| /* | 
 |  * CPU frequency scaling for Broadcom SoCs with AVS firmware that | 
 |  * supports DVS or DVFS | 
 |  * | 
 |  * Copyright (c) 2016 Broadcom | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation version 2. | 
 |  * | 
 |  * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
 |  * kind, whether express or implied; without even the implied warranty | 
 |  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | /* | 
 |  * "AVS" is the name of a firmware developed at Broadcom. It derives | 
 |  * its name from the technique called "Adaptive Voltage Scaling". | 
 |  * Adaptive voltage scaling was the original purpose of this firmware. | 
 |  * The AVS firmware still supports "AVS mode", where all it does is | 
 |  * adaptive voltage scaling. However, on some newer Broadcom SoCs, the | 
 |  * AVS Firmware, despite its unchanged name, also supports DFS mode and | 
 |  * DVFS mode. | 
 |  * | 
 |  * In the context of this document and the related driver, "AVS" by | 
 |  * itself always means the Broadcom firmware and never refers to the | 
 |  * technique called "Adaptive Voltage Scaling". | 
 |  * | 
 |  * The Broadcom STB AVS CPUfreq driver provides voltage and frequency | 
 |  * scaling on Broadcom SoCs using AVS firmware with support for DFS and | 
 |  * DVFS. The AVS firmware is running on its own co-processor. The | 
 |  * driver supports both uniprocessor (UP) and symmetric multiprocessor | 
 |  * (SMP) systems which share clock and voltage across all CPUs. | 
 |  * | 
 |  * Actual voltage and frequency scaling is done solely by the AVS | 
 |  * firmware. This driver does not change frequency or voltage itself. | 
 |  * It provides a standard CPUfreq interface to the rest of the kernel | 
 |  * and to userland. It interfaces with the AVS firmware to effect the | 
 |  * requested changes and to report back the current system status in a | 
 |  * way that is expected by existing tools. | 
 |  */ | 
 |  | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/semaphore.h> | 
 |  | 
 | /* Max number of arguments AVS calls take */ | 
 | #define AVS_MAX_CMD_ARGS	4 | 
 | /* | 
 |  * This macro is used to generate AVS parameter register offsets. For | 
 |  * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory | 
 |  * access outside of the parameter range. (Offset 0 is the first parameter.) | 
 |  */ | 
 | #define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0) | 
 |  | 
 | /* AVS Mailbox Register offsets */ | 
 | #define AVS_MBOX_COMMAND	0x00 | 
 | #define AVS_MBOX_STATUS		0x04 | 
 | #define AVS_MBOX_VOLTAGE0	0x08 | 
 | #define AVS_MBOX_TEMP0		0x0c | 
 | #define AVS_MBOX_PV0		0x10 | 
 | #define AVS_MBOX_MV0		0x14 | 
 | #define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32)) | 
 | #define AVS_MBOX_REVISION	0x28 | 
 | #define AVS_MBOX_PSTATE		0x2c | 
 | #define AVS_MBOX_HEARTBEAT	0x30 | 
 | #define AVS_MBOX_MAGIC		0x34 | 
 | #define AVS_MBOX_SIGMA_HVT	0x38 | 
 | #define AVS_MBOX_SIGMA_SVT	0x3c | 
 | #define AVS_MBOX_VOLTAGE1	0x40 | 
 | #define AVS_MBOX_TEMP1		0x44 | 
 | #define AVS_MBOX_PV1		0x48 | 
 | #define AVS_MBOX_MV1		0x4c | 
 | #define AVS_MBOX_FREQUENCY	0x50 | 
 |  | 
 | /* AVS Commands */ | 
 | #define AVS_CMD_AVAILABLE	0x00 | 
 | #define AVS_CMD_DISABLE		0x10 | 
 | #define AVS_CMD_ENABLE		0x11 | 
 | #define AVS_CMD_S2_ENTER	0x12 | 
 | #define AVS_CMD_S2_EXIT		0x13 | 
 | #define AVS_CMD_BBM_ENTER	0x14 | 
 | #define AVS_CMD_BBM_EXIT	0x15 | 
 | #define AVS_CMD_S3_ENTER	0x16 | 
 | #define AVS_CMD_S3_EXIT		0x17 | 
 | #define AVS_CMD_BALANCE		0x18 | 
 | /* PMAP and P-STATE commands */ | 
 | #define AVS_CMD_GET_PMAP	0x30 | 
 | #define AVS_CMD_SET_PMAP	0x31 | 
 | #define AVS_CMD_GET_PSTATE	0x40 | 
 | #define AVS_CMD_SET_PSTATE	0x41 | 
 |  | 
 | /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */ | 
