| /* | 
 |  * Copyright (c) 2007-2017 Nicira, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of version 2 of the GNU General Public | 
 |  * License as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
 |  * 02110-1301, USA | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include "flow.h" | 
 | #include "datapath.h" | 
 | #include <linux/uaccess.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/if_ether.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <net/llc_pdu.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/jhash.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/llc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/in.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/ipv6.h> | 
 | #include <linux/sctp.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/icmp.h> | 
 | #include <linux/icmpv6.h> | 
 | #include <linux/rculist.h> | 
 | #include <net/geneve.h> | 
 | #include <net/ip.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/ndisc.h> | 
 | #include <net/mpls.h> | 
 | #include <net/vxlan.h> | 
 | #include <net/tun_proto.h> | 
 | #include <net/erspan.h> | 
 |  | 
 | #include "flow_netlink.h" | 
 |  | 
 | struct ovs_len_tbl { | 
 | 	int len; | 
 | 	const struct ovs_len_tbl *next; | 
 | }; | 
 |  | 
 | #define OVS_ATTR_NESTED -1 | 
 | #define OVS_ATTR_VARIABLE -2 | 
 |  | 
 | static bool actions_may_change_flow(const struct nlattr *actions) | 
 | { | 
 | 	struct nlattr *nla; | 
 | 	int rem; | 
 |  | 
 | 	nla_for_each_nested(nla, actions, rem) { | 
 | 		u16 action = nla_type(nla); | 
 |  | 
 | 		switch (action) { | 
 | 		case OVS_ACTION_ATTR_OUTPUT: | 
 | 		case OVS_ACTION_ATTR_RECIRC: | 
 | 		case OVS_ACTION_ATTR_TRUNC: | 
 | 		case OVS_ACTION_ATTR_USERSPACE: | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT: | 
 | 		case OVS_ACTION_ATTR_CT_CLEAR: | 
 | 		case OVS_ACTION_ATTR_HASH: | 
 | 		case OVS_ACTION_ATTR_POP_ETH: | 
 | 		case OVS_ACTION_ATTR_POP_MPLS: | 
 | 		case OVS_ACTION_ATTR_POP_NSH: | 
 | 		case OVS_ACTION_ATTR_POP_VLAN: | 
 | 		case OVS_ACTION_ATTR_PUSH_ETH: | 
 | 		case OVS_ACTION_ATTR_PUSH_MPLS: | 
 | 		case OVS_ACTION_ATTR_PUSH_NSH: | 
 | 		case OVS_ACTION_ATTR_PUSH_VLAN: | 
 | 		case OVS_ACTION_ATTR_SAMPLE: | 
 | 		case OVS_ACTION_ATTR_SET: | 
 | 		case OVS_ACTION_ATTR_SET_MASKED: | 
 | 		case OVS_ACTION_ATTR_METER: | 
 | 		default: | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void update_range(struct sw_flow_match *match, | 
 | 			 size_t offset, size_t size, bool is_mask) | 
 | { | 
 | 	struct sw_flow_key_range *range; | 
 | 	size_t start = rounddown(offset, sizeof(long)); | 
 | 	size_t end = roundup(offset + size, sizeof(long)); | 
 |  | 
 | 	if (!is_mask) | 
 | 		range = &match->range; | 
 | 	else | 
 | 		range = &match->mask->range; | 
 |  | 
 | 	if (range->start == range->end) { | 
 | 		range->start = start; | 
 | 		range->end = end; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (range->start > start) | 
 | 		range->start = start; | 
 |  | 
 | 	if (range->end < end) | 
 | 		range->end = end; | 
 | } | 
 |  | 
 | #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ | 
 | 	do { \ | 
 | 		update_range(match, offsetof(struct sw_flow_key, field),    \ | 
 | 			     sizeof((match)->key->field), is_mask);	    \ | 
 | 		if (is_mask)						    \ | 
 | 			(match)->mask->key.field = value;		    \ | 
 | 		else							    \ | 
 | 			(match)->key->field = value;		            \ | 
 | 	} while (0) | 
 |  | 
 | #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \ | 
 | 	do {								    \ | 
 | 		update_range(match, offset, len, is_mask);		    \ | 
 | 		if (is_mask)						    \ | 
 | 			memcpy((u8 *)&(match)->mask->key + offset, value_p, \ | 
 | 			       len);					   \ | 
 | 		else							    \ | 
 | 			memcpy((u8 *)(match)->key + offset, value_p, len);  \ | 
 | 	} while (0) | 
 |  | 
 | #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \ | 
 | 	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ | 
 | 				  value_p, len, is_mask) | 
 |  | 
 | #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \ | 
 | 	do {								    \ | 
 | 		update_range(match, offsetof(struct sw_flow_key, field),    \ | 
 | 			     sizeof((match)->key->field), is_mask);	    \ | 
 | 		if (is_mask)						    \ | 
 | 			memset((u8 *)&(match)->mask->key.field, value,      \ | 
 | 			       sizeof((match)->mask->key.field));	    \ | 
 | 		else							    \ | 
 | 			memset((u8 *)&(match)->key->field, value,           \ | 
 | 			       sizeof((match)->key->field));                \ | 
 | 	} while (0) | 
 |  | 
 | static bool match_validate(const struct sw_flow_match *match, | 
 | 			   u64 key_attrs, u64 mask_attrs, bool log) | 
 | { | 
 | 	u64 key_expected = 0; | 
 | 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */ | 
 |  | 
 | 	/* The following mask attributes allowed only if they | 
 | 	 * pass the validation tests. */ | 
 | 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | 
 | 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) | 
 | 			| (1 << OVS_KEY_ATTR_IPV6) | 
 | 			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) | 
 | 			| (1 << OVS_KEY_ATTR_TCP) | 
 | 			| (1 << OVS_KEY_ATTR_TCP_FLAGS) | 
 | 			| (1 << OVS_KEY_ATTR_UDP) | 
 | 			| (1 << OVS_KEY_ATTR_SCTP) | 
 | 			| (1 << OVS_KEY_ATTR_ICMP) | 
 | 			| (1 << OVS_KEY_ATTR_ICMPV6) | 
 | 			| (1 << OVS_KEY_ATTR_ARP) | 
 | 			| (1 << OVS_KEY_ATTR_ND) | 
 | 			| (1 << OVS_KEY_ATTR_MPLS) | 
 | 			| (1 << OVS_KEY_ATTR_NSH)); | 
 |  | 
 | 	/* Always allowed mask fields. */ | 
 | 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | 
 | 		       | (1 << OVS_KEY_ATTR_IN_PORT) | 
 | 		       | (1 << OVS_KEY_ATTR_ETHERTYPE)); | 
 |  | 
 | 	/* Check key attributes. */ | 
 | 	if (match->key->eth.type == htons(ETH_P_ARP) | 
 | 			|| match->key->eth.type == htons(ETH_P_RARP)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_ARP; | 
 | 		if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP; | 
 | 	} | 
 |  | 
 | 	if (eth_p_mpls(match->key->eth.type)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_MPLS; | 
 | 		if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; | 
 | 	} | 
 |  | 
 | 	if (match->key->eth.type == htons(ETH_P_IP)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_IPV4; | 
 | 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) { | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; | 
 | 		} | 
 |  | 
 | 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 			if (match->key->ip.proto == IPPROTO_UDP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_SCTP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_TCP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) { | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_ICMP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_ICMP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (match->key->eth.type == htons(ETH_P_IPV6)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_IPV6; | 
 | 		if (match->mask && match->mask->key.eth.type == htons(0xffff)) { | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; | 
 | 		} | 
 |  | 
 | 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 			if (match->key->ip.proto == IPPROTO_UDP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_SCTP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_TCP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) { | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_ICMPV6) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; | 
 |  | 
 | 				if (match->key->tp.src == | 
 | 						htons(NDISC_NEIGHBOUR_SOLICITATION) || | 
 | 				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
 | 					key_expected |= 1 << OVS_KEY_ATTR_ND; | 
 | 					/* Original direction conntrack tuple | 
 | 					 * uses the same space as the ND fields | 
 | 					 * in the key, so both are not allowed | 
 | 					 * at the same time. | 
 | 					 */ | 
 | 					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); | 
 | 					if (match->mask && (match->mask->key.tp.src == htons(0xff))) | 
 | 						mask_allowed |= 1 << OVS_KEY_ATTR_ND; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (match->key->eth.type == htons(ETH_P_NSH)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_NSH; | 
 | 		if (match->mask && | 
 | 		    match->mask->key.eth.type == htons(0xffff)) { | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_NSH; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((key_attrs & key_expected) != key_expected) { | 
 | 		/* Key attributes check failed. */ | 
 | 		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", | 
 | 			  (unsigned long long)key_attrs, | 
 | 			  (unsigned long long)key_expected); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if ((mask_attrs & mask_allowed) != mask_attrs) { | 
 | 		/* Mask attributes check failed. */ | 
 | 		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", | 
 | 			  (unsigned long long)mask_attrs, | 
 | 			  (unsigned long long)mask_allowed); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | size_t ovs_tun_key_attr_size(void) | 
 | { | 
 | 	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider | 
 | 	 * updating this function. | 
 | 	 */ | 
 | 	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ | 
 | 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ | 
 | 		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ | 
 | 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */ | 
 | 		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */ | 
 | 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ | 
 | 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */ | 
 | 		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */ | 
 | 		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ | 
 | 		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and | 
 | 		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with | 
 | 		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. | 
 | 		 */ | 
 | 		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ | 
 | 		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */ | 
 | } | 
 |  | 
 | static size_t ovs_nsh_key_attr_size(void) | 
 | { | 
 | 	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider | 
 | 	 * updating this function. | 
 | 	 */ | 
 | 	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ | 
 | 		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are | 
 | 		 * mutually exclusive, so the bigger one can cover | 
 | 		 * the small one. | 
 | 		 */ | 
 | 		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN); | 
 | } | 
 |  | 
 | size_t ovs_key_attr_size(void) | 
 | { | 
 | 	/* Whenever adding new OVS_KEY_ FIELDS, we should consider | 
 | 	 * updating this function. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29); | 
 |  | 
 | 	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */ | 
 | 		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */ | 
 | 		  + ovs_tun_key_attr_size() | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */ | 
 | 		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */ | 
 | 		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */ | 
 | 		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ | 
 | 		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */ | 
 | 		  + ovs_nsh_key_attr_size() | 
 | 		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */ | 
 | 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */ | 
 | 		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */ | 
 | 		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */ | 
 | 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */ | 
 | 		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */ | 
 | 		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */ | 
 | 		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */ | 
 | } | 
 |  | 
 | static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { | 
 | 	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) }, | 
