| /* | 
 |  * Accelerated GHASH implementation with ARMv8 PMULL instructions. | 
 |  * | 
 |  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published | 
 |  * by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <asm/neon.h> | 
 | #include <asm/simd.h> | 
 | #include <asm/unaligned.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/algapi.h> | 
 | #include <crypto/b128ops.h> | 
 | #include <crypto/gf128mul.h> | 
 | #include <crypto/internal/aead.h> | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/internal/skcipher.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <linux/cpufeature.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/module.h> | 
 |  | 
 | MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); | 
 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_ALIAS_CRYPTO("ghash"); | 
 |  | 
 | #define GHASH_BLOCK_SIZE	16 | 
 | #define GHASH_DIGEST_SIZE	16 | 
 | #define GCM_IV_SIZE		12 | 
 |  | 
 | struct ghash_key { | 
 | 	u64			h[2]; | 
 | 	u64			h2[2]; | 
 | 	u64			h3[2]; | 
 | 	u64			h4[2]; | 
 |  | 
 | 	be128			k; | 
 | }; | 
 |  | 
 | struct ghash_desc_ctx { | 
 | 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; | 
 | 	u8 buf[GHASH_BLOCK_SIZE]; | 
 | 	u32 count; | 
 | }; | 
 |  | 
 | struct gcm_aes_ctx { | 
 | 	struct crypto_aes_ctx	aes_key; | 
 | 	struct ghash_key	ghash_key; | 
 | }; | 
 |  | 
 | asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, | 
 | 				       struct ghash_key const *k, | 
 | 				       const char *head); | 
 |  | 
 | asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, | 
 | 				      struct ghash_key const *k, | 
 | 				      const char *head); | 
 |  | 
 | #ifdef CONFIG_CFI_CLANG | 
 | static inline void __cfi_pmull_ghash_update_p64(int blocks, u64 dg[], | 
 |                 const char *src, struct ghash_key const *k, const char *head) | 
 | { | 
 |         return pmull_ghash_update_p64(blocks, dg, src, k, head); | 
 | } | 
 | #define pmull_ghash_update_p64 __cfi_pmull_ghash_update_p64 | 
 |  | 
 | static inline void __cfi_pmull_ghash_update_p8(int blocks, u64 dg[], | 
 |                 const char *src, struct ghash_key const *k, const char *head) | 
 | { | 
 |         return pmull_ghash_update_p8(blocks, dg, src, k, head); | 
 | } | 
 | #define pmull_ghash_update_p8 __cfi_pmull_ghash_update_p8 | 
 | #endif | 
 |  | 
 | static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src, | 
 | 				  struct ghash_key const *k, | 
 | 				  const char *head); | 
 |  | 
 | asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], | 
 | 				  const u8 src[], struct ghash_key const *k, | 
 | 				  u8 ctr[], u32 const rk[], int rounds, | 
 | 				  u8 ks[]); | 
 |  | 
 | asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[], | 
 | 				  const u8 src[], struct ghash_key const *k, | 
 | 				  u8 ctr[], u32 const rk[], int rounds); | 
 |  | 
 | asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[], | 
 | 					u32 const rk[], int rounds); | 
 |  | 
 | asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds); | 
 |  | 
 | static int ghash_init(struct shash_desc *desc) | 
 | { | 
 | 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); | 
 |  | 
 | 	*ctx = (struct ghash_desc_ctx){}; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ghash_do_update(int blocks, u64 dg[], const char *src, | 
 | 			    struct ghash_key *key, const char *head) | 
 | { | 
 | 	if (likely(may_use_simd())) { | 
