| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * fs/f2fs/segment.c | 
 |  * | 
 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 |  *             http://www.samsung.com/ | 
 |  */ | 
 | #include <linux/fs.h> | 
 | #include <linux/f2fs_fs.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/sched/signal.h> | 
 |  | 
 | #include "f2fs.h" | 
 | #include "segment.h" | 
 | #include "node.h" | 
 | #include "gc.h" | 
 | #include "trace.h" | 
 | #include <trace/events/f2fs.h> | 
 |  | 
 | #define __reverse_ffz(x) __reverse_ffs(~(x)) | 
 |  | 
 | static struct kmem_cache *discard_entry_slab; | 
 | static struct kmem_cache *discard_cmd_slab; | 
 | static struct kmem_cache *sit_entry_set_slab; | 
 | static struct kmem_cache *inmem_entry_slab; | 
 |  | 
 | static unsigned long __reverse_ulong(unsigned char *str) | 
 | { | 
 | 	unsigned long tmp = 0; | 
 | 	int shift = 24, idx = 0; | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 | 	shift = 56; | 
 | #endif | 
 | 	while (shift >= 0) { | 
 | 		tmp |= (unsigned long)str[idx++] << shift; | 
 | 		shift -= BITS_PER_BYTE; | 
 | 	} | 
 | 	return tmp; | 
 | } | 
 |  | 
 | /* | 
 |  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since | 
 |  * MSB and LSB are reversed in a byte by f2fs_set_bit. | 
 |  */ | 
 | static inline unsigned long __reverse_ffs(unsigned long word) | 
 | { | 
 | 	int num = 0; | 
 |  | 
 | #if BITS_PER_LONG == 64 | 
 | 	if ((word & 0xffffffff00000000UL) == 0) | 
 | 		num += 32; | 
 | 	else | 
 | 		word >>= 32; | 
 | #endif | 
 | 	if ((word & 0xffff0000) == 0) | 
 | 		num += 16; | 
 | 	else | 
 | 		word >>= 16; | 
 |  | 
 | 	if ((word & 0xff00) == 0) | 
 | 		num += 8; | 
 | 	else | 
 | 		word >>= 8; | 
 |  | 
 | 	if ((word & 0xf0) == 0) | 
 | 		num += 4; | 
 | 	else | 
 | 		word >>= 4; | 
 |  | 
 | 	if ((word & 0xc) == 0) | 
 | 		num += 2; | 
 | 	else | 
 | 		word >>= 2; | 
 |  | 
 | 	if ((word & 0x2) == 0) | 
 | 		num += 1; | 
 | 	return num; | 
 | } | 
 |  | 
 | /* | 
 |  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because | 
 |  * f2fs_set_bit makes MSB and LSB reversed in a byte. | 
 |  * @size must be integral times of unsigned long. | 
 |  * Example: | 
 |  *                             MSB <--> LSB | 
 |  *   f2fs_set_bit(0, bitmap) => 1000 0000 | 
 |  *   f2fs_set_bit(7, bitmap) => 0000 0001 | 
 |  */ | 
 | static unsigned long __find_rev_next_bit(const unsigned long *addr, | 
 | 			unsigned long size, unsigned long offset) | 
 | { | 
 | 	const unsigned long *p = addr + BIT_WORD(offset); | 
 | 	unsigned long result = size; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 |  | 
 | 	size -= (offset & ~(BITS_PER_LONG - 1)); | 
 | 	offset %= BITS_PER_LONG; | 
 |  | 
 | 	while (1) { | 
 | 		if (*p == 0) | 
 | 			goto pass; | 
 |  | 
 | 		tmp = __reverse_ulong((unsigned char *)p); | 
 |  | 
 | 		tmp &= ~0UL >> offset; | 
 | 		if (size < BITS_PER_LONG) | 
 | 			tmp &= (~0UL << (BITS_PER_LONG - size)); | 
 | 		if (tmp) | 
 | 			goto found; | 
 | pass: | 
 | 		if (size <= BITS_PER_LONG) | 
 | 			break; | 
 | 		size -= BITS_PER_LONG; | 
 | 		offset = 0; | 
 | 		p++; | 
 | 	} | 
 | 	return result; | 
 | found: | 
 | 	return result - size + __reverse_ffs(tmp); | 
 | } | 
 |  | 
 | static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, | 
 | 			unsigned long size, unsigned long offset) | 
 | { | 
 | 	const unsigned long *p = addr + BIT_WORD(offset); | 
 | 	unsigned long result = size; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 |  | 
 | 	size -= (offset & ~(BITS_PER_LONG - 1)); | 
 | 	offset %= BITS_PER_LONG; | 
 |  | 
 | 	while (1) { | 
 | 		if (*p == ~0UL) | 
 | 			goto pass; | 
 |  | 
 | 		tmp = __reverse_ulong((unsigned char *)p); | 
 |  | 
 | 		if (offset) | 
 | 			tmp |= ~0UL << (BITS_PER_LONG - offset); | 
 | 		if (size < BITS_PER_LONG) | 
 | 			tmp |= ~0UL >> size; | 
 | 		if (tmp != ~0UL) | 
 | 			goto found; | 
 | pass: | 
 | 		if (size <= BITS_PER_LONG) | 
 | 			break; | 
 | 		size -= BITS_PER_LONG; | 
 | 		offset = 0; | 
 | 		p++; | 
 | 	} | 
 | 	return result; | 
 | found: | 
 | 	return result - size + __reverse_ffz(tmp); | 
 | } | 
 |  | 
 | bool f2fs_need_SSR(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); | 
 | 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); | 
 | 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); | 
 |  | 
 | 	if (test_opt(sbi, LFS)) | 
 | 		return false; | 
 | 	if (sbi->gc_mode == GC_URGENT) | 
 | 		return true; | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) | 
 | 		return true; | 
 |  | 
 | 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + | 
 | 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); | 
 | } | 
 |  | 
 | void f2fs_register_inmem_page(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct inmem_pages *new; | 
 |  | 
 | 	f2fs_trace_pid(page); | 
 |  | 
 | 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); | 
 |  | 
 | 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); | 
 |  | 
 | 	/* add atomic page indices to the list */ | 
 | 	new->page = page; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 |  | 
 | 	/* increase reference count with clean state */ | 
 | 	get_page(page); | 
 | 	mutex_lock(&F2FS_I(inode)->inmem_lock); | 
 | 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); | 
 | 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); | 
 | 	mutex_unlock(&F2FS_I(inode)->inmem_lock); | 
 |  | 
 | 	trace_f2fs_register_inmem_page(page, INMEM); | 
 | } | 
 |  | 
 | static int __revoke_inmem_pages(struct inode *inode, | 
 | 				struct list_head *head, bool drop, bool recover, | 
 | 				bool trylock) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct inmem_pages *cur, *tmp; | 
 | 	int err = 0; | 
 |  | 
 | 	list_for_each_entry_safe(cur, tmp, head, list) { | 
 | 		struct page *page = cur->page; | 
 |  | 
 | 		if (drop) | 
 | 			trace_f2fs_commit_inmem_page(page, INMEM_DROP); | 
 |  | 
 | 		if (trylock) { | 
 | 			/* | 
 | 			 * to avoid deadlock in between page lock and | 
 | 			 * inmem_lock. | 
 | 			 */ | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 | 		} else { | 
 | 			lock_page(page); | 
 | 		} | 
 |  | 
 | 		f2fs_wait_on_page_writeback(page, DATA, true, true); | 
 |  | 
 | 		if (recover) { | 
 | 			struct dnode_of_data dn; | 
 | 			struct node_info ni; | 
 |  | 
 | 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); | 
 | retry: | 
 | 			set_new_dnode(&dn, inode, NULL, NULL, 0); | 
 | 			err = f2fs_get_dnode_of_data(&dn, page->index, | 
 | 								LOOKUP_NODE); | 
 | 			if (err) { | 
 | 				if (err == -ENOMEM) { | 
 | 					congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 					cond_resched(); | 
 | 					goto retry; | 
 | 				} | 
 | 				err = -EAGAIN; | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			err = f2fs_get_node_info(sbi, dn.nid, &ni); | 
 | 			if (err) { | 
 | 				f2fs_put_dnode(&dn); | 
 | 				return err; | 
 | 			} | 
 |  | 
 | 			if (cur->old_addr == NEW_ADDR) { | 
 | 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr); | 
 | 				f2fs_update_data_blkaddr(&dn, NEW_ADDR); | 
 | 			} else | 
 | 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr, | 
 | 					cur->old_addr, ni.version, true, true); | 
 | 			f2fs_put_dnode(&dn); | 
 | 		} | 
 | next: | 
 | 		/* we don't need to invalidate this in the sccessful status */ | 
 | 		if (drop || recover) { | 
 | 			ClearPageUptodate(page); | 
 | 			clear_cold_data(page); | 
 | 		} | 
 | 		f2fs_clear_page_private(page); | 
 | 		f2fs_put_page(page, 1); | 
 |  | 
 | 		list_del(&cur->list); | 
 | 		kmem_cache_free(inmem_entry_slab, cur); | 
 | 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) | 
 | { | 
 | 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; | 
 | 	struct inode *inode; | 
 | 	struct f2fs_inode_info *fi; | 
 | 	unsigned int count = sbi->atomic_files; | 
 | 	unsigned int looped = 0; | 
 | next: | 
 | 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
 | 	if (list_empty(head)) { | 
 | 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
 | 		return; | 
 | 	} | 
 | 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); | 
 | 	inode = igrab(&fi->vfs_inode); | 
 | 	if (inode) | 
 | 		list_move_tail(&fi->inmem_ilist, head); | 
 | 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
 |  | 
 | 	if (inode) { | 
 | 		if (gc_failure) { | 
 | 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) | 
 | 				goto skip; | 
 | 		} | 
 | 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); | 
 | 		f2fs_drop_inmem_pages(inode); | 
 | skip: | 
 | 		iput(inode); | 
 | 	} | 
 | 	congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 	cond_resched(); | 
 | 	if (gc_failure) { | 
 | 		if (++looped >= count) | 
 | 			return; | 
 | 	} | 
 | 	goto next; | 
 | } | 
 |  | 
 | void f2fs_drop_inmem_pages(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct f2fs_inode_info *fi = F2FS_I(inode); | 
 |  | 
 | 	while (!list_empty(&fi->inmem_pages)) { | 
 | 		mutex_lock(&fi->inmem_lock); | 
 | 		__revoke_inmem_pages(inode, &fi->inmem_pages, | 
 | 						true, false, true); | 
 | 		mutex_unlock(&fi->inmem_lock); | 
 | 	} | 
 |  | 
 | 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; | 
 | 	stat_dec_atomic_write(inode); | 
 |  | 
 | 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]); | 
 | 	if (!list_empty(&fi->inmem_ilist)) | 
 | 		list_del_init(&fi->inmem_ilist); | 
 | 	if (f2fs_is_atomic_file(inode)) { | 
 | 		clear_inode_flag(inode, FI_ATOMIC_FILE); | 
 | 		sbi->atomic_files--; | 
 | 	} | 
 | 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); | 
 | } | 
 |  | 
 | void f2fs_drop_inmem_page(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct f2fs_inode_info *fi = F2FS_I(inode); | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct list_head *head = &fi->inmem_pages; | 
 | 	struct inmem_pages *cur = NULL; | 
 |  | 
 | 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); | 
 |  | 
 | 	mutex_lock(&fi->inmem_lock); | 
 | 	list_for_each_entry(cur, head, list) { | 
 | 		if (cur->page == page) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page); | 
 | 	list_del(&cur->list); | 
 | 	mutex_unlock(&fi->inmem_lock); | 
 |  | 
 | 	dec_page_count(sbi, F2FS_INMEM_PAGES); | 
 | 	kmem_cache_free(inmem_entry_slab, cur); | 
 |  | 
 | 	ClearPageUptodate(page); | 
 | 	f2fs_clear_page_private(page); | 
 | 	f2fs_put_page(page, 0); | 
 |  | 
 | 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); | 
 | } | 
 |  | 
 | static int __f2fs_commit_inmem_pages(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct f2fs_inode_info *fi = F2FS_I(inode); | 
 | 	struct inmem_pages *cur, *tmp; | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.ino = inode->i_ino, | 
 | 		.type = DATA, | 
 | 		.op = REQ_OP_WRITE, | 
 | 		.op_flags = REQ_SYNC | REQ_PRIO, | 
 | 		.io_type = FS_DATA_IO, | 
 | 	}; | 
 | 	struct list_head revoke_list; | 
 | 	bool submit_bio = false; | 
 | 	int err = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&revoke_list); | 
 |  | 
 | 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { | 
 | 		struct page *page = cur->page; | 
 |  | 
 | 		lock_page(page); | 
 | 		if (page->mapping == inode->i_mapping) { | 
 | 			trace_f2fs_commit_inmem_page(page, INMEM); | 
 |  | 
 | 			f2fs_wait_on_page_writeback(page, DATA, true, true); | 
 |  | 
 | 			set_page_dirty(page); | 
 | 			if (clear_page_dirty_for_io(page)) { | 
 | 				inode_dec_dirty_pages(inode); | 
 | 				f2fs_remove_dirty_inode(inode); | 
 | 			} | 
 | retry: | 
 | 			fio.page = page; | 
 | 			fio.old_blkaddr = NULL_ADDR; | 
 | 			fio.encrypted_page = NULL; | 
 | 			fio.need_lock = LOCK_DONE; | 
 | 			err = f2fs_do_write_data_page(&fio); | 
 | 			if (err) { | 
 | 				if (err == -ENOMEM) { | 
 | 					congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 					cond_resched(); | 
 | 					goto retry; | 
 | 				} | 
 | 				unlock_page(page); | 
 | 				break; | 
 | 			} | 
 | 			/* record old blkaddr for revoking */ | 
 | 			cur->old_addr = fio.old_blkaddr; | 
 | 			submit_bio = true; | 
 | 		} | 
 | 		unlock_page(page); | 
 | 		list_move_tail(&cur->list, &revoke_list); | 
 | 	} | 
 |  | 
 | 	if (submit_bio) | 
 | 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * try to revoke all committed pages, but still we could fail | 
 | 		 * due to no memory or other reason, if that happened, EAGAIN | 
 | 		 * will be returned, which means in such case, transaction is | 
 | 		 * already not integrity, caller should use journal to do the | 
 | 		 * recovery or rewrite & commit last transaction. For other | 
 | 		 * error number, revoking was done by filesystem itself. | 
 | 		 */ | 
 | 		err = __revoke_inmem_pages(inode, &revoke_list, | 
 | 						false, true, false); | 
 |  | 
 | 		/* drop all uncommitted pages */ | 
 | 		__revoke_inmem_pages(inode, &fi->inmem_pages, | 
 | 						true, false, false); | 
 | 	} else { | 
 | 		__revoke_inmem_pages(inode, &revoke_list, | 
 | 						false, false, false); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int f2fs_commit_inmem_pages(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct f2fs_inode_info *fi = F2FS_I(inode); | 
 | 	int err; | 
 |  | 
 | 	f2fs_balance_fs(sbi, true); | 
 |  | 
 | 	down_write(&fi->i_gc_rwsem[WRITE]); | 
 |  | 
 | 	f2fs_lock_op(sbi); | 
 | 	set_inode_flag(inode, FI_ATOMIC_COMMIT); | 
 |  | 
 | 	mutex_lock(&fi->inmem_lock); | 