 | }; | 
 |  | 
 | static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { | 
 | 	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED, | 
 | 						.next = ovs_vxlan_ext_key_lens }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) }, | 
 | 	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE }, | 
 | }; | 
 |  | 
 | static const struct ovs_len_tbl | 
 | ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { | 
 | 	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, | 
 | 	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) }, | 
 | 	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE }, | 
 | }; | 
 |  | 
 | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */ | 
 | static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | 
 | 	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED }, | 
 | 	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) }, | 
 | 	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) }, | 
 | 	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, | 
 | 	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) }, | 
 | 	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) }, | 
 | 	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) }, | 
 | 	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, | 
 | 	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) }, | 
 | 	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) }, | 
 | 	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) }, | 
 | 	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) }, | 
 | 	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) }, | 
 | 	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) }, | 
 | 	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED, | 
 | 				     .next = ovs_tunnel_key_lens, }, | 
 | 	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) }, | 
 | 	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) }, | 
 | 	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) }, | 
 | 	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, | 
 | 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { | 
 | 		.len = sizeof(struct ovs_key_ct_tuple_ipv4) }, | 
 | 	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { | 
 | 		.len = sizeof(struct ovs_key_ct_tuple_ipv6) }, | 
 | 	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED, | 
 | 				     .next = ovs_nsh_key_attr_lens, }, | 
 | }; | 
 |  | 
 | static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) | 
 | { | 
 | 	return expected_len == attr_len || | 
 | 	       expected_len == OVS_ATTR_NESTED || | 
 | 	       expected_len == OVS_ATTR_VARIABLE; | 
 | } | 
 |  | 
 | static bool is_all_zero(const u8 *fp, size_t size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!fp) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < size; i++) | 
 | 		if (fp[i]) | 
 | 			return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __parse_flow_nlattrs(const struct nlattr *attr, | 
 | 				const struct nlattr *a[], | 
 | 				u64 *attrsp, bool log, bool nz) | 
 | { | 
 | 	const struct nlattr *nla; | 
 | 	u64 attrs; | 
 | 	int rem; | 
 |  | 
 | 	attrs = *attrsp; | 
 | 	nla_for_each_nested(nla, attr, rem) { | 
 | 		u16 type = nla_type(nla); | 
 | 		int expected_len; | 
 |  | 
 | 		if (type > OVS_KEY_ATTR_MAX) { | 
 | 			OVS_NLERR(log, "Key type %d is out of range max %d", | 
 | 				  type, OVS_KEY_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (attrs & (1 << type)) { | 
 | 			OVS_NLERR(log, "Duplicate key (type %d).", type); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		expected_len = ovs_key_lens[type].len; | 
 | 		if (!check_attr_len(nla_len(nla), expected_len)) { | 
 | 			OVS_NLERR(log, "Key %d has unexpected len %d expected %d", | 
 | 				  type, nla_len(nla), expected_len); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) { | 
 | 			attrs |= 1 << type; | 
 | 			a[type] = nla; | 
 | 		} | 
 | 	} | 
 | 	if (rem) { | 
 | 		OVS_NLERR(log, "Message has %d unknown bytes.", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*attrsp = attrs; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_flow_mask_nlattrs(const struct nlattr *attr, | 
 | 				   const struct nlattr *a[], u64 *attrsp, | 
 | 				   bool log) | 
 | { | 
 | 	return __parse_flow_nlattrs(attr, a, attrsp, log, true); | 
 | } | 
 |  | 
 | int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], | 
 | 		       u64 *attrsp, bool log) | 
 | { | 
 | 	return __parse_flow_nlattrs(attr, a, attrsp, log, false); | 
 | } | 
 |  | 
 | static int genev_tun_opt_from_nlattr(const struct nlattr *a, | 
 | 				     struct sw_flow_match *match, bool is_mask, | 
 | 				     bool log) | 
 | { | 
 | 	unsigned long opt_key_offset; | 
 |  | 
 | 	if (nla_len(a) > sizeof(match->key->tun_opts)) { | 
 | 		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", | 
 | 			  nla_len(a), sizeof(match->key->tun_opts)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (nla_len(a) % 4 != 0) { | 
 | 		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", | 
 | 			  nla_len(a)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* We need to record the length of the options passed | 
 | 	 * down, otherwise packets with the same format but | 
 | 	 * additional options will be silently matched. | 
 | 	 */ | 
 | 	if (!is_mask) { | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), | 
 | 				false); | 
 | 	} else { | 
 | 		/* This is somewhat unusual because it looks at | 
 | 		 * both the key and mask while parsing the | 
 | 		 * attributes (and by extension assumes the key | 
 | 		 * is parsed first). Normally, we would verify | 
 | 		 * that each is the correct length and that the | 
 | 		 * attributes line up in the validate function. | 
 | 		 * However, that is difficult because this is | 
 | 		 * variable length and we won't have the | 
 | 		 * information later. | 
 | 		 */ | 
 | 		if (match->key->tun_opts_len != nla_len(a)) { | 
 | 			OVS_NLERR(log, "Geneve option len %d != mask len %d", | 
 | 				  match->key->tun_opts_len, nla_len(a)); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); | 
 | 	} | 
 |  | 
 | 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); | 
 | 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), | 
 | 				  nla_len(a), is_mask); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, | 
 | 				     struct sw_flow_match *match, bool is_mask, | 
 | 				     bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 | 	unsigned long opt_key_offset; | 
 | 	struct vxlan_metadata opts; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); | 
 |  | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 |  | 
 | 		if (type > OVS_VXLAN_EXT_MAX) { | 
 | 			OVS_NLERR(log, "VXLAN extension %d out of range max %d", | 
 | 				  type, OVS_VXLAN_EXT_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!check_attr_len(nla_len(a), | 
 | 				    ovs_vxlan_ext_key_lens[type].len)) { | 
 | 			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", | 
 | 				  type, nla_len(a), | 
 | 				  ovs_vxlan_ext_key_lens[type].len); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_VXLAN_EXT_GBP: | 
 | 			opts.gbp = nla_get_u32(a); | 
 | 			break; | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown VXLAN extension attribute %d", | 
 | 				  type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	if (rem) { | 
 | 		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", | 
 | 			  rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!is_mask) | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); | 
 | 	else | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); | 
 |  | 
 | 	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); | 
 | 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), | 
 | 				  is_mask); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int erspan_tun_opt_from_nlattr(const struct nlattr *a, | 
 | 				      struct sw_flow_match *match, bool is_mask, | 
 | 				      bool log) | 
 | { | 
 | 	unsigned long opt_key_offset; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(struct erspan_metadata) > | 
 | 		     sizeof(match->key->tun_opts)); | 
 |  | 
 | 	if (nla_len(a) > sizeof(match->key->tun_opts)) { | 
 | 		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", | 
 | 			  nla_len(a), sizeof(match->key->tun_opts)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!is_mask) | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, | 
 | 				sizeof(struct erspan_metadata), false); | 
 | 	else | 
 | 		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); | 
 |  | 
 | 	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); | 
 | 	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), | 
 | 				  nla_len(a), is_mask); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ip_tun_from_nlattr(const struct nlattr *attr, | 
 | 			      struct sw_flow_match *match, bool is_mask, | 
 | 			      bool log) | 
 | { | 
 | 	bool ttl = false, ipv4 = false, ipv6 = false; | 
 | 	__be16 tun_flags = 0; | 
 | 	int opts_type = 0; | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 | 		int err; | 
 |  | 
 | 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) { | 
 | 			OVS_NLERR(log, "Tunnel attr %d out of range max %d", | 
 | 				  type, OVS_TUNNEL_KEY_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!check_attr_len(nla_len(a), | 
 | 				    ovs_tunnel_key_lens[type].len)) { | 
 | 			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", | 
 | 				  type, nla_len(a), ovs_tunnel_key_lens[type].len); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_TUNNEL_KEY_ATTR_ID: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.tun_id, | 
 | 					nla_get_be64(a), is_mask); | 
 | 			tun_flags |= TUNNEL_KEY; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, | 
 | 					nla_get_in_addr(a), is_mask); | 
 | 			ipv4 = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, | 
 | 					nla_get_in_addr(a), is_mask); | 
 | 			ipv4 = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, | 
 | 					nla_get_in6_addr(a), is_mask); | 
 | 			ipv6 = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV6_DST: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, | 
 | 					nla_get_in6_addr(a), is_mask); | 
 | 			ipv6 = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TOS: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.tos, | 
 | 					nla_get_u8(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TTL: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.ttl, | 
 | 					nla_get_u8(a), is_mask); | 
 | 			ttl = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: | 
 | 			tun_flags |= TUNNEL_DONT_FRAGMENT; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_CSUM: | 
 | 			tun_flags |= TUNNEL_CSUM; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TP_SRC: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.tp_src, | 
 | 					nla_get_be16(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TP_DST: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.tp_dst, | 
 | 					nla_get_be16(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_OAM: | 
 | 			tun_flags |= TUNNEL_OAM; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: | 
 | 			if (opts_type) { | 
 | 				OVS_NLERR(log, "Multiple metadata blocks provided"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			err = genev_tun_opt_from_nlattr(a, match, is_mask, log); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			tun_flags |= TUNNEL_GENEVE_OPT; | 
 | 			opts_type = type; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: | 
 | 			if (opts_type) { | 
 | 				OVS_NLERR(log, "Multiple metadata blocks provided"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			tun_flags |= TUNNEL_VXLAN_OPT; | 
 | 			opts_type = type; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_PAD: | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: | 
 | 			if (opts_type) { | 