 | 		kernel_neon_begin(); | 
 | 		pmull_ghash_update(blocks, dg, src, key, head); | 
 | 		kernel_neon_end(); | 
 | 	} else { | 
 | 		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; | 
 |  | 
 | 		do { | 
 | 			const u8 *in = src; | 
 |  | 
 | 			if (head) { | 
 | 				in = head; | 
 | 				blocks++; | 
 | 				head = NULL; | 
 | 			} else { | 
 | 				src += GHASH_BLOCK_SIZE; | 
 | 			} | 
 |  | 
 | 			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); | 
 | 			gf128mul_lle(&dst, &key->k); | 
 | 		} while (--blocks); | 
 |  | 
 | 		dg[0] = be64_to_cpu(dst.b); | 
 | 		dg[1] = be64_to_cpu(dst.a); | 
 | 	} | 
 | } | 
 |  | 
 | /* avoid hogging the CPU for too long */ | 
 | #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE) | 
 |  | 
 | static int ghash_update(struct shash_desc *desc, const u8 *src, | 
 | 			unsigned int len) | 
 | { | 
 | 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); | 
 | 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; | 
 |  | 
 | 	ctx->count += len; | 
 |  | 
 | 	if ((partial + len) >= GHASH_BLOCK_SIZE) { | 
 | 		struct ghash_key *key = crypto_shash_ctx(desc->tfm); | 
 | 		int blocks; | 
 |  | 
 | 		if (partial) { | 
 | 			int p = GHASH_BLOCK_SIZE - partial; | 
 |  | 
 | 			memcpy(ctx->buf + partial, src, p); | 
 | 			src += p; | 
 | 			len -= p; | 
 | 		} | 
 |  | 
 | 		blocks = len / GHASH_BLOCK_SIZE; | 
 | 		len %= GHASH_BLOCK_SIZE; | 
 |  | 
 | 		do { | 
 | 			int chunk = min(blocks, MAX_BLOCKS); | 
 |  | 
 | 			ghash_do_update(chunk, ctx->digest, src, key, | 
 | 					partial ? ctx->buf : NULL); | 
 |  | 
 | 			blocks -= chunk; | 
 | 			src += chunk * GHASH_BLOCK_SIZE; | 
 | 			partial = 0; | 
 | 		} while (unlikely(blocks > 0)); | 
 | 	} | 
 | 	if (len) | 
 | 		memcpy(ctx->buf + partial, src, len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ghash_final(struct shash_desc *desc, u8 *dst) | 
 | { | 
 | 	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); | 
 | 	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; | 
 |  | 
 | 	if (partial) { | 
 | 		struct ghash_key *key = crypto_shash_ctx(desc->tfm); | 
 |  | 
 | 		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); | 
 |  | 
 | 		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL); | 
 | 	} | 
 | 	put_unaligned_be64(ctx->digest[1], dst); | 
 | 	put_unaligned_be64(ctx->digest[0], dst + 8); | 
 |  | 
 | 	*ctx = (struct ghash_desc_ctx){}; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void ghash_reflect(u64 h[], const be128 *k) | 
 | { | 
 | 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0; | 
 |  | 
 | 	h[0] = (be64_to_cpu(k->b) << 1) | carry; | 
 | 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); | 
 |  | 
 | 	if (carry) | 
 | 		h[1] ^= 0xc200000000000000UL; | 
 | } | 
 |  | 
 | static int __ghash_setkey(struct ghash_key *key, | 
 | 			  const u8 *inkey, unsigned int keylen) | 
 | { | 
 | 	be128 h; | 
 |  | 
 | 	/* needed for the fallback */ | 
 | 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); | 
 |  | 
 | 	ghash_reflect(key->h, &key->k); | 
 |  | 
 | 	h = key->k; | 
 | 	gf128mul_lle(&h, &key->k); | 
 | 	ghash_reflect(key->h2, &h); | 
 |  | 
 | 	gf128mul_lle(&h, &key->k); | 
 | 	ghash_reflect(key->h3, &h); | 
 |  | 
 | 	gf128mul_lle(&h, &key->k); | 
 | 	ghash_reflect(key->h4, &h); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ghash_setkey(struct crypto_shash *tfm, | 
 | 			const u8 *inkey, unsigned int keylen) | 