 | 	err = __f2fs_commit_inmem_pages(inode); | 
 | 	mutex_unlock(&fi->inmem_lock); | 
 |  | 
 | 	clear_inode_flag(inode, FI_ATOMIC_COMMIT); | 
 |  | 
 | 	f2fs_unlock_op(sbi); | 
 | 	up_write(&fi->i_gc_rwsem[WRITE]); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * This function balances dirty node and dentry pages. | 
 |  * In addition, it controls garbage collection. | 
 |  */ | 
 | void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) | 
 | { | 
 | 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) { | 
 | 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); | 
 | 		f2fs_stop_checkpoint(sbi, false); | 
 | 	} | 
 |  | 
 | 	/* balance_fs_bg is able to be pending */ | 
 | 	if (need && excess_cached_nats(sbi)) | 
 | 		f2fs_balance_fs_bg(sbi); | 
 |  | 
 | 	if (!f2fs_is_checkpoint_ready(sbi)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We should do GC or end up with checkpoint, if there are so many dirty | 
 | 	 * dir/node pages without enough free segments. | 
 | 	 */ | 
 | 	if (has_not_enough_free_secs(sbi, 0, 0)) { | 
 | 		mutex_lock(&sbi->gc_mutex); | 
 | 		f2fs_gc(sbi, false, false, NULL_SEGNO); | 
 | 	} | 
 | } | 
 |  | 
 | void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
 | 		return; | 
 |  | 
 | 	/* try to shrink extent cache when there is no enough memory */ | 
 | 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) | 
 | 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); | 
 |  | 
 | 	/* check the # of cached NAT entries */ | 
 | 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) | 
 | 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); | 
 |  | 
 | 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) | 
 | 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); | 
 | 	else | 
 | 		f2fs_build_free_nids(sbi, false, false); | 
 |  | 
 | 	if (!is_idle(sbi, REQ_TIME) && | 
 | 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) | 
 | 		return; | 
 |  | 
 | 	/* checkpoint is the only way to shrink partial cached entries */ | 
 | 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || | 
 | 			!f2fs_available_free_memory(sbi, INO_ENTRIES) || | 
 | 			excess_prefree_segs(sbi) || | 
 | 			excess_dirty_nats(sbi) || | 
 | 			excess_dirty_nodes(sbi) || | 
 | 			f2fs_time_over(sbi, CP_TIME)) { | 
 | 		if (test_opt(sbi, DATA_FLUSH)) { | 
 | 			struct blk_plug plug; | 
 |  | 
 | 			mutex_lock(&sbi->flush_lock); | 
 |  | 
 | 			blk_start_plug(&plug); | 
 | 			f2fs_sync_dirty_inodes(sbi, FILE_INODE); | 
 | 			blk_finish_plug(&plug); | 
 |  | 
 | 			mutex_unlock(&sbi->flush_lock); | 
 | 		} | 
 | 		f2fs_sync_fs(sbi->sb, true); | 
 | 		stat_inc_bg_cp_count(sbi->stat_info); | 
 | 	} | 
 | } | 
 |  | 
 | static int __submit_flush_wait(struct f2fs_sb_info *sbi, | 
 | 				struct block_device *bdev) | 
 | { | 
 | 	struct bio *bio; | 
 | 	int ret; | 
 |  | 
 | 	bio = f2fs_bio_alloc(sbi, 0, false); | 
 | 	if (!bio) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; | 
 | 	bio_set_dev(bio, bdev); | 
 | 	ret = submit_bio_wait(bio); | 
 | 	bio_put(bio); | 
 |  | 
 | 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), | 
 | 				test_opt(sbi, FLUSH_MERGE), ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	int ret = 0; | 
 | 	int i; | 
 |  | 
 | 	if (!f2fs_is_multi_device(sbi)) | 
 | 		return __submit_flush_wait(sbi, sbi->sb->s_bdev); | 
 |  | 
 | 	for (i = 0; i < sbi->s_ndevs; i++) { | 
 | 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) | 
 | 			continue; | 
 | 		ret = __submit_flush_wait(sbi, FDEV(i).bdev); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int issue_flush_thread(void *data) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = data; | 
 | 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
 | 	wait_queue_head_t *q = &fcc->flush_wait_queue; | 
 | repeat: | 
 | 	if (kthread_should_stop()) | 
 | 		return 0; | 
 |  | 
 | 	sb_start_intwrite(sbi->sb); | 
 |  | 
 | 	if (!llist_empty(&fcc->issue_list)) { | 
 | 		struct flush_cmd *cmd, *next; | 
 | 		int ret; | 
 |  | 
 | 		fcc->dispatch_list = llist_del_all(&fcc->issue_list); | 
 | 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); | 
 |  | 
 | 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); | 
 |  | 
 | 		ret = submit_flush_wait(sbi, cmd->ino); | 
 | 		atomic_inc(&fcc->issued_flush); | 
 |  | 
 | 		llist_for_each_entry_safe(cmd, next, | 
 | 					  fcc->dispatch_list, llnode) { | 
 | 			cmd->ret = ret; | 
 | 			complete(&cmd->wait); | 
 | 		} | 
 | 		fcc->dispatch_list = NULL; | 
 | 	} | 
 |  | 
 | 	sb_end_intwrite(sbi->sb); | 
 |  | 
 | 	wait_event_interruptible(*q, | 
 | 		kthread_should_stop() || !llist_empty(&fcc->issue_list)); | 
 | 	goto repeat; | 
 | } | 
 |  | 
 | int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
 | 	struct flush_cmd cmd; | 
 | 	int ret; | 
 |  | 
 | 	if (test_opt(sbi, NOBARRIER)) | 
 | 		return 0; | 
 |  | 
 | 	if (!test_opt(sbi, FLUSH_MERGE)) { | 
 | 		atomic_inc(&fcc->queued_flush); | 
 | 		ret = submit_flush_wait(sbi, ino); | 
 | 		atomic_dec(&fcc->queued_flush); | 
 | 		atomic_inc(&fcc->issued_flush); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (atomic_inc_return(&fcc->queued_flush) == 1 || | 
 | 	    f2fs_is_multi_device(sbi)) { | 
 | 		ret = submit_flush_wait(sbi, ino); | 
 | 		atomic_dec(&fcc->queued_flush); | 
 |  | 
 | 		atomic_inc(&fcc->issued_flush); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cmd.ino = ino; | 
 | 	init_completion(&cmd.wait); | 
 |  | 
 | 	llist_add(&cmd.llnode, &fcc->issue_list); | 
 |  | 
 | 	/* update issue_list before we wake up issue_flush thread */ | 
 | 	smp_mb(); | 
 |  | 
 | 	if (waitqueue_active(&fcc->flush_wait_queue)) | 
 | 		wake_up(&fcc->flush_wait_queue); | 
 |  | 
 | 	if (fcc->f2fs_issue_flush) { | 
 | 		wait_for_completion(&cmd.wait); | 
 | 		atomic_dec(&fcc->queued_flush); | 
 | 	} else { | 
 | 		struct llist_node *list; | 
 |  | 
 | 		list = llist_del_all(&fcc->issue_list); | 
 | 		if (!list) { | 
 | 			wait_for_completion(&cmd.wait); | 
 | 			atomic_dec(&fcc->queued_flush); | 
 | 		} else { | 
 | 			struct flush_cmd *tmp, *next; | 
 |  | 
 | 			ret = submit_flush_wait(sbi, ino); | 
 |  | 
 | 			llist_for_each_entry_safe(tmp, next, list, llnode) { | 
 | 				if (tmp == &cmd) { | 
 | 					cmd.ret = ret; | 
 | 					atomic_dec(&fcc->queued_flush); | 
 | 					continue; | 
 | 				} | 
 | 				tmp->ret = ret; | 
 | 				complete(&tmp->wait); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return cmd.ret; | 
 | } | 
 |  | 
 | int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	dev_t dev = sbi->sb->s_bdev->bd_dev; | 
 | 	struct flush_cmd_control *fcc; | 
 | 	int err = 0; | 
 |  | 
 | 	if (SM_I(sbi)->fcc_info) { | 
 | 		fcc = SM_I(sbi)->fcc_info; | 
 | 		if (fcc->f2fs_issue_flush) | 
 | 			return err; | 
 | 		goto init_thread; | 
 | 	} | 
 |  | 
 | 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); | 
 | 	if (!fcc) | 
 | 		return -ENOMEM; | 
 | 	atomic_set(&fcc->issued_flush, 0); | 
 | 	atomic_set(&fcc->queued_flush, 0); | 
 | 	init_waitqueue_head(&fcc->flush_wait_queue); | 
 | 	init_llist_head(&fcc->issue_list); | 
 | 	SM_I(sbi)->fcc_info = fcc; | 
 | 	if (!test_opt(sbi, FLUSH_MERGE)) | 
 | 		return err; | 
 |  | 
 | init_thread: | 
 | 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, | 
 | 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); | 
 | 	if (IS_ERR(fcc->f2fs_issue_flush)) { | 
 | 		err = PTR_ERR(fcc->f2fs_issue_flush); | 
 | 		kvfree(fcc); | 
 | 		SM_I(sbi)->fcc_info = NULL; | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) | 
 | { | 
 | 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; | 
 |  | 
 | 	if (fcc && fcc->f2fs_issue_flush) { | 
 | 		struct task_struct *flush_thread = fcc->f2fs_issue_flush; | 
 |  | 
 | 		fcc->f2fs_issue_flush = NULL; | 
 | 		kthread_stop(flush_thread); | 
 | 	} | 
 | 	if (free) { | 
 | 		kvfree(fcc); | 
 | 		SM_I(sbi)->fcc_info = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int ret = 0, i; | 
 |  | 
 | 	if (!f2fs_is_multi_device(sbi)) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 1; i < sbi->s_ndevs; i++) { | 
 | 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) | 
 | 			continue; | 
 | 		ret = __submit_flush_wait(sbi, FDEV(i).bdev); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&sbi->dev_lock); | 
 | 		f2fs_clear_bit(i, (char *)&sbi->dirty_device); | 
 | 		spin_unlock(&sbi->dev_lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | 
 | 		enum dirty_type dirty_type) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 |  | 
 | 	/* need not be added */ | 
 | 	if (IS_CURSEG(sbi, segno)) | 
 | 		return; | 
 |  | 
 | 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) | 
 | 		dirty_i->nr_dirty[dirty_type]++; | 
 |  | 
 | 	if (dirty_type == DIRTY) { | 
 | 		struct seg_entry *sentry = get_seg_entry(sbi, segno); | 
 | 		enum dirty_type t = sentry->type; | 
 |  | 
 | 		if (unlikely(t >= DIRTY)) { | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 			return; | 
 | 		} | 
 | 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) | 
 | 			dirty_i->nr_dirty[t]++; | 
 | 	} | 
 | } | 
 |  | 
 | static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, | 
 | 		enum dirty_type dirty_type) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 |  | 
 | 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) | 
 | 		dirty_i->nr_dirty[dirty_type]--; | 
 |  | 
 | 	if (dirty_type == DIRTY) { | 
 | 		struct seg_entry *sentry = get_seg_entry(sbi, segno); | 
 | 		enum dirty_type t = sentry->type; | 
 |  | 
 | 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) | 
 | 			dirty_i->nr_dirty[t]--; | 
 |  | 
 | 		if (get_valid_blocks(sbi, segno, true) == 0) { | 
 | 			clear_bit(GET_SEC_FROM_SEG(sbi, segno), | 
 | 						dirty_i->victim_secmap); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 			clear_bit(segno, SIT_I(sbi)->invalid_segmap); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Should not occur error such as -ENOMEM. | 
 |  * Adding dirty entry into seglist is not critical operation. | 
 |  * If a given segment is one of current working segments, it won't be added. | 
 |  */ | 
 | static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned short valid_blocks, ckpt_valid_blocks; | 
 |  | 
 | 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 |  | 
 | 	valid_blocks = get_valid_blocks(sbi, segno, false); | 
 | 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); | 
 |  | 
 | 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || | 
 | 				ckpt_valid_blocks == sbi->blocks_per_seg)) { | 
 | 		__locate_dirty_segment(sbi, segno, PRE); | 
 | 		__remove_dirty_segment(sbi, segno, DIRTY); | 
 | 	} else if (valid_blocks < sbi->blocks_per_seg) { | 
 | 		__locate_dirty_segment(sbi, segno, DIRTY); | 
 | 	} else { | 
 | 		/* Recovery routine with SSR needs this */ | 
 | 		__remove_dirty_segment(sbi, segno, DIRTY); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | } | 
 |  | 
 | /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ | 
 | void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned int segno; | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { | 
 | 		if (get_valid_blocks(sbi, segno, false)) | 
 | 			continue; | 
 | 		if (IS_CURSEG(sbi, segno)) | 
 | 			continue; | 
 | 		__locate_dirty_segment(sbi, segno, PRE); | 
 | 		__remove_dirty_segment(sbi, segno, DIRTY); | 
 | 	} | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | } | 
 |  | 
 | block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int ovp_hole_segs = | 
 | 		(overprovision_segments(sbi) - reserved_segments(sbi)); | 
 | 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	block_t holes[2] = {0, 0};	/* DATA and NODE */ | 
 | 	block_t unusable; | 
 | 	struct seg_entry *se; | 
 | 	unsigned int segno; | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { | 
 | 		se = get_seg_entry(sbi, segno); | 
 | 		if (IS_NODESEG(se->type)) | 
 | 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; | 
 | 		else | 
 | 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; | 
 | 	} | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 |  | 
 | 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; | 
 | 	if (unusable > ovp_holes) | 
 | 		return unusable - ovp_holes; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) | 
 | { | 
 | 	int ovp_hole_segs = | 
 | 		(overprovision_segments(sbi) - reserved_segments(sbi)); | 
 | 	if (unusable > F2FS_OPTION(sbi).unusable_cap) | 
 | 		return -EAGAIN; | 
 | 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && | 
 | 		dirty_segments(sbi) > ovp_hole_segs) | 
 | 		return -EAGAIN; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This is only used by SBI_CP_DISABLED */ | 
 | static unsigned int get_free_segment(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned int segno = 0; | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { | 
 | 		if (get_valid_blocks(sbi, segno, false)) | 
 | 			continue; | 
 | 		if (get_ckpt_valid_blocks(sbi, segno)) | 
 | 			continue; | 
 | 		mutex_unlock(&dirty_i->seglist_lock); | 
 | 		return segno; | 
 | 	} | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | 	return NULL_SEGNO; | 
 | } | 
 |  | 
 | static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 		struct block_device *bdev, block_t lstart, | 
 | 		block_t start, block_t len) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *pend_list; | 
 | 	struct discard_cmd *dc; | 
 |  | 
