| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation | 
 |  * Function"), aka RFC 5869.  See also the original paper (Krawczyk 2010): | 
 |  * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". | 
 |  * | 
 |  * This is used to derive keys from the fscrypt master keys. | 
 |  * | 
 |  * Copyright 2019 Google LLC | 
 |  */ | 
 |  | 
 | #include <crypto/hash.h> | 
 | #include <crypto/sha.h> | 
 |  | 
 | #include "fscrypt_private.h" | 
 |  | 
 | /* | 
 |  * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses | 
 |  * SHA-512 because it is reasonably secure and efficient; and since it produces | 
 |  * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of | 
 |  * entropy from the master key and requires only one iteration of HKDF-Expand. | 
 |  */ | 
 | #define HKDF_HMAC_ALG		"hmac(sha512)" | 
 | #define HKDF_HASHLEN		SHA512_DIGEST_SIZE | 
 |  | 
 | /* | 
 |  * HKDF consists of two steps: | 
 |  * | 
 |  * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from | 
 |  *    the input keying material and optional salt. | 
 |  * 2. HKDF-Expand: expand the pseudorandom key into output keying material of | 
 |  *    any length, parameterized by an application-specific info string. | 
 |  * | 
 |  * HKDF-Extract can be skipped if the input is already a pseudorandom key of | 
 |  * length HKDF_HASHLEN bytes.  However, cipher modes other than AES-256-XTS take | 
 |  * shorter keys, and we don't want to force users of those modes to provide | 
 |  * unnecessarily long master keys.  Thus fscrypt still does HKDF-Extract.  No | 
 |  * salt is used, since fscrypt master keys should already be pseudorandom and | 
 |  * there's no way to persist a random salt per master key from kernel mode. | 
 |  */ | 
 |  | 
 | /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ | 
 | static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, | 
 | 			unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) | 
 | { | 
 | 	static const u8 default_salt[HKDF_HASHLEN]; | 
 | 	SHASH_DESC_ON_STACK(desc, hmac_tfm); | 
 | 	int err; | 
 |  | 
 | 	err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	desc->tfm = hmac_tfm; | 
 | 	desc->flags = 0; | 
 | 	err = crypto_shash_digest(desc, ikm, ikmlen, prk); | 
 | 	shash_desc_zero(desc); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute HKDF-Extract using the given master key as the input keying material, | 
 |  * and prepare an HMAC transform object keyed by the resulting pseudorandom key. | 
 |  * | 
 |  * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many | 
 |  * times without having to recompute HKDF-Extract each time. | 
 |  */ | 
 | int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, | 
 | 		      unsigned int master_key_size) | 
 | { | 
 | 	struct crypto_shash *hmac_tfm; | 
 | 	u8 prk[HKDF_HASHLEN]; | 
 | 	int err; | 
 |  | 
 | 	hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); | 
 | 	if (IS_ERR(hmac_tfm)) { | 
 | 		fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", | 
 | 			    PTR_ERR(hmac_tfm)); | 
 | 		return PTR_ERR(hmac_tfm); | 
 | 	} | 
 |  | 
 | 	if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { | 
 | 		err = -EINVAL; | 
 | 		goto err_free_tfm; | 
 | 	} | 
 |  | 
 | 	err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); | 
 | 	if (err) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); | 
 | 	if (err) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	hkdf->hmac_tfm = hmac_tfm; | 
 | 	goto out; | 
 |  | 
 | err_free_tfm: | 
 | 	crypto_free_shash(hmac_tfm); | 
 | out: | 
 | 	memzero_explicit(prk, sizeof(prk)); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * HKDF-Expand (RFC 5869 section 2.3).  This expands the pseudorandom key, which | 
 |  * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' | 
 |  * bytes of output keying material parameterized by the application-specific | 
 |  * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' | 
 |  * byte.  This is thread-safe and may be called by multiple threads in parallel. | 
 |  * | 
 |  * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt | 
 |  * adds to its application-specific info strings to guarantee that it doesn't | 
 |  * accidentally repeat an info string when using HKDF for different purposes.) | 
 |  */ | 
 | int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context, | 
 | 			const u8 *info, unsigned int infolen, | 
 | 			u8 *okm, unsigned int okmlen) | 
 | { | 
 | 	SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); | 
 | 	u8 prefix[9]; | 
 | 	unsigned int i; | 
 | 	int err; | 
 | 	const u8 *prev = NULL; | 
 | 	u8 counter = 1; | 
 | 	u8 tmp[HKDF_HASHLEN]; | 
 |  | 
 | 	if (WARN_ON(okmlen > 255 * HKDF_HASHLEN)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	desc->tfm = hkdf->hmac_tfm; | 
 | 	desc->flags = 0; | 
 |  | 
 | 	memcpy(prefix, "fscrypt\0", 8); | 
 | 	prefix[8] = context; | 
 |  | 
 | 	for (i = 0; i < okmlen; i += HKDF_HASHLEN) { | 
 |  | 
 | 		err = crypto_shash_init(desc); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (prev) { | 
 | 			err = crypto_shash_update(desc, prev, HKDF_HASHLEN); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		err = crypto_shash_update(desc, prefix, sizeof(prefix)); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = crypto_shash_update(desc, info, infolen); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		BUILD_BUG_ON(sizeof(counter) != 1); | 
 | 		if (okmlen - i < HKDF_HASHLEN) { | 
 | 			err = crypto_shash_finup(desc, &counter, 1, tmp); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			memcpy(&okm[i], tmp, okmlen - i); | 
 | 			memzero_explicit(tmp, sizeof(tmp)); | 
 | 		} else { | 
 | 			err = crypto_shash_finup(desc, &counter, 1, &okm[i]); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 		counter++; | 
 | 		prev = &okm[i]; | 
 | 	} | 
 | 	err = 0; | 
 | out: | 
 | 	if (unlikely(err)) | 
 | 		memzero_explicit(okm, okmlen); /* so caller doesn't need to */ | 
 | 	shash_desc_zero(desc); | 
 | 	return err; | 
 | } | 
 |  | 
 | void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) | 
 | { | 
 | 	crypto_free_shash(hkdf->hmac_tfm); | 
 | } |