 | { | 
 | 	struct ghash_key *key = crypto_shash_ctx(tfm); | 
 |  | 
 | 	if (keylen != GHASH_BLOCK_SIZE) { | 
 | 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return __ghash_setkey(key, inkey, keylen); | 
 | } | 
 |  | 
 | static struct shash_alg ghash_alg = { | 
 | 	.base.cra_name		= "ghash", | 
 | 	.base.cra_driver_name	= "ghash-ce", | 
 | 	.base.cra_priority	= 200, | 
 | 	.base.cra_blocksize	= GHASH_BLOCK_SIZE, | 
 | 	.base.cra_ctxsize	= sizeof(struct ghash_key), | 
 | 	.base.cra_module	= THIS_MODULE, | 
 |  | 
 | 	.digestsize		= GHASH_DIGEST_SIZE, | 
 | 	.init			= ghash_init, | 
 | 	.update			= ghash_update, | 
 | 	.final			= ghash_final, | 
 | 	.setkey			= ghash_setkey, | 
 | 	.descsize		= sizeof(struct ghash_desc_ctx), | 
 | }; | 
 |  | 
 | static int num_rounds(struct crypto_aes_ctx *ctx) | 
 | { | 
 | 	/* | 
 | 	 * # of rounds specified by AES: | 
 | 	 * 128 bit key		10 rounds | 
 | 	 * 192 bit key		12 rounds | 
 | 	 * 256 bit key		14 rounds | 
 | 	 * => n byte key	=> 6 + (n/4) rounds | 
 | 	 */ | 
 | 	return 6 + ctx->key_length / 4; | 
 | } | 
 |  | 
 | static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, | 
 | 		      unsigned int keylen) | 
 | { | 
 | 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); | 
 | 	u8 key[GHASH_BLOCK_SIZE]; | 
 | 	int ret; | 
 |  | 
 | 	ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen); | 
 | 	if (ret) { | 
 | 		tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){}, | 
 | 			    num_rounds(&ctx->aes_key)); | 
 |  | 
 | 	return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); | 
 | } | 
 |  | 
 | static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) | 
 | { | 
 | 	switch (authsize) { | 
 | 	case 4: | 
 | 	case 8: | 
 | 	case 12 ... 16: | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], | 
 | 			   int *buf_count, struct gcm_aes_ctx *ctx) | 
 | { | 
 | 	if (*buf_count > 0) { | 
 | 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); | 
 |  | 
 | 		memcpy(&buf[*buf_count], src, buf_added); | 
 |  | 
 | 		*buf_count += buf_added; | 
 | 		src += buf_added; | 
 | 		count -= buf_added; | 
 | 	} | 
 |  | 
 | 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { | 
 | 		int blocks = count / GHASH_BLOCK_SIZE; | 
 |  | 
 | 		ghash_do_update(blocks, dg, src, &ctx->ghash_key, | 
 | 				*buf_count ? buf : NULL); | 
 |  | 
 | 		src += blocks * GHASH_BLOCK_SIZE; | 
 | 		count %= GHASH_BLOCK_SIZE; | 
 | 		*buf_count = 0; | 
 | 	} | 
 |  | 
 | 	if (count > 0) { | 
 | 		memcpy(buf, src, count); | 
 | 		*buf_count = count; | 
 | 	} | 
 | } | 
 |  | 
 | static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) | 
 | { | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	u8 buf[GHASH_BLOCK_SIZE]; | 
 | 	struct scatter_walk walk; | 
 | 	u32 len = req->assoclen; | 
 | 	int buf_count = 0; | 
 |  | 
 | 	scatterwalk_start(&walk, req->src); | 
 |  | 
 | 	do { | 
 | 		u32 n = scatterwalk_clamp(&walk, len); | 
 | 		u8 *p; | 
 |  | 
 | 		if (!n) { | 
 | 			scatterwalk_start(&walk, sg_next(walk.sg)); | 
 | 			n = scatterwalk_clamp(&walk, len); | 
 | 		} | 
 | 		p = scatterwalk_map(&walk); | 
 |  | 
 | 		gcm_update_mac(dg, p, n, buf, &buf_count, ctx); | 
 | 		len -= n; | 
 |  | 
 | 		scatterwalk_unmap(p); | 
 | 		scatterwalk_advance(&walk, n); | 
 | 		scatterwalk_done(&walk, 0, len); | 
 | 	} while (len); | 
 |  | 
 | 	if (buf_count) { | 
 | 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); | 
