(pte[i]))				\ | 
|  | continue;					\ | 
|  | \ | 
|  | old = pte[i];						\ | 
|  | new = op(old);						\ | 
|  | if (pte_val(new) == pte_val(old))			\ | 
|  | continue;					\ | 
|  | set_pte(pte + i, new);					\ | 
|  | ret = 1;						\ | 
|  | }								\ | 
|  | return ret;							\ | 
|  | }									\ | 
|  | \ | 
|  | /* returns true if anything was done */					\ | 
|  | static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\ | 
|  | unsigned long end)			\ | 
|  | {									\ | 
|  | int ret = 0;							\ | 
|  | pte_t *pte;							\ | 
|  | unsigned long cur_end = ~0ul;					\ | 
|  | int i_min = __pmd_offset(start);				\ | 
|  | int i_max = __pmd_offset(end);					\ | 
|  | int i;								\ | 
|  | \ | 
|  | for (i = i_min; i <= i_max; ++i, start = 0) {			\ | 
|  | if (!pmd_present(pmd[i]))				\ | 
|  | continue;					\ | 
|  | \ | 
|  | pte = pte_offset(pmd + i, 0);				\ | 
|  | if (i == i_max)						\ | 
|  | cur_end = end;					\ | 
|  | \ | 
|  | ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\ | 
|  | }								\ | 
|  | return ret;							\ | 
|  | }									\ | 
|  | \ | 
|  | static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\ | 
|  | unsigned long end)			\ | 
|  | {									\ | 
|  | int ret = 0;							\ | 
|  | pmd_t *pmd;							\ | 
|  | unsigned long cur_end = ~0ul;					\ | 
|  | int i_min = __pud_offset(start);				\ | 
|  | int i_max = __pud_offset(end);					\ | 
|  | int i;								\ | 
|  | \ | 
|  | for (i = i_min; i <= i_max; ++i, start = 0) {			\ | 
|  | if (!pud_present(pud[i]))				\ | 
|  | continue;					\ | 
|  | \ | 
|  | pmd = pmd_offset(pud + i, 0);				\ | 
|  | if (i == i_max)						\ | 
|  | cur_end = end;					\ | 
|  | \ | 
|  | ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\ | 
|  | }								\ | 
|  | return ret;							\ | 
|  | }									\ | 
|  | \ | 
|  | static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\ | 
|  | unsigned long end)			\ | 
|  | {									\ | 
|  | int ret = 0;							\ | 
|  | pud_t *pud;							\ | 
|  | unsigned long cur_end = ~0ul;					\ | 
|  | int i_min = pgd_index(start);					\ | 
|  | int i_max = pgd_index(end);					\ | 
|  | int i;								\ | 
|  | \ | 
|  | for (i = i_min; i <= i_max; ++i, start = 0) {			\ | 
|  | if (!pgd_present(pgd[i]))				\ | 
|  | continue;					\ | 
|  | \ | 
|  | pud = pud_offset(pgd + i, 0);				\ | 
|  | if (i == i_max)						\ | 
|  | cur_end = end;					\ | 
|  | \ | 
|  | ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\ | 
|  | }								\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_mips_mkclean_gpa_pt. | 
|  | * Mark a range of guest physical address space clean (writes fault) in the VM's | 
|  | * GPA page table to allow dirty page tracking. | 
|  | */ | 
|  |  | 
|  | BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) | 
|  |  | 
|  | /** | 
|  | * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. | 
|  | * @kvm:	KVM pointer. | 
|  | * @start_gfn:	Guest frame number of first page in GPA range to flush. | 
|  | * @end_gfn:	Guest frame number of last page in GPA range to flush. | 
|  | * | 
|  | * Make a range of GPA mappings clean so that guest writes will fault and | 
|  | * trigger dirty page logging. | 
|  | * | 
|  | * The caller must hold the @kvm->mmu_lock spinlock. | 
|  | * | 
|  | * Returns:	Whether any GPA mappings were modified, which would require | 
|  | *		derived mappings (GVA page tables & TLB enties) to be | 
|  | *		invalidated. | 
|  | */ | 
|  | int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) | 
|  | { | 
|  | return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, | 
|  | start_gfn << PAGE_SHIFT, | 
|  | end_gfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages | 
|  | * @kvm:	The KVM pointer | 
|  | * @slot:	The memory slot associated with mask | 
|  | * @gfn_offset:	The gfn offset in memory slot | 
|  | * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory | 
|  | *		slot to be write protected | 
|  | * | 
|  | * Walks bits set in mask write protects the associated pte's. Caller must | 
|  | * acquire @kvm->mmu_lock. | 