 | 				OVS_NLERR(log, "Multiple metadata blocks provided"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			err = erspan_tun_opt_from_nlattr(a, match, is_mask, | 
 | 							 log); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			tun_flags |= TUNNEL_ERSPAN_OPT; | 
 | 			opts_type = type; | 
 | 			break; | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown IP tunnel attribute %d", | 
 | 				  type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); | 
 | 	if (is_mask) | 
 | 		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); | 
 | 	else | 
 | 		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, | 
 | 				false); | 
 |  | 
 | 	if (rem > 0) { | 
 | 		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", | 
 | 			  rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ipv4 && ipv6) { | 
 | 		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!is_mask) { | 
 | 		if (!ipv4 && !ipv6) { | 
 | 			OVS_NLERR(log, "IP tunnel dst address not specified"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (ipv4 && !match->key->tun_key.u.ipv4.dst) { | 
 | 			OVS_NLERR(log, "IPv4 tunnel dst address is zero"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { | 
 | 			OVS_NLERR(log, "IPv6 tunnel dst address is zero"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!ttl) { | 
 | 			OVS_NLERR(log, "IP tunnel TTL not specified."); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return opts_type; | 
 | } | 
 |  | 
 | static int vxlan_opt_to_nlattr(struct sk_buff *skb, | 
 | 			       const void *tun_opts, int swkey_tun_opts_len) | 
 | { | 
 | 	const struct vxlan_metadata *opts = tun_opts; | 
 | 	struct nlattr *nla; | 
 |  | 
 | 	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); | 
 | 	if (!nla) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	nla_nest_end(skb, nla); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __ip_tun_to_nlattr(struct sk_buff *skb, | 
 | 			      const struct ip_tunnel_key *output, | 
 | 			      const void *tun_opts, int swkey_tun_opts_len, | 
 | 			      unsigned short tun_proto) | 
 | { | 
 | 	if (output->tun_flags & TUNNEL_KEY && | 
 | 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, | 
 | 			 OVS_TUNNEL_KEY_ATTR_PAD)) | 
 | 		return -EMSGSIZE; | 
 | 	switch (tun_proto) { | 
 | 	case AF_INET: | 
 | 		if (output->u.ipv4.src && | 
 | 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, | 
 | 				    output->u.ipv4.src)) | 
 | 			return -EMSGSIZE; | 
 | 		if (output->u.ipv4.dst && | 
 | 		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, | 
 | 				    output->u.ipv4.dst)) | 
 | 			return -EMSGSIZE; | 
 | 		break; | 
 | 	case AF_INET6: | 
 | 		if (!ipv6_addr_any(&output->u.ipv6.src) && | 
 | 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, | 
 | 				     &output->u.ipv6.src)) | 
 | 			return -EMSGSIZE; | 
 | 		if (!ipv6_addr_any(&output->u.ipv6.dst) && | 
 | 		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, | 
 | 				     &output->u.ipv6.dst)) | 
 | 			return -EMSGSIZE; | 
 | 		break; | 
 | 	} | 
 | 	if (output->tos && | 
 | 	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) | 
 | 		return -EMSGSIZE; | 
 | 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) | 
 | 		return -EMSGSIZE; | 
 | 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && | 
 | 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) | 
 | 		return -EMSGSIZE; | 
 | 	if ((output->tun_flags & TUNNEL_CSUM) && | 
 | 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) | 
 | 		return -EMSGSIZE; | 
 | 	if (output->tp_src && | 
 | 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) | 
 | 		return -EMSGSIZE; | 
 | 	if (output->tp_dst && | 
 | 	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) | 
 | 		return -EMSGSIZE; | 
 | 	if ((output->tun_flags & TUNNEL_OAM) && | 
 | 	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) | 
 | 		return -EMSGSIZE; | 
 | 	if (swkey_tun_opts_len) { | 
 | 		if (output->tun_flags & TUNNEL_GENEVE_OPT && | 
 | 		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, | 
 | 			    swkey_tun_opts_len, tun_opts)) | 
 | 			return -EMSGSIZE; | 
 | 		else if (output->tun_flags & TUNNEL_VXLAN_OPT && | 
 | 			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) | 
 | 			return -EMSGSIZE; | 
 | 		else if (output->tun_flags & TUNNEL_ERSPAN_OPT && | 
 | 			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, | 
 | 				 swkey_tun_opts_len, tun_opts)) | 
 | 			return -EMSGSIZE; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ip_tun_to_nlattr(struct sk_buff *skb, | 
 | 			    const struct ip_tunnel_key *output, | 
 | 			    const void *tun_opts, int swkey_tun_opts_len, | 
 | 			    unsigned short tun_proto) | 
 | { | 
 | 	struct nlattr *nla; | 
 | 	int err; | 
 |  | 
 | 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); | 
 | 	if (!nla) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, | 
 | 				 tun_proto); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	nla_nest_end(skb, nla); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ovs_nla_put_tunnel_info(struct sk_buff *skb, | 
 | 			    struct ip_tunnel_info *tun_info) | 
 | { | 
 | 	return __ip_tun_to_nlattr(skb, &tun_info->key, | 
 | 				  ip_tunnel_info_opts(tun_info), | 
 | 				  tun_info->options_len, | 
 | 				  ip_tunnel_info_af(tun_info)); | 
 | } | 
 |  | 
 | static int encode_vlan_from_nlattrs(struct sw_flow_match *match, | 
 | 				    const struct nlattr *a[], | 
 | 				    bool is_mask, bool inner) | 
 | { | 
 | 	__be16 tci = 0; | 
 | 	__be16 tpid = 0; | 
 |  | 
 | 	if (a[OVS_KEY_ATTR_VLAN]) | 
 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 |  | 
 | 	if (a[OVS_KEY_ATTR_ETHERTYPE]) | 
 | 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 |  | 
 | 	if (likely(!inner)) { | 
 | 		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); | 
 | 	} else { | 
 | 		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, | 
 | 				      u64 key_attrs, bool inner, | 
 | 				      const struct nlattr **a, bool log) | 
 | { | 
 | 	__be16 tci = 0; | 
 |  | 
 | 	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && | 
 | 	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && | 
 | 	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { | 
 | 		/* Not a VLAN. */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && | 
 | 	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { | 
 | 		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (a[OVS_KEY_ATTR_VLAN]) | 
 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 |  | 
 | 	if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
 | 		if (tci) { | 
 | 			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.", | 
 | 				  (inner) ? "C-VLAN" : "VLAN"); | 
 | 			return -EINVAL; | 
 | 		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { | 
 | 			/* Corner case for truncated VLAN header. */ | 
 | 			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", | 
 | 				  (inner) ? "C-VLAN" : "VLAN"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, | 
 | 					   u64 key_attrs, bool inner, | 
 | 					   const struct nlattr **a, bool log) | 
 | { | 
 | 	__be16 tci = 0; | 
 | 	__be16 tpid = 0; | 
 | 	bool encap_valid = !!(match->key->eth.vlan.tci & | 
 | 			      htons(VLAN_TAG_PRESENT)); | 
 | 	bool i_encap_valid = !!(match->key->eth.cvlan.tci & | 
 | 				htons(VLAN_TAG_PRESENT)); | 
 |  | 
 | 	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { | 
 | 		/* Not a VLAN. */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { | 
 | 		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", | 
 | 			  (inner) ? "C-VLAN" : "VLAN"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (a[OVS_KEY_ATTR_VLAN]) | 
 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 |  | 
 | 	if (a[OVS_KEY_ATTR_ETHERTYPE]) | 
 | 		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 |  | 
 | 	if (tpid != htons(0xffff)) { | 
 | 		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", | 
 | 			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
 | 		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.", | 
 | 			  (inner) ? "C-VLAN" : "VLAN"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, | 
 | 				     u64 *key_attrs, bool inner, | 
 | 				     const struct nlattr **a, bool is_mask, | 
 | 				     bool log) | 
 | { | 
 | 	int err; | 
 | 	const struct nlattr *encap; | 
 |  | 
 | 	if (!is_mask) | 
 | 		err = validate_vlan_from_nlattrs(match, *key_attrs, inner, | 
 | 						 a, log); | 
 | 	else | 
 | 		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, | 
 | 						      a, log); | 
 | 	if (err <= 0) | 
 | 		return err; | 
 |  | 
 | 	err = encode_vlan_from_nlattrs(match, a, is_mask, inner); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); | 
 | 	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); | 
 | 	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 |  | 
 | 	encap = a[OVS_KEY_ATTR_ENCAP]; | 
 |  | 
 | 	if (!is_mask) | 
 | 		err = parse_flow_nlattrs(encap, a, key_attrs, log); | 
 | 	else | 
 | 		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int parse_vlan_from_nlattrs(struct sw_flow_match *match, | 
 | 				   u64 *key_attrs, const struct nlattr **a, | 
 | 				   bool is_mask, bool log) | 
 | { | 
 | 	int err; | 
 | 	bool encap_valid = false; | 
 |  | 
 | 	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, | 
 | 					is_mask, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT)); | 
 | 	if (encap_valid) { | 
 | 		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, | 
 | 						is_mask, log); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, | 
 | 				       u64 *attrs, const struct nlattr **a, | 
 | 				       bool is_mask, bool log) | 
 | { | 
 | 	__be16 eth_type; | 
 |  | 
 | 	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 | 	if (is_mask) { | 
 | 		/* Always exact match EtherType. */ | 
 | 		eth_type = htons(0xffff); | 
 | 	} else if (!eth_proto_is_802_3(eth_type)) { | 
 | 		OVS_NLERR(log, "EtherType %x is less than min %x", | 
 | 				ntohs(eth_type), ETH_P_802_3_MIN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); | 
 | 	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, | 
 | 				 u64 *attrs, const struct nlattr **a, | 
 | 				 bool is_mask, bool log) | 
 | { | 
 | 	u8 mac_proto = MAC_PROTO_ETHERNET; | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { | 
 | 		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { | 
 | 		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | 
 | 		SW_FLOW_KEY_PUT(match, phy.priority, | 
 | 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | 
 | 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | 
 |  | 
 | 		if (is_mask) { | 
 | 			in_port = 0xffffffff; /* Always exact match in_port. */ | 
 | 		} else if (in_port >= DP_MAX_PORTS) { | 
 | 			OVS_NLERR(log, "Port %d exceeds max allowable %d", | 
 | 				  in_port, DP_MAX_PORTS); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | 
 | 	} else if (!is_mask) { | 
 | 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { | 
 | 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); | 
 | 	} | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { | 
 | 		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, | 
 | 				       is_mask, log) < 0) | 
 | 			return -EINVAL; | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && | 
 | 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { | 
 | 		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); | 
 |  | 
 | 		if (ct_state & ~CT_SUPPORTED_MASK) { | 
 | 			OVS_NLERR(log, "ct_state flags %08x unsupported", | 
 | 				  ct_state); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); | 
 | 	} | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && | 
 | 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { | 
 | 		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); | 
 | 	} | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && | 