 | 	f2fs_bug_on(sbi, !len); | 
 |  | 
 | 	pend_list = &dcc->pend_list[plist_idx(len)]; | 
 |  | 
 | 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); | 
 | 	INIT_LIST_HEAD(&dc->list); | 
 | 	dc->bdev = bdev; | 
 | 	dc->lstart = lstart; | 
 | 	dc->start = start; | 
 | 	dc->len = len; | 
 | 	dc->ref = 0; | 
 | 	dc->state = D_PREP; | 
 | 	dc->queued = 0; | 
 | 	dc->error = 0; | 
 | 	init_completion(&dc->wait); | 
 | 	list_add_tail(&dc->list, pend_list); | 
 | 	spin_lock_init(&dc->lock); | 
 | 	dc->bio_ref = 0; | 
 | 	atomic_inc(&dcc->discard_cmd_cnt); | 
 | 	dcc->undiscard_blks += len; | 
 |  | 
 | 	return dc; | 
 | } | 
 |  | 
 | static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 				struct block_device *bdev, block_t lstart, | 
 | 				block_t start, block_t len, | 
 | 				struct rb_node *parent, struct rb_node **p, | 
 | 				bool leftmost) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_cmd *dc; | 
 |  | 
 | 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len); | 
 |  | 
 | 	rb_link_node(&dc->rb_node, parent, p); | 
 | 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); | 
 |  | 
 | 	return dc; | 
 | } | 
 |  | 
 | static void __detach_discard_cmd(struct discard_cmd_control *dcc, | 
 | 							struct discard_cmd *dc) | 
 | { | 
 | 	if (dc->state == D_DONE) | 
 | 		atomic_sub(dc->queued, &dcc->queued_discard); | 
 |  | 
 | 	list_del(&dc->list); | 
 | 	rb_erase_cached(&dc->rb_node, &dcc->root); | 
 | 	dcc->undiscard_blks -= dc->len; | 
 |  | 
 | 	kmem_cache_free(discard_cmd_slab, dc); | 
 |  | 
 | 	atomic_dec(&dcc->discard_cmd_cnt); | 
 | } | 
 |  | 
 | static void __remove_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 							struct discard_cmd *dc) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	unsigned long flags; | 
 |  | 
 | 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); | 
 |  | 
 | 	spin_lock_irqsave(&dc->lock, flags); | 
 | 	if (dc->bio_ref) { | 
 | 		spin_unlock_irqrestore(&dc->lock, flags); | 
 | 		return; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&dc->lock, flags); | 
 |  | 
 | 	f2fs_bug_on(sbi, dc->ref); | 
 |  | 
 | 	if (dc->error == -EOPNOTSUPP) | 
 | 		dc->error = 0; | 
 |  | 
 | 	if (dc->error) | 
 | 		printk_ratelimited( | 
 | 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", | 
 | 			KERN_INFO, sbi->sb->s_id, | 
 | 			dc->lstart, dc->start, dc->len, dc->error); | 
 | 	__detach_discard_cmd(dcc, dc); | 
 | } | 
 |  | 
 | static void f2fs_submit_discard_endio(struct bio *bio) | 
 | { | 
 | 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; | 
 | 	unsigned long flags; | 
 |  | 
 | 	dc->error = blk_status_to_errno(bio->bi_status); | 
 |  | 
 | 	spin_lock_irqsave(&dc->lock, flags); | 
 | 	dc->bio_ref--; | 
 | 	if (!dc->bio_ref && dc->state == D_SUBMIT) { | 
 | 		dc->state = D_DONE; | 
 | 		complete_all(&dc->wait); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&dc->lock, flags); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void __check_sit_bitmap(struct f2fs_sb_info *sbi, | 
 | 				block_t start, block_t end) | 
 | { | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	struct seg_entry *sentry; | 
 | 	unsigned int segno; | 
 | 	block_t blk = start; | 
 | 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg; | 
 | 	unsigned long *map; | 
 |  | 
 | 	while (blk < end) { | 
 | 		segno = GET_SEGNO(sbi, blk); | 
 | 		sentry = get_seg_entry(sbi, segno); | 
 | 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk); | 
 |  | 
 | 		if (end < START_BLOCK(sbi, segno + 1)) | 
 | 			size = GET_BLKOFF_FROM_SEG0(sbi, end); | 
 | 		else | 
 | 			size = max_blocks; | 
 | 		map = (unsigned long *)(sentry->cur_valid_map); | 
 | 		offset = __find_rev_next_bit(map, size, offset); | 
 | 		f2fs_bug_on(sbi, offset != size); | 
 | 		blk = START_BLOCK(sbi, segno + 1); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __init_discard_policy(struct f2fs_sb_info *sbi, | 
 | 				struct discard_policy *dpolicy, | 
 | 				int discard_type, unsigned int granularity) | 
 | { | 
 | 	/* common policy */ | 
 | 	dpolicy->type = discard_type; | 
 | 	dpolicy->sync = true; | 
 | 	dpolicy->ordered = false; | 
 | 	dpolicy->granularity = granularity; | 
 |  | 
 | 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; | 
 | 	dpolicy->io_aware_gran = MAX_PLIST_NUM; | 
 | 	dpolicy->timeout = 0; | 
 |  | 
 | 	if (discard_type == DPOLICY_BG) { | 
 | 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->io_aware = true; | 
 | 		dpolicy->sync = false; | 
 | 		dpolicy->ordered = true; | 
 | 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { | 
 | 			dpolicy->granularity = 1; | 
 | 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
 | 		} | 
 | 	} else if (discard_type == DPOLICY_FORCE) { | 
 | 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; | 
 | 		dpolicy->io_aware = false; | 
 | 	} else if (discard_type == DPOLICY_FSTRIM) { | 
 | 		dpolicy->io_aware = false; | 
 | 	} else if (discard_type == DPOLICY_UMOUNT) { | 
 | 		dpolicy->max_requests = UINT_MAX; | 
 | 		dpolicy->io_aware = false; | 
 | 		/* we need to issue all to keep CP_TRIMMED_FLAG */ | 
 | 		dpolicy->granularity = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void __update_discard_tree_range(struct f2fs_sb_info *sbi, | 
 | 				struct block_device *bdev, block_t lstart, | 
 | 				block_t start, block_t len); | 
 | /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ | 
 | static int __submit_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 						struct discard_policy *dpolicy, | 
 | 						struct discard_cmd *dc, | 
 | 						unsigned int *issued) | 
 | { | 
 | 	struct block_device *bdev = dc->bdev; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 | 	unsigned int max_discard_blocks = | 
 | 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors); | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? | 
 | 					&(dcc->fstrim_list) : &(dcc->wait_list); | 
 | 	int flag = dpolicy->sync ? REQ_SYNC : 0; | 
 | 	block_t lstart, start, len, total_len; | 
 | 	int err = 0; | 
 |  | 
 | 	if (dc->state != D_PREP) | 
 | 		return 0; | 
 |  | 
 | 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) | 
 | 		return 0; | 
 |  | 
 | 	trace_f2fs_issue_discard(bdev, dc->start, dc->len); | 
 |  | 
 | 	lstart = dc->lstart; | 
 | 	start = dc->start; | 
 | 	len = dc->len; | 
 | 	total_len = len; | 
 |  | 
 | 	dc->len = 0; | 
 |  | 
 | 	while (total_len && *issued < dpolicy->max_requests && !err) { | 
 | 		struct bio *bio = NULL; | 
 | 		unsigned long flags; | 
 | 		bool last = true; | 
 |  | 
 | 		if (len > max_discard_blocks) { | 
 | 			len = max_discard_blocks; | 
 | 			last = false; | 
 | 		} | 
 |  | 
 | 		(*issued)++; | 
 | 		if (*issued == dpolicy->max_requests) | 
 | 			last = true; | 
 |  | 
 | 		dc->len += len; | 
 |  | 
 | 		if (time_to_inject(sbi, FAULT_DISCARD)) { | 
 | 			f2fs_show_injection_info(sbi, FAULT_DISCARD); | 
 | 			err = -EIO; | 
 | 			goto submit; | 
 | 		} | 
 | 		err = __blkdev_issue_discard(bdev, | 
 | 					SECTOR_FROM_BLOCK(start), | 
 | 					SECTOR_FROM_BLOCK(len), | 
 | 					GFP_NOFS, 0, &bio); | 
 | submit: | 
 | 		if (err) { | 
 | 			spin_lock_irqsave(&dc->lock, flags); | 
 | 			if (dc->state == D_PARTIAL) | 
 | 				dc->state = D_SUBMIT; | 
 | 			spin_unlock_irqrestore(&dc->lock, flags); | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		f2fs_bug_on(sbi, !bio); | 
 |  | 
 | 		/* | 
 | 		 * should keep before submission to avoid D_DONE | 
 | 		 * right away | 
 | 		 */ | 
 | 		spin_lock_irqsave(&dc->lock, flags); | 
 | 		if (last) | 
 | 			dc->state = D_SUBMIT; | 
 | 		else | 
 | 			dc->state = D_PARTIAL; | 
 | 		dc->bio_ref++; | 
 | 		spin_unlock_irqrestore(&dc->lock, flags); | 
 |  | 
 | 		atomic_inc(&dcc->queued_discard); | 
 | 		dc->queued++; | 
 | 		list_move_tail(&dc->list, wait_list); | 
 |  | 
 | 		/* sanity check on discard range */ | 
 | 		__check_sit_bitmap(sbi, lstart, lstart + len); | 
 |  | 
 | 		bio->bi_private = dc; | 
 | 		bio->bi_end_io = f2fs_submit_discard_endio; | 
 | 		bio->bi_opf |= flag; | 
 | 		submit_bio(bio); | 
 |  | 
 | 		atomic_inc(&dcc->issued_discard); | 
 |  | 
 | 		f2fs_update_iostat(sbi, FS_DISCARD, 1); | 
 |  | 
 | 		lstart += len; | 
 | 		start += len; | 
 | 		total_len -= len; | 
 | 		len = total_len; | 
 | 	} | 
 |  | 
 | 	if (!err && len) | 
 | 		__update_discard_tree_range(sbi, bdev, lstart, start, len); | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, | 
 | 				struct block_device *bdev, block_t lstart, | 
 | 				block_t start, block_t len, | 
 | 				struct rb_node **insert_p, | 
 | 				struct rb_node *insert_parent) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct discard_cmd *dc = NULL; | 
 | 	bool leftmost = true; | 
 |  | 
 | 	if (insert_p && insert_parent) { | 
 | 		parent = insert_parent; | 
 | 		p = insert_p; | 
 | 		goto do_insert; | 
 | 	} | 
 |  | 
 | 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, | 
 | 							lstart, &leftmost); | 
 | do_insert: | 
 | 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, | 
 | 								p, leftmost); | 
 | 	if (!dc) | 
 | 		return NULL; | 
 |  | 
 | 	return dc; | 
 | } | 
 |  | 
 | static void __relocate_discard_cmd(struct discard_cmd_control *dcc, | 
 | 						struct discard_cmd *dc) | 
 | { | 
 | 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); | 
 | } | 
 |  | 
 | static void __punch_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 				struct discard_cmd *dc, block_t blkaddr) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_info di = dc->di; | 
 | 	bool modified = false; | 
 |  | 
 | 	if (dc->state == D_DONE || dc->len == 1) { | 
 | 		__remove_discard_cmd(sbi, dc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	dcc->undiscard_blks -= di.len; | 
 |  | 
 | 	if (blkaddr > di.lstart) { | 
 | 		dc->len = blkaddr - dc->lstart; | 
 | 		dcc->undiscard_blks += dc->len; | 
 | 		__relocate_discard_cmd(dcc, dc); | 
 | 		modified = true; | 
 | 	} | 
 |  | 
 | 	if (blkaddr < di.lstart + di.len - 1) { | 
 | 		if (modified) { | 
 | 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1, | 
 | 					di.start + blkaddr + 1 - di.lstart, | 
 | 					di.lstart + di.len - 1 - blkaddr, | 
 | 					NULL, NULL); | 
 | 		} else { | 
 | 			dc->lstart++; | 
 | 			dc->len--; | 
 | 			dc->start++; | 
 | 			dcc->undiscard_blks += dc->len; | 
 | 			__relocate_discard_cmd(dcc, dc); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void __update_discard_tree_range(struct f2fs_sb_info *sbi, | 
 | 				struct block_device *bdev, block_t lstart, | 
 | 				block_t start, block_t len) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL; | 
 | 	struct discard_cmd *dc; | 
 | 	struct discard_info di = {0}; | 
 | 	struct rb_node **insert_p = NULL, *insert_parent = NULL; | 
 | 	struct request_queue *q = bdev_get_queue(bdev); | 
 | 	unsigned int max_discard_blocks = | 
 | 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors); | 
 | 	block_t end = lstart + len; | 
 |  | 
 | 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, | 
 | 					NULL, lstart, | 
 | 					(struct rb_entry **)&prev_dc, | 
 | 					(struct rb_entry **)&next_dc, | 
 | 					&insert_p, &insert_parent, true, NULL); | 
 | 	if (dc) | 
 | 		prev_dc = dc; | 
 |  | 
 | 	if (!prev_dc) { | 
 | 		di.lstart = lstart; | 
 | 		di.len = next_dc ? next_dc->lstart - lstart : len; | 
 | 		di.len = min(di.len, len); | 
 | 		di.start = start; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		struct rb_node *node; | 
 | 		bool merged = false; | 
 | 		struct discard_cmd *tdc = NULL; | 
 |  | 
 | 		if (prev_dc) { | 
 | 			di.lstart = prev_dc->lstart + prev_dc->len; | 
 | 			if (di.lstart < lstart) | 
 | 				di.lstart = lstart; | 
 | 			if (di.lstart >= end) | 
 | 				break; | 
 |  | 
 | 			if (!next_dc || next_dc->lstart > end) | 
 | 				di.len = end - di.lstart; | 
 | 			else | 
 | 				di.len = next_dc->lstart - di.lstart; | 
 | 			di.start = start + di.lstart - lstart; | 
 | 		} | 
 |  | 
 | 		if (!di.len) | 
 | 			goto next; | 
 |  | 
 | 		if (prev_dc && prev_dc->state == D_PREP && | 
 | 			prev_dc->bdev == bdev && | 
 | 			__is_discard_back_mergeable(&di, &prev_dc->di, | 
 | 							max_discard_blocks)) { | 
 | 			prev_dc->di.len += di.len; | 
 | 			dcc->undiscard_blks += di.len; | 
 | 			__relocate_discard_cmd(dcc, prev_dc); | 
 | 			di = prev_dc->di; | 
 | 			tdc = prev_dc; | 
 | 			merged = true; | 
 | 		} | 
 |  | 
 | 		if (next_dc && next_dc->state == D_PREP && | 
 | 			next_dc->bdev == bdev && | 
 | 			__is_discard_front_mergeable(&di, &next_dc->di, | 
 | 							max_discard_blocks)) { | 
 | 			next_dc->di.lstart = di.lstart; | 
 | 			next_dc->di.len += di.len; | 
 | 			next_dc->di.start = di.start; | 
 | 			dcc->undiscard_blks += di.len; | 
 | 			__relocate_discard_cmd(dcc, next_dc); | 
 | 			if (tdc) | 
 | 				__remove_discard_cmd(sbi, tdc); | 
 | 			merged = true; | 
 | 		} | 
 |  | 
 | 		if (!merged) { | 
 | 			__insert_discard_tree(sbi, bdev, di.lstart, di.start, | 
 | 							di.len, NULL, NULL); | 
 | 		} | 
 |  next: | 
 | 		prev_dc = next_dc; | 
 | 		if (!prev_dc) | 
 | 			break; | 
 |  | 
 | 		node = rb_next(&prev_dc->rb_node); | 
 | 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); | 
 | 	} | 
 | } | 
 |  | 
 | static int __queue_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 		struct block_device *bdev, block_t blkstart, block_t blklen) | 
 | { | 