|  | */ | 
|  | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | gfn_t base_gfn = slot->base_gfn + gfn_offset; | 
|  | gfn_t start = base_gfn +  __ffs(mask); | 
|  | gfn_t end = base_gfn + __fls(mask); | 
|  |  | 
|  | kvm_mips_mkclean_gpa_pt(kvm, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_mips_mkold_gpa_pt. | 
|  | * Mark a range of guest physical address space old (all accesses fault) in the | 
|  | * VM's GPA page table to allow detection of commonly used pages. | 
|  | */ | 
|  |  | 
|  | BUILD_PTE_RANGE_OP(mkold, pte_mkold) | 
|  |  | 
|  | static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, | 
|  | gfn_t end_gfn) | 
|  | { | 
|  | return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, | 
|  | start_gfn << PAGE_SHIFT, | 
|  | end_gfn << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int handle_hva_to_gpa(struct kvm *kvm, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | int (*handler)(struct kvm *kvm, gfn_t gfn, | 
|  | gpa_t gfn_end, | 
|  | struct kvm_memory_slot *memslot, | 
|  | void *data), | 
|  | void *data) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int ret = 0; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | /* we only care about the pages that the guest sees */ | 
|  | kvm_for_each_memslot(memslot, slots) { | 
|  | unsigned long hva_start, hva_end; | 
|  | gfn_t gfn, gfn_end; | 
|  |  | 
|  | hva_start = max(start, memslot->userspace_addr); | 
|  | hva_end = min(end, memslot->userspace_addr + | 
|  | (memslot->npages << PAGE_SHIFT)); | 
|  | if (hva_start >= hva_end) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * {gfn(page) | page intersects with [hva_start, hva_end)} = | 
|  | * {gfn_start, gfn_start+1, ..., gfn_end-1}. | 
|  | */ | 
|  | gfn = hva_to_gfn_memslot(hva_start, memslot); | 
|  | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); | 
|  |  | 
|  | ret |= handler(kvm, gfn, gfn_end, memslot, data); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, | 
|  | struct kvm_memory_slot *memslot, void *data) | 
|  | { | 
|  | kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); | 
|  |  | 
|  | kvm_mips_callbacks->flush_shadow_all(kvm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, | 
|  | struct kvm_memory_slot *memslot, void *data) | 
|  | { | 
|  | gpa_t gpa = gfn << PAGE_SHIFT; | 
|  | pte_t hva_pte = *(pte_t *)data; | 
|  | pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); | 
|  | pte_t old_pte; | 
|  |  | 
|  | if (!gpa_pte) | 
|  | return 0; | 
|  |  | 
|  | /* Mapping may need adjusting depending on memslot flags */ | 
|  | old_pte = *gpa_pte; | 
|  | if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) | 
|  | hva_pte = pte_mkclean(hva_pte); | 
|  | else if (memslot->flags & KVM_MEM_READONLY) | 
|  | hva_pte = pte_wrprotect(hva_pte); | 
|  |  | 
|  | set_pte(gpa_pte, hva_pte); | 
|  |  | 
|  | /* Replacing an absent or old page doesn't need flushes */ | 
|  | if (!pte_present(old_pte) || !pte_young(old_pte)) | 
|  | return 0; | 
|  |  | 
|  | /* Pages swapped, aged, moved, or cleaned require flushes */ | 
|  | return !pte_present(hva_pte) || | 
|  | !pte_young(hva_pte) || | 
|  | pte_pfn(old_pte) != pte_pfn(hva_pte) || | 
|  | (pte_dirty(old_pte) && !pte_dirty(hva_pte)); | 
|  | } | 
|  |  | 
|  | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
|  | { | 
|  | unsigned long end = hva + PAGE_SIZE; | 
|  | int ret; | 
|  |  | 
|  | ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); | 
|  | if (ret) | 
|  | kvm_mips_callbacks->flush_shadow_all(kvm); | 
|  | } | 
|  |  | 
|  | static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, | 
|  | struct kvm_memory_slot *memslot, void *data) | 
|  | { | 
|  | return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); | 
|  | } | 
|  |  | 
|  | static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, | 
|  | struct kvm_memory_slot *memslot, void *data) | 
|  | { | 
|  | gpa_t gpa = gfn << PAGE_SHIFT; | 
|  | pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); | 
|  |  | 
|  | if (!gpa_pte) | 