 | 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { | 
 | 		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); | 
 | 	} | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && | 
 | 	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { | 
 | 		const struct ovs_key_ct_labels *cl; | 
 |  | 
 | 		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, | 
 | 				   sizeof(*cl), is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); | 
 | 	} | 
 | 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { | 
 | 		const struct ovs_key_ct_tuple_ipv4 *ct; | 
 |  | 
 | 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); | 
 | 	} | 
 | 	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { | 
 | 		const struct ovs_key_ct_tuple_ipv6 *ct; | 
 |  | 
 | 		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); | 
 |  | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, | 
 | 				   sizeof(match->key->ipv6.ct_orig.src), | 
 | 				   is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, | 
 | 				   sizeof(match->key->ipv6.ct_orig.dst), | 
 | 				   is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); | 
 | 		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); | 
 | 	} | 
 |  | 
 | 	/* For layer 3 packets the Ethernet type is provided | 
 | 	 * and treated as metadata but no MAC addresses are provided. | 
 | 	 */ | 
 | 	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && | 
 | 	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) | 
 | 		mac_proto = MAC_PROTO_NONE; | 
 |  | 
 | 	/* Always exact match mac_proto */ | 
 | 	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); | 
 |  | 
 | 	if (mac_proto == MAC_PROTO_NONE) | 
 | 		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, | 
 | 						   log); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int nsh_hdr_from_nlattr(const struct nlattr *attr, | 
 | 			struct nshhdr *nh, size_t size) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 | 	u8 flags = 0; | 
 | 	u8 ttl = 0; | 
 | 	int mdlen = 0; | 
 |  | 
 | 	/* validate_nsh has check this, so we needn't do duplicate check here | 
 | 	 */ | 
 | 	if (size < NSH_BASE_HDR_LEN) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_NSH_KEY_ATTR_BASE: { | 
 | 			const struct ovs_nsh_key_base *base = nla_data(a); | 
 |  | 
 | 			flags = base->flags; | 
 | 			ttl = base->ttl; | 
 | 			nh->np = base->np; | 
 | 			nh->mdtype = base->mdtype; | 
 | 			nh->path_hdr = base->path_hdr; | 
 | 			break; | 
 | 		} | 
 | 		case OVS_NSH_KEY_ATTR_MD1: | 
 | 			mdlen = nla_len(a); | 
 | 			if (mdlen > size - NSH_BASE_HDR_LEN) | 
 | 				return -ENOBUFS; | 
 | 			memcpy(&nh->md1, nla_data(a), mdlen); | 
 | 			break; | 
 |  | 
 | 		case OVS_NSH_KEY_ATTR_MD2: | 
 | 			mdlen = nla_len(a); | 
 | 			if (mdlen > size - NSH_BASE_HDR_LEN) | 
 | 				return -ENOBUFS; | 
 | 			memcpy(&nh->md2, nla_data(a), mdlen); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */ | 
 | 	nh->ver_flags_ttl_len = 0; | 
 | 	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int nsh_key_from_nlattr(const struct nlattr *attr, | 
 | 			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	/* validate_nsh has check this, so we needn't do duplicate check here | 
 | 	 */ | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_NSH_KEY_ATTR_BASE: { | 
 | 			const struct ovs_nsh_key_base *base = nla_data(a); | 
 | 			const struct ovs_nsh_key_base *base_mask = base + 1; | 
 |  | 
 | 			nsh->base = *base; | 
 | 			nsh_mask->base = *base_mask; | 
 | 			break; | 
 | 		} | 
 | 		case OVS_NSH_KEY_ATTR_MD1: { | 
 | 			const struct ovs_nsh_key_md1 *md1 = nla_data(a); | 
 | 			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; | 
 |  | 
 | 			memcpy(nsh->context, md1->context, sizeof(*md1)); | 
 | 			memcpy(nsh_mask->context, md1_mask->context, | 
 | 			       sizeof(*md1_mask)); | 
 | 			break; | 
 | 		} | 
 | 		case OVS_NSH_KEY_ATTR_MD2: | 
 | 			/* Not supported yet */ | 
 | 			return -ENOTSUPP; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nsh_key_put_from_nlattr(const struct nlattr *attr, | 
 | 				   struct sw_flow_match *match, bool is_mask, | 
 | 				   bool is_push_nsh, bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 | 	bool has_base = false; | 
 | 	bool has_md1 = false; | 
 | 	bool has_md2 = false; | 
 | 	u8 mdtype = 0; | 
 | 	int mdlen = 0; | 
 |  | 
 | 	if (WARN_ON(is_push_nsh && is_mask)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 | 		int i; | 
 |  | 
 | 		if (type > OVS_NSH_KEY_ATTR_MAX) { | 
 | 			OVS_NLERR(log, "nsh attr %d is out of range max %d", | 
 | 				  type, OVS_NSH_KEY_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!check_attr_len(nla_len(a), | 
 | 				    ovs_nsh_key_attr_lens[type].len)) { | 
 | 			OVS_NLERR( | 
 | 			    log, | 
 | 			    "nsh attr %d has unexpected len %d expected %d", | 
 | 			    type, | 
 | 			    nla_len(a), | 
 | 			    ovs_nsh_key_attr_lens[type].len | 
 | 			); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_NSH_KEY_ATTR_BASE: { | 
 | 			const struct ovs_nsh_key_base *base = nla_data(a); | 
 |  | 
 | 			has_base = true; | 
 | 			mdtype = base->mdtype; | 
 | 			SW_FLOW_KEY_PUT(match, nsh.base.flags, | 
 | 					base->flags, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, nsh.base.ttl, | 
 | 					base->ttl, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, nsh.base.mdtype, | 
 | 					base->mdtype, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, nsh.base.np, | 
 | 					base->np, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, | 
 | 					base->path_hdr, is_mask); | 
 | 			break; | 
 | 		} | 
 | 		case OVS_NSH_KEY_ATTR_MD1: { | 
 | 			const struct ovs_nsh_key_md1 *md1 = nla_data(a); | 
 |  | 
 | 			has_md1 = true; | 
 | 			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) | 
 | 				SW_FLOW_KEY_PUT(match, nsh.context[i], | 
 | 						md1->context[i], is_mask); | 
 | 			break; | 
 | 		} | 
 | 		case OVS_NSH_KEY_ATTR_MD2: | 
 | 			if (!is_push_nsh) /* Not supported MD type 2 yet */ | 
 | 				return -ENOTSUPP; | 
 |  | 
 | 			has_md2 = true; | 
 | 			mdlen = nla_len(a); | 
 | 			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { | 
 | 				OVS_NLERR( | 
 | 				    log, | 
 | 				    "Invalid MD length %d for MD type %d", | 
 | 				    mdlen, | 
 | 				    mdtype | 
 | 				); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown nsh attribute %d", | 
 | 				  type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rem > 0) { | 
 | 		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (has_md1 && has_md2) { | 
 | 		OVS_NLERR( | 
 | 		    1, | 
 | 		    "invalid nsh attribute: md1 and md2 are exclusive." | 
 | 		); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!is_mask) { | 
 | 		if ((has_md1 && mdtype != NSH_M_TYPE1) || | 
 | 		    (has_md2 && mdtype != NSH_M_TYPE2)) { | 
 | 			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", | 
 | 				  mdtype); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (is_push_nsh && | 
 | 		    (!has_base || (!has_md1 && !has_md2))) { | 
 | 			OVS_NLERR( | 
 | 			    1, | 
 | 			    "push_nsh: missing base or metadata attributes" | 
 | 			); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, | 
 | 				u64 attrs, const struct nlattr **a, | 
 | 				bool is_mask, bool log) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { | 
 | 		const struct ovs_key_ethernet *eth_key; | 
 |  | 
 | 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | 
 | 		SW_FLOW_KEY_MEMCPY(match, eth.src, | 
 | 				eth_key->eth_src, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, eth.dst, | 
 | 				eth_key->eth_dst, ETH_ALEN, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | 
 |  | 
 | 		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { | 
 | 			/* VLAN attribute is always parsed before getting here since it | 
 | 			 * may occur multiple times. | 
 | 			 */ | 
 | 			OVS_NLERR(log, "VLAN attribute unexpected."); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | 
 | 			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, | 
 | 							  log); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} else if (!is_mask) { | 
 | 			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); | 
 | 		} | 
 | 	} else if (!match->key->eth.type) { | 
 | 		OVS_NLERR(log, "Either Ethernet header or EtherType is required."); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
 | 		const struct ovs_key_ipv4 *ipv4_key; | 
 |  | 
 | 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | 
 | 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { | 
 | 			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", | 
 | 				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ipv4_key->ipv4_proto, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.tos, | 
 | 				ipv4_key->ipv4_tos, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.ttl, | 
 | 				ipv4_key->ipv4_ttl, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.frag, | 
 | 				ipv4_key->ipv4_frag, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
 | 				ipv4_key->ipv4_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
 | 				ipv4_key->ipv4_dst, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { | 
 | 		const struct ovs_key_ipv6 *ipv6_key; | 
 |  | 
 | 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | 
 | 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { | 
 | 			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", | 
 | 				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { | 
 | 			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", | 
 | 				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ipv6.label, | 
 | 				ipv6_key->ipv6_label, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ipv6_key->ipv6_proto, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.tos, | 
 | 				ipv6_key->ipv6_tclass, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.ttl, | 
 | 				ipv6_key->ipv6_hlimit, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.frag, | 
 | 				ipv6_key->ipv6_frag, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, | 
 | 				ipv6_key->ipv6_src, | 
 | 				sizeof(match->key->ipv6.addr.src), | 
 | 				is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, | 
 | 				ipv6_key->ipv6_dst, | 
 | 				sizeof(match->key->ipv6.addr.dst), | 
 | 				is_mask); | 
 |  | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) { | 
 | 		const struct ovs_key_arp *arp_key; | 
 |  | 
 | 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | 
 | 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) { | 
 | 			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", | 
 | 				  arp_key->arp_op); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
 | 				arp_key->arp_sip, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
 | 			arp_key->arp_tip, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ntohs(arp_key->arp_op), is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, | 
 | 				arp_key->arp_sha, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, | 
 | 				arp_key->arp_tha, ETH_ALEN, is_mask); | 
 |  | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ARP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_NSH)) { | 
 | 		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, | 
 | 					    is_mask, false, log) < 0) | 
 | 			return -EINVAL; | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_NSH); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { | 
 | 		const struct ovs_key_mpls *mpls_key; | 
 |  | 
 | 		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); | 
 | 		SW_FLOW_KEY_PUT(match, mpls.top_lse, | 
 | 				mpls_key->mpls_lse, is_mask); | 
 |  | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_MPLS); | 
 | 	 } | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) { | 
 | 		const struct ovs_key_tcp *tcp_key; | 
 |  | 
 | 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
 | 		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { | 
 | 		SW_FLOW_KEY_PUT(match, tp.flags, | 
