| /* | 
 |  * Driver for Cirrus Logic EP93xx SPI controller. | 
 |  * | 
 |  * Copyright (C) 2010-2011 Mika Westerberg | 
 |  * | 
 |  * Explicit FIFO handling code was inspired by amba-pl022 driver. | 
 |  * | 
 |  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. | 
 |  * | 
 |  * For more information about the SPI controller see documentation on Cirrus | 
 |  * Logic web site: | 
 |  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <linux/io.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/err.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/gpio.h> | 
 | #include <linux/spi/spi.h> | 
 |  | 
 | #include <linux/platform_data/dma-ep93xx.h> | 
 | #include <linux/platform_data/spi-ep93xx.h> | 
 |  | 
 | #define SSPCR0			0x0000 | 
 | #define SSPCR0_MODE_SHIFT	6 | 
 | #define SSPCR0_SCR_SHIFT	8 | 
 |  | 
 | #define SSPCR1			0x0004 | 
 | #define SSPCR1_RIE		BIT(0) | 
 | #define SSPCR1_TIE		BIT(1) | 
 | #define SSPCR1_RORIE		BIT(2) | 
 | #define SSPCR1_LBM		BIT(3) | 
 | #define SSPCR1_SSE		BIT(4) | 
 | #define SSPCR1_MS		BIT(5) | 
 | #define SSPCR1_SOD		BIT(6) | 
 |  | 
 | #define SSPDR			0x0008 | 
 |  | 
 | #define SSPSR			0x000c | 
 | #define SSPSR_TFE		BIT(0) | 
 | #define SSPSR_TNF		BIT(1) | 
 | #define SSPSR_RNE		BIT(2) | 
 | #define SSPSR_RFF		BIT(3) | 
 | #define SSPSR_BSY		BIT(4) | 
 | #define SSPCPSR			0x0010 | 
 |  | 
 | #define SSPIIR			0x0014 | 
 | #define SSPIIR_RIS		BIT(0) | 
 | #define SSPIIR_TIS		BIT(1) | 
 | #define SSPIIR_RORIS		BIT(2) | 
 | #define SSPICR			SSPIIR | 
 |  | 
 | /* timeout in milliseconds */ | 
 | #define SPI_TIMEOUT		5 | 
 | /* maximum depth of RX/TX FIFO */ | 
 | #define SPI_FIFO_SIZE		8 | 
 |  | 
 | /** | 
 |  * struct ep93xx_spi - EP93xx SPI controller structure | 
 |  * @clk: clock for the controller | 
 |  * @mmio: pointer to ioremap()'d registers | 
 |  * @sspdr_phys: physical address of the SSPDR register | 
 |  * @tx: current byte in transfer to transmit | 
 |  * @rx: current byte in transfer to receive | 
 |  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one | 
 |  *              frame decreases this level and sending one frame increases it. | 
 |  * @dma_rx: RX DMA channel | 
 |  * @dma_tx: TX DMA channel | 
 |  * @dma_rx_data: RX parameters passed to the DMA engine | 
 |  * @dma_tx_data: TX parameters passed to the DMA engine | 
 |  * @rx_sgt: sg table for RX transfers | 
 |  * @tx_sgt: sg table for TX transfers | 
 |  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by | 
 |  *            the client | 
 |  */ | 
 | struct ep93xx_spi { | 
 | 	struct clk			*clk; | 
 | 	void __iomem			*mmio; | 
 | 	unsigned long			sspdr_phys; | 
 | 	size_t				tx; | 
 | 	size_t				rx; | 
 | 	size_t				fifo_level; | 
 | 	struct dma_chan			*dma_rx; | 
 | 	struct dma_chan			*dma_tx; | 
 | 	struct ep93xx_dma_data		dma_rx_data; | 
 | 	struct ep93xx_dma_data		dma_tx_data; | 
 | 	struct sg_table			rx_sgt; | 
 | 	struct sg_table			tx_sgt; | 
 | 	void				*zeropage; | 
 | }; | 
 |  | 
 | /* converts bits per word to CR0.DSS value */ | 
 | #define bits_per_word_to_dss(bpw)	((bpw) - 1) | 
 |  | 
 | /** | 
 |  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors | 
 |  * @master: SPI master | 
 |  * @rate: desired SPI output clock rate | 
 |  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider | 
 |  * @div_scr: pointer to return the scr divider | 
 |  */ | 
 | static int ep93xx_spi_calc_divisors(struct spi_master *master, | 
 | 				    u32 rate, u8 *div_cpsr, u8 *div_scr) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	unsigned long spi_clk_rate = clk_get_rate(espi->clk); | 
 | 	int cpsr, scr; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that max value is between values supported by the | 
 | 	 * controller. | 
 | 	 */ | 
 | 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); | 
 |  | 