|  | return 0; | 
|  | return pte_young(*gpa_pte); | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); | 
|  | } | 
|  |  | 
|  | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * _kvm_mips_map_page_fast() - Fast path GPA fault handler. | 
|  | * @vcpu:		VCPU pointer. | 
|  | * @gpa:		Guest physical address of fault. | 
|  | * @write_fault:	Whether the fault was due to a write. | 
|  | * @out_entry:		New PTE for @gpa (written on success unless NULL). | 
|  | * @out_buddy:		New PTE for @gpa's buddy (written on success unless | 
|  | *			NULL). | 
|  | * | 
|  | * Perform fast path GPA fault handling, doing all that can be done without | 
|  | * calling into KVM. This handles marking old pages young (for idle page | 
|  | * tracking), and dirtying of clean pages (for dirty page logging). | 
|  | * | 
|  | * Returns:	0 on success, in which case we can update derived mappings and | 
|  | *		resume guest execution. | 
|  | *		-EFAULT on failure due to absent GPA mapping or write to | 
|  | *		read-only page, in which case KVM must be consulted. | 
|  | */ | 
|  | static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, | 
|  | bool write_fault, | 
|  | pte_t *out_entry, pte_t *out_buddy) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | pte_t *ptep; | 
|  | kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */ | 
|  | bool pfn_valid = false; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | /* Fast path - just check GPA page table for an existing entry */ | 
|  | ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); | 
|  | if (!ptep || !pte_present(*ptep)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Track access to pages marked old */ | 
|  | if (!pte_young(*ptep)) { | 
|  | set_pte(ptep, pte_mkyoung(*ptep)); | 
|  | pfn = pte_pfn(*ptep); | 
|  | pfn_valid = true; | 
|  | /* call kvm_set_pfn_accessed() after unlock */ | 
|  | } | 
|  | if (write_fault && !pte_dirty(*ptep)) { | 
|  | if (!pte_write(*ptep)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Track dirtying of writeable pages */ | 
|  | set_pte(ptep, pte_mkdirty(*ptep)); | 
|  | pfn = pte_pfn(*ptep); | 
|  | mark_page_dirty(kvm, gfn); | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | } | 
|  |  | 
|  | if (out_entry) | 
|  | *out_entry = *ptep; | 
|  | if (out_buddy) | 
|  | *out_buddy = *ptep_buddy(ptep); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | if (pfn_valid) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_map_page() - Map a guest physical page. | 
|  | * @vcpu:		VCPU pointer. | 
|  | * @gpa:		Guest physical address of fault. | 
|  | * @write_fault:	Whether the fault was due to a write. | 
|  | * @out_entry:		New PTE for @gpa (written on success unless NULL). | 
|  | * @out_buddy:		New PTE for @gpa's buddy (written on success unless | 
|  | *			NULL). | 
|  | * | 
|  | * Handle GPA faults by creating a new GPA mapping (or updating an existing | 
|  | * one). | 
|  | * | 
|  | * This takes care of marking pages young or dirty (idle/dirty page tracking), | 
|  | * asking KVM for the corresponding PFN, and creating a mapping in the GPA page | 
|  | * tables. Derived mappings (GVA page tables and TLBs) must be handled by the | 
|  | * caller. | 
|  | * | 
|  | * Returns:	0 on success, in which case the caller may use the @out_entry | 
|  | *		and @out_buddy PTEs to update derived mappings and resume guest | 
|  | *		execution. | 
|  | *		-EFAULT if there is no memory region at @gpa or a write was | 
|  | *		attempted to a read-only memory region. This is usually handled | 
|  | *		as an MMIO access. | 
|  | */ | 
|  | static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, | 
|  | bool write_fault, | 
|  | pte_t *out_entry, pte_t *out_buddy) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | int srcu_idx, err; | 
|  | kvm_pfn_t pfn; | 
|  | pte_t *ptep, entry, old_pte; | 
|  | bool writeable; | 
|  | unsigned long prot_bits; | 
|  | unsigned long mmu_seq; | 
|  |  | 
|  | /* Try the fast path to handle old / clean pages */ | 
|  | srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, | 