 | 	block_t lblkstart = blkstart; | 
 |  | 
 | 	if (!f2fs_bdev_support_discard(bdev)) | 
 | 		return 0; | 
 |  | 
 | 	trace_f2fs_queue_discard(bdev, blkstart, blklen); | 
 |  | 
 | 	if (f2fs_is_multi_device(sbi)) { | 
 | 		int devi = f2fs_target_device_index(sbi, blkstart); | 
 |  | 
 | 		blkstart -= FDEV(devi).start_blk; | 
 | 	} | 
 | 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); | 
 | 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); | 
 | 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, | 
 | 					struct discard_policy *dpolicy) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL; | 
 | 	struct rb_node **insert_p = NULL, *insert_parent = NULL; | 
 | 	struct discard_cmd *dc; | 
 | 	struct blk_plug plug; | 
 | 	unsigned int pos = dcc->next_pos; | 
 | 	unsigned int issued = 0; | 
 | 	bool io_interrupted = false; | 
 |  | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, | 
 | 					NULL, pos, | 
 | 					(struct rb_entry **)&prev_dc, | 
 | 					(struct rb_entry **)&next_dc, | 
 | 					&insert_p, &insert_parent, true, NULL); | 
 | 	if (!dc) | 
 | 		dc = next_dc; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	while (dc) { | 
 | 		struct rb_node *node; | 
 | 		int err = 0; | 
 |  | 
 | 		if (dc->state != D_PREP) | 
 | 			goto next; | 
 |  | 
 | 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { | 
 | 			io_interrupted = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dcc->next_pos = dc->lstart + dc->len; | 
 | 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); | 
 |  | 
 | 		if (issued >= dpolicy->max_requests) | 
 | 			break; | 
 | next: | 
 | 		node = rb_next(&dc->rb_node); | 
 | 		if (err) | 
 | 			__remove_discard_cmd(sbi, dc); | 
 | 		dc = rb_entry_safe(node, struct discard_cmd, rb_node); | 
 | 	} | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 |  | 
 | 	if (!dc) | 
 | 		dcc->next_pos = 0; | 
 |  | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	if (!issued && io_interrupted) | 
 | 		issued = -1; | 
 |  | 
 | 	return issued; | 
 | } | 
 |  | 
 | static int __issue_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 					struct discard_policy *dpolicy) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *pend_list; | 
 | 	struct discard_cmd *dc, *tmp; | 
 | 	struct blk_plug plug; | 
 | 	int i, issued = 0; | 
 | 	bool io_interrupted = false; | 
 |  | 
 | 	if (dpolicy->timeout != 0) | 
 | 		f2fs_update_time(sbi, dpolicy->timeout); | 
 |  | 
 | 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { | 
 | 		if (dpolicy->timeout != 0 && | 
 | 				f2fs_time_over(sbi, dpolicy->timeout)) | 
 | 			break; | 
 |  | 
 | 		if (i + 1 < dpolicy->granularity) | 
 | 			break; | 
 |  | 
 | 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) | 
 | 			return __issue_discard_cmd_orderly(sbi, dpolicy); | 
 |  | 
 | 		pend_list = &dcc->pend_list[i]; | 
 |  | 
 | 		mutex_lock(&dcc->cmd_lock); | 
 | 		if (list_empty(pend_list)) | 
 | 			goto next; | 
 | 		if (unlikely(dcc->rbtree_check)) | 
 | 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, | 
 | 								&dcc->root)); | 
 | 		blk_start_plug(&plug); | 
 | 		list_for_each_entry_safe(dc, tmp, pend_list, list) { | 
 | 			f2fs_bug_on(sbi, dc->state != D_PREP); | 
 |  | 
 | 			if (dpolicy->timeout != 0 && | 
 | 				f2fs_time_over(sbi, dpolicy->timeout)) | 
 | 				break; | 
 |  | 
 | 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran && | 
 | 						!is_idle(sbi, DISCARD_TIME)) { | 
 | 				io_interrupted = true; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			__submit_discard_cmd(sbi, dpolicy, dc, &issued); | 
 |  | 
 | 			if (issued >= dpolicy->max_requests) | 
 | 				break; | 
 | 		} | 
 | 		blk_finish_plug(&plug); | 
 | next: | 
 | 		mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 		if (issued >= dpolicy->max_requests || io_interrupted) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!issued && io_interrupted) | 
 | 		issued = -1; | 
 |  | 
 | 	return issued; | 
 | } | 
 |  | 
 | static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *pend_list; | 
 | 	struct discard_cmd *dc, *tmp; | 
 | 	int i; | 
 | 	bool dropped = false; | 
 |  | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { | 
 | 		pend_list = &dcc->pend_list[i]; | 
 | 		list_for_each_entry_safe(dc, tmp, pend_list, list) { | 
 | 			f2fs_bug_on(sbi, dc->state != D_PREP); | 
 | 			__remove_discard_cmd(sbi, dc); | 
 | 			dropped = true; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	return dropped; | 
 | } | 
 |  | 
 | void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	__drop_discard_cmd(sbi); | 
 | } | 
 |  | 
 | static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, | 
 | 							struct discard_cmd *dc) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	unsigned int len = 0; | 
 |  | 
 | 	wait_for_completion_io(&dc->wait); | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	f2fs_bug_on(sbi, dc->state != D_DONE); | 
 | 	dc->ref--; | 
 | 	if (!dc->ref) { | 
 | 		if (!dc->error) | 
 | 			len = dc->len; | 
 | 		__remove_discard_cmd(sbi, dc); | 
 | 	} | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, | 
 | 						struct discard_policy *dpolicy, | 
 | 						block_t start, block_t end) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? | 
 | 					&(dcc->fstrim_list) : &(dcc->wait_list); | 
 | 	struct discard_cmd *dc, *tmp; | 
 | 	bool need_wait; | 
 | 	unsigned int trimmed = 0; | 
 |  | 
 | next: | 
 | 	need_wait = false; | 
 |  | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	list_for_each_entry_safe(dc, tmp, wait_list, list) { | 
 | 		if (dc->lstart + dc->len <= start || end <= dc->lstart) | 
 | 			continue; | 
 | 		if (dc->len < dpolicy->granularity) | 
 | 			continue; | 
 | 		if (dc->state == D_DONE && !dc->ref) { | 
 | 			wait_for_completion_io(&dc->wait); | 
 | 			if (!dc->error) | 
 | 				trimmed += dc->len; | 
 | 			__remove_discard_cmd(sbi, dc); | 
 | 		} else { | 
 | 			dc->ref++; | 
 | 			need_wait = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	if (need_wait) { | 
 | 		trimmed += __wait_one_discard_bio(sbi, dc); | 
 | 		goto next; | 
 | 	} | 
 |  | 
 | 	return trimmed; | 
 | } | 
 |  | 
 | static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, | 
 | 						struct discard_policy *dpolicy) | 
 | { | 
 | 	struct discard_policy dp; | 
 | 	unsigned int discard_blks; | 
 |  | 
 | 	if (dpolicy) | 
 | 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); | 
 |  | 
 | 	/* wait all */ | 
 | 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); | 
 | 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); | 
 | 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); | 
 | 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); | 
 |  | 
 | 	return discard_blks; | 
 | } | 
 |  | 
 | /* This should be covered by global mutex, &sit_i->sentry_lock */ | 
 | static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_cmd *dc; | 
 | 	bool need_wait = false; | 
 |  | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, | 
 | 							NULL, blkaddr); | 
 | 	if (dc) { | 
 | 		if (dc->state == D_PREP) { | 
 | 			__punch_discard_cmd(sbi, dc, blkaddr); | 
 | 		} else { | 
 | 			dc->ref++; | 
 | 			need_wait = true; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	if (need_wait) | 
 | 		__wait_one_discard_bio(sbi, dc); | 
 | } | 
 |  | 
 | void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 |  | 
 | 	if (dcc && dcc->f2fs_issue_discard) { | 
 | 		struct task_struct *discard_thread = dcc->f2fs_issue_discard; | 
 |  | 
 | 		dcc->f2fs_issue_discard = NULL; | 
 | 		kthread_stop(discard_thread); | 
 | 	} | 
 | } | 
 |  | 
 | /* This comes from f2fs_put_super */ | 
 | bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_policy dpolicy; | 
 | 	bool dropped; | 
 |  | 
 | 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, | 
 | 					dcc->discard_granularity); | 
 | 	dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; | 
 | 	__issue_discard_cmd(sbi, &dpolicy); | 
 | 	dropped = __drop_discard_cmd(sbi); | 
 |  | 
 | 	/* just to make sure there is no pending discard commands */ | 
 | 	__wait_all_discard_cmd(sbi, NULL); | 
 |  | 
 | 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); | 
 | 	return dropped; | 
 | } | 
 |  | 
 | static int issue_discard_thread(void *data) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = data; | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	wait_queue_head_t *q = &dcc->discard_wait_queue; | 
 | 	struct discard_policy dpolicy; | 
 | 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; | 
 | 	int issued; | 
 |  | 
 | 	set_freezable(); | 
 |  | 
 | 	do { | 
 | 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG, | 
 | 					dcc->discard_granularity); | 
 |  | 
 | 		wait_event_interruptible_timeout(*q, | 
 | 				kthread_should_stop() || freezing(current) || | 
 | 				dcc->discard_wake, | 
 | 				msecs_to_jiffies(wait_ms)); | 
 |  | 
 | 		if (dcc->discard_wake) | 
 | 			dcc->discard_wake = 0; | 
 |  | 
 | 		/* clean up pending candidates before going to sleep */ | 
 | 		if (atomic_read(&dcc->queued_discard)) | 
 | 			__wait_all_discard_cmd(sbi, NULL); | 
 |  | 
 | 		if (try_to_freeze()) | 
 | 			continue; | 
 | 		if (f2fs_readonly(sbi->sb)) | 
 | 			continue; | 
 | 		if (kthread_should_stop()) | 
 | 			return 0; | 
 | 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { | 
 | 			wait_ms = dpolicy.max_interval; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (sbi->gc_mode == GC_URGENT) | 
 | 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); | 
 |  | 
 | 		sb_start_intwrite(sbi->sb); | 
 |  | 
 | 		issued = __issue_discard_cmd(sbi, &dpolicy); | 
 | 		if (issued > 0) { | 
 | 			__wait_all_discard_cmd(sbi, &dpolicy); | 
 | 			wait_ms = dpolicy.min_interval; | 
 | 		} else if (issued == -1){ | 
 | 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); | 
 | 			if (!wait_ms) | 
 | 				wait_ms = dpolicy.mid_interval; | 
 | 		} else { | 
 | 			wait_ms = dpolicy.max_interval; | 
 | 		} | 
 |  | 
 | 		sb_end_intwrite(sbi->sb); | 
 |  | 
 | 	} while (!kthread_should_stop()); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_ZONED | 
 | static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, | 
 | 		struct block_device *bdev, block_t blkstart, block_t blklen) | 
 | { | 
 | 	sector_t sector, nr_sects; | 
 | 	block_t lblkstart = blkstart; | 
 | 	int devi = 0; | 
 |  | 
 | 	if (f2fs_is_multi_device(sbi)) { | 
 | 		devi = f2fs_target_device_index(sbi, blkstart); | 
 | 		if (blkstart < FDEV(devi).start_blk || | 
 | 		    blkstart > FDEV(devi).end_blk) { | 
 | 			f2fs_err(sbi, "Invalid block %x", blkstart); | 
 | 			return -EIO; | 
 | 		} | 
 | 		blkstart -= FDEV(devi).start_blk; | 
 | 	} | 
 |  | 
 | 	/* For sequential zones, reset the zone write pointer */ | 
 | 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { | 
 | 		sector = SECTOR_FROM_BLOCK(blkstart); | 
 | 		nr_sects = SECTOR_FROM_BLOCK(blklen); | 
 |  | 
 | 		if (sector & (bdev_zone_sectors(bdev) - 1) || | 
 | 				nr_sects != bdev_zone_sectors(bdev)) { | 
 | 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", | 
 | 				 devi, sbi->s_ndevs ? FDEV(devi).path : "", | 
 | 				 blkstart, blklen); | 
 | 			return -EIO; | 
 | 		} | 
 | 		trace_f2fs_issue_reset_zone(bdev, blkstart); | 
 | 		return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); | 
 | 	} | 
 |  | 
 | 	/* For conventional zones, use regular discard if supported */ | 
 | 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); | 
 | } | 
 | #endif | 
 |  | 
 | static int __issue_discard_async(struct f2fs_sb_info *sbi, | 
 | 		struct block_device *bdev, block_t blkstart, block_t blklen) | 
 | { | 
 | #ifdef CONFIG_BLK_DEV_ZONED | 
 | 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) | 
 | 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); | 
 | #endif | 
 | 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen); | 
 | } | 
 |  | 
 | static int f2fs_issue_discard(struct f2fs_sb_info *sbi, | 
 | 				block_t blkstart, block_t blklen) | 
 | { | 
 | 	sector_t start = blkstart, len = 0; | 
 | 	struct block_device *bdev; | 
 | 	struct seg_entry *se; | 
 | 	unsigned int offset; | 
 | 	block_t i; | 
 | 	int err = 0; | 
 |  | 
 | 	bdev = f2fs_target_device(sbi, blkstart, NULL); | 
 |  | 
 | 	for (i = blkstart; i < blkstart + blklen; i++, len++) { | 
 | 		if (i != start) { | 
 | 			struct block_device *bdev2 = | 
 | 				f2fs_target_device(sbi, i, NULL); | 
 |  | 
 | 			if (bdev2 != bdev) { | 
 | 				err = __issue_discard_async(sbi, bdev, | 
 | 						start, len); | 
 | 				if (err) | 
 | 					return err; | 
 | 				bdev = bdev2; | 
 | 				start = i; | 
 | 				len = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); | 
 | 		offset = GET_BLKOFF_FROM_SEG0(sbi, i); | 
 |  | 
 | 		if (!f2fs_test_and_set_bit(offset, se->discard_map)) | 
 | 			sbi->discard_blks--; | 
 | 	} | 
 |  | 
 | 	if (len) | 
 | 		err = __issue_discard_async(sbi, bdev, start, len); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, | 
 | 							bool check_only) | 
 | { | 
 | 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); | 
 | 	int max_blocks = sbi->blocks_per_seg; | 
 | 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); | 
 | 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map; | 
 | 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; | 
 | 	unsigned long *discard_map = (unsigned long *)se->discard_map; | 