 | 	/* | 
 | 	 * Calculate divisors so that we can get speed according the | 
 | 	 * following formula: | 
 | 	 *	rate = spi_clock_rate / (cpsr * (1 + scr)) | 
 | 	 * | 
 | 	 * cpsr must be even number and starts from 2, scr can be any number | 
 | 	 * between 0 and 255. | 
 | 	 */ | 
 | 	for (cpsr = 2; cpsr <= 254; cpsr += 2) { | 
 | 		for (scr = 0; scr <= 255; scr++) { | 
 | 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { | 
 | 				*div_scr = (u8)scr; | 
 | 				*div_cpsr = (u8)cpsr; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int ep93xx_spi_chip_setup(struct spi_master *master, | 
 | 				 struct spi_device *spi, | 
 | 				 struct spi_transfer *xfer) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word); | 
 | 	u8 div_cpsr = 0; | 
 | 	u8 div_scr = 0; | 
 | 	u16 cr0; | 
 | 	int err; | 
 |  | 
 | 	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz, | 
 | 				       &div_cpsr, &div_scr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	cr0 = div_scr << SSPCR0_SCR_SHIFT; | 
 | 	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT; | 
 | 	cr0 |= dss; | 
 |  | 
 | 	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", | 
 | 		spi->mode, div_cpsr, div_scr, dss); | 
 | 	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0); | 
 |  | 
 | 	writel(div_cpsr, espi->mmio + SSPCPSR); | 
 | 	writel(cr0, espi->mmio + SSPCR0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ep93xx_do_write(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct spi_transfer *xfer = master->cur_msg->state; | 
 | 	u32 val = 0; | 
 |  | 
 | 	if (xfer->bits_per_word > 8) { | 
 | 		if (xfer->tx_buf) | 
 | 			val = ((u16 *)xfer->tx_buf)[espi->tx]; | 
 | 		espi->tx += 2; | 
 | 	} else { | 
 | 		if (xfer->tx_buf) | 
 | 			val = ((u8 *)xfer->tx_buf)[espi->tx]; | 
 | 		espi->tx += 1; | 
 | 	} | 
 | 	writel(val, espi->mmio + SSPDR); | 
 | } | 
 |  | 
 | static void ep93xx_do_read(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct spi_transfer *xfer = master->cur_msg->state; | 
 | 	u32 val; | 
 |  | 
 | 	val = readl(espi->mmio + SSPDR); | 
 | 	if (xfer->bits_per_word > 8) { | 
 | 		if (xfer->rx_buf) | 
 | 			((u16 *)xfer->rx_buf)[espi->rx] = val; | 
 | 		espi->rx += 2; | 
 | 	} else { | 
 | 		if (xfer->rx_buf) | 
 | 			((u8 *)xfer->rx_buf)[espi->rx] = val; | 
 | 		espi->rx += 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ep93xx_spi_read_write() - perform next RX/TX transfer | 
 |  * @espi: ep93xx SPI controller struct | 
 |  * | 
 |  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If | 
 |  * called several times, the whole transfer will be completed. Returns | 
 |  * %-EINPROGRESS when current transfer was not yet completed otherwise %0. | 
 |  * | 
 |  * When this function is finished, RX FIFO should be empty and TX FIFO should be | 
 |  * full. | 
 |  */ | 
 | static int ep93xx_spi_read_write(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct spi_transfer *xfer = master->cur_msg->state; | 
 |  | 
 | 	/* read as long as RX FIFO has frames in it */ | 
 | 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { | 
 | 		ep93xx_do_read(master); | 
 | 		espi->fifo_level--; | 
 | 	} | 
 |  | 
 | 	/* write as long as TX FIFO has room */ | 
 | 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { | 
 | 		ep93xx_do_write(master); | 
 | 		espi->fifo_level++; | 
 | 	} | 
 |  | 
 | 	if (espi->rx == xfer->len) | 
 | 		return 0; | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | static enum dma_transfer_direction | 
 | ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) | 
 | { | 
 | 	switch (dir) { | 
 | 	case DMA_TO_DEVICE: | 
 | 		return DMA_MEM_TO_DEV; | 
 | 	case DMA_FROM_DEVICE: | 
 | 		return DMA_DEV_TO_MEM; | 
 | 	default: | 
 | 		return DMA_TRANS_NONE; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ep93xx_spi_dma_prepare() - prepares a DMA transfer | 