 | 				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), | 
 | 				is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) { | 
 | 		const struct ovs_key_udp *udp_key; | 
 |  | 
 | 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
 | 		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { | 
 | 		const struct ovs_key_sctp *sctp_key; | 
 |  | 
 | 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); | 
 | 		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { | 
 | 		const struct ovs_key_icmp *icmp_key; | 
 |  | 
 | 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | 
 | 		SW_FLOW_KEY_PUT(match, tp.src, | 
 | 				htons(icmp_key->icmp_type), is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, tp.dst, | 
 | 				htons(icmp_key->icmp_code), is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { | 
 | 		const struct ovs_key_icmpv6 *icmpv6_key; | 
 |  | 
 | 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | 
 | 		SW_FLOW_KEY_PUT(match, tp.src, | 
 | 				htons(icmpv6_key->icmpv6_type), is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, tp.dst, | 
 | 				htons(icmpv6_key->icmpv6_code), is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ND)) { | 
 | 		const struct ovs_key_nd *nd_key; | 
 |  | 
 | 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, | 
 | 			nd_key->nd_target, | 
 | 			sizeof(match->key->ipv6.nd.target), | 
 | 			is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, | 
 | 			nd_key->nd_sll, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, | 
 | 				nd_key->nd_tll, ETH_ALEN, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ND); | 
 | 	} | 
 |  | 
 | 	if (attrs != 0) { | 
 | 		OVS_NLERR(log, "Unknown key attributes %llx", | 
 | 			  (unsigned long long)attrs); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nlattr_set(struct nlattr *attr, u8 val, | 
 | 		       const struct ovs_len_tbl *tbl) | 
 | { | 
 | 	struct nlattr *nla; | 
 | 	int rem; | 
 |  | 
 | 	/* The nlattr stream should already have been validated */ | 
 | 	nla_for_each_nested(nla, attr, rem) { | 
 | 		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) | 
 | 			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); | 
 | 		else | 
 | 			memset(nla_data(nla), val, nla_len(nla)); | 
 |  | 
 | 		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) | 
 | 			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | static void mask_set_nlattr(struct nlattr *attr, u8 val) | 
 | { | 
 | 	nlattr_set(attr, val, ovs_key_lens); | 
 | } | 
 |  | 
 | /** | 
 |  * ovs_nla_get_match - parses Netlink attributes into a flow key and | 
 |  * mask. In case the 'mask' is NULL, the flow is treated as exact match | 
 |  * flow. Otherwise, it is treated as a wildcarded flow, except the mask | 
 |  * does not include any don't care bit. | 
 |  * @net: Used to determine per-namespace field support. | 
 |  * @match: receives the extracted flow match information. | 
 |  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
 |  * sequence. The fields should of the packet that triggered the creation | 
 |  * of this flow. | 
 |  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink | 
 |  * attribute specifies the mask field of the wildcarded flow. | 
 |  * @log: Boolean to allow kernel error logging.  Normally true, but when | 
 |  * probing for feature compatibility this should be passed in as false to | 
 |  * suppress unnecessary error logging. | 
 |  */ | 
 | int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, | 
 | 		      const struct nlattr *nla_key, | 
 | 		      const struct nlattr *nla_mask, | 
 | 		      bool log) | 
 | { | 
 | 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
 | 	struct nlattr *newmask = NULL; | 
 | 	u64 key_attrs = 0; | 
 | 	u64 mask_attrs = 0; | 
 | 	int err; | 
 |  | 
 | 	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (match->mask) { | 
 | 		if (!nla_mask) { | 
 | 			/* Create an exact match mask. We need to set to 0xff | 
 | 			 * all the 'match->mask' fields that have been touched | 
 | 			 * in 'match->key'. We cannot simply memset | 
 | 			 * 'match->mask', because padding bytes and fields not | 
 | 			 * specified in 'match->key' should be left to 0. | 
 | 			 * Instead, we use a stream of netlink attributes, | 
 | 			 * copied from 'key' and set to 0xff. | 
 | 			 * ovs_key_from_nlattrs() will take care of filling | 
 | 			 * 'match->mask' appropriately. | 
 | 			 */ | 
 | 			newmask = kmemdup(nla_key, | 
 | 					  nla_total_size(nla_len(nla_key)), | 
 | 					  GFP_KERNEL); | 
 | 			if (!newmask) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			mask_set_nlattr(newmask, 0xff); | 
 |  | 
 | 			/* The userspace does not send tunnel attributes that | 
 | 			 * are 0, but we should not wildcard them nonetheless. | 
 | 			 */ | 
 | 			if (match->key->tun_proto) | 
 | 				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, | 
 | 							 0xff, true); | 
 |  | 
 | 			nla_mask = newmask; | 
 | 		} | 
 |  | 
 | 		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); | 
 | 		if (err) | 
 | 			goto free_newmask; | 
 |  | 
 | 		/* Always match on tci. */ | 
 | 		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); | 
 | 		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); | 
 |  | 
 | 		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); | 
 | 		if (err) | 
 | 			goto free_newmask; | 
 |  | 
 | 		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, | 
 | 					   log); | 
 | 		if (err) | 
 | 			goto free_newmask; | 
 | 	} | 
 |  | 
 | 	if (!match_validate(match, key_attrs, mask_attrs, log)) | 
 | 		err = -EINVAL; | 
 |  | 
 | free_newmask: | 
 | 	kfree(newmask); | 
 | 	return err; | 
 | } | 
 |  | 
 | static size_t get_ufid_len(const struct nlattr *attr, bool log) | 
 | { | 
 | 	size_t len; | 
 |  | 
 | 	if (!attr) | 
 | 		return 0; | 
 |  | 
 | 	len = nla_len(attr); | 
 | 	if (len < 1 || len > MAX_UFID_LENGTH) { | 
 | 		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", | 
 | 			  nla_len(attr), MAX_UFID_LENGTH); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, | 
 |  * or false otherwise. | 
 |  */ | 
 | bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, | 
 | 		      bool log) | 
 | { | 
 | 	sfid->ufid_len = get_ufid_len(attr, log); | 
 | 	if (sfid->ufid_len) | 
 | 		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); | 
 |  | 
 | 	return sfid->ufid_len; | 
 | } | 
 |  | 
 | int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, | 
 | 			   const struct sw_flow_key *key, bool log) | 
 | { | 
 | 	struct sw_flow_key *new_key; | 
 |  | 
 | 	if (ovs_nla_get_ufid(sfid, ufid, log)) | 
 | 		return 0; | 
 |  | 
 | 	/* If UFID was not provided, use unmasked key. */ | 
 | 	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); | 
 | 	if (!new_key) | 
 | 		return -ENOMEM; | 
 | 	memcpy(new_key, key, sizeof(*key)); | 
 | 	sfid->unmasked_key = new_key; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) | 
 | { | 
 | 	return attr ? nla_get_u32(attr) : 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. | 
 |  * @net: Network namespace. | 
 |  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack | 
 |  * metadata. | 
 |  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink | 
 |  * attributes. | 
 |  * @attrs: Bit mask for the netlink attributes included in @a. | 
 |  * @log: Boolean to allow kernel error logging.  Normally true, but when | 
 |  * probing for feature compatibility this should be passed in as false to | 
 |  * suppress unnecessary error logging. | 
 |  * | 
 |  * This parses a series of Netlink attributes that form a flow key, which must | 
 |  * take the same form accepted by flow_from_nlattrs(), but only enough of it to | 
 |  * get the metadata, that is, the parts of the flow key that cannot be | 
 |  * extracted from the packet itself. | 
 |  * | 
 |  * This must be called before the packet key fields are filled in 'key'. | 
 |  */ | 
 |  | 
 | int ovs_nla_get_flow_metadata(struct net *net, | 
 | 			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], | 
 | 			      u64 attrs, struct sw_flow_key *key, bool log) | 
 | { | 
 | 	struct sw_flow_match match; | 
 |  | 
 | 	memset(&match, 0, sizeof(match)); | 
 | 	match.key = key; | 
 |  | 
 | 	key->ct_state = 0; | 
 | 	key->ct_zone = 0; | 
 | 	key->ct_orig_proto = 0; | 
 | 	memset(&key->ct, 0, sizeof(key->ct)); | 
 | 	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); | 
 | 	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); | 
 |  | 
 | 	key->phy.in_port = DP_MAX_PORTS; | 
 |  | 
 | 	return metadata_from_nlattrs(net, &match, &attrs, a, false, log); | 
 | } | 
 |  | 
 | static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, | 
 | 			    bool is_mask) | 
 | { | 
 | 	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); | 
 |  | 
 | 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || | 
 | 	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) | 
 | 		return -EMSGSIZE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, | 
 | 			     struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *start; | 
 |  | 
 | 	start = nla_nest_start(skb, OVS_KEY_ATTR_NSH); | 
 | 	if (!start) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { | 
 | 		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, | 
 | 			    sizeof(nsh->context), nsh->context)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	/* Don't support MD type 2 yet */ | 
 |  | 
 | 	nla_nest_end(skb, start); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | static int __ovs_nla_put_key(const struct sw_flow_key *swkey, | 
 | 			     const struct sw_flow_key *output, bool is_mask, | 
 | 			     struct sk_buff *skb) | 
 | { | 
 | 	struct ovs_key_ethernet *eth_key; | 
 | 	struct nlattr *nla; | 
 | 	struct nlattr *encap = NULL; | 
 | 	struct nlattr *in_encap = NULL; | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if ((swkey->tun_proto || is_mask)) { | 
 | 		const void *opts = NULL; | 
 |  | 
 | 		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) | 
 | 			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); | 
 |  | 
 | 		if (ip_tun_to_nlattr(skb, &output->tun_key, opts, | 
 | 				     swkey->tun_opts_len, swkey->tun_proto)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	if (swkey->phy.in_port == DP_MAX_PORTS) { | 
 | 		if (is_mask && (output->phy.in_port == 0xffff)) | 
 | 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) | 
 | 				goto nla_put_failure; | 
 | 	} else { | 
 | 		u16 upper_u16; | 
 | 		upper_u16 = !is_mask ? 0 : 0xffff; | 
 |  | 
 | 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, | 
 | 				(upper_u16 << 16) | output->phy.in_port)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (ovs_ct_put_key(swkey, output, skb)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 |  | 
 | 		eth_key = nla_data(nla); | 
 | 		ether_addr_copy(eth_key->eth_src, output->eth.src); | 
 | 		ether_addr_copy(eth_key->eth_dst, output->eth.dst); | 
 |  | 
 | 		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { | 
 | 			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) | 
 | 				goto nla_put_failure; | 
 | 			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
 | 			if (!swkey->eth.vlan.tci) | 
 | 				goto unencap; | 
 |  | 
 | 			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { | 
 | 				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) | 
 | 					goto nla_put_failure; | 
 | 				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
 | 				if (!swkey->eth.cvlan.tci) | 
 | 					goto unencap; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (swkey->eth.type == htons(ETH_P_802_2)) { | 
 | 			/* | 
 | 			* Ethertype 802.2 is represented in the netlink with omitted | 
 | 			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and | 
 | 			* 0xffff in the mask attribute.  Ethertype can also | 
 | 			* be wildcarded. | 
 | 			*/ | 