 | 	unsigned long *dmap = SIT_I(sbi)->tmp_map; | 
 | 	unsigned int start = 0, end = -1; | 
 | 	bool force = (cpc->reason & CP_DISCARD); | 
 | 	struct discard_entry *de = NULL; | 
 | 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; | 
 | 	int i; | 
 |  | 
 | 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) | 
 | 		return false; | 
 |  | 
 | 	if (!force) { | 
 | 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || | 
 | 			SM_I(sbi)->dcc_info->nr_discards >= | 
 | 				SM_I(sbi)->dcc_info->max_discards) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ | 
 | 	for (i = 0; i < entries; i++) | 
 | 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : | 
 | 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; | 
 |  | 
 | 	while (force || SM_I(sbi)->dcc_info->nr_discards <= | 
 | 				SM_I(sbi)->dcc_info->max_discards) { | 
 | 		start = __find_rev_next_bit(dmap, max_blocks, end + 1); | 
 | 		if (start >= max_blocks) | 
 | 			break; | 
 |  | 
 | 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); | 
 | 		if (force && start && end != max_blocks | 
 | 					&& (end - start) < cpc->trim_minlen) | 
 | 			continue; | 
 |  | 
 | 		if (check_only) | 
 | 			return true; | 
 |  | 
 | 		if (!de) { | 
 | 			de = f2fs_kmem_cache_alloc(discard_entry_slab, | 
 | 								GFP_F2FS_ZERO); | 
 | 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); | 
 | 			list_add_tail(&de->list, head); | 
 | 		} | 
 |  | 
 | 		for (i = start; i < end; i++) | 
 | 			__set_bit_le(i, (void *)de->discard_map); | 
 |  | 
 | 		SM_I(sbi)->dcc_info->nr_discards += end - start; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void release_discard_addr(struct discard_entry *entry) | 
 | { | 
 | 	list_del(&entry->list); | 
 | 	kmem_cache_free(discard_entry_slab, entry); | 
 | } | 
 |  | 
 | void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); | 
 | 	struct discard_entry *entry, *this; | 
 |  | 
 | 	/* drop caches */ | 
 | 	list_for_each_entry_safe(entry, this, head, list) | 
 | 		release_discard_addr(entry); | 
 | } | 
 |  | 
 | /* | 
 |  * Should call f2fs_clear_prefree_segments after checkpoint is done. | 
 |  */ | 
 | static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned int segno; | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) | 
 | 		__set_test_and_free(sbi, segno); | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | } | 
 |  | 
 | void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, | 
 | 						struct cp_control *cpc) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct list_head *head = &dcc->entry_list; | 
 | 	struct discard_entry *entry, *this; | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; | 
 | 	unsigned int start = 0, end = -1; | 
 | 	unsigned int secno, start_segno; | 
 | 	bool force = (cpc->reason & CP_DISCARD); | 
 | 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 |  | 
 | 	while (1) { | 
 | 		int i; | 
 |  | 
 | 		if (need_align && end != -1) | 
 | 			end--; | 
 | 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); | 
 | 		if (start >= MAIN_SEGS(sbi)) | 
 | 			break; | 
 | 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), | 
 | 								start + 1); | 
 |  | 
 | 		if (need_align) { | 
 | 			start = rounddown(start, sbi->segs_per_sec); | 
 | 			end = roundup(end, sbi->segs_per_sec); | 
 | 		} | 
 |  | 
 | 		for (i = start; i < end; i++) { | 
 | 			if (test_and_clear_bit(i, prefree_map)) | 
 | 				dirty_i->nr_dirty[PRE]--; | 
 | 		} | 
 |  | 
 | 		if (!f2fs_realtime_discard_enable(sbi)) | 
 | 			continue; | 
 |  | 
 | 		if (force && start >= cpc->trim_start && | 
 | 					(end - 1) <= cpc->trim_end) | 
 | 				continue; | 
 |  | 
 | 		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { | 
 | 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start), | 
 | 				(end - start) << sbi->log_blocks_per_seg); | 
 | 			continue; | 
 | 		} | 
 | next: | 
 | 		secno = GET_SEC_FROM_SEG(sbi, start); | 
 | 		start_segno = GET_SEG_FROM_SEC(sbi, secno); | 
 | 		if (!IS_CURSEC(sbi, secno) && | 
 | 			!get_valid_blocks(sbi, start, true)) | 
 | 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), | 
 | 				sbi->segs_per_sec << sbi->log_blocks_per_seg); | 
 |  | 
 | 		start = start_segno + sbi->segs_per_sec; | 
 | 		if (start < end) | 
 | 			goto next; | 
 | 		else | 
 | 			end = start - 1; | 
 | 	} | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 |  | 
 | 	/* send small discards */ | 
 | 	list_for_each_entry_safe(entry, this, head, list) { | 
 | 		unsigned int cur_pos = 0, next_pos, len, total_len = 0; | 
 | 		bool is_valid = test_bit_le(0, entry->discard_map); | 
 |  | 
 | find_next: | 
 | 		if (is_valid) { | 
 | 			next_pos = find_next_zero_bit_le(entry->discard_map, | 
 | 					sbi->blocks_per_seg, cur_pos); | 
 | 			len = next_pos - cur_pos; | 
 |  | 
 | 			if (f2fs_sb_has_blkzoned(sbi) || | 
 | 			    (force && len < cpc->trim_minlen)) | 
 | 				goto skip; | 
 |  | 
 | 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, | 
 | 									len); | 
 | 			total_len += len; | 
 | 		} else { | 
 | 			next_pos = find_next_bit_le(entry->discard_map, | 
 | 					sbi->blocks_per_seg, cur_pos); | 
 | 		} | 
 | skip: | 
 | 		cur_pos = next_pos; | 
 | 		is_valid = !is_valid; | 
 |  | 
 | 		if (cur_pos < sbi->blocks_per_seg) | 
 | 			goto find_next; | 
 |  | 
 | 		release_discard_addr(entry); | 
 | 		dcc->nr_discards -= total_len; | 
 | 	} | 
 |  | 
 | 	wake_up_discard_thread(sbi, false); | 
 | } | 
 |  | 
 | static int create_discard_cmd_control(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	dev_t dev = sbi->sb->s_bdev->bd_dev; | 
 | 	struct discard_cmd_control *dcc; | 
 | 	int err = 0, i; | 
 |  | 
 | 	if (SM_I(sbi)->dcc_info) { | 
 | 		dcc = SM_I(sbi)->dcc_info; | 
 | 		goto init_thread; | 
 | 	} | 
 |  | 
 | 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); | 
 | 	if (!dcc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; | 
 | 	INIT_LIST_HEAD(&dcc->entry_list); | 
 | 	for (i = 0; i < MAX_PLIST_NUM; i++) | 
 | 		INIT_LIST_HEAD(&dcc->pend_list[i]); | 
 | 	INIT_LIST_HEAD(&dcc->wait_list); | 
 | 	INIT_LIST_HEAD(&dcc->fstrim_list); | 
 | 	mutex_init(&dcc->cmd_lock); | 
 | 	atomic_set(&dcc->issued_discard, 0); | 
 | 	atomic_set(&dcc->queued_discard, 0); | 
 | 	atomic_set(&dcc->discard_cmd_cnt, 0); | 
 | 	dcc->nr_discards = 0; | 
 | 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; | 
 | 	dcc->undiscard_blks = 0; | 
 | 	dcc->next_pos = 0; | 
 | 	dcc->root = RB_ROOT_CACHED; | 
 | 	dcc->rbtree_check = false; | 
 |  | 
 | 	init_waitqueue_head(&dcc->discard_wait_queue); | 
 | 	SM_I(sbi)->dcc_info = dcc; | 
 | init_thread: | 
 | 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, | 
 | 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); | 
 | 	if (IS_ERR(dcc->f2fs_issue_discard)) { | 
 | 		err = PTR_ERR(dcc->f2fs_issue_discard); | 
 | 		kvfree(dcc); | 
 | 		SM_I(sbi)->dcc_info = NULL; | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 |  | 
 | 	if (!dcc) | 
 | 		return; | 
 |  | 
 | 	f2fs_stop_discard_thread(sbi); | 
 |  | 
 | 	/* | 
 | 	 * Recovery can cache discard commands, so in error path of | 
 | 	 * fill_super(), it needs to give a chance to handle them. | 
 | 	 */ | 
 | 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) | 
 | 		f2fs_issue_discard_timeout(sbi); | 
 |  | 
 | 	kvfree(dcc); | 
 | 	SM_I(sbi)->dcc_info = NULL; | 
 | } | 
 |  | 
 | static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 |  | 
 | 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { | 
 | 		sit_i->dirty_sentries++; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, | 
 | 					unsigned int segno, int modified) | 
 | { | 
 | 	struct seg_entry *se = get_seg_entry(sbi, segno); | 
 | 	se->type = type; | 
 | 	if (modified) | 
 | 		__mark_sit_entry_dirty(sbi, segno); | 
 | } | 
 |  | 
 | static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) | 
 | { | 
 | 	struct seg_entry *se; | 
 | 	unsigned int segno, offset; | 
 | 	long int new_vblocks; | 
 | 	bool exist; | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	bool mir_exist; | 
 | #endif | 
 |  | 
 | 	segno = GET_SEGNO(sbi, blkaddr); | 
 |  | 
 | 	se = get_seg_entry(sbi, segno); | 
 | 	new_vblocks = se->valid_blocks + del; | 
 | 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); | 
 |  | 
 | 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || | 
 | 				(new_vblocks > sbi->blocks_per_seg))); | 
 |  | 
 | 	se->valid_blocks = new_vblocks; | 
 | 	se->mtime = get_mtime(sbi, false); | 
 | 	if (se->mtime > SIT_I(sbi)->max_mtime) | 
 | 		SIT_I(sbi)->max_mtime = se->mtime; | 
 |  | 
 | 	/* Update valid block bitmap */ | 
 | 	if (del > 0) { | 
 | 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 		mir_exist = f2fs_test_and_set_bit(offset, | 
 | 						se->cur_valid_map_mir); | 
 | 		if (unlikely(exist != mir_exist)) { | 
 | 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", | 
 | 				 blkaddr, exist); | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 		} | 
 | #endif | 
 | 		if (unlikely(exist)) { | 
 | 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", | 
 | 				 blkaddr); | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 			se->valid_blocks--; | 
 | 			del = 0; | 
 | 		} | 
 |  | 
 | 		if (!f2fs_test_and_set_bit(offset, se->discard_map)) | 
 | 			sbi->discard_blks--; | 
 |  | 
 | 		/* | 
 | 		 * SSR should never reuse block which is checkpointed | 
 | 		 * or newly invalidated. | 
 | 		 */ | 
 | 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { | 
 | 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) | 
 | 				se->ckpt_valid_blocks++; | 
 | 		} | 
 | 	} else { | 
 | 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 		mir_exist = f2fs_test_and_clear_bit(offset, | 
 | 						se->cur_valid_map_mir); | 
 | 		if (unlikely(exist != mir_exist)) { | 
 | 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", | 
 | 				 blkaddr, exist); | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 		} | 
 | #endif | 
 | 		if (unlikely(!exist)) { | 
 | 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", | 
 | 				 blkaddr); | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 			se->valid_blocks++; | 
 | 			del = 0; | 
 | 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { | 
 | 			/* | 
 | 			 * If checkpoints are off, we must not reuse data that | 
 | 			 * was used in the previous checkpoint. If it was used | 
 | 			 * before, we must track that to know how much space we | 
 | 			 * really have. | 
 | 			 */ | 
 | 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) { | 
 | 				spin_lock(&sbi->stat_lock); | 
 | 				sbi->unusable_block_count++; | 
 | 				spin_unlock(&sbi->stat_lock); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (f2fs_test_and_clear_bit(offset, se->discard_map)) | 
 | 			sbi->discard_blks++; | 
 | 	} | 
 | 	if (!f2fs_test_bit(offset, se->ckpt_valid_map)) | 
 | 		se->ckpt_valid_blocks += del; | 
 |  | 
 | 	__mark_sit_entry_dirty(sbi, segno); | 
 |  | 
 | 	/* update total number of valid blocks to be written in ckpt area */ | 
 | 	SIT_I(sbi)->written_valid_blocks += del; | 
 |  | 
 | 	if (__is_large_section(sbi)) | 
 | 		get_sec_entry(sbi, segno)->valid_blocks += del; | 
 | } | 
 |  | 
 | void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) | 
 | { | 
 | 	unsigned int segno = GET_SEGNO(sbi, addr); | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 |  | 
 | 	f2fs_bug_on(sbi, addr == NULL_ADDR); | 
 | 	if (addr == NEW_ADDR) | 
 | 		return; | 
 |  | 
 | 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); | 
 |  | 
 | 	/* add it into sit main buffer */ | 
 | 	down_write(&sit_i->sentry_lock); | 
 |  | 
 | 	update_sit_entry(sbi, addr, -1); | 
 |  | 
 | 	/* add it into dirty seglist */ | 
 | 	locate_dirty_segment(sbi, segno); | 
 |  | 
 | 	up_write(&sit_i->sentry_lock); | 
 | } | 
 |  | 
 | bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	unsigned int segno, offset; | 
 | 	struct seg_entry *se; | 
 | 	bool is_cp = false; | 
 |  | 
 | 	if (!__is_valid_data_blkaddr(blkaddr)) | 
 | 		return true; | 
 |  | 
 | 	down_read(&sit_i->sentry_lock); | 
 |  | 
 | 	segno = GET_SEGNO(sbi, blkaddr); | 
 | 	se = get_seg_entry(sbi, segno); | 
 | 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); | 
 |  | 
 | 	if (f2fs_test_bit(offset, se->ckpt_valid_map)) | 
 | 		is_cp = true; | 
 |  | 
 | 	up_read(&sit_i->sentry_lock); | 
 |  | 
 | 	return is_cp; | 
 | } | 
 |  | 
 | /* | 
 |  * This function should be resided under the curseg_mutex lock | 
 |  */ | 
 | static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, | 
 | 					struct f2fs_summary *sum) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	void *addr = curseg->sum_blk; | 
 | 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary); | 
 | 	memcpy(addr, sum, sizeof(struct f2fs_summary)); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the number of current summary pages for writing | 
 |  */ | 
 | int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) | 
 | { | 
 | 	int valid_sum_count = 0; | 
 | 	int i, sum_in_page; | 
 |  | 
 | 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
 | 		if (sbi->ckpt->alloc_type[i] == SSR) | 
 | 			valid_sum_count += sbi->blocks_per_seg; | 
 | 		else { | 
 | 			if (for_ra) | 
 | 				valid_sum_count += le16_to_cpu( | 
 | 					F2FS_CKPT(sbi)->cur_data_blkoff[i]); | 
 | 			else | 