|  | out_buddy); | 
|  | if (!err) | 
|  | goto out; | 
|  |  | 
|  | /* We need a minimum of cached pages ready for page table creation */ | 
|  | err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, | 
|  | KVM_NR_MEM_OBJS); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Used to check for invalidations in progress, of the pfn that is | 
|  | * returned by pfn_to_pfn_prot below. | 
|  | */ | 
|  | mmu_seq = kvm->mmu_notifier_seq; | 
|  | /* | 
|  | * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in | 
|  | * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't | 
|  | * risk the page we get a reference to getting unmapped before we have a | 
|  | * chance to grab the mmu_lock without mmu_notifier_retry() noticing. | 
|  | * | 
|  | * This smp_rmb() pairs with the effective smp_wmb() of the combination | 
|  | * of the pte_unmap_unlock() after the PTE is zapped, and the | 
|  | * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before | 
|  | * mmu_notifier_seq is incremented. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | /* Slow path - ask KVM core whether we can access this GPA */ | 
|  | pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); | 
|  | if (is_error_noslot_pfn(pfn)) { | 
|  | err = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* Check if an invalidation has taken place since we got pfn */ | 
|  | if (mmu_notifier_retry(kvm, mmu_seq)) { | 
|  | /* | 
|  | * This can happen when mappings are changed asynchronously, but | 
|  | * also synchronously if a COW is triggered by | 
|  | * gfn_to_pfn_prot(). | 
|  | */ | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Ensure page tables are allocated */ | 
|  | ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); | 
|  |  | 
|  | /* Set up the PTE */ | 
|  | prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; | 
|  | if (writeable) { | 
|  | prot_bits |= _PAGE_WRITE; | 
|  | if (write_fault) { | 
|  | prot_bits |= __WRITEABLE; | 
|  | mark_page_dirty(kvm, gfn); | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | } | 
|  | } | 
|  | entry = pfn_pte(pfn, __pgprot(prot_bits)); | 
|  |  | 
|  | /* Write the PTE */ | 
|  | old_pte = *ptep; | 
|  | set_pte(ptep, entry); | 
|  |  | 
|  | err = 0; | 
|  | if (out_entry) | 
|  | *out_entry = *ptep; | 
|  | if (out_buddy) | 
|  | *out_buddy = *ptep_buddy(ptep); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | out: | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; | 
|  | pgd_t *pgdp; | 
|  | int ret; | 
|  |  | 
|  | /* We need a minimum of cached pages ready for page table creation */ | 
|  | ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, | 
|  | KVM_NR_MEM_OBJS); | 
|  | if (ret) | 
|  | return NULL; | 
|  |  | 
|  | if (KVM_GUEST_KERNEL_MODE(vcpu)) | 
|  | pgdp = vcpu->arch.guest_kernel_mm.pgd; | 
|  | else | 
|  | pgdp = vcpu->arch.guest_user_mm.pgd; | 
|  |  | 
|  | return kvm_mips_walk_pgd(pgdp, memcache, addr); | 
|  | } | 
|  |  | 
|  | void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, | 
|  | bool user) | 
|  | { | 
|  | pgd_t *pgdp; | 
|  | pte_t *ptep; | 
|  |  | 
|  | addr &= PAGE_MASK << 1; | 
|  |  | 
|  | pgdp = vcpu->arch.guest_kernel_mm.pgd; | 
|  | ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); | 
|  | if (ptep) { | 
|  | ptep[0] = pfn_pte(0, __pgprot(0)); | 
|  | ptep[1] = pfn_pte(0, __pgprot(0)); | 
|  | } | 
|  |  | 
|  | if (user) { | 
|  | pgdp = vcpu->arch.guest_user_mm.pgd; | 
|  | ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); | 
|  | if (ptep) { | 
|  | ptep[0] = pfn_pte(0, __pgprot(0)); | 
|  | ptep[1] = pfn_pte(0, __pgprot(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. | 
|  | * Flush a range of guest physical address space from the VM's GPA page tables. | 
|  | */ | 
|  |  | 
|  | static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, | 
|  | unsigned long end_gva) | 
|  | { | 
|  | int i_min = __pte_offset(start_gva); | 
|  | int i_max = __pte_offset(end_gva); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * There's no freeing to do, so there's no point clearing individual | 