 | 		ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx, | 
 | 		      u64 dg[], u8 tag[], int cryptlen) | 
 | { | 
 | 	u8 mac[AES_BLOCK_SIZE]; | 
 | 	u128 lengths; | 
 |  | 
 | 	lengths.a = cpu_to_be64(req->assoclen * 8); | 
 | 	lengths.b = cpu_to_be64(cryptlen * 8); | 
 |  | 
 | 	ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL); | 
 |  | 
 | 	put_unaligned_be64(dg[1], mac); | 
 | 	put_unaligned_be64(dg[0], mac + 8); | 
 |  | 
 | 	crypto_xor(tag, mac, AES_BLOCK_SIZE); | 
 | } | 
 |  | 
 | static int gcm_encrypt(struct aead_request *req) | 
 | { | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	struct skcipher_walk walk; | 
 | 	u8 iv[AES_BLOCK_SIZE]; | 
 | 	u8 ks[2 * AES_BLOCK_SIZE]; | 
 | 	u8 tag[AES_BLOCK_SIZE]; | 
 | 	u64 dg[2] = {}; | 
 | 	int nrounds = num_rounds(&ctx->aes_key); | 
 | 	int err; | 
 |  | 
 | 	if (req->assoclen) | 
 | 		gcm_calculate_auth_mac(req, dg); | 
 |  | 
 | 	memcpy(iv, req->iv, GCM_IV_SIZE); | 
 | 	put_unaligned_be32(1, iv + GCM_IV_SIZE); | 
 |  | 
 | 	err = skcipher_walk_aead_encrypt(&walk, req, false); | 
 |  | 
 | 	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) { | 
 | 		u32 const *rk = NULL; | 
 |  | 
 | 		kernel_neon_begin(); | 
 | 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); | 
 | 		put_unaligned_be32(2, iv + GCM_IV_SIZE); | 
 | 		pmull_gcm_encrypt_block(ks, iv, NULL, nrounds); | 
 | 		put_unaligned_be32(3, iv + GCM_IV_SIZE); | 
 | 		pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds); | 
 | 		put_unaligned_be32(4, iv + GCM_IV_SIZE); | 
 |  | 
 | 		do { | 
 | 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; | 
 |  | 
 | 			if (rk) | 
 | 				kernel_neon_begin(); | 
 |  | 
 | 			pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr, | 
 | 					  walk.src.virt.addr, &ctx->ghash_key, | 
 | 					  iv, rk, nrounds, ks); | 
 | 			kernel_neon_end(); | 
 |  | 
 | 			err = skcipher_walk_done(&walk, | 
 | 					walk.nbytes % (2 * AES_BLOCK_SIZE)); | 
 |  | 
 | 			rk = ctx->aes_key.key_enc; | 
 | 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE); | 
 | 	} else { | 
 | 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); | 
 | 		put_unaligned_be32(2, iv + GCM_IV_SIZE); | 
 |  | 
 | 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { | 
 | 			const int blocks = | 
 | 				walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; | 
 | 			u8 *dst = walk.dst.virt.addr; | 
 | 			u8 *src = walk.src.virt.addr; | 
 | 			int remaining = blocks; | 
 |  | 
 | 			do { | 
 | 				__aes_arm64_encrypt(ctx->aes_key.key_enc, | 
 | 						    ks, iv, nrounds); | 
 | 				crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE); | 
 | 				crypto_inc(iv, AES_BLOCK_SIZE); | 
 |  | 
 | 				dst += AES_BLOCK_SIZE; | 
 | 				src += AES_BLOCK_SIZE; | 
 | 			} while (--remaining > 0); | 
 |  | 
 | 			ghash_do_update(blocks, dg, | 
 | 					walk.dst.virt.addr, &ctx->ghash_key, | 
 | 					NULL); | 
 |  | 
 | 			err = skcipher_walk_done(&walk, | 
 | 						 walk.nbytes % (2 * AES_BLOCK_SIZE)); | 
 | 		} | 
 | 		if (walk.nbytes) { | 
 | 			__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv, | 
 | 					    nrounds); | 
 | 			if (walk.nbytes > AES_BLOCK_SIZE) { | 
 | 				crypto_inc(iv, AES_BLOCK_SIZE); | 
 | 				__aes_arm64_encrypt(ctx->aes_key.key_enc, | 
 | 					            ks + AES_BLOCK_SIZE, iv, | 
 | 						    nrounds); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* handle the tail */ | 
 | 	if (walk.nbytes) { | 