 | 				valid_sum_count += curseg_blkoff(sbi, i); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - | 
 | 			SUM_FOOTER_SIZE) / SUMMARY_SIZE; | 
 | 	if (valid_sum_count <= sum_in_page) | 
 | 		return 1; | 
 | 	else if ((valid_sum_count - sum_in_page) <= | 
 | 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) | 
 | 		return 2; | 
 | 	return 3; | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should put this summary page | 
 |  */ | 
 | struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) | 
 | { | 
 | 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); | 
 | } | 
 |  | 
 | void f2fs_update_meta_page(struct f2fs_sb_info *sbi, | 
 | 					void *src, block_t blk_addr) | 
 | { | 
 | 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr); | 
 |  | 
 | 	memcpy(page_address(page), src, PAGE_SIZE); | 
 | 	set_page_dirty(page); | 
 | 	f2fs_put_page(page, 1); | 
 | } | 
 |  | 
 | static void write_sum_page(struct f2fs_sb_info *sbi, | 
 | 			struct f2fs_summary_block *sum_blk, block_t blk_addr) | 
 | { | 
 | 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); | 
 | } | 
 |  | 
 | static void write_current_sum_page(struct f2fs_sb_info *sbi, | 
 | 						int type, block_t blk_addr) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr); | 
 | 	struct f2fs_summary_block *src = curseg->sum_blk; | 
 | 	struct f2fs_summary_block *dst; | 
 |  | 
 | 	dst = (struct f2fs_summary_block *)page_address(page); | 
 | 	memset(dst, 0, PAGE_SIZE); | 
 |  | 
 | 	mutex_lock(&curseg->curseg_mutex); | 
 |  | 
 | 	down_read(&curseg->journal_rwsem); | 
 | 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); | 
 | 	up_read(&curseg->journal_rwsem); | 
 |  | 
 | 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); | 
 | 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); | 
 |  | 
 | 	mutex_unlock(&curseg->curseg_mutex); | 
 |  | 
 | 	set_page_dirty(page); | 
 | 	f2fs_put_page(page, 1); | 
 | } | 
 |  | 
 | static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	unsigned int segno = curseg->segno + 1; | 
 | 	struct free_segmap_info *free_i = FREE_I(sbi); | 
 |  | 
 | 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) | 
 | 		return !test_bit(segno, free_i->free_segmap); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find a new segment from the free segments bitmap to right order | 
 |  * This function should be returned with success, otherwise BUG | 
 |  */ | 
 | static void get_new_segment(struct f2fs_sb_info *sbi, | 
 | 			unsigned int *newseg, bool new_sec, int dir) | 
 | { | 
 | 	struct free_segmap_info *free_i = FREE_I(sbi); | 
 | 	unsigned int segno, secno, zoneno; | 
 | 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; | 
 | 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); | 
 | 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); | 
 | 	unsigned int left_start = hint; | 
 | 	bool init = true; | 
 | 	int go_left = 0; | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&free_i->segmap_lock); | 
 |  | 
 | 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { | 
 | 		segno = find_next_zero_bit(free_i->free_segmap, | 
 | 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); | 
 | 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) | 
 | 			goto got_it; | 
 | 	} | 
 | find_other_zone: | 
 | 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); | 
 | 	if (secno >= MAIN_SECS(sbi)) { | 
 | 		if (dir == ALLOC_RIGHT) { | 
 | 			secno = find_next_zero_bit(free_i->free_secmap, | 
 | 							MAIN_SECS(sbi), 0); | 
 | 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); | 
 | 		} else { | 
 | 			go_left = 1; | 
 | 			left_start = hint - 1; | 
 | 		} | 
 | 	} | 
 | 	if (go_left == 0) | 
 | 		goto skip_left; | 
 |  | 
 | 	while (test_bit(left_start, free_i->free_secmap)) { | 
 | 		if (left_start > 0) { | 
 | 			left_start--; | 
 | 			continue; | 
 | 		} | 
 | 		left_start = find_next_zero_bit(free_i->free_secmap, | 
 | 							MAIN_SECS(sbi), 0); | 
 | 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); | 
 | 		break; | 
 | 	} | 
 | 	secno = left_start; | 
 | skip_left: | 
 | 	segno = GET_SEG_FROM_SEC(sbi, secno); | 
 | 	zoneno = GET_ZONE_FROM_SEC(sbi, secno); | 
 |  | 
 | 	/* give up on finding another zone */ | 
 | 	if (!init) | 
 | 		goto got_it; | 
 | 	if (sbi->secs_per_zone == 1) | 
 | 		goto got_it; | 
 | 	if (zoneno == old_zoneno) | 
 | 		goto got_it; | 
 | 	if (dir == ALLOC_LEFT) { | 
 | 		if (!go_left && zoneno + 1 >= total_zones) | 
 | 			goto got_it; | 
 | 		if (go_left && zoneno == 0) | 
 | 			goto got_it; | 
 | 	} | 
 | 	for (i = 0; i < NR_CURSEG_TYPE; i++) | 
 | 		if (CURSEG_I(sbi, i)->zone == zoneno) | 
 | 			break; | 
 |  | 
 | 	if (i < NR_CURSEG_TYPE) { | 
 | 		/* zone is in user, try another */ | 
 | 		if (go_left) | 
 | 			hint = zoneno * sbi->secs_per_zone - 1; | 
 | 		else if (zoneno + 1 >= total_zones) | 
 | 			hint = 0; | 
 | 		else | 
 | 			hint = (zoneno + 1) * sbi->secs_per_zone; | 
 | 		init = false; | 
 | 		goto find_other_zone; | 
 | 	} | 
 | got_it: | 
 | 	/* set it as dirty segment in free segmap */ | 
 | 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); | 
 | 	__set_inuse(sbi, segno); | 
 | 	*newseg = segno; | 
 | 	spin_unlock(&free_i->segmap_lock); | 
 | } | 
 |  | 
 | static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	struct summary_footer *sum_footer; | 
 |  | 
 | 	curseg->segno = curseg->next_segno; | 
 | 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); | 
 | 	curseg->next_blkoff = 0; | 
 | 	curseg->next_segno = NULL_SEGNO; | 
 |  | 
 | 	sum_footer = &(curseg->sum_blk->footer); | 
 | 	memset(sum_footer, 0, sizeof(struct summary_footer)); | 
 | 	if (IS_DATASEG(type)) | 
 | 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); | 
 | 	if (IS_NODESEG(type)) | 
 | 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); | 
 | 	__set_sit_entry_type(sbi, type, curseg->segno, modified); | 
 | } | 
 |  | 
 | static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	/* if segs_per_sec is large than 1, we need to keep original policy. */ | 
 | 	if (__is_large_section(sbi)) | 
 | 		return CURSEG_I(sbi, type)->segno; | 
 |  | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) | 
 | 		return 0; | 
 |  | 
 | 	if (test_opt(sbi, NOHEAP) && | 
 | 		(type == CURSEG_HOT_DATA || IS_NODESEG(type))) | 
 | 		return 0; | 
 |  | 
 | 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) | 
 | 		return SIT_I(sbi)->last_victim[ALLOC_NEXT]; | 
 |  | 
 | 	/* find segments from 0 to reuse freed segments */ | 
 | 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) | 
 | 		return 0; | 
 |  | 
 | 	return CURSEG_I(sbi, type)->segno; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a current working segment. | 
 |  * This function always allocates a free segment in LFS manner. | 
 |  */ | 
 | static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	unsigned int segno = curseg->segno; | 
 | 	int dir = ALLOC_LEFT; | 
 |  | 
 | 	write_sum_page(sbi, curseg->sum_blk, | 
 | 				GET_SUM_BLOCK(sbi, segno)); | 
 | 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) | 
 | 		dir = ALLOC_RIGHT; | 
 |  | 
 | 	if (test_opt(sbi, NOHEAP)) | 
 | 		dir = ALLOC_RIGHT; | 
 |  | 
 | 	segno = __get_next_segno(sbi, type); | 
 | 	get_new_segment(sbi, &segno, new_sec, dir); | 
 | 	curseg->next_segno = segno; | 
 | 	reset_curseg(sbi, type, 1); | 
 | 	curseg->alloc_type = LFS; | 
 | } | 
 |  | 
 | static void __next_free_blkoff(struct f2fs_sb_info *sbi, | 
 | 			struct curseg_info *seg, block_t start) | 
 | { | 
 | 	struct seg_entry *se = get_seg_entry(sbi, seg->segno); | 
 | 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); | 
 | 	unsigned long *target_map = SIT_I(sbi)->tmp_map; | 
 | 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; | 
 | 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map; | 
 | 	int i, pos; | 
 |  | 
 | 	for (i = 0; i < entries; i++) | 
 | 		target_map[i] = ckpt_map[i] | cur_map[i]; | 
 |  | 
 | 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); | 
 |  | 
 | 	seg->next_blkoff = pos; | 
 | } | 
 |  | 
 | /* | 
 |  * If a segment is written by LFS manner, next block offset is just obtained | 
 |  * by increasing the current block offset. However, if a segment is written by | 
 |  * SSR manner, next block offset obtained by calling __next_free_blkoff | 
 |  */ | 
 | static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, | 
 | 				struct curseg_info *seg) | 
 | { | 
 | 	if (seg->alloc_type == SSR) | 
 | 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1); | 
 | 	else | 
 | 		seg->next_blkoff++; | 
 | } | 
 |  | 
 | /* | 
 |  * This function always allocates a used segment(from dirty seglist) by SSR | 
 |  * manner, so it should recover the existing segment information of valid blocks | 
 |  */ | 
 | static void change_curseg(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	unsigned int new_segno = curseg->next_segno; | 
 | 	struct f2fs_summary_block *sum_node; | 
 | 	struct page *sum_page; | 
 |  | 
 | 	write_sum_page(sbi, curseg->sum_blk, | 
 | 				GET_SUM_BLOCK(sbi, curseg->segno)); | 
 | 	__set_test_and_inuse(sbi, new_segno); | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	__remove_dirty_segment(sbi, new_segno, PRE); | 
 | 	__remove_dirty_segment(sbi, new_segno, DIRTY); | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 |  | 
 | 	reset_curseg(sbi, type, 1); | 
 | 	curseg->alloc_type = SSR; | 
 | 	__next_free_blkoff(sbi, curseg, 0); | 
 |  | 
 | 	sum_page = f2fs_get_sum_page(sbi, new_segno); | 
 | 	f2fs_bug_on(sbi, IS_ERR(sum_page)); | 
 | 	sum_node = (struct f2fs_summary_block *)page_address(sum_page); | 
 | 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); | 
 | 	f2fs_put_page(sum_page, 1); | 
 | } | 
 |  | 
 | static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; | 
 | 	unsigned segno = NULL_SEGNO; | 
 | 	int i, cnt; | 
 | 	bool reversed = false; | 
 |  | 
 | 	/* f2fs_need_SSR() already forces to do this */ | 
 | 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { | 
 | 		curseg->next_segno = segno; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* For node segments, let's do SSR more intensively */ | 
 | 	if (IS_NODESEG(type)) { | 
 | 		if (type >= CURSEG_WARM_NODE) { | 
 | 			reversed = true; | 
 | 			i = CURSEG_COLD_NODE; | 
 | 		} else { | 
 | 			i = CURSEG_HOT_NODE; | 
 | 		} | 
 | 		cnt = NR_CURSEG_NODE_TYPE; | 
 | 	} else { | 
 | 		if (type >= CURSEG_WARM_DATA) { | 
 | 			reversed = true; | 
 | 			i = CURSEG_COLD_DATA; | 
 | 		} else { | 
 | 			i = CURSEG_HOT_DATA; | 
 | 		} | 
 | 		cnt = NR_CURSEG_DATA_TYPE; | 
 | 	} | 
 |  | 
 | 	for (; cnt-- > 0; reversed ? i-- : i++) { | 
 | 		if (i == type) | 
 | 			continue; | 
 | 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { | 
 | 			curseg->next_segno = segno; | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* find valid_blocks=0 in dirty list */ | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { | 
 | 		segno = get_free_segment(sbi); | 
 | 		if (segno != NULL_SEGNO) { | 
 | 			curseg->next_segno = segno; | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * flush out current segment and replace it with new segment | 
 |  * This function should be returned with success, otherwise BUG | 
 |  */ | 
 | static void allocate_segment_by_default(struct f2fs_sb_info *sbi, | 
 | 						int type, bool force) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 |  | 
 | 	if (force) | 
 | 		new_curseg(sbi, type, true); | 
 | 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && | 
 | 					type == CURSEG_WARM_NODE) | 
 | 		new_curseg(sbi, type, false); | 
 | 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && | 
 | 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) | 
 | 		new_curseg(sbi, type, false); | 
 | 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) | 
 | 		change_curseg(sbi, type); | 
 | 	else | 
 | 		new_curseg(sbi, type, false); | 
 |  | 
 | 	stat_inc_seg_type(sbi, curseg); | 
 | } | 
 |  | 
 | void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, | 
 | 					unsigned int start, unsigned int end) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	unsigned int segno; | 
 |  | 
 | 	down_read(&SM_I(sbi)->curseg_lock); | 
 | 	mutex_lock(&curseg->curseg_mutex); | 
 | 	down_write(&SIT_I(sbi)->sentry_lock); | 
 |  | 
 | 	segno = CURSEG_I(sbi, type)->segno; | 
 | 	if (segno < start || segno > end) | 
 | 		goto unlock; | 
 |  | 
 | 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) | 
 | 		change_curseg(sbi, type); | 
 | 	else | 
 | 		new_curseg(sbi, type, true); | 
 |  | 
 | 	stat_inc_seg_type(sbi, curseg); | 
 |  | 
 | 	locate_dirty_segment(sbi, segno); | 
 | unlock: | 
 | 	up_write(&SIT_I(sbi)->sentry_lock); | 
 |  | 
 | 	if (segno != curseg->segno) | 
 | 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", | 
 | 			    type, segno, curseg->segno); | 
 |  | 
 | 	mutex_unlock(&curseg->curseg_mutex); | 
 | 	up_read(&SM_I(sbi)->curseg_lock); | 
 | } | 
 |  | 
 | void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct curseg_info *curseg; | 
 | 	unsigned int old_segno; | 
 | 	int i; | 
 |  | 
 | 	down_write(&SIT_I(sbi)->sentry_lock); | 
 |  | 
 | 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
 | 		if (type != NO_CHECK_TYPE && i != type) | 
 | 			continue; | 
 |  | 
 | 		curseg = CURSEG_I(sbi, i); | 
 | 		if (type == NO_CHECK_TYPE || curseg->next_blkoff || | 