 |  * @master: SPI master | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Function configures the DMA, maps the buffer and prepares the DMA | 
 |  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR | 
 |  * in case of failure. | 
 |  */ | 
 | static struct dma_async_tx_descriptor * | 
 | ep93xx_spi_dma_prepare(struct spi_master *master, | 
 | 		       enum dma_data_direction dir) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct spi_transfer *xfer = master->cur_msg->state; | 
 | 	struct dma_async_tx_descriptor *txd; | 
 | 	enum dma_slave_buswidth buswidth; | 
 | 	struct dma_slave_config conf; | 
 | 	struct scatterlist *sg; | 
 | 	struct sg_table *sgt; | 
 | 	struct dma_chan *chan; | 
 | 	const void *buf, *pbuf; | 
 | 	size_t len = xfer->len; | 
 | 	int i, ret, nents; | 
 |  | 
 | 	if (xfer->bits_per_word > 8) | 
 | 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
 | 	else | 
 | 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
 |  | 
 | 	memset(&conf, 0, sizeof(conf)); | 
 | 	conf.direction = ep93xx_dma_data_to_trans_dir(dir); | 
 |  | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		chan = espi->dma_rx; | 
 | 		buf = xfer->rx_buf; | 
 | 		sgt = &espi->rx_sgt; | 
 |  | 
 | 		conf.src_addr = espi->sspdr_phys; | 
 | 		conf.src_addr_width = buswidth; | 
 | 	} else { | 
 | 		chan = espi->dma_tx; | 
 | 		buf = xfer->tx_buf; | 
 | 		sgt = &espi->tx_sgt; | 
 |  | 
 | 		conf.dst_addr = espi->sspdr_phys; | 
 | 		conf.dst_addr_width = buswidth; | 
 | 	} | 
 |  | 
 | 	ret = dmaengine_slave_config(chan, &conf); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	/* | 
 | 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is | 
 | 	 * because we are using @espi->zeropage to provide a zero RX buffer | 
 | 	 * for the TX transfers and we have only allocated one page for that. | 
 | 	 * | 
 | 	 * For performance reasons we allocate a new sg_table only when | 
 | 	 * needed. Otherwise we will re-use the current one. Eventually the | 
 | 	 * last sg_table is released in ep93xx_spi_release_dma(). | 
 | 	 */ | 
 |  | 
 | 	nents = DIV_ROUND_UP(len, PAGE_SIZE); | 
 | 	if (nents != sgt->nents) { | 
 | 		sg_free_table(sgt); | 
 |  | 
 | 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	pbuf = buf; | 
 | 	for_each_sg(sgt->sgl, sg, sgt->nents, i) { | 
 | 		size_t bytes = min_t(size_t, len, PAGE_SIZE); | 
 |  | 
 | 		if (buf) { | 
 | 			sg_set_page(sg, virt_to_page(pbuf), bytes, | 
 | 				    offset_in_page(pbuf)); | 
 | 		} else { | 
 | 			sg_set_page(sg, virt_to_page(espi->zeropage), | 
 | 				    bytes, 0); | 
 | 		} | 
 |  | 
 | 		pbuf += bytes; | 
 | 		len -= bytes; | 
 | 	} | 
 |  | 
 | 	if (WARN_ON(len)) { | 
 | 		dev_warn(&master->dev, "len = %zu expected 0!\n", len); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
 | 	if (!nents) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, | 
 | 				      DMA_CTRL_ACK); | 
 | 	if (!txd) { | 
 | 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	return txd; | 
 | } | 
 |  | 
 | /** | 
 |  * ep93xx_spi_dma_finish() - finishes with a DMA transfer | 
 |  * @master: SPI master | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Function finishes with the DMA transfer. After this, the DMA buffer is | 
 |  * unmapped. | 
 |  */ | 
 | static void ep93xx_spi_dma_finish(struct spi_master *master, | 
 | 				  enum dma_data_direction dir) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct dma_chan *chan; | 
 | 	struct sg_table *sgt; | 
 |  | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		chan = espi->dma_rx; | 
 | 		sgt = &espi->rx_sgt; | 
 | 	} else { | 
 | 		chan = espi->dma_tx; | 
 | 		sgt = &espi->tx_sgt; | 
 | 	} | 
 |  | 
 | 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
 | } | 
 |  | 
 | static void ep93xx_spi_dma_callback(void *callback_param) | 