|  | * entries unless only part of the last level page table needs flushing. | 
|  | */ | 
|  | if (safe_to_remove) | 
|  | return true; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i) { | 
|  | if (!pte_present(pte[i])) | 
|  | continue; | 
|  |  | 
|  | set_pte(pte + i, __pte(0)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, | 
|  | unsigned long end_gva) | 
|  | { | 
|  | pte_t *pte; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = __pmd_offset(start_gva); | 
|  | int i_max = __pmd_offset(end_gva); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gva = 0) { | 
|  | if (!pmd_present(pmd[i])) | 
|  | continue; | 
|  |  | 
|  | pte = pte_offset(pmd + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gva; | 
|  |  | 
|  | if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { | 
|  | pmd_clear(pmd + i); | 
|  | pte_free_kernel(NULL, pte); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, | 
|  | unsigned long end_gva) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = __pud_offset(start_gva); | 
|  | int i_max = __pud_offset(end_gva); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gva = 0) { | 
|  | if (!pud_present(pud[i])) | 
|  | continue; | 
|  |  | 
|  | pmd = pmd_offset(pud + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gva; | 
|  |  | 
|  | if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { | 
|  | pud_clear(pud + i); | 
|  | pmd_free(NULL, pmd); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, | 
|  | unsigned long end_gva) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long end = ~0ul; | 
|  | int i_min = pgd_index(start_gva); | 
|  | int i_max = pgd_index(end_gva); | 
|  | bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); | 
|  | int i; | 
|  |  | 
|  | for (i = i_min; i <= i_max; ++i, start_gva = 0) { | 
|  | if (!pgd_present(pgd[i])) | 
|  | continue; | 
|  |  | 
|  | pud = pud_offset(pgd + i, 0); | 
|  | if (i == i_max) | 
|  | end = end_gva; | 
|  |  | 
|  | if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { | 
|  | pgd_clear(pgd + i); | 
|  | pud_free(NULL, pud); | 
|  | } else { | 
|  | safe_to_remove = false; | 
|  | } | 
|  | } | 
|  | return safe_to_remove; | 
|  | } | 
|  |  | 
|  | void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) | 
|  | { | 
|  | if (flags & KMF_GPA) { | 
|  | /* all of guest virtual address space could be affected */ | 
|  | if (flags & KMF_KERN) | 
|  | /* useg, kseg0, seg2/3 */ | 
|  | kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); | 
|  | else | 
|  | /* useg */ | 
|  | kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); | 
|  | } else { | 
|  | /* useg */ | 
|  | kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); | 
|  |  | 
|  | /* kseg2/3 */ | 
|  | if (flags & KMF_KERN) | 
|  | kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); | 
|  | } | 
|  | } | 
|  |  | 
|  | static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) | 
|  | { | 
|  | /* | 
|  | * Don't leak writeable but clean entries from GPA page tables. We don't | 
|  | * want the normal Linux tlbmod handler to handle dirtying when KVM | 
|  | * accesses guest memory. | 
|  | */ | 
|  | if (!pte_dirty(pte)) | 
|  | pte = pte_wrprotect(pte); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) | 
|  | { | 
|  | /* Guest EntryLo overrides host EntryLo */ | 
|  | if (!(entrylo & ENTRYLO_D)) | 
|  | pte = pte_mkclean(pte); | 
|  |  | 
|  | return kvm_mips_gpa_pte_to_gva_unmapped(pte); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_MIPS_VZ | 
|  | int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, | 
|  | struct kvm_vcpu *vcpu, | 
|  | bool write_fault) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Invalidate this entry in the TLB */ | 
|  | return kvm_vz_host_tlb_inv(vcpu, badvaddr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* XXXKYMA: Must be called with interrupts disabled */ | 
|  | int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, | 
|  | struct kvm_vcpu *vcpu, | 