 | 			if (is_mask && output->eth.type) | 
 | 				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, | 
 | 							output->eth.type)) | 
 | 					goto nla_put_failure; | 
 | 			goto unencap; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (eth_type_vlan(swkey->eth.type)) { | 
 | 		/* There are 3 VLAN tags, we don't know anything about the rest | 
 | 		 * of the packet, so truncate here. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(!(encap && in_encap)); | 
 | 		goto unencap; | 
 | 	} | 
 |  | 
 | 	if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 		struct ovs_key_ipv4 *ipv4_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		ipv4_key = nla_data(nla); | 
 | 		ipv4_key->ipv4_src = output->ipv4.addr.src; | 
 | 		ipv4_key->ipv4_dst = output->ipv4.addr.dst; | 
 | 		ipv4_key->ipv4_proto = output->ip.proto; | 
 | 		ipv4_key->ipv4_tos = output->ip.tos; | 
 | 		ipv4_key->ipv4_ttl = output->ip.ttl; | 
 | 		ipv4_key->ipv4_frag = output->ip.frag; | 
 | 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 		struct ovs_key_ipv6 *ipv6_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		ipv6_key = nla_data(nla); | 
 | 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, | 
 | 				sizeof(ipv6_key->ipv6_src)); | 
 | 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, | 
 | 				sizeof(ipv6_key->ipv6_dst)); | 
 | 		ipv6_key->ipv6_label = output->ipv6.label; | 
 | 		ipv6_key->ipv6_proto = output->ip.proto; | 
 | 		ipv6_key->ipv6_tclass = output->ip.tos; | 
 | 		ipv6_key->ipv6_hlimit = output->ip.ttl; | 
 | 		ipv6_key->ipv6_frag = output->ip.frag; | 
 | 	} else if (swkey->eth.type == htons(ETH_P_NSH)) { | 
 | 		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) | 
 | 			goto nla_put_failure; | 
 | 	} else if (swkey->eth.type == htons(ETH_P_ARP) || | 
 | 		   swkey->eth.type == htons(ETH_P_RARP)) { | 
 | 		struct ovs_key_arp *arp_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		arp_key = nla_data(nla); | 
 | 		memset(arp_key, 0, sizeof(struct ovs_key_arp)); | 
 | 		arp_key->arp_sip = output->ipv4.addr.src; | 
 | 		arp_key->arp_tip = output->ipv4.addr.dst; | 
 | 		arp_key->arp_op = htons(output->ip.proto); | 
 | 		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); | 
 | 		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); | 
 | 	} else if (eth_p_mpls(swkey->eth.type)) { | 
 | 		struct ovs_key_mpls *mpls_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		mpls_key = nla_data(nla); | 
 | 		mpls_key->mpls_lse = output->mpls.top_lse; | 
 | 	} | 
 |  | 
 | 	if ((swkey->eth.type == htons(ETH_P_IP) || | 
 | 	     swkey->eth.type == htons(ETH_P_IPV6)) && | 
 | 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 |  | 
 | 		if (swkey->ip.proto == IPPROTO_TCP) { | 
 | 			struct ovs_key_tcp *tcp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			tcp_key = nla_data(nla); | 
 | 			tcp_key->tcp_src = output->tp.src; | 
 | 			tcp_key->tcp_dst = output->tp.dst; | 
 | 			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, | 
 | 					 output->tp.flags)) | 
 | 				goto nla_put_failure; | 
 | 		} else if (swkey->ip.proto == IPPROTO_UDP) { | 
 | 			struct ovs_key_udp *udp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			udp_key = nla_data(nla); | 
 | 			udp_key->udp_src = output->tp.src; | 
 | 			udp_key->udp_dst = output->tp.dst; | 
 | 		} else if (swkey->ip.proto == IPPROTO_SCTP) { | 
 | 			struct ovs_key_sctp *sctp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			sctp_key = nla_data(nla); | 
 | 			sctp_key->sctp_src = output->tp.src; | 
 | 			sctp_key->sctp_dst = output->tp.dst; | 
 | 		} else if (swkey->eth.type == htons(ETH_P_IP) && | 
 | 			   swkey->ip.proto == IPPROTO_ICMP) { | 
 | 			struct ovs_key_icmp *icmp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			icmp_key = nla_data(nla); | 
 | 			icmp_key->icmp_type = ntohs(output->tp.src); | 
 | 			icmp_key->icmp_code = ntohs(output->tp.dst); | 
 | 		} else if (swkey->eth.type == htons(ETH_P_IPV6) && | 
 | 			   swkey->ip.proto == IPPROTO_ICMPV6) { | 
 | 			struct ovs_key_icmpv6 *icmpv6_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | 
 | 						sizeof(*icmpv6_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			icmpv6_key = nla_data(nla); | 
 | 			icmpv6_key->icmpv6_type = ntohs(output->tp.src); | 
 | 			icmpv6_key->icmpv6_code = ntohs(output->tp.dst); | 
 |  | 
 | 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
 | 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | 
 | 				struct ovs_key_nd *nd_key; | 
 |  | 
 | 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | 
 | 				if (!nla) | 
 | 					goto nla_put_failure; | 
 | 				nd_key = nla_data(nla); | 
 | 				memcpy(nd_key->nd_target, &output->ipv6.nd.target, | 
 | 							sizeof(nd_key->nd_target)); | 
 | 				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); | 
 | 				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | unencap: | 
 | 	if (in_encap) | 
 | 		nla_nest_end(skb, in_encap); | 
 | 	if (encap) | 
 | 		nla_nest_end(skb, encap); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | int ovs_nla_put_key(const struct sw_flow_key *swkey, | 
 | 		    const struct sw_flow_key *output, int attr, bool is_mask, | 
 | 		    struct sk_buff *skb) | 
 | { | 
 | 	int err; | 
 | 	struct nlattr *nla; | 
 |  | 
 | 	nla = nla_nest_start(skb, attr); | 
 | 	if (!nla) | 
 | 		return -EMSGSIZE; | 
 | 	err = __ovs_nla_put_key(swkey, output, is_mask, skb); | 
 | 	if (err) | 
 | 		return err; | 
 | 	nla_nest_end(skb, nla); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Called with ovs_mutex or RCU read lock. */ | 
 | int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) | 
 | { | 
 | 	if (ovs_identifier_is_ufid(&flow->id)) | 
 | 		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, | 
 | 			       flow->id.ufid); | 
 |  | 
 | 	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, | 
 | 			       OVS_FLOW_ATTR_KEY, false, skb); | 
 | } | 
 |  | 
 | /* Called with ovs_mutex or RCU read lock. */ | 
 | int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) | 
 | { | 
 | 	return ovs_nla_put_key(&flow->key, &flow->key, | 
 | 				OVS_FLOW_ATTR_KEY, false, skb); | 
 | } | 
 |  | 
 | /* Called with ovs_mutex or RCU read lock. */ | 
 | int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) | 
 | { | 
 | 	return ovs_nla_put_key(&flow->key, &flow->mask->key, | 
 | 				OVS_FLOW_ATTR_MASK, true, skb); | 
 | } | 
 |  | 
 | #define MAX_ACTIONS_BUFSIZE	(32 * 1024) | 
 |  | 
 | static struct sw_flow_actions *nla_alloc_flow_actions(int size) | 
 | { | 
 | 	struct sw_flow_actions *sfa; | 
 |  | 
 | 	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); | 
 |  | 
 | 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); | 
 | 	if (!sfa) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	sfa->actions_len = 0; | 
 | 	return sfa; | 
 | } | 
 |  | 
 | static void ovs_nla_free_set_action(const struct nlattr *a) | 
 | { | 
 | 	const struct nlattr *ovs_key = nla_data(a); | 
 | 	struct ovs_tunnel_info *ovs_tun; | 
 |  | 
 | 	switch (nla_type(ovs_key)) { | 
 | 	case OVS_KEY_ATTR_TUNNEL_INFO: | 
 | 		ovs_tun = nla_data(ovs_key); | 
 | 		dst_release((struct dst_entry *)ovs_tun->tun_dst); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) | 
 | { | 
 | 	const struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	if (!sf_acts) | 
 | 		return; | 
 |  | 
 | 	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { | 
 | 		switch (nla_type(a)) { | 
 | 		case OVS_ACTION_ATTR_SET: | 
 | 			ovs_nla_free_set_action(a); | 
 | 			break; | 
 | 		case OVS_ACTION_ATTR_CT: | 
 | 			ovs_ct_free_action(a); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(sf_acts); | 
 | } | 
 |  | 
 | static void __ovs_nla_free_flow_actions(struct rcu_head *head) | 
 | { | 
 | 	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); | 
 | } | 
 |  | 
 | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | 
 |  * The caller must hold rcu_read_lock for this to be sensible. */ | 
 | void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) | 
 | { | 
 | 	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); | 
 | } | 
 |  | 
 | static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, | 
 | 				       int attr_len, bool log) | 
 | { | 
 |  | 
 | 	struct sw_flow_actions *acts; | 
 | 	int new_acts_size; | 
 | 	size_t req_size = NLA_ALIGN(attr_len); | 
 | 	int next_offset = offsetof(struct sw_flow_actions, actions) + | 
 | 					(*sfa)->actions_len; | 
 |  | 
 | 	if (req_size <= (ksize(*sfa) - next_offset)) | 
 | 		goto out; | 
 |  | 
 | 	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2); | 
 |  | 
 | 	if (new_acts_size > MAX_ACTIONS_BUFSIZE) { | 
 | 		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) { | 
 | 			OVS_NLERR(log, "Flow action size exceeds max %u", | 
 | 				  MAX_ACTIONS_BUFSIZE); | 
 | 			return ERR_PTR(-EMSGSIZE); | 
 | 		} | 
 | 		new_acts_size = MAX_ACTIONS_BUFSIZE; | 
 | 	} | 
 |  | 
 | 	acts = nla_alloc_flow_actions(new_acts_size); | 
 | 	if (IS_ERR(acts)) | 
 | 		return (void *)acts; | 
 |  | 
 | 	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); | 
 | 	acts->actions_len = (*sfa)->actions_len; | 
 | 	acts->orig_len = (*sfa)->orig_len; | 
 | 	kfree(*sfa); | 
 | 	*sfa = acts; | 
 |  | 
 | out: | 
 | 	(*sfa)->actions_len += req_size; | 
 | 	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); | 
 | } | 
 |  | 
 | static struct nlattr *__add_action(struct sw_flow_actions **sfa, | 
 | 				   int attrtype, void *data, int len, bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 |  | 
 | 	a = reserve_sfa_size(sfa, nla_attr_size(len), log); | 
 | 	if (IS_ERR(a)) | 
 | 		return a; | 
 |  | 
 | 	a->nla_type = attrtype; | 
 | 	a->nla_len = nla_attr_size(len); | 
 |  | 
 | 	if (data) | 
 | 		memcpy(nla_data(a), data, len); | 
 | 	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); | 
 |  | 
 | 	return a; | 
 | } | 
 |  | 
 | int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, | 
 | 		       int len, bool log) | 
 | { | 
 | 	struct nlattr *a; | 
 |  | 
 | 	a = __add_action(sfa, attrtype, data, len, log); | 
 |  | 
 | 	return PTR_ERR_OR_ZERO(a); | 
 | } | 
 |  | 
 | static inline int add_nested_action_start(struct sw_flow_actions **sfa, | 
 | 					  int attrtype, bool log) | 
 | { | 
 | 	int used = (*sfa)->actions_len; | 
 | 	int err; | 
 |  | 
 | 	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return used; | 
 | } | 
 |  | 
 | static inline void add_nested_action_end(struct sw_flow_actions *sfa, | 
 | 					 int st_offset) | 
 | { | 
 | 	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + | 
 | 							       st_offset); | 
 |  | 
 | 	a->nla_len = sfa->actions_len - st_offset; | 
 | } | 
 |  | 
 | static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, | 
 | 				  const struct sw_flow_key *key, | 
 | 				  struct sw_flow_actions **sfa, | 
 | 				  __be16 eth_type, __be16 vlan_tci, bool log); | 
 |  | 
 | static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, | 
 | 				    const struct sw_flow_key *key, | 
 | 				    struct sw_flow_actions **sfa, | 
 | 				    __be16 eth_type, __be16 vlan_tci, | 
 | 				    bool log, bool last) | 
 | { | 
 | 	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; | 
 | 	const struct nlattr *probability, *actions; | 
 | 	const struct nlattr *a; | 
 | 	int rem, start, err; | 
 | 	struct sample_arg arg; | 
 |  | 
 | 	memset(attrs, 0, sizeof(attrs)); | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 | 		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) | 
 | 			return -EINVAL; | 
 | 		attrs[type] = a; | 
 | 	} | 
 | 	if (rem) | 
 | 		return -EINVAL; | 
 |  | 
 | 	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; | 
 | 	if (!probability || nla_len(probability) != sizeof(u32)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; | 
 | 	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* validation done, copy sample action. */ | 