 | { | 
 | 	struct spi_master *master = callback_param; | 
 |  | 
 | 	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE); | 
 | 	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); | 
 |  | 
 | 	spi_finalize_current_transfer(master); | 
 | } | 
 |  | 
 | static int ep93xx_spi_dma_transfer(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	struct dma_async_tx_descriptor *rxd, *txd; | 
 |  | 
 | 	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE); | 
 | 	if (IS_ERR(rxd)) { | 
 | 		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); | 
 | 		return PTR_ERR(rxd); | 
 | 	} | 
 |  | 
 | 	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE); | 
 | 	if (IS_ERR(txd)) { | 
 | 		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); | 
 | 		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); | 
 | 		return PTR_ERR(txd); | 
 | 	} | 
 |  | 
 | 	/* We are ready when RX is done */ | 
 | 	rxd->callback = ep93xx_spi_dma_callback; | 
 | 	rxd->callback_param = master; | 
 |  | 
 | 	/* Now submit both descriptors and start DMA */ | 
 | 	dmaengine_submit(rxd); | 
 | 	dmaengine_submit(txd); | 
 |  | 
 | 	dma_async_issue_pending(espi->dma_rx); | 
 | 	dma_async_issue_pending(espi->dma_tx); | 
 |  | 
 | 	/* signal that we need to wait for completion */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct spi_master *master = dev_id; | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	u32 val; | 
 |  | 
 | 	/* | 
 | 	 * If we got ROR (receive overrun) interrupt we know that something is | 
 | 	 * wrong. Just abort the message. | 
 | 	 */ | 
 | 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { | 
 | 		/* clear the overrun interrupt */ | 
 | 		writel(0, espi->mmio + SSPICR); | 
 | 		dev_warn(&master->dev, | 
 | 			 "receive overrun, aborting the message\n"); | 
 | 		master->cur_msg->status = -EIO; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we | 
 | 		 * simply execute next data transfer. | 
 | 		 */ | 
 | 		if (ep93xx_spi_read_write(master)) { | 
 | 			/* | 
 | 			 * In normal case, there still is some processing left | 
 | 			 * for current transfer. Let's wait for the next | 
 | 			 * interrupt then. | 
 | 			 */ | 
 | 			return IRQ_HANDLED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Current transfer is finished, either with error or with success. In | 
 | 	 * any case we disable interrupts and notify the worker to handle | 
 | 	 * any post-processing of the message. | 
 | 	 */ | 
 | 	val = readl(espi->mmio + SSPCR1); | 
 | 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | 
 | 	writel(val, espi->mmio + SSPCR1); | 
 |  | 
 | 	spi_finalize_current_transfer(master); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int ep93xx_spi_transfer_one(struct spi_master *master, | 
 | 				   struct spi_device *spi, | 
 | 				   struct spi_transfer *xfer) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	ret = ep93xx_spi_chip_setup(master, spi, xfer); | 
 | 	if (ret) { | 
 | 		dev_err(&master->dev, "failed to setup chip for transfer\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	master->cur_msg->state = xfer; | 
 | 	espi->rx = 0; | 
 | 	espi->tx = 0; | 
 |  | 
 | 	/* | 
 | 	 * There is no point of setting up DMA for the transfers which will | 
 | 	 * fit into the FIFO and can be transferred with a single interrupt. | 
 | 	 * So in these cases we will be using PIO and don't bother for DMA. | 
 | 	 */ | 
 | 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) | 
 | 		return ep93xx_spi_dma_transfer(master); | 
 |  | 
 | 	/* Using PIO so prime the TX FIFO and enable interrupts */ | 
 | 	ep93xx_spi_read_write(master); | 
 |  | 
 | 	val = readl(espi->mmio + SSPCR1); | 
 | 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | 
 | 	writel(val, espi->mmio + SSPCR1); | 
 |  | 