|  | bool write_fault) | 
|  | { | 
|  | unsigned long gpa; | 
|  | pte_t pte_gpa[2], *ptep_gva; | 
|  | int idx; | 
|  |  | 
|  | if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { | 
|  | kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); | 
|  | kvm_mips_dump_host_tlbs(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Get the GPA page table entry */ | 
|  | gpa = KVM_GUEST_CPHYSADDR(badvaddr); | 
|  | idx = (badvaddr >> PAGE_SHIFT) & 1; | 
|  | if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], | 
|  | &pte_gpa[!idx]) < 0) | 
|  | return -1; | 
|  |  | 
|  | /* Get the GVA page table entry */ | 
|  | ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); | 
|  | if (!ptep_gva) { | 
|  | kvm_err("No ptep for gva %lx\n", badvaddr); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Copy a pair of entries from GPA page table to GVA page table */ | 
|  | ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); | 
|  | ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); | 
|  |  | 
|  | /* Invalidate this entry in the TLB, guest kernel ASID only */ | 
|  | kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mips_tlb *tlb, | 
|  | unsigned long gva, | 
|  | bool write_fault) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | long tlb_lo[2]; | 
|  | pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; | 
|  | unsigned int idx = TLB_LO_IDX(*tlb, gva); | 
|  | bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); | 
|  |  | 
|  | tlb_lo[0] = tlb->tlb_lo[0]; | 
|  | tlb_lo[1] = tlb->tlb_lo[1]; | 
|  |  | 
|  | /* | 
|  | * The commpage address must not be mapped to anything else if the guest | 
|  | * TLB contains entries nearby, or commpage accesses will break. | 
|  | */ | 
|  | if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) | 
|  | tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; | 
|  |  | 
|  | /* Get the GPA page table entry */ | 
|  | if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), | 
|  | write_fault, &pte_gpa[idx], NULL) < 0) | 
|  | return -1; | 
|  |  | 
|  | /* And its GVA buddy's GPA page table entry if it also exists */ | 
|  | pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); | 
|  | if (tlb_lo[!idx] & ENTRYLO_V) { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, | 
|  | mips3_tlbpfn_to_paddr(tlb_lo[!idx])); | 
|  | if (ptep_buddy) | 
|  | pte_gpa[!idx] = *ptep_buddy; | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | /* Get the GVA page table entry pair */ | 
|  | ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); | 
|  | if (!ptep_gva) { | 
|  | kvm_err("No ptep for gva %lx\n", gva); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Copy a pair of entries from GPA page table to GVA page table */ | 
|  | ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); | 
|  | ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); | 
|  |  | 
|  | /* Invalidate this entry in the TLB, current guest mode ASID only */ | 
|  | kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); | 
|  |  | 
|  | kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, | 
|  | tlb->tlb_lo[0], tlb->tlb_lo[1]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_pfn_t pfn; | 
|  | pte_t *ptep; | 
|  |  | 
|  | ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); | 
|  | if (!ptep) { | 
|  | kvm_err("No ptep for commpage %lx\n", badvaddr); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); | 
|  | /* Also set valid and dirty, so refill handler doesn't have to */ | 
|  | *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); | 
|  |  | 
|  | /* Invalidate this entry in the TLB, guest kernel ASID only */ | 
|  | kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mips_migrate_count() - Migrate timer. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * | 
|  | * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it | 
|  | * if it was running prior to being cancelled. | 
|  | * | 
|  | * Must be called when the VCPU is migrated to a different CPU to ensure that | 
|  | * timer expiry during guest execution interrupts the guest and causes the | 