 | 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); | 
 | 	if (start < 0) | 
 | 		return start; | 
 |  | 
 | 	/* When both skb and flow may be changed, put the sample | 
 | 	 * into a deferred fifo. On the other hand, if only skb | 
 | 	 * may be modified, the actions can be executed in place. | 
 | 	 * | 
 | 	 * Do this analysis at the flow installation time. | 
 | 	 * Set 'clone_action->exec' to true if the actions can be | 
 | 	 * executed without being deferred. | 
 | 	 * | 
 | 	 * If the sample is the last action, it can always be excuted | 
 | 	 * rather than deferred. | 
 | 	 */ | 
 | 	arg.exec = last || !actions_may_change_flow(actions); | 
 | 	arg.probability = nla_get_u32(probability); | 
 |  | 
 | 	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), | 
 | 				 log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = __ovs_nla_copy_actions(net, actions, key, sfa, | 
 | 				     eth_type, vlan_tci, log); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	add_nested_action_end(*sfa, start); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int validate_and_copy_clone(struct net *net, | 
 | 				   const struct nlattr *attr, | 
 | 				   const struct sw_flow_key *key, | 
 | 				   struct sw_flow_actions **sfa, | 
 | 				   __be16 eth_type, __be16 vlan_tci, | 
 | 				   bool log, bool last) | 
 | { | 
 | 	int start, err; | 
 | 	u32 exec; | 
 |  | 
 | 	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) | 
 | 		return -EINVAL; | 
 |  | 
 | 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); | 
 | 	if (start < 0) | 
 | 		return start; | 
 |  | 
 | 	exec = last || !actions_may_change_flow(attr); | 
 |  | 
 | 	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, | 
 | 				 sizeof(exec), log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = __ovs_nla_copy_actions(net, attr, key, sfa, | 
 | 				     eth_type, vlan_tci, log); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	add_nested_action_end(*sfa, start); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void ovs_match_init(struct sw_flow_match *match, | 
 | 		    struct sw_flow_key *key, | 
 | 		    bool reset_key, | 
 | 		    struct sw_flow_mask *mask) | 
 | { | 
 | 	memset(match, 0, sizeof(*match)); | 
 | 	match->key = key; | 
 | 	match->mask = mask; | 
 |  | 
 | 	if (reset_key) | 
 | 		memset(key, 0, sizeof(*key)); | 
 |  | 
 | 	if (mask) { | 
 | 		memset(&mask->key, 0, sizeof(mask->key)); | 
 | 		mask->range.start = mask->range.end = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int validate_geneve_opts(struct sw_flow_key *key) | 
 | { | 
 | 	struct geneve_opt *option; | 
 | 	int opts_len = key->tun_opts_len; | 
 | 	bool crit_opt = false; | 
 |  | 
 | 	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); | 
 | 	while (opts_len > 0) { | 
 | 		int len; | 
 |  | 
 | 		if (opts_len < sizeof(*option)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		len = sizeof(*option) + option->length * 4; | 
 | 		if (len > opts_len) | 
 | 			return -EINVAL; | 
 |  | 
 | 		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); | 
 |  | 
 | 		option = (struct geneve_opt *)((u8 *)option + len); | 
 | 		opts_len -= len; | 
 | 	} | 
 |  | 
 | 	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int validate_and_copy_set_tun(const struct nlattr *attr, | 
 | 				     struct sw_flow_actions **sfa, bool log) | 
 | { | 
 | 	struct sw_flow_match match; | 
 | 	struct sw_flow_key key; | 
 | 	struct metadata_dst *tun_dst; | 
 | 	struct ip_tunnel_info *tun_info; | 
 | 	struct ovs_tunnel_info *ovs_tun; | 
 | 	struct nlattr *a; | 
 | 	int err = 0, start, opts_type; | 
 | 	__be16 dst_opt_type; | 
 |  | 
 | 	dst_opt_type = 0; | 
 | 	ovs_match_init(&match, &key, true, NULL); | 
 | 	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); | 
 | 	if (opts_type < 0) | 
 | 		return opts_type; | 
 |  | 
 | 	if (key.tun_opts_len) { | 
 | 		switch (opts_type) { | 
 | 		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: | 
 | 			err = validate_geneve_opts(&key); | 
 | 			if (err < 0) | 
 | 				return err; | 
 | 			dst_opt_type = TUNNEL_GENEVE_OPT; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: | 
 | 			dst_opt_type = TUNNEL_VXLAN_OPT; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: | 
 | 			dst_opt_type = TUNNEL_ERSPAN_OPT; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); | 
 | 	if (start < 0) | 
 | 		return start; | 
 |  | 
 | 	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, | 
 | 				     GFP_KERNEL); | 
 |  | 
 | 	if (!tun_dst) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); | 
 | 	if (err) { | 
 | 		dst_release((struct dst_entry *)tun_dst); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, | 
 | 			 sizeof(*ovs_tun), log); | 
 | 	if (IS_ERR(a)) { | 
 | 		dst_release((struct dst_entry *)tun_dst); | 
 | 		return PTR_ERR(a); | 
 | 	} | 
 |  | 
 | 	ovs_tun = nla_data(a); | 
 | 	ovs_tun->tun_dst = tun_dst; | 
 |  | 
 | 	tun_info = &tun_dst->u.tun_info; | 
 | 	tun_info->mode = IP_TUNNEL_INFO_TX; | 
 | 	if (key.tun_proto == AF_INET6) | 
 | 		tun_info->mode |= IP_TUNNEL_INFO_IPV6; | 
 | 	tun_info->key = key.tun_key; | 
 |  | 
 | 	/* We need to store the options in the action itself since | 
 | 	 * everything else will go away after flow setup. We can append | 
 | 	 * it to tun_info and then point there. | 
 | 	 */ | 
 | 	ip_tunnel_info_opts_set(tun_info, | 
 | 				TUN_METADATA_OPTS(&key, key.tun_opts_len), | 
 | 				key.tun_opts_len, dst_opt_type); | 
 | 	add_nested_action_end(*sfa, start); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool validate_nsh(const struct nlattr *attr, bool is_mask, | 
 | 			 bool is_push_nsh, bool log) | 
 | { | 
 | 	struct sw_flow_match match; | 
 | 	struct sw_flow_key key; | 
 | 	int ret = 0; | 
 |  | 
 | 	ovs_match_init(&match, &key, true, NULL); | 
 | 	ret = nsh_key_put_from_nlattr(attr, &match, is_mask, | 
 | 				      is_push_nsh, log); | 
 | 	return !ret; | 
 | } | 
 |  | 
 | /* Return false if there are any non-masked bits set. | 
 |  * Mask follows data immediately, before any netlink padding. | 
 |  */ | 
 | static bool validate_masked(u8 *data, int len) | 
 | { | 
 | 	u8 *mask = data + len; | 
 |  | 
 | 	while (len--) | 
 | 		if (*data++ & ~*mask++) | 
 | 			return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int validate_set(const struct nlattr *a, | 
 | 			const struct sw_flow_key *flow_key, | 
 | 			struct sw_flow_actions **sfa, bool *skip_copy, | 
 | 			u8 mac_proto, __be16 eth_type, bool masked, bool log) | 
 | { | 
 | 	const struct nlattr *ovs_key = nla_data(a); | 
 | 	int key_type = nla_type(ovs_key); | 
 | 	size_t key_len; | 
 |  | 
 | 	/* There can be only one key in a action */ | 
 | 	if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	key_len = nla_len(ovs_key); | 
 | 	if (masked) | 
 | 		key_len /= 2; | 
 |  | 
 | 	if (key_type > OVS_KEY_ATTR_MAX || | 
 | 	    !check_attr_len(key_len, ovs_key_lens[key_type].len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (masked && !validate_masked(nla_data(ovs_key), key_len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (key_type) { | 
 | 	const struct ovs_key_ipv4 *ipv4_key; | 
 | 	const struct ovs_key_ipv6 *ipv6_key; | 
 | 	int err; | 
 |  | 
 | 	case OVS_KEY_ATTR_PRIORITY: | 
 | 	case OVS_KEY_ATTR_SKB_MARK: | 
 | 	case OVS_KEY_ATTR_CT_MARK: | 
 | 	case OVS_KEY_ATTR_CT_LABELS: | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_ETHERNET: | 
 | 		if (mac_proto != MAC_PROTO_ETHERNET) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_TUNNEL: | 
 | 		if (masked) | 
 | 			return -EINVAL; /* Masked tunnel set not supported. */ | 
 |  | 
 | 		*skip_copy = true; | 
 | 		err = validate_and_copy_set_tun(a, sfa, log); | 
 | 		if (err) | 
 | 			return err; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_IPV4: | 
 | 		if (eth_type != htons(ETH_P_IP)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ipv4_key = nla_data(ovs_key); | 
 |  | 
 | 		if (masked) { | 
 | 			const struct ovs_key_ipv4 *mask = ipv4_key + 1; | 
 |  | 
 | 			/* Non-writeable fields. */ | 
 | 			if (mask->ipv4_proto || mask->ipv4_frag) | 
 | 				return -EINVAL; | 
 | 		} else { | 
 | 			if (ipv4_key->ipv4_proto != flow_key->ip.proto) | 
 | 				return -EINVAL; | 
 |  | 
 | 			if (ipv4_key->ipv4_frag != flow_key->ip.frag) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_IPV6: | 
 | 		if (eth_type != htons(ETH_P_IPV6)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		ipv6_key = nla_data(ovs_key); | 
 |  | 
 | 		if (masked) { | 
 | 			const struct ovs_key_ipv6 *mask = ipv6_key + 1; | 
 |  | 
 | 			/* Non-writeable fields. */ | 
 | 			if (mask->ipv6_proto || mask->ipv6_frag) | 
 | 				return -EINVAL; | 
 |  | 
 | 			/* Invalid bits in the flow label mask? */ | 
 | 			if (ntohl(mask->ipv6_label) & 0xFFF00000) | 
 | 				return -EINVAL; | 
 | 		} else { | 
 | 			if (ipv6_key->ipv6_proto != flow_key->ip.proto) | 
 | 				return -EINVAL; | 
 |  | 
 | 			if (ipv6_key->ipv6_frag != flow_key->ip.frag) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) | 
 | 			return -EINVAL; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_TCP: | 
 | 		if ((eth_type != htons(ETH_P_IP) && | 
 | 		     eth_type != htons(ETH_P_IPV6)) || | 
 | 		    flow_key->ip.proto != IPPROTO_TCP) | 
 | 			return -EINVAL; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_UDP: | 
 | 		if ((eth_type != htons(ETH_P_IP) && | 
 | 		     eth_type != htons(ETH_P_IPV6)) || | 
 | 		    flow_key->ip.proto != IPPROTO_UDP) | 
 | 			return -EINVAL; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_MPLS: | 
 | 		if (!eth_p_mpls(eth_type)) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_SCTP: | 
 | 		if ((eth_type != htons(ETH_P_IP) && | 
 | 		     eth_type != htons(ETH_P_IPV6)) || | 
 | 		    flow_key->ip.proto != IPPROTO_SCTP) | 
 | 			return -EINVAL; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_NSH: | 
 | 		if (eth_type != htons(ETH_P_NSH)) | 
 | 			return -EINVAL; | 
 | 		if (!validate_nsh(nla_data(a), masked, false, log)) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Convert non-masked non-tunnel set actions to masked set actions. */ | 
 | 	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { | 
 | 		int start, len = key_len * 2; | 
 | 		struct nlattr *at; | 
 |  | 
 | 		*skip_copy = true; | 
 |  | 
 | 		start = add_nested_action_start(sfa, | 
 | 						OVS_ACTION_ATTR_SET_TO_MASKED, | 
 | 						log); | 
 | 		if (start < 0) | 
 | 			return start; | 
 |  | 
 | 		at = __add_action(sfa, key_type, NULL, len, log); | 
 | 		if (IS_ERR(at)) | 
 | 			return PTR_ERR(at); | 
 |  | 
 | 		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ | 
 | 		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */ | 
 | 		/* Clear non-writeable bits from otherwise writeable fields. */ | 
 | 		if (key_type == OVS_KEY_ATTR_IPV6) { | 
 | 			struct ovs_key_ipv6 *mask = nla_data(at) + key_len; | 
 |  | 
 | 			mask->ipv6_label &= htonl(0x000FFFFF); | 
 | 		} | 
 | 		add_nested_action_end(*sfa, start); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int validate_userspace(const struct nlattr *attr) | 
 | { | 
 | 	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { | 
 | 		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, | 
 | 		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, | 
 | 		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, | 
 | 	}; | 
 | 	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; | 
 | 	int error; | 
 |  | 
 | 	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr, | 
 | 				 userspace_policy, NULL); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (!a[OVS_USERSPACE_ATTR_PID] || | 
 | 	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int copy_action(const struct nlattr *from, | 
 | 		       struct sw_flow_actions **sfa, bool log) | 
 | { | 
 | 	int totlen = NLA_ALIGN(from->nla_len); | 
 | 	struct nlattr *to; | 
 |  | 