 | 	/* signal that we need to wait for completion */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int ep93xx_spi_prepare_message(struct spi_master *master, | 
 | 				      struct spi_message *msg) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	unsigned long timeout; | 
 |  | 
 | 	/* | 
 | 	 * Just to be sure: flush any data from RX FIFO. | 
 | 	 */ | 
 | 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); | 
 | 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { | 
 | 		if (time_after(jiffies, timeout)) { | 
 | 			dev_warn(&master->dev, | 
 | 				 "timeout while flushing RX FIFO\n"); | 
 | 			return -ETIMEDOUT; | 
 | 		} | 
 | 		readl(espi->mmio + SSPDR); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We explicitly handle FIFO level. This way we don't have to check TX | 
 | 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. | 
 | 	 */ | 
 | 	espi->fifo_level = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ep93xx_spi_prepare_hardware(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	ret = clk_enable(espi->clk); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	val = readl(espi->mmio + SSPCR1); | 
 | 	val |= SSPCR1_SSE; | 
 | 	writel(val, espi->mmio + SSPCR1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ep93xx_spi_unprepare_hardware(struct spi_master *master) | 
 | { | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 | 	u32 val; | 
 |  | 
 | 	val = readl(espi->mmio + SSPCR1); | 
 | 	val &= ~SSPCR1_SSE; | 
 | 	writel(val, espi->mmio + SSPCR1); | 
 |  | 
 | 	clk_disable(espi->clk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) | 
 | { | 
 | 	if (ep93xx_dma_chan_is_m2p(chan)) | 
 | 		return false; | 
 |  | 
 | 	chan->private = filter_param; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) | 
 | { | 
 | 	dma_cap_mask_t mask; | 
 | 	int ret; | 
 |  | 
 | 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); | 
 | 	if (!espi->zeropage) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dma_cap_zero(mask); | 
 | 	dma_cap_set(DMA_SLAVE, mask); | 
 |  | 
 | 	espi->dma_rx_data.port = EP93XX_DMA_SSP; | 
 | 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM; | 
 | 	espi->dma_rx_data.name = "ep93xx-spi-rx"; | 
 |  | 
 | 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, | 
 | 					   &espi->dma_rx_data); | 
 | 	if (!espi->dma_rx) { | 
 | 		ret = -ENODEV; | 
 | 		goto fail_free_page; | 
 | 	} | 
 |  | 
 | 	espi->dma_tx_data.port = EP93XX_DMA_SSP; | 
 | 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV; | 
 | 	espi->dma_tx_data.name = "ep93xx-spi-tx"; | 
 |  | 
 | 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, | 
 | 					   &espi->dma_tx_data); | 
 | 	if (!espi->dma_tx) { | 
 | 		ret = -ENODEV; | 
 | 		goto fail_release_rx; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_release_rx: | 
 | 	dma_release_channel(espi->dma_rx); | 
 | 	espi->dma_rx = NULL; | 
 | fail_free_page: | 
 | 	free_page((unsigned long)espi->zeropage); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) | 
 | { | 
 | 	if (espi->dma_rx) { | 
 | 		dma_release_channel(espi->dma_rx); | 
 | 		sg_free_table(&espi->rx_sgt); | 
 | 	} | 
 | 	if (espi->dma_tx) { | 
 | 		dma_release_channel(espi->dma_tx); | 
 | 		sg_free_table(&espi->tx_sgt); | 
 | 	} | 
 |  | 
 | 	if (espi->zeropage) | 
 | 		free_page((unsigned long)espi->zeropage); | 
 | } | 
 |  | 
 | static int ep93xx_spi_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct spi_master *master; | 
 | 	struct ep93xx_spi_info *info; | 
 | 	struct ep93xx_spi *espi; | 
 | 	struct resource *res; | 
 | 	int irq; | 
 | 	int error; | 
 | 	int i; | 
 |  | 
 | 	info = dev_get_platdata(&pdev->dev); | 
 | 	if (!info) { | 
 | 		dev_err(&pdev->dev, "missing platform data\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq < 0) { | 
 | 		dev_err(&pdev->dev, "failed to get irq resources\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!res) { | 