 | #define AVS_MODE_AVS		0x0 | 
 | #define AVS_MODE_DFS		0x1 | 
 | #define AVS_MODE_DVS		0x2 | 
 | #define AVS_MODE_DVFS		0x3 | 
 |  | 
 | /* | 
 |  * PMAP parameter p1 | 
 |  * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0 | 
 |  */ | 
 | #define NDIV_INT_SHIFT		0 | 
 | #define NDIV_INT_MASK		0x3ff | 
 | #define PDIV_SHIFT		10 | 
 | #define PDIV_MASK		0xf | 
 | #define MDIV_P0_SHIFT		16 | 
 | #define MDIV_P0_MASK		0xff | 
 | /* | 
 |  * PMAP parameter p2 | 
 |  * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0 | 
 |  */ | 
 | #define MDIV_P1_SHIFT		0 | 
 | #define MDIV_P1_MASK		0xff | 
 | #define MDIV_P2_SHIFT		8 | 
 | #define MDIV_P2_MASK		0xff | 
 | #define MDIV_P3_SHIFT		16 | 
 | #define MDIV_P3_MASK		0xff | 
 | #define MDIV_P4_SHIFT		24 | 
 | #define MDIV_P4_MASK		0xff | 
 |  | 
 | /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */ | 
 | #define AVS_PSTATE_P0		0x0 | 
 | #define AVS_PSTATE_P1		0x1 | 
 | #define AVS_PSTATE_P2		0x2 | 
 | #define AVS_PSTATE_P3		0x3 | 
 | #define AVS_PSTATE_P4		0x4 | 
 | #define AVS_PSTATE_MAX		AVS_PSTATE_P4 | 
 |  | 
 | /* CPU L2 Interrupt Controller Registers */ | 
 | #define AVS_CPU_L2_SET0		0x04 | 
 | #define AVS_CPU_L2_INT_MASK	BIT(31) | 
 |  | 
 | /* AVS Command Status Values */ | 
 | #define AVS_STATUS_CLEAR	0x00 | 
 | /* Command/notification accepted */ | 
 | #define AVS_STATUS_SUCCESS	0xf0 | 
 | /* Command/notification rejected */ | 
 | #define AVS_STATUS_FAILURE	0xff | 
 | /* Invalid command/notification (unknown) */ | 
 | #define AVS_STATUS_INVALID	0xf1 | 
 | /* Non-AVS modes are not supported */ | 
 | #define AVS_STATUS_NO_SUPP	0xf2 | 
 | /* Cannot set P-State until P-Map supplied */ | 
 | #define AVS_STATUS_NO_MAP	0xf3 | 
 | /* Cannot change P-Map after initial P-Map set */ | 
 | #define AVS_STATUS_MAP_SET	0xf4 | 
 | /* Max AVS status; higher numbers are used for debugging */ | 
 | #define AVS_STATUS_MAX		0xff | 
 |  | 
 | /* Other AVS related constants */ | 
 | #define AVS_LOOP_LIMIT		10000 | 
 | #define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */ | 
 | #define AVS_FIRMWARE_MAGIC	0xa11600d1 | 
 |  | 
 | #define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs" | 
 | #define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq" | 
 | #define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem" | 
 | #define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr" | 
 | #define BRCM_AVS_HOST_INTR	"sw_intr" | 
 |  | 
 | struct pmap { | 
 | 	unsigned int mode; | 
 | 	unsigned int p1; | 
 | 	unsigned int p2; | 
 | 	unsigned int state; | 
 | }; | 
 |  | 
 | struct private_data { | 
 | 	void __iomem *base; | 
 | 	void __iomem *avs_intr_base; | 
 | 	struct device *dev; | 
 | 	struct completion done; | 
 | 	struct semaphore sem; | 
 | 	struct pmap pmap; | 
 | }; | 
 |  | 
 | static void __iomem *__map_region(const char *name) | 
 | { | 
 | 	struct device_node *np; | 
 | 	void __iomem *ptr; | 
 |  | 
 | 	np = of_find_compatible_node(NULL, NULL, name); | 
 | 	if (!np) | 
 | 		return NULL; | 
 |  | 
 | 	ptr = of_iomap(np, 0); | 
 | 	of_node_put(np); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send, | 
 | 			       u32 args[]) | 
 | { | 
 | 	unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT); | 
 | 	void __iomem *base = priv->base; | 
 | 	unsigned int i; | 
 | 	int ret; | 
 | 	u32 val; | 
 |  | 
 | 	ret = down_interruptible(&priv->sem); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Make sure no other command is currently running: cmd is 0 if AVS | 
 | 	 * co-processor is idle. Due to the guard above, we should almost never | 
 | 	 * have to wait here. | 
 | 	 */ | 
 | 	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++) | 
 | 		val = readl(base + AVS_MBOX_COMMAND); | 
 |  | 
 | 	/* Give the caller a chance to retry if AVS is busy. */ | 