 | 		u8 buf[GHASH_BLOCK_SIZE]; | 
 | 		unsigned int nbytes = walk.nbytes; | 
 | 		u8 *dst = walk.dst.virt.addr; | 
 | 		u8 *head = NULL; | 
 |  | 
 | 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks, | 
 | 			       walk.nbytes); | 
 |  | 
 | 		if (walk.nbytes > GHASH_BLOCK_SIZE) { | 
 | 			head = dst; | 
 | 			dst += GHASH_BLOCK_SIZE; | 
 | 			nbytes %= GHASH_BLOCK_SIZE; | 
 | 		} | 
 |  | 
 | 		memcpy(buf, dst, nbytes); | 
 | 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); | 
 | 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); | 
 |  | 
 | 		err = skcipher_walk_done(&walk, 0); | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	gcm_final(req, ctx, dg, tag, req->cryptlen); | 
 |  | 
 | 	/* copy authtag to end of dst */ | 
 | 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, | 
 | 				 crypto_aead_authsize(aead), 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int gcm_decrypt(struct aead_request *req) | 
 | { | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	unsigned int authsize = crypto_aead_authsize(aead); | 
 | 	struct skcipher_walk walk; | 
 | 	u8 iv[2 * AES_BLOCK_SIZE]; | 
 | 	u8 tag[AES_BLOCK_SIZE]; | 
 | 	u8 buf[2 * GHASH_BLOCK_SIZE]; | 
 | 	u64 dg[2] = {}; | 
 | 	int nrounds = num_rounds(&ctx->aes_key); | 
 | 	int err; | 
 |  | 
 | 	if (req->assoclen) | 
 | 		gcm_calculate_auth_mac(req, dg); | 
 |  | 
 | 	memcpy(iv, req->iv, GCM_IV_SIZE); | 
 | 	put_unaligned_be32(1, iv + GCM_IV_SIZE); | 
 |  | 
 | 	err = skcipher_walk_aead_decrypt(&walk, req, false); | 
 |  | 
 | 	if (likely(may_use_simd() && walk.total >= 2 * AES_BLOCK_SIZE)) { | 
 | 		u32 const *rk = NULL; | 
 |  | 
 | 		kernel_neon_begin(); | 
 | 		pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); | 
 | 		put_unaligned_be32(2, iv + GCM_IV_SIZE); | 
 |  | 
 | 		do { | 
 | 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; | 
 | 			int rem = walk.total - blocks * AES_BLOCK_SIZE; | 
 |  | 
 | 			if (rk) | 
 | 				kernel_neon_begin(); | 
 |  | 
 | 			pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr, | 
 | 					  walk.src.virt.addr, &ctx->ghash_key, | 
 | 					  iv, rk, nrounds); | 
 |  | 
 | 			/* check if this is the final iteration of the loop */ | 
 | 			if (rem < (2 * AES_BLOCK_SIZE)) { | 
 | 				u8 *iv2 = iv + AES_BLOCK_SIZE; | 
 |  | 
 | 				if (rem > AES_BLOCK_SIZE) { | 
 | 					memcpy(iv2, iv, AES_BLOCK_SIZE); | 
 | 					crypto_inc(iv2, AES_BLOCK_SIZE); | 
 | 				} | 
 |  | 
 | 				pmull_gcm_encrypt_block(iv, iv, NULL, nrounds); | 
 |  | 
 | 				if (rem > AES_BLOCK_SIZE) | 
 | 					pmull_gcm_encrypt_block(iv2, iv2, NULL, | 
 | 								nrounds); | 
 | 			} | 
 |  | 
 | 			kernel_neon_end(); | 
 |  | 
 | 			err = skcipher_walk_done(&walk, | 
 | 					walk.nbytes % (2 * AES_BLOCK_SIZE)); | 
 |  | 
 | 			rk = ctx->aes_key.key_enc; | 
 | 		} while (walk.nbytes >= 2 * AES_BLOCK_SIZE); | 
 | 	} else { | 
 | 		__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); | 
 | 		put_unaligned_be32(2, iv + GCM_IV_SIZE); | 
 |  | 
 | 		while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { | 
 | 			int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; | 
 | 			u8 *dst = walk.dst.virt.addr; | 
 | 			u8 *src = walk.src.virt.addr; | 
 |  | 
 | 			ghash_do_update(blocks, dg, walk.src.virt.addr, | 
 | 					&ctx->ghash_key, NULL); | 
 |  | 
 | 			do { | 
 | 				__aes_arm64_encrypt(ctx->aes_key.key_enc, | 
 | 						    buf, iv, nrounds); | 