 | 				get_valid_blocks(sbi, curseg->segno, false) || | 
 | 				get_ckpt_valid_blocks(sbi, curseg->segno)) { | 
 | 			old_segno = curseg->segno; | 
 | 			SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); | 
 | 			locate_dirty_segment(sbi, old_segno); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	up_write(&SIT_I(sbi)->sentry_lock); | 
 | } | 
 |  | 
 | static const struct segment_allocation default_salloc_ops = { | 
 | 	.allocate_segment = allocate_segment_by_default, | 
 | }; | 
 |  | 
 | bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, | 
 | 						struct cp_control *cpc) | 
 | { | 
 | 	__u64 trim_start = cpc->trim_start; | 
 | 	bool has_candidate = false; | 
 |  | 
 | 	down_write(&SIT_I(sbi)->sentry_lock); | 
 | 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { | 
 | 		if (add_discard_addrs(sbi, cpc, true)) { | 
 | 			has_candidate = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	up_write(&SIT_I(sbi)->sentry_lock); | 
 |  | 
 | 	cpc->trim_start = trim_start; | 
 | 	return has_candidate; | 
 | } | 
 |  | 
 | static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, | 
 | 					struct discard_policy *dpolicy, | 
 | 					unsigned int start, unsigned int end) | 
 | { | 
 | 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; | 
 | 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL; | 
 | 	struct rb_node **insert_p = NULL, *insert_parent = NULL; | 
 | 	struct discard_cmd *dc; | 
 | 	struct blk_plug plug; | 
 | 	int issued; | 
 | 	unsigned int trimmed = 0; | 
 |  | 
 | next: | 
 | 	issued = 0; | 
 |  | 
 | 	mutex_lock(&dcc->cmd_lock); | 
 | 	if (unlikely(dcc->rbtree_check)) | 
 | 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, | 
 | 								&dcc->root)); | 
 |  | 
 | 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, | 
 | 					NULL, start, | 
 | 					(struct rb_entry **)&prev_dc, | 
 | 					(struct rb_entry **)&next_dc, | 
 | 					&insert_p, &insert_parent, true, NULL); | 
 | 	if (!dc) | 
 | 		dc = next_dc; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	while (dc && dc->lstart <= end) { | 
 | 		struct rb_node *node; | 
 | 		int err = 0; | 
 |  | 
 | 		if (dc->len < dpolicy->granularity) | 
 | 			goto skip; | 
 |  | 
 | 		if (dc->state != D_PREP) { | 
 | 			list_move_tail(&dc->list, &dcc->fstrim_list); | 
 | 			goto skip; | 
 | 		} | 
 |  | 
 | 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); | 
 |  | 
 | 		if (issued >= dpolicy->max_requests) { | 
 | 			start = dc->lstart + dc->len; | 
 |  | 
 | 			if (err) | 
 | 				__remove_discard_cmd(sbi, dc); | 
 |  | 
 | 			blk_finish_plug(&plug); | 
 | 			mutex_unlock(&dcc->cmd_lock); | 
 | 			trimmed += __wait_all_discard_cmd(sbi, NULL); | 
 | 			congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 			goto next; | 
 | 		} | 
 | skip: | 
 | 		node = rb_next(&dc->rb_node); | 
 | 		if (err) | 
 | 			__remove_discard_cmd(sbi, dc); | 
 | 		dc = rb_entry_safe(node, struct discard_cmd, rb_node); | 
 |  | 
 | 		if (fatal_signal_pending(current)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 | 	mutex_unlock(&dcc->cmd_lock); | 
 |  | 
 | 	return trimmed; | 
 | } | 
 |  | 
 | int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) | 
 | { | 
 | 	__u64 start = F2FS_BYTES_TO_BLK(range->start); | 
 | 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; | 
 | 	unsigned int start_segno, end_segno; | 
 | 	block_t start_block, end_block; | 
 | 	struct cp_control cpc; | 
 | 	struct discard_policy dpolicy; | 
 | 	unsigned long long trimmed = 0; | 
 | 	int err = 0; | 
 | 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); | 
 |  | 
 | 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (end < MAIN_BLKADDR(sbi)) | 
 | 		goto out; | 
 |  | 
 | 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { | 
 | 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* start/end segment number in main_area */ | 
 | 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); | 
 | 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : | 
 | 						GET_SEGNO(sbi, end); | 
 | 	if (need_align) { | 
 | 		start_segno = rounddown(start_segno, sbi->segs_per_sec); | 
 | 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; | 
 | 	} | 
 |  | 
 | 	cpc.reason = CP_DISCARD; | 
 | 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); | 
 | 	cpc.trim_start = start_segno; | 
 | 	cpc.trim_end = end_segno; | 
 |  | 
 | 	if (sbi->discard_blks == 0) | 
 | 		goto out; | 
 |  | 
 | 	mutex_lock(&sbi->gc_mutex); | 
 | 	err = f2fs_write_checkpoint(sbi, &cpc); | 
 | 	mutex_unlock(&sbi->gc_mutex); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We filed discard candidates, but actually we don't need to wait for | 
 | 	 * all of them, since they'll be issued in idle time along with runtime | 
 | 	 * discard option. User configuration looks like using runtime discard | 
 | 	 * or periodic fstrim instead of it. | 
 | 	 */ | 
 | 	if (f2fs_realtime_discard_enable(sbi)) | 
 | 		goto out; | 
 |  | 
 | 	start_block = START_BLOCK(sbi, start_segno); | 
 | 	end_block = START_BLOCK(sbi, end_segno + 1); | 
 |  | 
 | 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); | 
 | 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy, | 
 | 					start_block, end_block); | 
 |  | 
 | 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy, | 
 | 					start_block, end_block); | 
 | out: | 
 | 	if (!err) | 
 | 		range->len = F2FS_BLK_TO_BYTES(trimmed); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	if (curseg->next_blkoff < sbi->blocks_per_seg) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | int f2fs_rw_hint_to_seg_type(enum rw_hint hint) | 
 | { | 
 | 	switch (hint) { | 
 | 	case WRITE_LIFE_SHORT: | 
 | 		return CURSEG_HOT_DATA; | 
 | 	case WRITE_LIFE_EXTREME: | 
 | 		return CURSEG_COLD_DATA; | 
 | 	default: | 
 | 		return CURSEG_WARM_DATA; | 
 | 	} | 
 | } | 
 |  | 
 | /* This returns write hints for each segment type. This hints will be | 
 |  * passed down to block layer. There are mapping tables which depend on | 
 |  * the mount option 'whint_mode'. | 
 |  * | 
 |  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. | 
 |  * | 
 |  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. | 
 |  * | 
 |  * User                  F2FS                     Block | 
 |  * ----                  ----                     ----- | 
 |  *                       META                     WRITE_LIFE_NOT_SET | 
 |  *                       HOT_NODE                 " | 
 |  *                       WARM_NODE                " | 
 |  *                       COLD_NODE                " | 
 |  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * extension list        "                        " | 
 |  * | 
 |  * -- buffered io | 
 |  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
 |  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
 |  * WRITE_LIFE_NONE       "                        " | 
 |  * WRITE_LIFE_MEDIUM     "                        " | 
 |  * WRITE_LIFE_LONG       "                        " | 
 |  * | 
 |  * -- direct io | 
 |  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
 |  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
 |  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE | 
 |  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM | 
 |  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG | 
 |  * | 
 |  * 3) whint_mode=fs-based. F2FS passes down hints with its policy. | 
 |  * | 
 |  * User                  F2FS                     Block | 
 |  * ----                  ----                     ----- | 
 |  *                       META                     WRITE_LIFE_MEDIUM; | 
 |  *                       HOT_NODE                 WRITE_LIFE_NOT_SET | 
 |  *                       WARM_NODE                " | 
 |  *                       COLD_NODE                WRITE_LIFE_NONE | 
 |  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * extension list        "                        " | 
 |  * | 
 |  * -- buffered io | 
 |  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
 |  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG | 
 |  * WRITE_LIFE_NONE       "                        " | 
 |  * WRITE_LIFE_MEDIUM     "                        " | 
 |  * WRITE_LIFE_LONG       "                        " | 
 |  * | 
 |  * -- direct io | 
 |  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME | 
 |  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT | 
 |  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET | 
 |  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE | 
 |  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM | 
 |  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG | 
 |  */ | 
 |  | 
 | enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, | 
 | 				enum page_type type, enum temp_type temp) | 
 | { | 
 | 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { | 
 | 		if (type == DATA) { | 
 | 			if (temp == WARM) | 
 | 				return WRITE_LIFE_NOT_SET; | 
 | 			else if (temp == HOT) | 
 | 				return WRITE_LIFE_SHORT; | 
 | 			else if (temp == COLD) | 
 | 				return WRITE_LIFE_EXTREME; | 
 | 		} else { | 
 | 			return WRITE_LIFE_NOT_SET; | 
 | 		} | 
 | 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { | 
 | 		if (type == DATA) { | 
 | 			if (temp == WARM) | 
 | 				return WRITE_LIFE_LONG; | 
 | 			else if (temp == HOT) | 
 | 				return WRITE_LIFE_SHORT; | 
 | 			else if (temp == COLD) | 
 | 				return WRITE_LIFE_EXTREME; | 
 | 		} else if (type == NODE) { | 
 | 			if (temp == WARM || temp == HOT) | 
 | 				return WRITE_LIFE_NOT_SET; | 
 | 			else if (temp == COLD) | 
 | 				return WRITE_LIFE_NONE; | 
 | 		} else if (type == META) { | 
 | 			return WRITE_LIFE_MEDIUM; | 
 | 		} | 
 | 	} | 
 | 	return WRITE_LIFE_NOT_SET; | 
 | } | 
 |  | 
 | static int __get_segment_type_2(struct f2fs_io_info *fio) | 
 | { | 
 | 	if (fio->type == DATA) | 
 | 		return CURSEG_HOT_DATA; | 
 | 	else | 
 | 		return CURSEG_HOT_NODE; | 
 | } | 
 |  | 
 | static int __get_segment_type_4(struct f2fs_io_info *fio) | 
 | { | 
 | 	if (fio->type == DATA) { | 
 | 		struct inode *inode = fio->page->mapping->host; | 
 |  | 
 | 		if (S_ISDIR(inode->i_mode)) | 
 | 			return CURSEG_HOT_DATA; | 
 | 		else | 
 | 			return CURSEG_COLD_DATA; | 
 | 	} else { | 
 | 		if (IS_DNODE(fio->page) && is_cold_node(fio->page)) | 
 | 			return CURSEG_WARM_NODE; | 
 | 		else | 
 | 			return CURSEG_COLD_NODE; | 
 | 	} | 
 | } | 
 |  | 
 | static int __get_segment_type_6(struct f2fs_io_info *fio) | 
 | { | 
 | 	if (fio->type == DATA) { | 
 | 		struct inode *inode = fio->page->mapping->host; | 
 |  | 
 | 		if (is_cold_data(fio->page) || file_is_cold(inode)) | 
 | 			return CURSEG_COLD_DATA; | 
 | 		if (file_is_hot(inode) || | 
 | 				is_inode_flag_set(inode, FI_HOT_DATA) || | 
 | 				f2fs_is_atomic_file(inode) || | 
 | 				f2fs_is_volatile_file(inode)) | 
 | 			return CURSEG_HOT_DATA; | 
 | 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint); | 
 | 	} else { | 
 | 		if (IS_DNODE(fio->page)) | 
 | 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE : | 
 | 						CURSEG_HOT_NODE; | 
 | 		return CURSEG_COLD_NODE; | 
 | 	} | 
 | } | 
 |  | 
 | static int __get_segment_type(struct f2fs_io_info *fio) | 
 | { | 
 | 	int type = 0; | 
 |  | 
 | 	switch (F2FS_OPTION(fio->sbi).active_logs) { | 
 | 	case 2: | 
 | 		type = __get_segment_type_2(fio); | 
 | 		break; | 
 | 	case 4: | 
 | 		type = __get_segment_type_4(fio); | 
 | 		break; | 
 | 	case 6: | 
 | 		type = __get_segment_type_6(fio); | 
 | 		break; | 
 | 	default: | 
 | 		f2fs_bug_on(fio->sbi, true); | 
 | 	} | 
 |  | 
 | 	if (IS_HOT(type)) | 
 | 		fio->temp = HOT; | 
 | 	else if (IS_WARM(type)) | 
 | 		fio->temp = WARM; | 
 | 	else | 
 | 		fio->temp = COLD; | 
 | 	return type; | 
 | } | 
 |  | 
 | void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, | 
 | 		block_t old_blkaddr, block_t *new_blkaddr, | 
 | 		struct f2fs_summary *sum, int type, | 
 | 		struct f2fs_io_info *fio, bool add_list) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, type); | 
 | 	bool put_pin_sem = false; | 
 |  | 
 | 	if (type == CURSEG_COLD_DATA) { | 
 | 		/* GC during CURSEG_COLD_DATA_PINNED allocation */ | 
 | 		if (down_read_trylock(&sbi->pin_sem)) { | 
 | 			put_pin_sem = true; | 
 | 		} else { | 
 | 			type = CURSEG_WARM_DATA; | 
 | 			curseg = CURSEG_I(sbi, type); | 
 | 		} | 
 | 	} else if (type == CURSEG_COLD_DATA_PINNED) { | 
 | 		type = CURSEG_COLD_DATA; | 
 | 	} | 
 |  | 
 | 	down_read(&SM_I(sbi)->curseg_lock); | 
 |  | 
 | 	mutex_lock(&curseg->curseg_mutex); | 
 | 	down_write(&sit_i->sentry_lock); | 
 |  | 
 | 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); | 
 |  | 
 | 	f2fs_wait_discard_bio(sbi, *new_blkaddr); | 
 |  | 
 | 	/* | 
 | 	 * __add_sum_entry should be resided under the curseg_mutex | 
 | 	 * because, this function updates a summary entry in the | 
 | 	 * current summary block. | 
 | 	 */ | 
 | 	__add_sum_entry(sbi, type, sum); | 
 |  | 
 | 	__refresh_next_blkoff(sbi, curseg); | 
 |  | 
 | 	stat_inc_block_count(sbi, curseg); | 
 |  | 
 | 	/* | 
 | 	 * SIT information should be updated before segment allocation, | 
 | 	 * since SSR needs latest valid block information. | 
 | 	 */ | 
 | 	update_sit_entry(sbi, *new_blkaddr, 1); | 
 | 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) | 
 | 		update_sit_entry(sbi, old_blkaddr, -1); | 
 |  | 