 | 	if (i == AVS_LOOP_LIMIT) { | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Clear status before we begin. */ | 
 | 	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); | 
 |  | 
 | 	/* We need to send arguments for this command. */ | 
 | 	if (args && is_send) { | 
 | 		for (i = 0; i < AVS_MAX_CMD_ARGS; i++) | 
 | 			writel(args[i], base + AVS_MBOX_PARAM(i)); | 
 | 	} | 
 |  | 
 | 	/* Protect from spurious interrupts. */ | 
 | 	reinit_completion(&priv->done); | 
 |  | 
 | 	/* Now issue the command & tell firmware to wake up to process it. */ | 
 | 	writel(cmd, base + AVS_MBOX_COMMAND); | 
 | 	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0); | 
 |  | 
 | 	/* Wait for AVS co-processor to finish processing the command. */ | 
 | 	time_left = wait_for_completion_timeout(&priv->done, time_left); | 
 |  | 
 | 	/* | 
 | 	 * If the AVS status is not in the expected range, it means AVS didn't | 
 | 	 * complete our command in time, and we return an error. Also, if there | 
 | 	 * is no "time left", we timed out waiting for the interrupt. | 
 | 	 */ | 
 | 	val = readl(base + AVS_MBOX_STATUS); | 
 | 	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) { | 
 | 		dev_err(priv->dev, "AVS command %#x didn't complete in time\n", | 
 | 			cmd); | 
 | 		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n", | 
 | 			jiffies_to_msecs(time_left), val); | 
 | 		ret = -ETIMEDOUT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* This command returned arguments, so we read them back. */ | 
 | 	if (args && !is_send) { | 
 | 		for (i = 0; i < AVS_MAX_CMD_ARGS; i++) | 
 | 			args[i] = readl(base + AVS_MBOX_PARAM(i)); | 
 | 	} | 
 |  | 
 | 	/* Clear status to tell AVS co-processor we are done. */ | 
 | 	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); | 
 |  | 
 | 	/* Convert firmware errors to errno's as much as possible. */ | 
 | 	switch (val) { | 
 | 	case AVS_STATUS_INVALID: | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case AVS_STATUS_NO_SUPP: | 
 | 		ret = -ENOTSUPP; | 
 | 		break; | 
 | 	case AVS_STATUS_NO_MAP: | 
 | 		ret = -ENOENT; | 
 | 		break; | 
 | 	case AVS_STATUS_MAP_SET: | 
 | 		ret = -EEXIST; | 
 | 		break; | 
 | 	case AVS_STATUS_FAILURE: | 
 | 		ret = -EIO; | 
 | 		break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	up(&priv->sem); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static irqreturn_t irq_handler(int irq, void *data) | 
 | { | 
 | 	struct private_data *priv = data; | 
 |  | 
 | 	/* AVS command completed execution. Wake up __issue_avs_command(). */ | 
 | 	complete(&priv->done); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static char *brcm_avs_mode_to_string(unsigned int mode) | 
 | { | 
 | 	switch (mode) { | 
 | 	case AVS_MODE_AVS: | 
 | 		return "AVS"; | 
 | 	case AVS_MODE_DFS: | 
 | 		return "DFS"; | 
 | 	case AVS_MODE_DVS: | 
 | 		return "DVS"; | 
 | 	case AVS_MODE_DVFS: | 
 | 		return "DVFS"; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv, | 
 | 			      unsigned int *ndiv) | 
 | { | 
 | 	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK; | 
 | 	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK; | 
 | 	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK; | 
 | } | 
 |  | 
 | static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1, | 
 | 			      unsigned int *mdiv_p2, unsigned int *mdiv_p3, | 
 | 			      unsigned int *mdiv_p4) | 
 | { | 
 | 	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK; | 
 | 	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK; | 
 | 	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK; | 
 | 	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK; | 
 | } | 
 |  | 
 | static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap) | 
 | { | 
 | 	u32 args[AVS_MAX_CMD_ARGS]; | 
 | 	int ret; | 