|  | * interrupt to be delivered in a timely manner. | 
|  | */ | 
|  | static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) | 
|  | hrtimer_restart(&vcpu->arch.comparecount_timer); | 
|  | } | 
|  |  | 
|  | /* Restore ASID once we are scheduled back after preemption */ | 
|  | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | vcpu->cpu = cpu; | 
|  | if (vcpu->arch.last_sched_cpu != cpu) { | 
|  | kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", | 
|  | vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); | 
|  | /* | 
|  | * Migrate the timer interrupt to the current CPU so that it | 
|  | * always interrupts the guest and synchronously triggers a | 
|  | * guest timer interrupt. | 
|  | */ | 
|  | kvm_mips_migrate_count(vcpu); | 
|  | } | 
|  |  | 
|  | /* restore guest state to registers */ | 
|  | kvm_mips_callbacks->vcpu_load(vcpu, cpu); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* ASID can change if another task is scheduled during preemption */ | 
|  | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | int cpu; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | vcpu->arch.last_sched_cpu = cpu; | 
|  | vcpu->cpu = -1; | 
|  |  | 
|  | /* save guest state in registers */ | 
|  | kvm_mips_callbacks->vcpu_put(vcpu, cpu); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. | 
|  | * @vcpu:	Virtual CPU. | 
|  | * @gva:	Guest virtual address to be accessed. | 
|  | * @write:	True if write attempted (must be dirtied and made writable). | 
|  | * | 
|  | * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and | 
|  | * dirtying the page if @write so that guest instructions can be modified. | 
|  | * | 
|  | * Returns:	KVM_MIPS_MAPPED on success. | 
|  | *		KVM_MIPS_GVA if bad guest virtual address. | 
|  | *		KVM_MIPS_GPA if bad guest physical address. | 
|  | *		KVM_MIPS_TLB if guest TLB not present. | 
|  | *		KVM_MIPS_TLBINV if guest TLB present but not valid. | 
|  | *		KVM_MIPS_TLBMOD if guest TLB read only. | 
|  | */ | 
|  | enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, | 
|  | unsigned long gva, | 
|  | bool write) | 
|  | { | 
|  | struct mips_coproc *cop0 = vcpu->arch.cop0; | 
|  | struct kvm_mips_tlb *tlb; | 
|  | int index; | 
|  |  | 
|  | if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { | 
|  | if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) | 
|  | return KVM_MIPS_GPA; | 
|  | } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || | 
|  | KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { | 
|  | /* Address should be in the guest TLB */ | 
|  | index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | | 
|  | (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); | 
|  | if (index < 0) | 
|  | return KVM_MIPS_TLB; | 
|  | tlb = &vcpu->arch.guest_tlb[index]; | 
|  |  | 
|  | /* Entry should be valid, and dirty for writes */ | 
|  | if (!TLB_IS_VALID(*tlb, gva)) | 
|  | return KVM_MIPS_TLBINV; | 
|  | if (write && !TLB_IS_DIRTY(*tlb, gva)) | 
|  | return KVM_MIPS_TLBMOD; | 
|  |  | 
|  | if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) | 
|  | return KVM_MIPS_GPA; | 
|  | } else { | 
|  | return KVM_MIPS_GVA; | 
|  | } | 
|  |  | 
|  | return KVM_MIPS_MAPPED; | 
|  | } | 
|  |  | 
|  | int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), | 
|  | "Expect BadInstr/BadInstrP registers to be used with VZ\n")) | 
|  | return -EINVAL; | 
|  |  | 
|  | retry: | 
|  | kvm_trap_emul_gva_lockless_begin(vcpu); | 
|  | err = get_user(*out, opc); | 
|  | kvm_trap_emul_gva_lockless_end(vcpu); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | /* | 
|  | * Try to handle the fault, maybe we just raced with a GVA | 
|  | * invalidation. | 
|  | */ | 
|  | err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, | 
|  | false); | 
|  | if (unlikely(err)) { | 
|  | kvm_err("%s: illegal address: %p\n", | 
|  | __func__, opc); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Hopefully it'll work now */ | 
|  | goto retry; | 
|  | } | 
|  | return 0; | 
|  | } |