 | 				crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); | 
 | 				crypto_inc(iv, AES_BLOCK_SIZE); | 
 |  | 
 | 				dst += AES_BLOCK_SIZE; | 
 | 				src += AES_BLOCK_SIZE; | 
 | 			} while (--blocks > 0); | 
 |  | 
 | 			err = skcipher_walk_done(&walk, | 
 | 						 walk.nbytes % (2 * AES_BLOCK_SIZE)); | 
 | 		} | 
 | 		if (walk.nbytes) { | 
 | 			if (walk.nbytes > AES_BLOCK_SIZE) { | 
 | 				u8 *iv2 = iv + AES_BLOCK_SIZE; | 
 |  | 
 | 				memcpy(iv2, iv, AES_BLOCK_SIZE); | 
 | 				crypto_inc(iv2, AES_BLOCK_SIZE); | 
 |  | 
 | 				__aes_arm64_encrypt(ctx->aes_key.key_enc, iv2, | 
 | 						    iv2, nrounds); | 
 | 			} | 
 | 			__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv, | 
 | 					    nrounds); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* handle the tail */ | 
 | 	if (walk.nbytes) { | 
 | 		const u8 *src = walk.src.virt.addr; | 
 | 		const u8 *head = NULL; | 
 | 		unsigned int nbytes = walk.nbytes; | 
 |  | 
 | 		if (walk.nbytes > GHASH_BLOCK_SIZE) { | 
 | 			head = src; | 
 | 			src += GHASH_BLOCK_SIZE; | 
 | 			nbytes %= GHASH_BLOCK_SIZE; | 
 | 		} | 
 |  | 
 | 		memcpy(buf, src, nbytes); | 
 | 		memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); | 
 | 		ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head); | 
 |  | 
 | 		crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv, | 
 | 			       walk.nbytes); | 
 |  | 
 | 		err = skcipher_walk_done(&walk, 0); | 
 | 	} | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	gcm_final(req, ctx, dg, tag, req->cryptlen - authsize); | 
 |  | 
 | 	/* compare calculated auth tag with the stored one */ | 
 | 	scatterwalk_map_and_copy(buf, req->src, | 
 | 				 req->assoclen + req->cryptlen - authsize, | 
 | 				 authsize, 0); | 
 |  | 
 | 	if (crypto_memneq(tag, buf, authsize)) | 
 | 		return -EBADMSG; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct aead_alg gcm_aes_alg = { | 
 | 	.ivsize			= GCM_IV_SIZE, | 
 | 	.chunksize		= 2 * AES_BLOCK_SIZE, | 
 | 	.maxauthsize		= AES_BLOCK_SIZE, | 
 | 	.setkey			= gcm_setkey, | 
 | 	.setauthsize		= gcm_setauthsize, | 
 | 	.encrypt		= gcm_encrypt, | 
 | 	.decrypt		= gcm_decrypt, | 
 |  | 
 | 	.base.cra_name		= "gcm(aes)", | 
 | 	.base.cra_driver_name	= "gcm-aes-ce", | 
 | 	.base.cra_priority	= 300, | 
 | 	.base.cra_blocksize	= 1, | 
 | 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx), | 
 | 	.base.cra_module	= THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init ghash_ce_mod_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!(elf_hwcap & HWCAP_ASIMD)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (elf_hwcap & HWCAP_PMULL) | 
 | 		pmull_ghash_update = pmull_ghash_update_p64; | 
 |  | 
 | 	else | 
 | 		pmull_ghash_update = pmull_ghash_update_p8; | 
 |  | 
 | 	ret = crypto_register_shash(&ghash_alg); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (elf_hwcap & HWCAP_PMULL) { | 
 | 		ret = crypto_register_aead(&gcm_aes_alg); | 
 | 		if (ret) | 
 | 			crypto_unregister_shash(&ghash_alg); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit ghash_ce_mod_exit(void) | 
 | { | 
 | 	crypto_unregister_shash(&ghash_alg); | 
 | 	crypto_unregister_aead(&gcm_aes_alg); | 
 | } | 
 |  | 
 | static const struct cpu_feature ghash_cpu_feature[] = { | 
 | 	{ cpu_feature(PMULL) }, { } | 
 | }; | 
 | MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); | 
 |  | 
 | module_init(ghash_ce_mod_init); | 
 | module_exit(ghash_ce_mod_exit); |