 |  | 
 | 	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args); | 
 | 	if (ret || !pmap) | 
 | 		return ret; | 
 |  | 
 | 	pmap->mode = args[0]; | 
 | 	pmap->p1 = args[1]; | 
 | 	pmap->p2 = args[2]; | 
 | 	pmap->state = args[3]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap) | 
 | { | 
 | 	u32 args[AVS_MAX_CMD_ARGS]; | 
 |  | 
 | 	args[0] = pmap->mode; | 
 | 	args[1] = pmap->p1; | 
 | 	args[2] = pmap->p2; | 
 | 	args[3] = pmap->state; | 
 |  | 
 | 	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args); | 
 | } | 
 |  | 
 | static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate) | 
 | { | 
 | 	u32 args[AVS_MAX_CMD_ARGS]; | 
 | 	int ret; | 
 |  | 
 | 	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	*pstate = args[0]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate) | 
 | { | 
 | 	u32 args[AVS_MAX_CMD_ARGS]; | 
 |  | 
 | 	args[0] = pstate; | 
 |  | 
 | 	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args); | 
 | } | 
 |  | 
 | static unsigned long brcm_avs_get_voltage(void __iomem *base) | 
 | { | 
 | 	return readl(base + AVS_MBOX_VOLTAGE1); | 
 | } | 
 |  | 
 | static unsigned long brcm_avs_get_frequency(void __iomem *base) | 
 | { | 
 | 	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */ | 
 | } | 
 |  | 
 | /* | 
 |  * We determine which frequencies are supported by cycling through all P-states | 
 |  * and reading back what frequency we are running at for each P-state. | 
 |  */ | 
 | static struct cpufreq_frequency_table * | 
 | brcm_avs_get_freq_table(struct device *dev, struct private_data *priv) | 
 | { | 
 | 	struct cpufreq_frequency_table *table; | 
 | 	unsigned int pstate; | 
 | 	int i, ret; | 
 |  | 
 | 	/* Remember P-state for later */ | 
 | 	ret = brcm_avs_get_pstate(priv, &pstate); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1, sizeof(*table), | 
 | 			     GFP_KERNEL); | 
 | 	if (!table) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) { | 
 | 		ret = brcm_avs_set_pstate(priv, i); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 		table[i].frequency = brcm_avs_get_frequency(priv->base); | 
 | 		table[i].driver_data = i; | 
 | 	} | 
 | 	table[i].frequency = CPUFREQ_TABLE_END; | 
 |  | 
 | 	/* Restore P-state */ | 
 | 	ret = brcm_avs_set_pstate(priv, pstate); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | /* | 
 |  * To ensure the right firmware is running we need to | 
 |  *    - check the MAGIC matches what we expect | 
 |  *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL | 
 |  * We need to set up our interrupt handling before calling brcm_avs_get_pmap()! | 
 |  */ | 
 | static bool brcm_avs_is_firmware_loaded(struct private_data *priv) | 
 | { | 
 | 	u32 magic; | 
 | 	int rc; | 
 |  | 
 | 	rc = brcm_avs_get_pmap(priv, NULL); | 
 | 	magic = readl(priv->base + AVS_MBOX_MAGIC); | 
 |  | 
 | 	return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) && | 
 | 		(rc != -EINVAL); | 
 | } | 
 |  | 
 | static unsigned int brcm_avs_cpufreq_get(unsigned int cpu) | 
 | { | 
 | 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); | 
 | 	struct private_data *priv = policy->driver_data; | 
 |  | 
 | 	return brcm_avs_get_frequency(priv->base); | 
 | } | 
 |  | 
 | static int brcm_avs_target_index(struct cpufreq_policy *policy, | 
 | 				 unsigned int index) | 
 | { | 
 | 	return brcm_avs_set_pstate(policy->driver_data, | 
 | 				  policy->freq_table[index].driver_data); | 
 | } | 
 |  | 
 | static int brcm_avs_suspend(struct cpufreq_policy *policy) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 | 	int ret; | 
 |  | 
 | 	ret = brcm_avs_get_pmap(priv, &priv->pmap); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * We can't use the P-state returned by brcm_avs_get_pmap(), since | 
 | 	 * that's the initial P-state from when the P-map was downloaded to the | 