 | 	to = reserve_sfa_size(sfa, from->nla_len, log); | 
 | 	if (IS_ERR(to)) | 
 | 		return PTR_ERR(to); | 
 |  | 
 | 	memcpy(to, from, totlen); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, | 
 | 				  const struct sw_flow_key *key, | 
 | 				  struct sw_flow_actions **sfa, | 
 | 				  __be16 eth_type, __be16 vlan_tci, bool log) | 
 | { | 
 | 	u8 mac_proto = ovs_key_mac_proto(key); | 
 | 	const struct nlattr *a; | 
 | 	int rem, err; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		/* Expected argument lengths, (u32)-1 for variable length. */ | 
 | 		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { | 
 | 			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), | 
 | 			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32), | 
 | 			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), | 
 | 			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), | 
 | 			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), | 
 | 			[OVS_ACTION_ATTR_POP_VLAN] = 0, | 
 | 			[OVS_ACTION_ATTR_SET] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), | 
 | 			[OVS_ACTION_ATTR_CT] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_CT_CLEAR] = 0, | 
 | 			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), | 
 | 			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), | 
 | 			[OVS_ACTION_ATTR_POP_ETH] = 0, | 
 | 			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, | 
 | 			[OVS_ACTION_ATTR_POP_NSH] = 0, | 
 | 			[OVS_ACTION_ATTR_METER] = sizeof(u32), | 
 | 			[OVS_ACTION_ATTR_CLONE] = (u32)-1, | 
 | 		}; | 
 | 		const struct ovs_action_push_vlan *vlan; | 
 | 		int type = nla_type(a); | 
 | 		bool skip_copy; | 
 |  | 
 | 		if (type > OVS_ACTION_ATTR_MAX || | 
 | 		    (action_lens[type] != nla_len(a) && | 
 | 		     action_lens[type] != (u32)-1)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		skip_copy = false; | 
 | 		switch (type) { | 
 | 		case OVS_ACTION_ATTR_UNSPEC: | 
 | 			return -EINVAL; | 
 |  | 
 | 		case OVS_ACTION_ATTR_USERSPACE: | 
 | 			err = validate_userspace(a); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_OUTPUT: | 
 | 			if (nla_get_u32(a) >= DP_MAX_PORTS) | 
 | 				return -EINVAL; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_TRUNC: { | 
 | 			const struct ovs_action_trunc *trunc = nla_data(a); | 
 |  | 
 | 			if (trunc->max_len < ETH_HLEN) | 
 | 				return -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_HASH: { | 
 | 			const struct ovs_action_hash *act_hash = nla_data(a); | 
 |  | 
 | 			switch (act_hash->hash_alg) { | 
 | 			case OVS_HASH_ALG_L4: | 
 | 				break; | 
 | 			default: | 
 | 				return  -EINVAL; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_VLAN: | 
 | 			if (mac_proto != MAC_PROTO_ETHERNET) | 
 | 				return -EINVAL; | 
 | 			vlan_tci = htons(0); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_VLAN: | 
 | 			if (mac_proto != MAC_PROTO_ETHERNET) | 
 | 				return -EINVAL; | 
 | 			vlan = nla_data(a); | 
 | 			if (!eth_type_vlan(vlan->vlan_tpid)) | 
 | 				return -EINVAL; | 
 | 			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) | 
 | 				return -EINVAL; | 
 | 			vlan_tci = vlan->vlan_tci; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_RECIRC: | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_MPLS: { | 
 | 			const struct ovs_action_push_mpls *mpls = nla_data(a); | 
 |  | 
 | 			if (!eth_p_mpls(mpls->mpls_ethertype)) | 
 | 				return -EINVAL; | 
 | 			/* Prohibit push MPLS other than to a white list | 
 | 			 * for packets that have a known tag order. | 
 | 			 */ | 
 | 			if (vlan_tci & htons(VLAN_TAG_PRESENT) || | 
 | 			    (eth_type != htons(ETH_P_IP) && | 
 | 			     eth_type != htons(ETH_P_IPV6) && | 
 | 			     eth_type != htons(ETH_P_ARP) && | 
 | 			     eth_type != htons(ETH_P_RARP) && | 
 | 			     !eth_p_mpls(eth_type))) | 
 | 				return -EINVAL; | 
 | 			eth_type = mpls->mpls_ethertype; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_MPLS: | 
 | 			if (vlan_tci & htons(VLAN_TAG_PRESENT) || | 
 | 			    !eth_p_mpls(eth_type)) | 
 | 				return -EINVAL; | 
 |  | 
 | 			/* Disallow subsequent L2.5+ set and mpls_pop actions | 
 | 			 * as there is no check here to ensure that the new | 
 | 			 * eth_type is valid and thus set actions could | 
 | 			 * write off the end of the packet or otherwise | 
 | 			 * corrupt it. | 
 | 			 * | 
 | 			 * Support for these actions is planned using packet | 
 | 			 * recirculation. | 
 | 			 */ | 
 | 			eth_type = htons(0); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SET: | 
 | 			err = validate_set(a, key, sfa, | 
 | 					   &skip_copy, mac_proto, eth_type, | 
 | 					   false, log); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SET_MASKED: | 
 | 			err = validate_set(a, key, sfa, | 
 | 					   &skip_copy, mac_proto, eth_type, | 
 | 					   true, log); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SAMPLE: { | 
 | 			bool last = nla_is_last(a, rem); | 
 |  | 
 | 			err = validate_and_copy_sample(net, a, key, sfa, | 
 | 						       eth_type, vlan_tci, | 
 | 						       log, last); | 
 | 			if (err) | 
 | 				return err; | 
 | 			skip_copy = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT: | 
 | 			err = ovs_ct_copy_action(net, a, key, sfa, log); | 
 | 			if (err) | 
 | 				return err; | 
 | 			skip_copy = true; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT_CLEAR: | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_ETH: | 
 | 			/* Disallow pushing an Ethernet header if one | 
 | 			 * is already present */ | 
 | 			if (mac_proto != MAC_PROTO_NONE) | 
 | 				return -EINVAL; | 
 | 			mac_proto = MAC_PROTO_ETHERNET; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_ETH: | 
 | 			if (mac_proto != MAC_PROTO_ETHERNET) | 
 | 				return -EINVAL; | 
 | 			if (vlan_tci & htons(VLAN_TAG_PRESENT)) | 
 | 				return -EINVAL; | 
 | 			mac_proto = MAC_PROTO_NONE; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_NSH: | 
 | 			if (mac_proto != MAC_PROTO_ETHERNET) { | 
 | 				u8 next_proto; | 
 |  | 
 | 				next_proto = tun_p_from_eth_p(eth_type); | 
 | 				if (!next_proto) | 
 | 					return -EINVAL; | 
 | 			} | 
 | 			mac_proto = MAC_PROTO_NONE; | 
 | 			if (!validate_nsh(nla_data(a), false, true, true)) | 
 | 				return -EINVAL; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_NSH: { | 
 | 			__be16 inner_proto; | 
 |  | 
 | 			if (eth_type != htons(ETH_P_NSH)) | 
 | 				return -EINVAL; | 
 | 			inner_proto = tun_p_to_eth_p(key->nsh.base.np); | 
 | 			if (!inner_proto) | 
 | 				return -EINVAL; | 
 | 			if (key->nsh.base.np == TUN_P_ETHERNET) | 
 | 				mac_proto = MAC_PROTO_ETHERNET; | 
 | 			else | 
 | 				mac_proto = MAC_PROTO_NONE; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_METER: | 
 | 			/* Non-existent meters are simply ignored.  */ | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CLONE: { | 
 | 			bool last = nla_is_last(a, rem); | 
 |  | 
 | 			err = validate_and_copy_clone(net, a, key, sfa, | 
 | 						      eth_type, vlan_tci, | 
 | 						      log, last); | 
 | 			if (err) | 
 | 				return err; | 
 | 			skip_copy = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		default: | 
 | 			OVS_NLERR(log, "Unknown Action type %d", type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (!skip_copy) { | 
 | 			err = copy_action(a, sfa, log); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rem > 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* 'key' must be the masked key. */ | 
 | int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, | 
 | 			 const struct sw_flow_key *key, | 
 | 			 struct sw_flow_actions **sfa, bool log) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); | 
 | 	if (IS_ERR(*sfa)) | 
 | 		return PTR_ERR(*sfa); | 
 |  | 
 | 	(*sfa)->orig_len = nla_len(attr); | 
 | 	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, | 
 | 				     key->eth.vlan.tci, log); | 
 | 	if (err) | 
 | 		ovs_nla_free_flow_actions(*sfa); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int sample_action_to_attr(const struct nlattr *attr, | 
 | 				 struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *start, *ac_start = NULL, *sample_arg; | 
 | 	int err = 0, rem = nla_len(attr); | 
 | 	const struct sample_arg *arg; | 
 | 	struct nlattr *actions; | 
 |  | 
 | 	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE); | 
 | 	if (!start) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	sample_arg = nla_data(attr); | 
 | 	arg = nla_data(sample_arg); | 
 | 	actions = nla_next(sample_arg, &rem); | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { | 
 | 		err = -EMSGSIZE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS); | 
 | 	if (!ac_start) { | 
 | 		err = -EMSGSIZE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = ovs_nla_put_actions(actions, rem, skb); | 
 |  | 
 | out: | 
 | 	if (err) { | 
 | 		nla_nest_cancel(skb, ac_start); | 
 | 		nla_nest_cancel(skb, start); | 
 | 	} else { | 
 | 		nla_nest_end(skb, ac_start); | 
 | 		nla_nest_end(skb, start); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int clone_action_to_attr(const struct nlattr *attr, | 
 | 				struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *start; | 
 | 	int err = 0, rem = nla_len(attr); | 
 |  | 
 | 	start = nla_nest_start(skb, OVS_ACTION_ATTR_CLONE); | 
 | 	if (!start) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	err = ovs_nla_put_actions(nla_data(attr), rem, skb); | 
 |  | 
 | 	if (err) | 
 | 		nla_nest_cancel(skb, start); | 
 | 	else | 
 | 		nla_nest_end(skb, start); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) | 
 | { | 
 | 	const struct nlattr *ovs_key = nla_data(a); | 
 | 	int key_type = nla_type(ovs_key); | 
 | 	struct nlattr *start; | 
 | 	int err; | 
 |  | 
 | 	switch (key_type) { | 
 | 	case OVS_KEY_ATTR_TUNNEL_INFO: { | 
 | 		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); | 
 | 		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; | 
 |  | 
 | 		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET); | 
 | 		if (!start) | 
 | 			return -EMSGSIZE; | 
 |  | 
 | 		err =  ip_tun_to_nlattr(skb, &tun_info->key, | 
 | 					ip_tunnel_info_opts(tun_info), | 
 | 					tun_info->options_len, | 
 | 					ip_tunnel_info_af(tun_info)); | 
 | 		if (err) | 
 | 			return err; | 
 | 		nla_nest_end(skb, start); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) | 
 | 			return -EMSGSIZE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int masked_set_action_to_set_action_attr(const struct nlattr *a, | 
 | 						struct sk_buff *skb) | 
 | { | 
 | 	const struct nlattr *ovs_key = nla_data(a); | 
 | 	struct nlattr *nla; | 
 | 	size_t key_len = nla_len(ovs_key) / 2; | 
 |  | 
 | 	/* Revert the conversion we did from a non-masked set action to | 
 | 	 * masked set action. | 
 | 	 */ | 
 | 	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET); | 
 | 	if (!nla) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	nla_nest_end(skb, nla); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) | 
 | { | 
 | 	const struct nlattr *a; | 
 | 	int rem, err; | 
 |  | 
 | 	nla_for_each_attr(a, attr, len, rem) { | 
 | 		int type = nla_type(a); | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_ACTION_ATTR_SET: | 
 | 			err = set_action_to_attr(a, skb); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SET_TO_MASKED: | 
 | 			err = masked_set_action_to_set_action_attr(a, skb); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SAMPLE: | 
 | 			err = sample_action_to_attr(a, skb); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT: | 
 | 			err = ovs_ct_action_to_attr(nla_data(a), skb); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CLONE: | 
 | 			err = clone_action_to_attr(a, skb); | 
 | 			if (err) | 
 | 				return err; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			if (nla_put(skb, type, nla_len(a), nla_data(a))) | 
 | 				return -EMSGSIZE; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } |