| /* | 
 |  * Copyright (c) International Business Machines Corp., 2006 | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
 |  * the GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
 |  * | 
 |  * Author: Artem Bityutskiy (Битюцкий Артём) | 
 |  */ | 
 |  | 
 | /* | 
 |  * UBI attaching sub-system. | 
 |  * | 
 |  * This sub-system is responsible for attaching MTD devices and it also | 
 |  * implements flash media scanning. | 
 |  * | 
 |  * The attaching information is represented by a &struct ubi_attach_info' | 
 |  * object. Information about volumes is represented by &struct ubi_ainf_volume | 
 |  * objects which are kept in volume RB-tree with root at the @volumes field. | 
 |  * The RB-tree is indexed by the volume ID. | 
 |  * | 
 |  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These | 
 |  * objects are kept in per-volume RB-trees with the root at the corresponding | 
 |  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of | 
 |  * per-volume objects and each of these objects is the root of RB-tree of | 
 |  * per-LEB objects. | 
 |  * | 
 |  * Corrupted physical eraseblocks are put to the @corr list, free physical | 
 |  * eraseblocks are put to the @free list and the physical eraseblock to be | 
 |  * erased are put to the @erase list. | 
 |  * | 
 |  * About corruptions | 
 |  * ~~~~~~~~~~~~~~~~~ | 
 |  * | 
 |  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect | 
 |  * whether the headers are corrupted or not. Sometimes UBI also protects the | 
 |  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or | 
 |  * when it moves the contents of a PEB for wear-leveling purposes. | 
 |  * | 
 |  * UBI tries to distinguish between 2 types of corruptions. | 
 |  * | 
 |  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI | 
 |  * tries to handle them gracefully, without printing too many warnings and | 
 |  * error messages. The idea is that we do not lose important data in these | 
 |  * cases - we may lose only the data which were being written to the media just | 
 |  * before the power cut happened, and the upper layers (e.g., UBIFS) are | 
 |  * supposed to handle such data losses (e.g., by using the FS journal). | 
 |  * | 
 |  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like | 
 |  * the reason is a power cut, UBI puts this PEB to the @erase list, and all | 
 |  * PEBs in the @erase list are scheduled for erasure later. | 
 |  * | 
 |  * 2. Unexpected corruptions which are not caused by power cuts. During | 
 |  * attaching, such PEBs are put to the @corr list and UBI preserves them. | 
 |  * Obviously, this lessens the amount of available PEBs, and if at some  point | 
 |  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs | 
 |  * about such PEBs every time the MTD device is attached. | 
 |  * | 
 |  * However, it is difficult to reliably distinguish between these types of | 
 |  * corruptions and UBI's strategy is as follows (in case of attaching by | 
 |  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and | 
 |  * the data area does not contain all 0xFFs, and there were no bit-flips or | 
 |  * integrity errors (e.g., ECC errors in case of NAND) while reading the data | 
 |  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria | 
 |  * are as follows. | 
 |  *   o If the data area contains only 0xFFs, there are no data, and it is safe | 
 |  *     to just erase this PEB - this is corruption type 1. | 
 |  *   o If the data area has bit-flips or data integrity errors (ECC errors on | 
 |  *     NAND), it is probably a PEB which was being erased when power cut | 
 |  *     happened, so this is corruption type 1. However, this is just a guess, | 
 |  *     which might be wrong. | 
 |  *   o Otherwise this is corruption type 2. | 
 |  */ | 
 |  | 
 | #include <linux/err.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/random.h> | 
 | #include "ubi.h" | 
 |  | 
 | static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); | 
 |  | 
 | #define AV_FIND		BIT(0) | 
 | #define AV_ADD		BIT(1) | 
 | #define AV_FIND_OR_ADD	(AV_FIND | AV_ADD) | 
 |  | 
 | /** | 
 |  * find_or_add_av - internal function to find a volume, add a volume or do | 
 |  *		    both (find and add if missing). | 
 |  * @ai: attaching information | 
 |  * @vol_id: the requested volume ID | 
 |  * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the | 
 |  *	   expected operation. If only %AV_ADD is set, -EEXIST is returned | 
 |  *	   if the volume already exists. If only %AV_FIND is set, NULL is | 
 |  *	   returned if the volume does not exist. And if both flags are | 
 |  *	   set, the helper first tries to find an existing volume, and if | 
 |  *	   it does not exist it creates a new one. | 
 |  * @created: in value used to inform the caller whether it"s a newly created | 
 |  *	     volume or not. | 
 |  * | 
 |  * This function returns a pointer to a volume description or an ERR_PTR if | 
 |  * the operation failed. It can also return NULL if only %AV_FIND is set and | 
 |  * the volume does not exist. | 
 |  */ | 
 | static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai, | 
 | 					      int vol_id, unsigned int flags, | 
 | 					      bool *created) | 
 | { | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; | 
 |  | 
 | 	/* Walk the volume RB-tree to look if this volume is already present */ | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		av = rb_entry(parent, struct ubi_ainf_volume, rb); | 
 |  | 
 | 		if (vol_id == av->vol_id) { | 
 | 			*created = false; | 
 |  | 
 | 			if (!(flags & AV_FIND)) | 
 | 				return ERR_PTR(-EEXIST); | 
 |  | 
 | 			return av; | 
 | 		} | 
 |  | 
 | 		if (vol_id > av->vol_id) | 
 | 			p = &(*p)->rb_left; | 
 | 		else | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 |  | 
 | 	if (!(flags & AV_ADD)) | 
 | 		return NULL; | 
 |  | 
 | 	/* The volume is absent - add it */ | 
 | 	av = kzalloc(sizeof(*av), GFP_KERNEL); | 
 | 	if (!av) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	av->vol_id = vol_id; | 
 |  | 
 | 	if (vol_id > ai->highest_vol_id) | 
 | 		ai->highest_vol_id = vol_id; | 
 |  | 
 | 	rb_link_node(&av->rb, parent, p); | 
 | 	rb_insert_color(&av->rb, &ai->volumes); | 
 | 	ai->vols_found += 1; | 
 | 	*created = true; | 
 | 	dbg_bld("added volume %d", vol_id); | 
 | 	return av; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_find_or_add_av - search for a volume in the attaching information and | 
 |  *			add one if it does not exist. | 
 |  * @ai: attaching information | 
 |  * @vol_id: the requested volume ID | 
 |  * @created: whether the volume has been created or not | 
 |  * | 
 |  * This function returns a pointer to the new volume description or an | 
 |  * ERR_PTR if the operation failed. | 
 |  */ | 
 | static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai, | 
 | 						  int vol_id, bool *created) | 
 | { | 
 | 	return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created); | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_alloc_aeb - allocate an aeb element | 
 |  * @ai: attaching information | 
 |  * @pnum: physical eraseblock number | 
 |  * @ec: erase counter of the physical eraseblock | 
 |  * | 
 |  * Allocate an aeb object and initialize the pnum and ec information. | 
 |  * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are | 
 |  * initialized to zero. | 
 |  * Note that the element is not added in any list or RB tree. | 
 |  */ | 
 | struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum, | 
 | 				   int ec) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 |  | 
 | 	aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL); | 
 | 	if (!aeb) | 
 | 		return NULL; | 
 |  | 
 | 	aeb->pnum = pnum; | 
 | 	aeb->ec = ec; | 
 | 	aeb->vol_id = UBI_UNKNOWN; | 
 | 	aeb->lnum = UBI_UNKNOWN; | 
 |  | 
 | 	return aeb; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_free_aeb - free an aeb element | 
 |  * @ai: attaching information | 
 |  * @aeb: the element to free | 
 |  * | 
 |  * Free an aeb object. The caller must have removed the element from any list | 
 |  * or RB tree. | 
 |  */ | 
 | void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb) | 
 | { | 
 | 	kmem_cache_free(ai->aeb_slab_cache, aeb); | 
 | } | 
 |  | 
 | /** | 
 |  * add_to_list - add physical eraseblock to a list. | 
 |  * @ai: attaching information | 
 |  * @pnum: physical eraseblock number to add | 
 |  * @vol_id: the last used volume id for the PEB | 
 |  * @lnum: the last used LEB number for the PEB | 
 |  * @ec: erase counter of the physical eraseblock | 
 |  * @to_head: if not zero, add to the head of the list | 
 |  * @list: the list to add to | 
 |  * | 
 |  * This function allocates a 'struct ubi_ainf_peb' object for physical | 
 |  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. | 
 |  * It stores the @lnum and @vol_id alongside, which can both be | 
 |  * %UBI_UNKNOWN if they are not available, not readable, or not assigned. | 
 |  * If @to_head is not zero, PEB will be added to the head of the list, which | 
 |  * basically means it will be processed first later. E.g., we add corrupted | 
 |  * PEBs (corrupted due to power cuts) to the head of the erase list to make | 
 |  * sure we erase them first and get rid of corruptions ASAP. This function | 
 |  * returns zero in case of success and a negative error code in case of | 
 |  * failure. | 
 |  */ | 
 | static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, | 
 | 		       int lnum, int ec, int to_head, struct list_head *list) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 |  | 
 | 	if (list == &ai->free) { | 
 | 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | 
 | 	} else if (list == &ai->erase) { | 
 | 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | 
 | 	} else if (list == &ai->alien) { | 
 | 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); | 
 | 		ai->alien_peb_count += 1; | 
 | 	} else | 
 | 		BUG(); | 
 |  | 
 | 	aeb = ubi_alloc_aeb(ai, pnum, ec); | 
 | 	if (!aeb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	aeb->vol_id = vol_id; | 
 | 	aeb->lnum = lnum; | 
 | 	if (to_head) | 
 | 		list_add(&aeb->u.list, list); | 
 | 	else | 
 | 		list_add_tail(&aeb->u.list, list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * add_corrupted - add a corrupted physical eraseblock. | 
 |  * @ai: attaching information | 
 |  * @pnum: physical eraseblock number to add | 
 |  * @ec: erase counter of the physical eraseblock | 
 |  * | 
 |  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted | 
 |  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption | 
 |  * was presumably not caused by a power cut. Returns zero in case of success | 
 |  * and a negative error code in case of failure. | 
 |  */ | 
 | static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 |  | 
 | 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); | 
 |  | 
 | 	aeb = ubi_alloc_aeb(ai, pnum, ec); | 
 | 	if (!aeb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ai->corr_peb_count += 1; | 
 | 	list_add(&aeb->u.list, &ai->corr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * add_fastmap - add a Fastmap related physical eraseblock. | 
 |  * @ai: attaching information | 
 |  * @pnum: physical eraseblock number the VID header came from | 
 |  * @vid_hdr: the volume identifier header | 
 |  * @ec: erase counter of the physical eraseblock | 
 |  * | 
 |  * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp | 
 |  * physical eraseblock @pnum and adds it to the 'fastmap' list. | 
 |  * Such blocks can be Fastmap super and data blocks from both the most | 
 |  * recent Fastmap we're attaching from or from old Fastmaps which will | 
 |  * be erased. | 
 |  */ | 
 | static int add_fastmap(struct ubi_attach_info *ai, int pnum, | 
 | 		       struct ubi_vid_hdr *vid_hdr, int ec) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 |  | 
 | 	aeb = ubi_alloc_aeb(ai, pnum, ec); | 
 | 	if (!aeb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	aeb->vol_id = be32_to_cpu(vid_hdr->vol_id); | 
 | 	aeb->sqnum = be64_to_cpu(vid_hdr->sqnum); | 
 | 	list_add(&aeb->u.list, &ai->fastmap); | 
 |  | 
 | 	dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum, | 
 | 		aeb->vol_id, aeb->sqnum); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * validate_vid_hdr - check volume identifier header. | 
 |  * @ubi: UBI device description object | 
 |  * @vid_hdr: the volume identifier header to check | 
 |  * @av: information about the volume this logical eraseblock belongs to | 
 |  * @pnum: physical eraseblock number the VID header came from | 
 |  * | 
 |  * This function checks that data stored in @vid_hdr is consistent. Returns | 
 |  * non-zero if an inconsistency was found and zero if not. | 
 |  * | 
 |  * Note, UBI does sanity check of everything it reads from the flash media. | 
 |  * Most of the checks are done in the I/O sub-system. Here we check that the | 
 |  * information in the VID header is consistent to the information in other VID | 
 |  * headers of the same volume. | 
 |  */ | 
 | static int validate_vid_hdr(const struct ubi_device *ubi, | 
 | 			    const struct ubi_vid_hdr *vid_hdr, | 
 | 			    const struct ubi_ainf_volume *av, int pnum) | 
 | { | 
 | 	int vol_type = vid_hdr->vol_type; | 
 | 	int vol_id = be32_to_cpu(vid_hdr->vol_id); | 
 | 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | 
 | 	int data_pad = be32_to_cpu(vid_hdr->data_pad); | 
 |  | 
 | 	if (av->leb_count != 0) { | 
 | 		int av_vol_type; | 
 |  | 
 | 		/* | 
 | 		 * This is not the first logical eraseblock belonging to this | 
 | 		 * volume. Ensure that the data in its VID header is consistent | 
 | 		 * to the data in previous logical eraseblock headers. | 
 | 		 */ | 
 |  | 
 | 		if (vol_id != av->vol_id) { | 
 | 			ubi_err(ubi, "inconsistent vol_id"); | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (av->vol_type == UBI_STATIC_VOLUME) | 
 | 			av_vol_type = UBI_VID_STATIC; | 
 | 		else | 
 | 			av_vol_type = UBI_VID_DYNAMIC; | 
 |  | 
 | 		if (vol_type != av_vol_type) { | 
 | 			ubi_err(ubi, "inconsistent vol_type"); | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (used_ebs != av->used_ebs) { | 
 | 			ubi_err(ubi, "inconsistent used_ebs"); | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (data_pad != av->data_pad) { | 
 | 			ubi_err(ubi, "inconsistent data_pad"); | 
 | 			goto bad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum); | 
 | 	ubi_dump_vid_hdr(vid_hdr); | 
 | 	ubi_dump_av(av); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * add_volume - add volume to the attaching information. | 
 |  * @ai: attaching information | 
 |  * @vol_id: ID of the volume to add | 
 |  * @pnum: physical eraseblock number | 
 |  * @vid_hdr: volume identifier header | 
 |  * | 
 |  * If the volume corresponding to the @vid_hdr logical eraseblock is already | 
 |  * present in the attaching information, this function does nothing. Otherwise | 
 |  * it adds corresponding volume to the attaching information. Returns a pointer | 
 |  * to the allocated "av" object in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, | 
 | 					  int vol_id, int pnum, | 
 | 					  const struct ubi_vid_hdr *vid_hdr) | 
 | { | 
 | 	struct ubi_ainf_volume *av; | 
 | 	bool created; | 
 |  | 
 | 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); | 
 |  | 
 | 	av = ubi_find_or_add_av(ai, vol_id, &created); | 
 | 	if (IS_ERR(av) || !created) | 
 | 		return av; | 
 |  | 
 | 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); | 
 | 	av->data_pad = be32_to_cpu(vid_hdr->data_pad); | 
 | 	av->compat = vid_hdr->compat; | 
 | 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | 
 | 							    : UBI_STATIC_VOLUME; | 
 |  | 
 | 	return av; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_compare_lebs - find out which logical eraseblock is newer. | 
 |  * @ubi: UBI device description object | 
 |  * @aeb: first logical eraseblock to compare | 
 |  * @pnum: physical eraseblock number of the second logical eraseblock to | 
 |  * compare | 
 |  * @vid_hdr: volume identifier header of the second logical eraseblock | 
 |  * | 
 |  * This function compares 2 copies of a LEB and informs which one is newer. In | 
 |  * case of success this function returns a positive value, in case of failure, a | 
 |  * negative error code is returned. The success return codes use the following | 
 |  * bits: | 
 |  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the | 
 |  *       second PEB (described by @pnum and @vid_hdr); | 
 |  *     o bit 0 is set: the second PEB is newer; | 
 |  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB; | 
 |  *     o bit 1 is set: bit-flips were detected in the newer LEB; | 
 |  *     o bit 2 is cleared: the older LEB is not corrupted; | 
 |  *     o bit 2 is set: the older LEB is corrupted. | 
 |  */ | 
 | int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, | 
 | 			int pnum, const struct ubi_vid_hdr *vid_hdr) | 
 | { | 
 | 	int len, err, second_is_newer, bitflips = 0, corrupted = 0; | 
 | 	uint32_t data_crc, crc; | 
 | 	struct ubi_vid_io_buf *vidb = NULL; | 
 | 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); | 
 |  | 
 | 	if (sqnum2 == aeb->sqnum) { | 
 | 		/* | 
 | 		 * This must be a really ancient UBI image which has been | 
 | 		 * created before sequence numbers support has been added. At | 
 | 		 * that times we used 32-bit LEB versions stored in logical | 
 | 		 * eraseblocks. That was before UBI got into mainline. We do not | 
 | 		 * support these images anymore. Well, those images still work, | 
 | 		 * but only if no unclean reboots happened. | 
 | 		 */ | 
 | 		ubi_err(ubi, "unsupported on-flash UBI format"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Obviously the LEB with lower sequence counter is older */ | 
 | 	second_is_newer = (sqnum2 > aeb->sqnum); | 
 |  | 
 | 	/* | 
 | 	 * Now we know which copy is newer. If the copy flag of the PEB with | 
 | 	 * newer version is not set, then we just return, otherwise we have to | 
 | 	 * check data CRC. For the second PEB we already have the VID header, | 
 | 	 * for the first one - we'll need to re-read it from flash. | 
 | 	 * | 
 | 	 * Note: this may be optimized so that we wouldn't read twice. | 
 | 	 */ | 
 |  | 
 | 	if (second_is_newer) { | 
 | 		if (!vid_hdr->copy_flag) { | 
 | 			/* It is not a copy, so it is newer */ | 
 | 			dbg_bld("second PEB %d is newer, copy_flag is unset", | 
 | 				pnum); | 
 | 			return 1; | 
 | 		} | 
 | 	} else { | 
 | 		if (!aeb->copy_flag) { | 
 | 			/* It is not a copy, so it is newer */ | 
 | 			dbg_bld("first PEB %d is newer, copy_flag is unset", | 
 | 				pnum); | 
 | 			return bitflips << 1; | 
 | 		} | 
 |  | 
 | 		vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); | 
 | 		if (!vidb) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		pnum = aeb->pnum; | 
 | 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0); | 
 | 		if (err) { | 
 | 			if (err == UBI_IO_BITFLIPS) | 
 | 				bitflips = 1; | 
 | 			else { | 
 | 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d", | 
 | 					pnum, err); | 
 | 				if (err > 0) | 
 | 					err = -EIO; | 
 |  | 
 | 				goto out_free_vidh; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		vid_hdr = ubi_get_vid_hdr(vidb); | 
 | 	} | 
 |  | 
 | 	/* Read the data of the copy and check the CRC */ | 
 |  | 
 | 	len = be32_to_cpu(vid_hdr->data_size); | 
 |  | 
 | 	mutex_lock(&ubi->buf_mutex); | 
 | 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); | 
 | 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	data_crc = be32_to_cpu(vid_hdr->data_crc); | 
 | 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); | 
 | 	if (crc != data_crc) { | 
 | 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | 
 | 			pnum, crc, data_crc); | 
 | 		corrupted = 1; | 
 | 		bitflips = 0; | 
 | 		second_is_newer = !second_is_newer; | 
 | 	} else { | 
 | 		dbg_bld("PEB %d CRC is OK", pnum); | 
 | 		bitflips |= !!err; | 
 | 	} | 
 | 	mutex_unlock(&ubi->buf_mutex); | 
 |  | 
 | 	ubi_free_vid_buf(vidb); | 
 |  | 
 | 	if (second_is_newer) | 
 | 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | 
 | 	else | 
 | 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | 
 |  | 
 | 	return second_is_newer | (bitflips << 1) | (corrupted << 2); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&ubi->buf_mutex); | 
 | out_free_vidh: | 
 | 	ubi_free_vid_buf(vidb); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_add_to_av - add used physical eraseblock to the attaching information. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * @pnum: the physical eraseblock number | 
 |  * @ec: erase counter | 
 |  * @vid_hdr: the volume identifier header | 
 |  * @bitflips: if bit-flips were detected when this physical eraseblock was read | 
 |  * | 
 |  * This function adds information about a used physical eraseblock to the | 
 |  * 'used' tree of the corresponding volume. The function is rather complex | 
 |  * because it has to handle cases when this is not the first physical | 
 |  * eraseblock belonging to the same logical eraseblock, and the newer one has | 
 |  * to be picked, while the older one has to be dropped. This function returns | 
 |  * zero in case of success and a negative error code in case of failure. | 
 |  */ | 
 | int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, | 
 | 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) | 
 | { | 
 | 	int err, vol_id, lnum; | 
 | 	unsigned long long sqnum; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct ubi_ainf_peb *aeb; | 
 | 	struct rb_node **p, *parent = NULL; | 
 |  | 
 | 	vol_id = be32_to_cpu(vid_hdr->vol_id); | 
 | 	lnum = be32_to_cpu(vid_hdr->lnum); | 
 | 	sqnum = be64_to_cpu(vid_hdr->sqnum); | 
 |  | 
 | 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", | 
 | 		pnum, vol_id, lnum, ec, sqnum, bitflips); | 
 |  | 
 | 	av = add_volume(ai, vol_id, pnum, vid_hdr); | 
 | 	if (IS_ERR(av)) | 
 | 		return PTR_ERR(av); | 
 |  | 
 | 	if (ai->max_sqnum < sqnum) | 
 | 		ai->max_sqnum = sqnum; | 
 |  | 
 | 	/* | 
 | 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | 
 | 	 * if this is the first instance of this logical eraseblock or not. | 
 | 	 */ | 
 | 	p = &av->root.rb_node; | 
 | 	while (*p) { | 
 | 		int cmp_res; | 
 |  | 
 | 		parent = *p; | 
 | 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); | 
 | 		if (lnum != aeb->lnum) { | 
 | 			if (lnum < aeb->lnum) | 
 | 				p = &(*p)->rb_left; | 
 | 			else | 
 | 				p = &(*p)->rb_right; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * There is already a physical eraseblock describing the same | 
 | 		 * logical eraseblock present. | 
 | 		 */ | 
 |  | 
 | 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", | 
 | 			aeb->pnum, aeb->sqnum, aeb->ec); | 
 |  | 
 | 		/* | 
 | 		 * Make sure that the logical eraseblocks have different | 
 | 		 * sequence numbers. Otherwise the image is bad. | 
 | 		 * | 
 | 		 * However, if the sequence number is zero, we assume it must | 
 | 		 * be an ancient UBI image from the era when UBI did not have | 
 | 		 * sequence numbers. We still can attach these images, unless | 
 | 		 * there is a need to distinguish between old and new | 
 | 		 * eraseblocks, in which case we'll refuse the image in | 
 | 		 * 'ubi_compare_lebs()'. In other words, we attach old clean | 
 | 		 * images, but refuse attaching old images with duplicated | 
 | 		 * logical eraseblocks because there was an unclean reboot. | 
 | 		 */ | 
 | 		if (aeb->sqnum == sqnum && sqnum != 0) { | 
 | 			ubi_err(ubi, "two LEBs with same sequence number %llu", | 
 | 				sqnum); | 
 | 			ubi_dump_aeb(aeb, 0); | 
 | 			ubi_dump_vid_hdr(vid_hdr); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now we have to drop the older one and preserve the newer | 
 | 		 * one. | 
 | 		 */ | 
 | 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); | 
 | 		if (cmp_res < 0) | 
 | 			return cmp_res; | 
 |  | 
 | 		if (cmp_res & 1) { | 
 | 			/* | 
 | 			 * This logical eraseblock is newer than the one | 
 | 			 * found earlier. | 
 | 			 */ | 
 | 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			err = add_to_list(ai, aeb->pnum, aeb->vol_id, | 
 | 					  aeb->lnum, aeb->ec, cmp_res & 4, | 
 | 					  &ai->erase); | 
 | 			if (err) | 
 | 				return err; | 
 |  | 
 | 			aeb->ec = ec; | 
 | 			aeb->pnum = pnum; | 
 | 			aeb->vol_id = vol_id; | 
 | 			aeb->lnum = lnum; | 
 | 			aeb->scrub = ((cmp_res & 2) || bitflips); | 
 | 			aeb->copy_flag = vid_hdr->copy_flag; | 
 | 			aeb->sqnum = sqnum; | 
 |  | 
 | 			if (av->highest_lnum == lnum) | 
 | 				av->last_data_size = | 
 | 					be32_to_cpu(vid_hdr->data_size); | 
 |  | 
 | 			return 0; | 
 | 		} else { | 
 | 			/* | 
 | 			 * This logical eraseblock is older than the one found | 
 | 			 * previously. | 
 | 			 */ | 
 | 			return add_to_list(ai, pnum, vol_id, lnum, ec, | 
 | 					   cmp_res & 4, &ai->erase); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We've met this logical eraseblock for the first time, add it to the | 
 | 	 * attaching information. | 
 | 	 */ | 
 |  | 
 | 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	aeb = ubi_alloc_aeb(ai, pnum, ec); | 
 | 	if (!aeb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	aeb->vol_id = vol_id; | 
 | 	aeb->lnum = lnum; | 
 | 	aeb->scrub = bitflips; | 
 | 	aeb->copy_flag = vid_hdr->copy_flag; | 
 | 	aeb->sqnum = sqnum; | 
 |  | 
 | 	if (av->highest_lnum <= lnum) { | 
 | 		av->highest_lnum = lnum; | 
 | 		av->last_data_size = be32_to_cpu(vid_hdr->data_size); | 
 | 	} | 
 |  | 
 | 	av->leb_count += 1; | 
 | 	rb_link_node(&aeb->u.rb, parent, p); | 
 | 	rb_insert_color(&aeb->u.rb, &av->root); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_add_av - add volume to the attaching information. | 
 |  * @ai: attaching information | 
 |  * @vol_id: the requested volume ID | 
 |  * | 
 |  * This function returns a pointer to the new volume description or an | 
 |  * ERR_PTR if the operation failed. | 
 |  */ | 
 | struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id) | 
 | { | 
 | 	bool created; | 
 |  | 
 | 	return find_or_add_av(ai, vol_id, AV_ADD, &created); | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_find_av - find volume in the attaching information. | 
 |  * @ai: attaching information | 
 |  * @vol_id: the requested volume ID | 
 |  * | 
 |  * This function returns a pointer to the volume description or %NULL if there | 
 |  * are no data about this volume in the attaching information. | 
 |  */ | 
 | struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, | 
 | 				    int vol_id) | 
 | { | 
 | 	bool created; | 
 |  | 
 | 	return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND, | 
 | 			      &created); | 
 | } | 
 |  | 
 | static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av, | 
 | 		       struct list_head *list); | 
 |  | 
 | /** | 
 |  * ubi_remove_av - delete attaching information about a volume. | 
 |  * @ai: attaching information | 
 |  * @av: the volume attaching information to delete | 
 |  */ | 
 | void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) | 
 | { | 
 | 	dbg_bld("remove attaching information about volume %d", av->vol_id); | 
 |  | 
 | 	rb_erase(&av->rb, &ai->volumes); | 
 | 	destroy_av(ai, av, &ai->erase); | 
 | 	ai->vols_found -= 1; | 
 | } | 
 |  | 
 | /** | 
 |  * early_erase_peb - erase a physical eraseblock. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * @pnum: physical eraseblock number to erase; | 
 |  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) | 
 |  * | 
 |  * This function erases physical eraseblock 'pnum', and writes the erase | 
 |  * counter header to it. This function should only be used on UBI device | 
 |  * initialization stages, when the EBA sub-system had not been yet initialized. | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | static int early_erase_peb(struct ubi_device *ubi, | 
 | 			   const struct ubi_attach_info *ai, int pnum, int ec) | 
 | { | 
 | 	int err; | 
 | 	struct ubi_ec_hdr *ec_hdr; | 
 |  | 
 | 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) { | 
 | 		/* | 
 | 		 * Erase counter overflow. Upgrade UBI and use 64-bit | 
 | 		 * erase counters internally. | 
 | 		 */ | 
 | 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d", | 
 | 			pnum, ec); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | 
 | 	if (!ec_hdr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ec_hdr->ec = cpu_to_be64(ec); | 
 |  | 
 | 	err = ubi_io_sync_erase(ubi, pnum, 0); | 
 | 	if (err < 0) | 
 | 		goto out_free; | 
 |  | 
 | 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | 
 |  | 
 | out_free: | 
 | 	kfree(ec_hdr); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * ubi_early_get_peb - get a free physical eraseblock. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * This function returns a free physical eraseblock. It is supposed to be | 
 |  * called on the UBI initialization stages when the wear-leveling sub-system is | 
 |  * not initialized yet. This function picks a physical eraseblocks from one of | 
 |  * the lists, writes the EC header if it is needed, and removes it from the | 
 |  * list. | 
 |  * | 
 |  * This function returns a pointer to the "aeb" of the found free PEB in case | 
 |  * of success and an error code in case of failure. | 
 |  */ | 
 | struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, | 
 | 				       struct ubi_attach_info *ai) | 
 | { | 
 | 	int err = 0; | 
 | 	struct ubi_ainf_peb *aeb, *tmp_aeb; | 
 |  | 
 | 	if (!list_empty(&ai->free)) { | 
 | 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); | 
 | 		list_del(&aeb->u.list); | 
 | 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); | 
 | 		return aeb; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We try to erase the first physical eraseblock from the erase list | 
 | 	 * and pick it if we succeed, or try to erase the next one if not. And | 
 | 	 * so forth. We don't want to take care about bad eraseblocks here - | 
 | 	 * they'll be handled later. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { | 
 | 		if (aeb->ec == UBI_UNKNOWN) | 
 | 			aeb->ec = ai->mean_ec; | 
 |  | 
 | 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); | 
 | 		if (err) | 
 | 			continue; | 
 |  | 
 | 		aeb->ec += 1; | 
 | 		list_del(&aeb->u.list); | 
 | 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); | 
 | 		return aeb; | 
 | 	} | 
 |  | 
 | 	ubi_err(ubi, "no free eraseblocks"); | 
 | 	return ERR_PTR(-ENOSPC); | 
 | } | 
 |  | 
 | /** | 
 |  * check_corruption - check the data area of PEB. | 
 |  * @ubi: UBI device description object | 
 |  * @vid_hdr: the (corrupted) VID header of this PEB | 
 |  * @pnum: the physical eraseblock number to check | 
 |  * | 
 |  * This is a helper function which is used to distinguish between VID header | 
 |  * corruptions caused by power cuts and other reasons. If the PEB contains only | 
 |  * 0xFF bytes in the data area, the VID header is most probably corrupted | 
 |  * because of a power cut (%0 is returned in this case). Otherwise, it was | 
 |  * probably corrupted for some other reasons (%1 is returned in this case). A | 
 |  * negative error code is returned if a read error occurred. | 
 |  * | 
 |  * If the corruption reason was a power cut, UBI can safely erase this PEB. | 
 |  * Otherwise, it should preserve it to avoid possibly destroying important | 
 |  * information. | 
 |  */ | 
 | static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, | 
 | 			    int pnum) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	mutex_lock(&ubi->buf_mutex); | 
 | 	memset(ubi->peb_buf, 0x00, ubi->leb_size); | 
 |  | 
 | 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, | 
 | 			  ubi->leb_size); | 
 | 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { | 
 | 		/* | 
 | 		 * Bit-flips or integrity errors while reading the data area. | 
 | 		 * It is difficult to say for sure what type of corruption is | 
 | 		 * this, but presumably a power cut happened while this PEB was | 
 | 		 * erased, so it became unstable and corrupted, and should be | 
 | 		 * erased. | 
 | 		 */ | 
 | 		err = 0; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF", | 
 | 		pnum); | 
 | 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); | 
 | 	ubi_dump_vid_hdr(vid_hdr); | 
 | 	pr_err("hexdump of PEB %d offset %d, length %d", | 
 | 	       pnum, ubi->leb_start, ubi->leb_size); | 
 | 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | 
 | 			       ubi->peb_buf, ubi->leb_size, 1); | 
 | 	err = 1; | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&ubi->buf_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool vol_ignored(int vol_id) | 
 | { | 
 | 	switch (vol_id) { | 
 | 		case UBI_LAYOUT_VOLUME_ID: | 
 | 		return true; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_MTD_UBI_FASTMAP | 
 | 	return ubi_is_fm_vol(vol_id); | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | static bool ec_hdr_has_eof(struct ubi_ec_hdr *ech) | 
 | { | 
 | 	return ech->padding1[0] == 'E' && | 
 | 	       ech->padding1[1] == 'O' && | 
 | 	       ech->padding1[2] == 'F'; | 
 | } | 
 |  | 
 | /** | 
 |  * scan_peb - scan and process UBI headers of a PEB. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * @pnum: the physical eraseblock number | 
 |  * @fast: true if we're scanning for a Fastmap | 
 |  * | 
 |  * This function reads UBI headers of PEB @pnum, checks them, and adds | 
 |  * information about this PEB to the corresponding list or RB-tree in the | 
 |  * "attaching info" structure. Returns zero if the physical eraseblock was | 
 |  * successfully handled and a negative error code in case of failure. | 
 |  */ | 
 | static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, | 
 | 		    int pnum, bool fast) | 
 | { | 
 | 	struct ubi_ec_hdr *ech = ai->ech; | 
 | 	struct ubi_vid_io_buf *vidb = ai->vidb; | 
 | 	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb); | 
 | 	long long ec; | 
 | 	int err, bitflips = 0, vol_id = -1, ec_err = 0; | 
 |  | 
 | 	dbg_bld("scan PEB %d", pnum); | 
 |  | 
 | 	/* Skip bad physical eraseblocks */ | 
 | 	err = ubi_io_is_bad(ubi, pnum); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	else if (err) { | 
 | 		ai->bad_peb_count += 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!ai->eof_found) { | 
 | 		err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | 
 | 		if (err < 0) | 
 | 			return err; | 
 |  | 
 | 		if (ec_hdr_has_eof(ech)) { | 
 | 			pr_notice("UBI: EOF marker found, PEBs from %d will be erased\n", | 
 | 				pnum); | 
 | 			ai->eof_found = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ai->eof_found) | 
 | 		err = UBI_IO_FF_BITFLIPS; | 
 |  | 
 | 	switch (err) { | 
 | 	case 0: | 
 | 		break; | 
 | 	case UBI_IO_BITFLIPS: | 
 | 		bitflips = 1; | 
 | 		break; | 
 | 	case UBI_IO_FF: | 
 | 		ai->empty_peb_count += 1; | 
 | 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, | 
 | 				   UBI_UNKNOWN, 0, &ai->erase); | 
 | 	case UBI_IO_FF_BITFLIPS: | 
 | 		ai->empty_peb_count += 1; | 
 | 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, | 
 | 				   UBI_UNKNOWN, 1, &ai->erase); | 
 | 	case UBI_IO_BAD_HDR_EBADMSG: | 
 | 	case UBI_IO_BAD_HDR: | 
 | 		/* | 
 | 		 * We have to also look at the VID header, possibly it is not | 
 | 		 * corrupted. Set %bitflips flag in order to make this PEB be | 
 | 		 * moved and EC be re-created. | 
 | 		 */ | 
 | 		ec_err = err; | 
 | 		ec = UBI_UNKNOWN; | 
 | 		bitflips = 1; | 
 | 		break; | 
 | 	default: | 
 | 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d", | 
 | 			err); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!ec_err) { | 
 | 		int image_seq; | 
 |  | 
 | 		/* Make sure UBI version is OK */ | 
 | 		if (ech->version != UBI_VERSION) { | 
 | 			ubi_err(ubi, "this UBI version is %d, image version is %d", | 
 | 				UBI_VERSION, (int)ech->version); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		ec = be64_to_cpu(ech->ec); | 
 | 		if (ec > UBI_MAX_ERASECOUNTER) { | 
 | 			/* | 
 | 			 * Erase counter overflow. The EC headers have 64 bits | 
 | 			 * reserved, but we anyway make use of only 31 bit | 
 | 			 * values, as this seems to be enough for any existing | 
 | 			 * flash. Upgrade UBI and use 64-bit erase counters | 
 | 			 * internally. | 
 | 			 */ | 
 | 			ubi_err(ubi, "erase counter overflow, max is %d", | 
 | 				UBI_MAX_ERASECOUNTER); | 
 | 			ubi_dump_ec_hdr(ech); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure that all PEBs have the same image sequence number. | 
 | 		 * This allows us to detect situations when users flash UBI | 
 | 		 * images incorrectly, so that the flash has the new UBI image | 
 | 		 * and leftovers from the old one. This feature was added | 
 | 		 * relatively recently, and the sequence number was always | 
 | 		 * zero, because old UBI implementations always set it to zero. | 
 | 		 * For this reasons, we do not panic if some PEBs have zero | 
 | 		 * sequence number, while other PEBs have non-zero sequence | 
 | 		 * number. | 
 | 		 */ | 
 | 		image_seq = be32_to_cpu(ech->image_seq); | 
 | 		if (!ubi->image_seq) | 
 | 			ubi->image_seq = image_seq; | 
 | 		if (image_seq && ubi->image_seq != image_seq) { | 
 | 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d", | 
 | 				image_seq, pnum, ubi->image_seq); | 
 | 			ubi_dump_ec_hdr(ech); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* OK, we've done with the EC header, let's look at the VID header */ | 
 |  | 
 | 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	switch (err) { | 
 | 	case 0: | 
 | 		break; | 
 | 	case UBI_IO_BITFLIPS: | 
 | 		bitflips = 1; | 
 | 		break; | 
 | 	case UBI_IO_BAD_HDR_EBADMSG: | 
 | 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG) | 
 | 			/* | 
 | 			 * Both EC and VID headers are corrupted and were read | 
 | 			 * with data integrity error, probably this is a bad | 
 | 			 * PEB, bit it is not marked as bad yet. This may also | 
 | 			 * be a result of power cut during erasure. | 
 | 			 */ | 
 | 			ai->maybe_bad_peb_count += 1; | 
 | 	case UBI_IO_BAD_HDR: | 
 | 			/* | 
 | 			 * If we're facing a bad VID header we have to drop *all* | 
 | 			 * Fastmap data structures we find. The most recent Fastmap | 
 | 			 * could be bad and therefore there is a chance that we attach | 
 | 			 * from an old one. On a fine MTD stack a PEB must not render | 
 | 			 * bad all of a sudden, but the reality is different. | 
 | 			 * So, let's be paranoid and help finding the root cause by | 
 | 			 * falling back to scanning mode instead of attaching with a | 
 | 			 * bad EBA table and cause data corruption which is hard to | 
 | 			 * analyze. | 
 | 			 */ | 
 | 			if (fast) | 
 | 				ai->force_full_scan = 1; | 
 |  | 
 | 		if (ec_err) | 
 | 			/* | 
 | 			 * Both headers are corrupted. There is a possibility | 
 | 			 * that this a valid UBI PEB which has corresponding | 
 | 			 * LEB, but the headers are corrupted. However, it is | 
 | 			 * impossible to distinguish it from a PEB which just | 
 | 			 * contains garbage because of a power cut during erase | 
 | 			 * operation. So we just schedule this PEB for erasure. | 
 | 			 * | 
 | 			 * Besides, in case of NOR flash, we deliberately | 
 | 			 * corrupt both headers because NOR flash erasure is | 
 | 			 * slow and can start from the end. | 
 | 			 */ | 
 | 			err = 0; | 
 | 		else | 
 | 			/* | 
 | 			 * The EC was OK, but the VID header is corrupted. We | 
 | 			 * have to check what is in the data area. | 
 | 			 */ | 
 | 			err = check_corruption(ubi, vidh, pnum); | 
 |  | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		else if (!err) | 
 | 			/* This corruption is caused by a power cut */ | 
 | 			err = add_to_list(ai, pnum, UBI_UNKNOWN, | 
 | 					  UBI_UNKNOWN, ec, 1, &ai->erase); | 
 | 		else | 
 | 			/* This is an unexpected corruption */ | 
 | 			err = add_corrupted(ai, pnum, ec); | 
 | 		if (err) | 
 | 			return err; | 
 | 		goto adjust_mean_ec; | 
 | 	case UBI_IO_FF_BITFLIPS: | 
 | 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, | 
 | 				  ec, 1, &ai->erase); | 
 | 		if (err) | 
 | 			return err; | 
 | 		goto adjust_mean_ec; | 
 | 	case UBI_IO_FF: | 
 | 		if (ec_err || bitflips) | 
 | 			err = add_to_list(ai, pnum, UBI_UNKNOWN, | 
 | 					  UBI_UNKNOWN, ec, 1, &ai->erase); | 
 | 		else | 
 | 			err = add_to_list(ai, pnum, UBI_UNKNOWN, | 
 | 					  UBI_UNKNOWN, ec, 0, &ai->free); | 
 | 		if (err) | 
 | 			return err; | 
 | 		goto adjust_mean_ec; | 
 | 	default: | 
 | 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d", | 
 | 			err); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	vol_id = be32_to_cpu(vidh->vol_id); | 
 | 	if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) { | 
 | 		int lnum = be32_to_cpu(vidh->lnum); | 
 |  | 
 | 		/* Unsupported internal volume */ | 
 | 		switch (vidh->compat) { | 
 | 		case UBI_COMPAT_DELETE: | 
 | 			ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it", | 
 | 				vol_id, lnum); | 
 |  | 
 | 			err = add_to_list(ai, pnum, vol_id, lnum, | 
 | 					  ec, 1, &ai->erase); | 
 | 			if (err) | 
 | 				return err; | 
 | 			return 0; | 
 |  | 
 | 		case UBI_COMPAT_RO: | 
 | 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode", | 
 | 				vol_id, lnum); | 
 | 			ubi->ro_mode = 1; | 
 | 			break; | 
 |  | 
 | 		case UBI_COMPAT_PRESERVE: | 
 | 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found", | 
 | 				vol_id, lnum); | 
 | 			err = add_to_list(ai, pnum, vol_id, lnum, | 
 | 					  ec, 0, &ai->alien); | 
 | 			if (err) | 
 | 				return err; | 
 | 			return 0; | 
 |  | 
 | 		case UBI_COMPAT_REJECT: | 
 | 			ubi_err(ubi, "incompatible internal volume %d:%d found", | 
 | 				vol_id, lnum); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ec_err) | 
 | 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d", | 
 | 			 pnum); | 
 |  | 
 | 	if (ubi_is_fm_vol(vol_id)) | 
 | 		err = add_fastmap(ai, pnum, vidh, ec); | 
 | 	else | 
 | 		err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | adjust_mean_ec: | 
 | 	if (!ec_err) { | 
 | 		ai->ec_sum += ec; | 
 | 		ai->ec_count += 1; | 
 | 		if (ec > ai->max_ec) | 
 | 			ai->max_ec = ec; | 
 | 		if (ec < ai->min_ec) | 
 | 			ai->min_ec = ec; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * late_analysis - analyze the overall situation with PEB. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * This is a helper function which takes a look what PEBs we have after we | 
 |  * gather information about all of them ("ai" is compete). It decides whether | 
 |  * the flash is empty and should be formatted of whether there are too many | 
 |  * corrupted PEBs and we should not attach this MTD device. Returns zero if we | 
 |  * should proceed with attaching the MTD device, and %-EINVAL if we should not. | 
 |  */ | 
 | static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 | 	int max_corr, peb_count; | 
 |  | 
 | 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; | 
 | 	max_corr = peb_count / 20 ?: 8; | 
 |  | 
 | 	/* | 
 | 	 * Few corrupted PEBs is not a problem and may be just a result of | 
 | 	 * unclean reboots. However, many of them may indicate some problems | 
 | 	 * with the flash HW or driver. | 
 | 	 */ | 
 | 	if (ai->corr_peb_count) { | 
 | 		ubi_err(ubi, "%d PEBs are corrupted and preserved", | 
 | 			ai->corr_peb_count); | 
 | 		pr_err("Corrupted PEBs are:"); | 
 | 		list_for_each_entry(aeb, &ai->corr, u.list) | 
 | 			pr_cont(" %d", aeb->pnum); | 
 | 		pr_cont("\n"); | 
 |  | 
 | 		/* | 
 | 		 * If too many PEBs are corrupted, we refuse attaching, | 
 | 		 * otherwise, only print a warning. | 
 | 		 */ | 
 | 		if (ai->corr_peb_count >= max_corr) { | 
 | 			ubi_err(ubi, "too many corrupted PEBs, refusing"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { | 
 | 		/* | 
 | 		 * All PEBs are empty, or almost all - a couple PEBs look like | 
 | 		 * they may be bad PEBs which were not marked as bad yet. | 
 | 		 * | 
 | 		 * This piece of code basically tries to distinguish between | 
 | 		 * the following situations: | 
 | 		 * | 
 | 		 * 1. Flash is empty, but there are few bad PEBs, which are not | 
 | 		 *    marked as bad so far, and which were read with error. We | 
 | 		 *    want to go ahead and format this flash. While formatting, | 
 | 		 *    the faulty PEBs will probably be marked as bad. | 
 | 		 * | 
 | 		 * 2. Flash contains non-UBI data and we do not want to format | 
 | 		 *    it and destroy possibly important information. | 
 | 		 */ | 
 | 		if (ai->maybe_bad_peb_count <= 2) { | 
 | 			ai->is_empty = 1; | 
 | 			ubi_msg(ubi, "empty MTD device detected"); | 
 | 			get_random_bytes(&ubi->image_seq, | 
 | 					 sizeof(ubi->image_seq)); | 
 | 		} else { | 
 | 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * destroy_av - free volume attaching information. | 
 |  * @av: volume attaching information | 
 |  * @ai: attaching information | 
 |  * @list: put the aeb elements in there if !NULL, otherwise free them | 
 |  * | 
 |  * This function destroys the volume attaching information. | 
 |  */ | 
 | static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av, | 
 | 		       struct list_head *list) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb; | 
 | 	struct rb_node *this = av->root.rb_node; | 
 |  | 
 | 	while (this) { | 
 | 		if (this->rb_left) | 
 | 			this = this->rb_left; | 
 | 		else if (this->rb_right) | 
 | 			this = this->rb_right; | 
 | 		else { | 
 | 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); | 
 | 			this = rb_parent(this); | 
 | 			if (this) { | 
 | 				if (this->rb_left == &aeb->u.rb) | 
 | 					this->rb_left = NULL; | 
 | 				else | 
 | 					this->rb_right = NULL; | 
 | 			} | 
 |  | 
 | 			if (list) | 
 | 				list_add_tail(&aeb->u.list, list); | 
 | 			else | 
 | 				ubi_free_aeb(ai, aeb); | 
 | 		} | 
 | 	} | 
 | 	kfree(av); | 
 | } | 
 |  | 
 | /** | 
 |  * destroy_ai - destroy attaching information. | 
 |  * @ai: attaching information | 
 |  */ | 
 | static void destroy_ai(struct ubi_attach_info *ai) | 
 | { | 
 | 	struct ubi_ainf_peb *aeb, *aeb_tmp; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct rb_node *rb; | 
 |  | 
 | 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { | 
 | 		list_del(&aeb->u.list); | 
 | 		ubi_free_aeb(ai, aeb); | 
 | 	} | 
 | 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { | 
 | 		list_del(&aeb->u.list); | 
 | 		ubi_free_aeb(ai, aeb); | 
 | 	} | 
 | 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { | 
 | 		list_del(&aeb->u.list); | 
 | 		ubi_free_aeb(ai, aeb); | 
 | 	} | 
 | 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { | 
 | 		list_del(&aeb->u.list); | 
 | 		ubi_free_aeb(ai, aeb); | 
 | 	} | 
 | 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) { | 
 | 		list_del(&aeb->u.list); | 
 | 		ubi_free_aeb(ai, aeb); | 
 | 	} | 
 |  | 
 | 	/* Destroy the volume RB-tree */ | 
 | 	rb = ai->volumes.rb_node; | 
 | 	while (rb) { | 
 | 		if (rb->rb_left) | 
 | 			rb = rb->rb_left; | 
 | 		else if (rb->rb_right) | 
 | 			rb = rb->rb_right; | 
 | 		else { | 
 | 			av = rb_entry(rb, struct ubi_ainf_volume, rb); | 
 |  | 
 | 			rb = rb_parent(rb); | 
 | 			if (rb) { | 
 | 				if (rb->rb_left == &av->rb) | 
 | 					rb->rb_left = NULL; | 
 | 				else | 
 | 					rb->rb_right = NULL; | 
 | 			} | 
 |  | 
 | 			destroy_av(ai, av, NULL); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kmem_cache_destroy(ai->aeb_slab_cache); | 
 | 	kfree(ai); | 
 | } | 
 |  | 
 | /** | 
 |  * scan_all - scan entire MTD device. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attach info object | 
 |  * @start: start scanning at this PEB | 
 |  * | 
 |  * This function does full scanning of an MTD device and returns complete | 
 |  * information about it in form of a "struct ubi_attach_info" object. In case | 
 |  * of failure, an error code is returned. | 
 |  */ | 
 | static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, | 
 | 		    int start) | 
 | { | 
 | 	int err, pnum; | 
 | 	struct rb_node *rb1, *rb2; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct ubi_ainf_peb *aeb; | 
 |  | 
 | 	err = -ENOMEM; | 
 |  | 
 | 	ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | 
 | 	if (!ai->ech) | 
 | 		return err; | 
 |  | 
 | 	ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); | 
 | 	if (!ai->vidb) | 
 | 		goto out_ech; | 
 |  | 
 | 	for (pnum = start; pnum < ubi->peb_count; pnum++) { | 
 | 		cond_resched(); | 
 |  | 
 | 		dbg_gen("process PEB %d", pnum); | 
 | 		err = scan_peb(ubi, ai, pnum, false); | 
 | 		if (err < 0) | 
 | 			goto out_vidh; | 
 | 	} | 
 |  | 
 | 	ubi_msg(ubi, "scanning is finished"); | 
 |  | 
 | 	/* Calculate mean erase counter */ | 
 | 	if (ai->ec_count) | 
 | 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); | 
 |  | 
 | 	err = late_analysis(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_vidh; | 
 |  | 
 | 	/* | 
 | 	 * In case of unknown erase counter we use the mean erase counter | 
 | 	 * value. | 
 | 	 */ | 
 | 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | 
 | 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) | 
 | 			if (aeb->ec == UBI_UNKNOWN) | 
 | 				aeb->ec = ai->mean_ec; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->free, u.list) { | 
 | 		if (aeb->ec == UBI_UNKNOWN) | 
 | 			aeb->ec = ai->mean_ec; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->corr, u.list) | 
 | 		if (aeb->ec == UBI_UNKNOWN) | 
 | 			aeb->ec = ai->mean_ec; | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->erase, u.list) | 
 | 		if (aeb->ec == UBI_UNKNOWN) | 
 | 			aeb->ec = ai->mean_ec; | 
 |  | 
 | 	err = self_check_ai(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_vidh; | 
 |  | 
 | 	ubi_free_vid_buf(ai->vidb); | 
 | 	kfree(ai->ech); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_vidh: | 
 | 	ubi_free_vid_buf(ai->vidb); | 
 | out_ech: | 
 | 	kfree(ai->ech); | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct ubi_attach_info *alloc_ai(void) | 
 | { | 
 | 	struct ubi_attach_info *ai; | 
 |  | 
 | 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); | 
 | 	if (!ai) | 
 | 		return ai; | 
 |  | 
 | 	INIT_LIST_HEAD(&ai->corr); | 
 | 	INIT_LIST_HEAD(&ai->free); | 
 | 	INIT_LIST_HEAD(&ai->erase); | 
 | 	INIT_LIST_HEAD(&ai->alien); | 
 | 	INIT_LIST_HEAD(&ai->fastmap); | 
 | 	ai->volumes = RB_ROOT; | 
 | 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", | 
 | 					       sizeof(struct ubi_ainf_peb), | 
 | 					       0, 0, NULL); | 
 | 	if (!ai->aeb_slab_cache) { | 
 | 		kfree(ai); | 
 | 		ai = NULL; | 
 | 	} | 
 |  | 
 | 	return ai; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MTD_UBI_FASTMAP | 
 |  | 
 | /** | 
 |  * scan_fast - try to find a fastmap and attach from it. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attach info object | 
 |  * | 
 |  * Returns 0 on success, negative return values indicate an internal | 
 |  * error. | 
 |  * UBI_NO_FASTMAP denotes that no fastmap was found. | 
 |  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. | 
 |  */ | 
 | static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai) | 
 | { | 
 | 	int err, pnum; | 
 | 	struct ubi_attach_info *scan_ai; | 
 |  | 
 | 	err = -ENOMEM; | 
 |  | 
 | 	scan_ai = alloc_ai(); | 
 | 	if (!scan_ai) | 
 | 		goto out; | 
 |  | 
 | 	scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | 
 | 	if (!scan_ai->ech) | 
 | 		goto out_ai; | 
 |  | 
 | 	scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); | 
 | 	if (!scan_ai->vidb) | 
 | 		goto out_ech; | 
 |  | 
 | 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { | 
 | 		cond_resched(); | 
 |  | 
 | 		dbg_gen("process PEB %d", pnum); | 
 | 		err = scan_peb(ubi, scan_ai, pnum, true); | 
 | 		if (err < 0) | 
 | 			goto out_vidh; | 
 | 	} | 
 |  | 
 | 	ubi_free_vid_buf(scan_ai->vidb); | 
 | 	kfree(scan_ai->ech); | 
 |  | 
 | 	if (scan_ai->force_full_scan) | 
 | 		err = UBI_NO_FASTMAP; | 
 | 	else | 
 | 		err = ubi_scan_fastmap(ubi, *ai, scan_ai); | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * Didn't attach via fastmap, do a full scan but reuse what | 
 | 		 * we've aready scanned. | 
 | 		 */ | 
 | 		destroy_ai(*ai); | 
 | 		*ai = scan_ai; | 
 | 	} else | 
 | 		destroy_ai(scan_ai); | 
 |  | 
 | 	return err; | 
 |  | 
 | out_vidh: | 
 | 	ubi_free_vid_buf(scan_ai->vidb); | 
 | out_ech: | 
 | 	kfree(scan_ai->ech); | 
 | out_ai: | 
 | 	destroy_ai(scan_ai); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  * ubi_attach - attach an MTD device. | 
 |  * @ubi: UBI device descriptor | 
 |  * @force_scan: if set to non-zero attach by scanning | 
 |  * | 
 |  * This function returns zero in case of success and a negative error code in | 
 |  * case of failure. | 
 |  */ | 
 | int ubi_attach(struct ubi_device *ubi, int force_scan) | 
 | { | 
 | 	int err; | 
 | 	struct ubi_attach_info *ai; | 
 |  | 
 | 	ai = alloc_ai(); | 
 | 	if (!ai) | 
 | 		return -ENOMEM; | 
 |  | 
 | #ifdef CONFIG_MTD_UBI_FASTMAP | 
 | 	/* On small flash devices we disable fastmap in any case. */ | 
 | 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { | 
 | 		ubi->fm_disabled = 1; | 
 | 		force_scan = 1; | 
 | 	} | 
 |  | 
 | 	if (force_scan) | 
 | 		err = scan_all(ubi, ai, 0); | 
 | 	else { | 
 | 		err = scan_fast(ubi, &ai); | 
 | 		if (err > 0 || mtd_is_eccerr(err)) { | 
 | 			if (err != UBI_NO_FASTMAP) { | 
 | 				destroy_ai(ai); | 
 | 				ai = alloc_ai(); | 
 | 				if (!ai) | 
 | 					return -ENOMEM; | 
 |  | 
 | 				err = scan_all(ubi, ai, 0); | 
 | 			} else { | 
 | 				err = scan_all(ubi, ai, UBI_FM_MAX_START); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #else | 
 | 	err = scan_all(ubi, ai, 0); | 
 | #endif | 
 | 	if (err) | 
 | 		goto out_ai; | 
 |  | 
 | 	ubi->bad_peb_count = ai->bad_peb_count; | 
 | 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; | 
 | 	ubi->corr_peb_count = ai->corr_peb_count; | 
 | 	ubi->max_ec = ai->max_ec; | 
 | 	ubi->mean_ec = ai->mean_ec; | 
 | 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum); | 
 |  | 
 | 	err = ubi_read_volume_table(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_ai; | 
 |  | 
 | 	err = ubi_wl_init(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_vtbl; | 
 |  | 
 | 	err = ubi_eba_init(ubi, ai); | 
 | 	if (err) | 
 | 		goto out_wl; | 
 |  | 
 | #ifdef CONFIG_MTD_UBI_FASTMAP | 
 | 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) { | 
 | 		struct ubi_attach_info *scan_ai; | 
 |  | 
 | 		scan_ai = alloc_ai(); | 
 | 		if (!scan_ai) { | 
 | 			err = -ENOMEM; | 
 | 			goto out_wl; | 
 | 		} | 
 |  | 
 | 		err = scan_all(ubi, scan_ai, 0); | 
 | 		if (err) { | 
 | 			destroy_ai(scan_ai); | 
 | 			goto out_wl; | 
 | 		} | 
 |  | 
 | 		err = self_check_eba(ubi, ai, scan_ai); | 
 | 		destroy_ai(scan_ai); | 
 |  | 
 | 		if (err) | 
 | 			goto out_wl; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	destroy_ai(ai); | 
 | 	return 0; | 
 |  | 
 | out_wl: | 
 | 	ubi_wl_close(ubi); | 
 | out_vtbl: | 
 | 	ubi_free_internal_volumes(ubi); | 
 | 	vfree(ubi->vtbl); | 
 | out_ai: | 
 | 	destroy_ai(ai); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * self_check_ai - check the attaching information. | 
 |  * @ubi: UBI device description object | 
 |  * @ai: attaching information | 
 |  * | 
 |  * This function returns zero if the attaching information is all right, and a | 
 |  * negative error code if not or if an error occurred. | 
 |  */ | 
 | static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) | 
 | { | 
 | 	struct ubi_vid_io_buf *vidb = ai->vidb; | 
 | 	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb); | 
 | 	int pnum, err, vols_found = 0; | 
 | 	struct rb_node *rb1, *rb2; | 
 | 	struct ubi_ainf_volume *av; | 
 | 	struct ubi_ainf_peb *aeb, *last_aeb; | 
 | 	uint8_t *buf; | 
 |  | 
 | 	if (!ubi_dbg_chk_gen(ubi)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * At first, check that attaching information is OK. | 
 | 	 */ | 
 | 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | 
 | 		int leb_count = 0; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		vols_found += 1; | 
 |  | 
 | 		if (ai->is_empty) { | 
 | 			ubi_err(ubi, "bad is_empty flag"); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		if (av->vol_id < 0 || av->highest_lnum < 0 || | 
 | 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || | 
 | 		    av->data_pad < 0 || av->last_data_size < 0) { | 
 | 			ubi_err(ubi, "negative values"); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		if (av->vol_id >= UBI_MAX_VOLUMES && | 
 | 		    av->vol_id < UBI_INTERNAL_VOL_START) { | 
 | 			ubi_err(ubi, "bad vol_id"); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		if (av->vol_id > ai->highest_vol_id) { | 
 | 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there", | 
 | 				ai->highest_vol_id, av->vol_id); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (av->vol_type != UBI_DYNAMIC_VOLUME && | 
 | 		    av->vol_type != UBI_STATIC_VOLUME) { | 
 | 			ubi_err(ubi, "bad vol_type"); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		if (av->data_pad > ubi->leb_size / 2) { | 
 | 			ubi_err(ubi, "bad data_pad"); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		last_aeb = NULL; | 
 | 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { | 
 | 			cond_resched(); | 
 |  | 
 | 			last_aeb = aeb; | 
 | 			leb_count += 1; | 
 |  | 
 | 			if (aeb->pnum < 0 || aeb->ec < 0) { | 
 | 				ubi_err(ubi, "negative values"); | 
 | 				goto bad_aeb; | 
 | 			} | 
 |  | 
 | 			if (aeb->ec < ai->min_ec) { | 
 | 				ubi_err(ubi, "bad ai->min_ec (%d), %d found", | 
 | 					ai->min_ec, aeb->ec); | 
 | 				goto bad_aeb; | 
 | 			} | 
 |  | 
 | 			if (aeb->ec > ai->max_ec) { | 
 | 				ubi_err(ubi, "bad ai->max_ec (%d), %d found", | 
 | 					ai->max_ec, aeb->ec); | 
 | 				goto bad_aeb; | 
 | 			} | 
 |  | 
 | 			if (aeb->pnum >= ubi->peb_count) { | 
 | 				ubi_err(ubi, "too high PEB number %d, total PEBs %d", | 
 | 					aeb->pnum, ubi->peb_count); | 
 | 				goto bad_aeb; | 
 | 			} | 
 |  | 
 | 			if (av->vol_type == UBI_STATIC_VOLUME) { | 
 | 				if (aeb->lnum >= av->used_ebs) { | 
 | 					ubi_err(ubi, "bad lnum or used_ebs"); | 
 | 					goto bad_aeb; | 
 | 				} | 
 | 			} else { | 
 | 				if (av->used_ebs != 0) { | 
 | 					ubi_err(ubi, "non-zero used_ebs"); | 
 | 					goto bad_aeb; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (aeb->lnum > av->highest_lnum) { | 
 | 				ubi_err(ubi, "incorrect highest_lnum or lnum"); | 
 | 				goto bad_aeb; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (av->leb_count != leb_count) { | 
 | 			ubi_err(ubi, "bad leb_count, %d objects in the tree", | 
 | 				leb_count); | 
 | 			goto bad_av; | 
 | 		} | 
 |  | 
 | 		if (!last_aeb) | 
 | 			continue; | 
 |  | 
 | 		aeb = last_aeb; | 
 |  | 
 | 		if (aeb->lnum != av->highest_lnum) { | 
 | 			ubi_err(ubi, "bad highest_lnum"); | 
 | 			goto bad_aeb; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (vols_found != ai->vols_found) { | 
 | 		ubi_err(ubi, "bad ai->vols_found %d, should be %d", | 
 | 			ai->vols_found, vols_found); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Check that attaching information is correct */ | 
 | 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { | 
 | 		last_aeb = NULL; | 
 | 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { | 
 | 			int vol_type; | 
 |  | 
 | 			cond_resched(); | 
 |  | 
 | 			last_aeb = aeb; | 
 |  | 
 | 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1); | 
 | 			if (err && err != UBI_IO_BITFLIPS) { | 
 | 				ubi_err(ubi, "VID header is not OK (%d)", | 
 | 					err); | 
 | 				if (err > 0) | 
 | 					err = -EIO; | 
 | 				return err; | 
 | 			} | 
 |  | 
 | 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | 
 | 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | 
 | 			if (av->vol_type != vol_type) { | 
 | 				ubi_err(ubi, "bad vol_type"); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { | 
 | 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) { | 
 | 				ubi_err(ubi, "bad vol_id %d", av->vol_id); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (av->compat != vidh->compat) { | 
 | 				ubi_err(ubi, "bad compat %d", vidh->compat); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) { | 
 | 				ubi_err(ubi, "bad lnum %d", aeb->lnum); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { | 
 | 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 |  | 
 | 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) { | 
 | 				ubi_err(ubi, "bad data_pad %d", av->data_pad); | 
 | 				goto bad_vid_hdr; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!last_aeb) | 
 | 			continue; | 
 |  | 
 | 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { | 
 | 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum); | 
 | 			goto bad_vid_hdr; | 
 | 		} | 
 |  | 
 | 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) { | 
 | 			ubi_err(ubi, "bad last_data_size %d", | 
 | 				av->last_data_size); | 
 | 			goto bad_vid_hdr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure that all the physical eraseblocks are in one of the lists | 
 | 	 * or trees. | 
 | 	 */ | 
 | 	buf = kzalloc(ubi->peb_count, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (pnum = 0; pnum < ubi->peb_count; pnum++) { | 
 | 		err = ubi_io_is_bad(ubi, pnum); | 
 | 		if (err < 0) { | 
 | 			kfree(buf); | 
 | 			return err; | 
 | 		} else if (err) | 
 | 			buf[pnum] = 1; | 
 | 	} | 
 |  | 
 | 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) | 
 | 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) | 
 | 			buf[aeb->pnum] = 1; | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->free, u.list) | 
 | 		buf[aeb->pnum] = 1; | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->corr, u.list) | 
 | 		buf[aeb->pnum] = 1; | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->erase, u.list) | 
 | 		buf[aeb->pnum] = 1; | 
 |  | 
 | 	list_for_each_entry(aeb, &ai->alien, u.list) | 
 | 		buf[aeb->pnum] = 1; | 
 |  | 
 | 	err = 0; | 
 | 	for (pnum = 0; pnum < ubi->peb_count; pnum++) | 
 | 		if (!buf[pnum]) { | 
 | 			ubi_err(ubi, "PEB %d is not referred", pnum); | 
 | 			err = 1; | 
 | 		} | 
 |  | 
 | 	kfree(buf); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	return 0; | 
 |  | 
 | bad_aeb: | 
 | 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum); | 
 | 	ubi_dump_aeb(aeb, 0); | 
 | 	ubi_dump_av(av); | 
 | 	goto out; | 
 |  | 
 | bad_av: | 
 | 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); | 
 | 	ubi_dump_av(av); | 
 | 	goto out; | 
 |  | 
 | bad_vid_hdr: | 
 | 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); | 
 | 	ubi_dump_av(av); | 
 | 	ubi_dump_vid_hdr(vidh); | 
 |  | 
 | out: | 
 | 	dump_stack(); | 
 | 	return -EINVAL; | 
 | } |