 | 	 * AVS co-processor, not necessarily the P-state we are running at now. | 
 | 	 * So, we get the current P-state explicitly. | 
 | 	 */ | 
 | 	return brcm_avs_get_pstate(priv, &priv->pmap.state); | 
 | } | 
 |  | 
 | static int brcm_avs_resume(struct cpufreq_policy *policy) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 | 	int ret; | 
 |  | 
 | 	ret = brcm_avs_set_pmap(priv, &priv->pmap); | 
 | 	if (ret == -EEXIST) { | 
 | 		struct platform_device *pdev  = cpufreq_get_driver_data(); | 
 | 		struct device *dev = &pdev->dev; | 
 |  | 
 | 		dev_warn(dev, "PMAP was already set\n"); | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * All initialization code that we only want to execute once goes here. Setup | 
 |  * code that can be re-tried on every core (if it failed before) can go into | 
 |  * brcm_avs_cpufreq_init(). | 
 |  */ | 
 | static int brcm_avs_prepare_init(struct platform_device *pdev) | 
 | { | 
 | 	struct private_data *priv; | 
 | 	struct device *dev; | 
 | 	int host_irq, ret; | 
 |  | 
 | 	dev = &pdev->dev; | 
 | 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); | 
 | 	if (!priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	priv->dev = dev; | 
 | 	sema_init(&priv->sem, 1); | 
 | 	init_completion(&priv->done); | 
 | 	platform_set_drvdata(pdev, priv); | 
 |  | 
 | 	priv->base = __map_region(BRCM_AVS_CPU_DATA); | 
 | 	if (!priv->base) { | 
 | 		dev_err(dev, "Couldn't find property %s in device tree.\n", | 
 | 			BRCM_AVS_CPU_DATA); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR); | 
 | 	if (!priv->avs_intr_base) { | 
 | 		dev_err(dev, "Couldn't find property %s in device tree.\n", | 
 | 			BRCM_AVS_CPU_INTR); | 
 | 		ret = -ENOENT; | 
 | 		goto unmap_base; | 
 | 	} | 
 |  | 
 | 	host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR); | 
 | 	if (host_irq < 0) { | 
 | 		dev_err(dev, "Couldn't find interrupt %s -- %d\n", | 
 | 			BRCM_AVS_HOST_INTR, host_irq); | 
 | 		ret = host_irq; | 
 | 		goto unmap_intr_base; | 
 | 	} | 
 |  | 
 | 	ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING, | 
 | 			       BRCM_AVS_HOST_INTR, priv); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n", | 
 | 			BRCM_AVS_HOST_INTR, host_irq, ret); | 
 | 		goto unmap_intr_base; | 
 | 	} | 
 |  | 
 | 	if (brcm_avs_is_firmware_loaded(priv)) | 
 | 		return 0; | 
 |  | 
 | 	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n"); | 
 | 	ret = -ENODEV; | 
 |  | 
 | unmap_intr_base: | 
 | 	iounmap(priv->avs_intr_base); | 
 | unmap_base: | 
 | 	iounmap(priv->base); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy) | 
 | { | 
 | 	struct cpufreq_frequency_table *freq_table; | 
 | 	struct platform_device *pdev; | 
 | 	struct private_data *priv; | 
 | 	struct device *dev; | 
 | 	int ret; | 
 |  | 
 | 	pdev = cpufreq_get_driver_data(); | 
 | 	priv = platform_get_drvdata(pdev); | 
 | 	policy->driver_data = priv; | 
 | 	dev = &pdev->dev; | 
 |  | 
 | 	freq_table = brcm_avs_get_freq_table(dev, priv); | 
 | 	if (IS_ERR(freq_table)) { | 
 | 		ret = PTR_ERR(freq_table); | 
 | 		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	policy->freq_table = freq_table; | 
 |  | 
 | 	/* All cores share the same clock and thus the same policy. */ | 
 | 	cpumask_setall(policy->cpus); | 
 |  | 
 | 	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL); | 
 | 	if (!ret) { | 
 | 		unsigned int pstate; | 
 |  | 
 | 		ret = brcm_avs_get_pstate(priv, &pstate); | 
 | 		if (!ret) { | 
 | 			policy->cur = freq_table[pstate].frequency; | 
 | 			dev_info(dev, "registered\n"); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev_err(dev, "couldn't initialize driver (%d)\n", ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 | 	unsigned int pstate; | 
 |  | 
 | 	if (brcm_avs_get_pstate(priv, &pstate)) | 