 | 		dev_err(&pdev->dev, "unable to get iomem resource\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	master = spi_alloc_master(&pdev->dev, sizeof(*espi)); | 
 | 	if (!master) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; | 
 | 	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; | 
 | 	master->prepare_message = ep93xx_spi_prepare_message; | 
 | 	master->transfer_one = ep93xx_spi_transfer_one; | 
 | 	master->bus_num = pdev->id; | 
 | 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
 | 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); | 
 |  | 
 | 	master->num_chipselect = info->num_chipselect; | 
 | 	master->cs_gpios = devm_kcalloc(&master->dev, | 
 | 					master->num_chipselect, sizeof(int), | 
 | 					GFP_KERNEL); | 
 | 	if (!master->cs_gpios) { | 
 | 		error = -ENOMEM; | 
 | 		goto fail_release_master; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < master->num_chipselect; i++) { | 
 | 		master->cs_gpios[i] = info->chipselect[i]; | 
 |  | 
 | 		if (!gpio_is_valid(master->cs_gpios[i])) | 
 | 			continue; | 
 |  | 
 | 		error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i], | 
 | 					      GPIOF_OUT_INIT_HIGH, | 
 | 					      "ep93xx-spi"); | 
 | 		if (error) { | 
 | 			dev_err(&pdev->dev, "could not request cs gpio %d\n", | 
 | 				master->cs_gpios[i]); | 
 | 			goto fail_release_master; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, master); | 
 |  | 
 | 	espi = spi_master_get_devdata(master); | 
 |  | 
 | 	espi->clk = devm_clk_get(&pdev->dev, NULL); | 
 | 	if (IS_ERR(espi->clk)) { | 
 | 		dev_err(&pdev->dev, "unable to get spi clock\n"); | 
 | 		error = PTR_ERR(espi->clk); | 
 | 		goto fail_release_master; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate maximum and minimum supported clock rates | 
 | 	 * for the controller. | 
 | 	 */ | 
 | 	master->max_speed_hz = clk_get_rate(espi->clk) / 2; | 
 | 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); | 
 |  | 
 | 	espi->sspdr_phys = res->start + SSPDR; | 
 |  | 
 | 	espi->mmio = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(espi->mmio)) { | 
 | 		error = PTR_ERR(espi->mmio); | 
 | 		goto fail_release_master; | 
 | 	} | 
 |  | 
 | 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, | 
 | 				0, "ep93xx-spi", master); | 
 | 	if (error) { | 
 | 		dev_err(&pdev->dev, "failed to request irq\n"); | 
 | 		goto fail_release_master; | 
 | 	} | 
 |  | 
 | 	if (info->use_dma && ep93xx_spi_setup_dma(espi)) | 
 | 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); | 
 |  | 
 | 	/* make sure that the hardware is disabled */ | 
 | 	writel(0, espi->mmio + SSPCR1); | 
 |  | 
 | 	error = devm_spi_register_master(&pdev->dev, master); | 
 | 	if (error) { | 
 | 		dev_err(&pdev->dev, "failed to register SPI master\n"); | 
 | 		goto fail_free_dma; | 
 | 	} | 
 |  | 
 | 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", | 
 | 		 (unsigned long)res->start, irq); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_free_dma: | 
 | 	ep93xx_spi_release_dma(espi); | 
 | fail_release_master: | 
 | 	spi_master_put(master); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int ep93xx_spi_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct spi_master *master = platform_get_drvdata(pdev); | 
 | 	struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
 |  | 
 | 	ep93xx_spi_release_dma(espi); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct platform_driver ep93xx_spi_driver = { | 
 | 	.driver		= { | 
 | 		.name	= "ep93xx-spi", | 
 | 	}, | 
 | 	.probe		= ep93xx_spi_probe, | 
 | 	.remove		= ep93xx_spi_remove, | 
 | }; | 
 | module_platform_driver(ep93xx_spi_driver); | 
 |  | 
 | MODULE_DESCRIPTION("EP93xx SPI Controller driver"); | 
 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("platform:ep93xx-spi"); |