 | 		return sprintf(buf, "<unknown>\n"); | 
 |  | 
 | 	return sprintf(buf, "%u\n", pstate); | 
 | } | 
 |  | 
 | static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 | 	struct pmap pmap; | 
 |  | 
 | 	if (brcm_avs_get_pmap(priv, &pmap)) | 
 | 		return sprintf(buf, "<unknown>\n"); | 
 |  | 
 | 	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode), | 
 | 		pmap.mode); | 
 | } | 
 |  | 
 | static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf) | 
 | { | 
 | 	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4; | 
 | 	struct private_data *priv = policy->driver_data; | 
 | 	unsigned int ndiv, pdiv; | 
 | 	struct pmap pmap; | 
 |  | 
 | 	if (brcm_avs_get_pmap(priv, &pmap)) | 
 | 		return sprintf(buf, "<unknown>\n"); | 
 |  | 
 | 	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv); | 
 | 	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4); | 
 |  | 
 | 	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n", | 
 | 		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2, | 
 | 		mdiv_p3, mdiv_p4, pmap.mode, pmap.state); | 
 | } | 
 |  | 
 | static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 |  | 
 | 	return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base)); | 
 | } | 
 |  | 
 | static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf) | 
 | { | 
 | 	struct private_data *priv = policy->driver_data; | 
 |  | 
 | 	return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base)); | 
 | } | 
 |  | 
 | cpufreq_freq_attr_ro(brcm_avs_pstate); | 
 | cpufreq_freq_attr_ro(brcm_avs_mode); | 
 | cpufreq_freq_attr_ro(brcm_avs_pmap); | 
 | cpufreq_freq_attr_ro(brcm_avs_voltage); | 
 | cpufreq_freq_attr_ro(brcm_avs_frequency); | 
 |  | 
 | static struct freq_attr *brcm_avs_cpufreq_attr[] = { | 
 | 	&cpufreq_freq_attr_scaling_available_freqs, | 
 | 	&brcm_avs_pstate, | 
 | 	&brcm_avs_mode, | 
 | 	&brcm_avs_pmap, | 
 | 	&brcm_avs_voltage, | 
 | 	&brcm_avs_frequency, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct cpufreq_driver brcm_avs_driver = { | 
 | 	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK, | 
 | 	.verify		= cpufreq_generic_frequency_table_verify, | 
 | 	.target_index	= brcm_avs_target_index, | 
 | 	.get		= brcm_avs_cpufreq_get, | 
 | 	.suspend	= brcm_avs_suspend, | 
 | 	.resume		= brcm_avs_resume, | 
 | 	.init		= brcm_avs_cpufreq_init, | 
 | 	.attr		= brcm_avs_cpufreq_attr, | 
 | 	.name		= BRCM_AVS_CPUFREQ_PREFIX, | 
 | }; | 
 |  | 
 | static int brcm_avs_cpufreq_probe(struct platform_device *pdev) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = brcm_avs_prepare_init(pdev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	brcm_avs_driver.driver_data = pdev; | 
 |  | 
 | 	return cpufreq_register_driver(&brcm_avs_driver); | 
 | } | 
 |  | 
 | static int brcm_avs_cpufreq_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct private_data *priv; | 
 | 	int ret; | 
 |  | 
 | 	ret = cpufreq_unregister_driver(&brcm_avs_driver); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	priv = platform_get_drvdata(pdev); | 
 | 	iounmap(priv->base); | 
 | 	iounmap(priv->avs_intr_base); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct of_device_id brcm_avs_cpufreq_match[] = { | 
 | 	{ .compatible = BRCM_AVS_CPU_DATA }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match); | 
 |  | 
 | static struct platform_driver brcm_avs_cpufreq_platdrv = { | 
 | 	.driver = { | 
 | 		.name	= BRCM_AVS_CPUFREQ_NAME, | 
 | 		.of_match_table = brcm_avs_cpufreq_match, | 
 | 	}, | 
 | 	.probe		= brcm_avs_cpufreq_probe, | 
 | 	.remove		= brcm_avs_cpufreq_remove, | 
 | }; | 
 | module_platform_driver(brcm_avs_cpufreq_platdrv); | 
 |  | 
 | MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>"); | 
 | MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS"); | 
 | MODULE_LICENSE("GPL"); |