 | 	if (!__has_curseg_space(sbi, type)) | 
 | 		sit_i->s_ops->allocate_segment(sbi, type, false); | 
 |  | 
 | 	/* | 
 | 	 * segment dirty status should be updated after segment allocation, | 
 | 	 * so we just need to update status only one time after previous | 
 | 	 * segment being closed. | 
 | 	 */ | 
 | 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | 
 | 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); | 
 |  | 
 | 	up_write(&sit_i->sentry_lock); | 
 |  | 
 | 	if (page && IS_NODESEG(type)) { | 
 | 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); | 
 |  | 
 | 		f2fs_inode_chksum_set(sbi, page); | 
 | 	} | 
 |  | 
 | 	if (F2FS_IO_ALIGNED(sbi)) | 
 | 		fio->retry = false; | 
 |  | 
 | 	if (add_list) { | 
 | 		struct f2fs_bio_info *io; | 
 |  | 
 | 		INIT_LIST_HEAD(&fio->list); | 
 | 		fio->in_list = true; | 
 | 		io = sbi->write_io[fio->type] + fio->temp; | 
 | 		spin_lock(&io->io_lock); | 
 | 		list_add_tail(&fio->list, &io->io_list); | 
 | 		spin_unlock(&io->io_lock); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&curseg->curseg_mutex); | 
 |  | 
 | 	up_read(&SM_I(sbi)->curseg_lock); | 
 |  | 
 | 	if (put_pin_sem) | 
 | 		up_read(&sbi->pin_sem); | 
 | } | 
 |  | 
 | static void update_device_state(struct f2fs_io_info *fio) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = fio->sbi; | 
 | 	unsigned int devidx; | 
 |  | 
 | 	if (!f2fs_is_multi_device(sbi)) | 
 | 		return; | 
 |  | 
 | 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); | 
 |  | 
 | 	/* update device state for fsync */ | 
 | 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); | 
 |  | 
 | 	/* update device state for checkpoint */ | 
 | 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { | 
 | 		spin_lock(&sbi->dev_lock); | 
 | 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device); | 
 | 		spin_unlock(&sbi->dev_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) | 
 | { | 
 | 	int type = __get_segment_type(fio); | 
 | 	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); | 
 |  | 
 | 	if (keep_order) | 
 | 		down_read(&fio->sbi->io_order_lock); | 
 | reallocate: | 
 | 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, | 
 | 			&fio->new_blkaddr, sum, type, fio, true); | 
 | 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) | 
 | 		invalidate_mapping_pages(META_MAPPING(fio->sbi), | 
 | 					fio->old_blkaddr, fio->old_blkaddr); | 
 |  | 
 | 	/* writeout dirty page into bdev */ | 
 | 	f2fs_submit_page_write(fio); | 
 | 	if (fio->retry) { | 
 | 		fio->old_blkaddr = fio->new_blkaddr; | 
 | 		goto reallocate; | 
 | 	} | 
 |  | 
 | 	update_device_state(fio); | 
 |  | 
 | 	if (keep_order) | 
 | 		up_read(&fio->sbi->io_order_lock); | 
 | } | 
 |  | 
 | void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, | 
 | 					enum iostat_type io_type) | 
 | { | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.type = META, | 
 | 		.temp = HOT, | 
 | 		.op = REQ_OP_WRITE, | 
 | 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO, | 
 | 		.old_blkaddr = page->index, | 
 | 		.new_blkaddr = page->index, | 
 | 		.page = page, | 
 | 		.encrypted_page = NULL, | 
 | 		.in_list = false, | 
 | 	}; | 
 |  | 
 | 	if (unlikely(page->index >= MAIN_BLKADDR(sbi))) | 
 | 		fio.op_flags &= ~REQ_META; | 
 |  | 
 | 	set_page_writeback(page); | 
 | 	ClearPageError(page); | 
 | 	f2fs_submit_page_write(&fio); | 
 |  | 
 | 	stat_inc_meta_count(sbi, page->index); | 
 | 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); | 
 | } | 
 |  | 
 | void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) | 
 | { | 
 | 	struct f2fs_summary sum; | 
 |  | 
 | 	set_summary(&sum, nid, 0, 0); | 
 | 	do_write_page(&sum, fio); | 
 |  | 
 | 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); | 
 | } | 
 |  | 
 | void f2fs_outplace_write_data(struct dnode_of_data *dn, | 
 | 					struct f2fs_io_info *fio) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = fio->sbi; | 
 | 	struct f2fs_summary sum; | 
 |  | 
 | 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); | 
 | 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); | 
 | 	do_write_page(&sum, fio); | 
 | 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr); | 
 |  | 
 | 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); | 
 | } | 
 |  | 
 | int f2fs_inplace_write_data(struct f2fs_io_info *fio) | 
 | { | 
 | 	int err; | 
 | 	struct f2fs_sb_info *sbi = fio->sbi; | 
 | 	unsigned int segno; | 
 |  | 
 | 	fio->new_blkaddr = fio->old_blkaddr; | 
 | 	/* i/o temperature is needed for passing down write hints */ | 
 | 	__get_segment_type(fio); | 
 |  | 
 | 	segno = GET_SEGNO(sbi, fio->new_blkaddr); | 
 |  | 
 | 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { | 
 | 		set_sbi_flag(sbi, SBI_NEED_FSCK); | 
 | 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", | 
 | 			  __func__, segno); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	stat_inc_inplace_blocks(fio->sbi); | 
 |  | 
 | 	if (fio->bio) | 
 | 		err = f2fs_merge_page_bio(fio); | 
 | 	else | 
 | 		err = f2fs_submit_page_bio(fio); | 
 | 	if (!err) { | 
 | 		update_device_state(fio); | 
 | 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, | 
 | 						unsigned int segno) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { | 
 | 		if (CURSEG_I(sbi, i)->segno == segno) | 
 | 			break; | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, | 
 | 				block_t old_blkaddr, block_t new_blkaddr, | 
 | 				bool recover_curseg, bool recover_newaddr) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	struct curseg_info *curseg; | 
 | 	unsigned int segno, old_cursegno; | 
 | 	struct seg_entry *se; | 
 | 	int type; | 
 | 	unsigned short old_blkoff; | 
 |  | 
 | 	segno = GET_SEGNO(sbi, new_blkaddr); | 
 | 	se = get_seg_entry(sbi, segno); | 
 | 	type = se->type; | 
 |  | 
 | 	down_write(&SM_I(sbi)->curseg_lock); | 
 |  | 
 | 	if (!recover_curseg) { | 
 | 		/* for recovery flow */ | 
 | 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { | 
 | 			if (old_blkaddr == NULL_ADDR) | 
 | 				type = CURSEG_COLD_DATA; | 
 | 			else | 
 | 				type = CURSEG_WARM_DATA; | 
 | 		} | 
 | 	} else { | 
 | 		if (IS_CURSEG(sbi, segno)) { | 
 | 			/* se->type is volatile as SSR allocation */ | 
 | 			type = __f2fs_get_curseg(sbi, segno); | 
 | 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE); | 
 | 		} else { | 
 | 			type = CURSEG_WARM_DATA; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	f2fs_bug_on(sbi, !IS_DATASEG(type)); | 
 | 	curseg = CURSEG_I(sbi, type); | 
 |  | 
 | 	mutex_lock(&curseg->curseg_mutex); | 
 | 	down_write(&sit_i->sentry_lock); | 
 |  | 
 | 	old_cursegno = curseg->segno; | 
 | 	old_blkoff = curseg->next_blkoff; | 
 |  | 
 | 	/* change the current segment */ | 
 | 	if (segno != curseg->segno) { | 
 | 		curseg->next_segno = segno; | 
 | 		change_curseg(sbi, type); | 
 | 	} | 
 |  | 
 | 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); | 
 | 	__add_sum_entry(sbi, type, sum); | 
 |  | 
 | 	if (!recover_curseg || recover_newaddr) | 
 | 		update_sit_entry(sbi, new_blkaddr, 1); | 
 | 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { | 
 | 		invalidate_mapping_pages(META_MAPPING(sbi), | 
 | 					old_blkaddr, old_blkaddr); | 
 | 		update_sit_entry(sbi, old_blkaddr, -1); | 
 | 	} | 
 |  | 
 | 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); | 
 | 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); | 
 |  | 
 | 	locate_dirty_segment(sbi, old_cursegno); | 
 |  | 
 | 	if (recover_curseg) { | 
 | 		if (old_cursegno != curseg->segno) { | 
 | 			curseg->next_segno = old_cursegno; | 
 | 			change_curseg(sbi, type); | 
 | 		} | 
 | 		curseg->next_blkoff = old_blkoff; | 
 | 	} | 
 |  | 
 | 	up_write(&sit_i->sentry_lock); | 
 | 	mutex_unlock(&curseg->curseg_mutex); | 
 | 	up_write(&SM_I(sbi)->curseg_lock); | 
 | } | 
 |  | 
 | void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, | 
 | 				block_t old_addr, block_t new_addr, | 
 | 				unsigned char version, bool recover_curseg, | 
 | 				bool recover_newaddr) | 
 | { | 
 | 	struct f2fs_summary sum; | 
 |  | 
 | 	set_summary(&sum, dn->nid, dn->ofs_in_node, version); | 
 |  | 
 | 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, | 
 | 					recover_curseg, recover_newaddr); | 
 |  | 
 | 	f2fs_update_data_blkaddr(dn, new_addr); | 
 | } | 
 |  | 
 | void f2fs_wait_on_page_writeback(struct page *page, | 
 | 				enum page_type type, bool ordered, bool locked) | 
 | { | 
 | 	if (PageWriteback(page)) { | 
 | 		struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
 |  | 
 | 		/* submit cached LFS IO */ | 
 | 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); | 
 | 		/* sbumit cached IPU IO */ | 
 | 		f2fs_submit_merged_ipu_write(sbi, NULL, page); | 
 | 		if (ordered) { | 
 | 			wait_on_page_writeback(page); | 
 | 			f2fs_bug_on(sbi, locked && PageWriteback(page)); | 
 | 		} else { | 
 | 			wait_for_stable_page(page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct page *cpage; | 
 |  | 
 | 	if (!f2fs_post_read_required(inode)) | 
 | 		return; | 
 |  | 
 | 	if (!__is_valid_data_blkaddr(blkaddr)) | 
 | 		return; | 
 |  | 
 | 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr); | 
 | 	if (cpage) { | 
 | 		f2fs_wait_on_page_writeback(cpage, DATA, true, true); | 
 | 		f2fs_put_page(cpage, 1); | 
 | 	} | 
 | } | 
 |  | 
 | void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, | 
 | 								block_t len) | 
 | { | 
 | 	block_t i; | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		f2fs_wait_on_block_writeback(inode, blkaddr + i); | 
 | } | 
 |  | 
 | static int read_compacted_summaries(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	struct curseg_info *seg_i; | 
 | 	unsigned char *kaddr; | 
 | 	struct page *page; | 
 | 	block_t start; | 
 | 	int i, j, offset; | 
 |  | 
 | 	start = start_sum_block(sbi); | 
 |  | 
 | 	page = f2fs_get_meta_page(sbi, start++); | 
 | 	if (IS_ERR(page)) | 
 | 		return PTR_ERR(page); | 
 | 	kaddr = (unsigned char *)page_address(page); | 
 |  | 
 | 	/* Step 1: restore nat cache */ | 
 | 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); | 
 |  | 
 | 	/* Step 2: restore sit cache */ | 
 | 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
 | 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); | 
 | 	offset = 2 * SUM_JOURNAL_SIZE; | 
 |  | 
 | 	/* Step 3: restore summary entries */ | 
 | 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
 | 		unsigned short blk_off; | 
 | 		unsigned int segno; | 
 |  | 
 | 		seg_i = CURSEG_I(sbi, i); | 
 | 		segno = le32_to_cpu(ckpt->cur_data_segno[i]); | 
 | 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); | 
 | 		seg_i->next_segno = segno; | 
 | 		reset_curseg(sbi, i, 0); | 
 | 		seg_i->alloc_type = ckpt->alloc_type[i]; | 
 | 		seg_i->next_blkoff = blk_off; | 
 |  | 
 | 		if (seg_i->alloc_type == SSR) | 
 | 			blk_off = sbi->blocks_per_seg; | 
 |  | 
 | 		for (j = 0; j < blk_off; j++) { | 
 | 			struct f2fs_summary *s; | 
 | 			s = (struct f2fs_summary *)(kaddr + offset); | 
 | 			seg_i->sum_blk->entries[j] = *s; | 
 | 			offset += SUMMARY_SIZE; | 
 | 			if (offset + SUMMARY_SIZE <= PAGE_SIZE - | 
 | 						SUM_FOOTER_SIZE) | 
 | 				continue; | 
 |  | 
 | 			f2fs_put_page(page, 1); | 
 | 			page = NULL; | 
 |  | 
 | 			page = f2fs_get_meta_page(sbi, start++); | 
 | 			if (IS_ERR(page)) | 
 | 				return PTR_ERR(page); | 
 | 			kaddr = (unsigned char *)page_address(page); | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 | 	f2fs_put_page(page, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	struct f2fs_summary_block *sum; | 
 | 	struct curseg_info *curseg; | 
 | 	struct page *new; | 
 | 	unsigned short blk_off; | 
 | 	unsigned int segno = 0; | 
 | 	block_t blk_addr = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	/* get segment number and block addr */ | 
 | 	if (IS_DATASEG(type)) { | 
 | 		segno = le32_to_cpu(ckpt->cur_data_segno[type]); | 
 | 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - | 
 | 							CURSEG_HOT_DATA]); | 
 | 		if (__exist_node_summaries(sbi)) | 
 | 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); | 
 | 		else | 
 | 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); | 
 | 	} else { | 
 | 		segno = le32_to_cpu(ckpt->cur_node_segno[type - | 
 | 							CURSEG_HOT_NODE]); | 
 | 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - | 
 | 							CURSEG_HOT_NODE]); | 
 | 		if (__exist_node_summaries(sbi)) | 
 | 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, | 
 | 							type - CURSEG_HOT_NODE); | 
 | 		else | 
 | 			blk_addr = GET_SUM_BLOCK(sbi, segno); | 
 | 	} | 
 |  | 
 | 	new = f2fs_get_meta_page(sbi, blk_addr); | 
 | 	if (IS_ERR(new)) | 
 | 		return PTR_ERR(new); | 
 | 	sum = (struct f2fs_summary_block *)page_address(new); | 
 |  | 
 | 	if (IS_NODESEG(type)) { | 
 | 		if (__exist_node_summaries(sbi)) { | 
 | 			struct f2fs_summary *ns = &sum->entries[0]; | 
 | 			int i; | 
 | 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { | 
 | 				ns->version = 0; | 
 | 				ns->ofs_in_node = 0; | 
 | 			} | 
 | 		} else { | 
 | 			err = f2fs_restore_node_summary(sbi, segno, sum); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* set uncompleted segment to curseg */ | 
 | 	curseg = CURSEG_I(sbi, type); | 
 | 	mutex_lock(&curseg->curseg_mutex); | 
 |  | 
 | 	/* update journal info */ | 
 | 	down_write(&curseg->journal_rwsem); | 
 | 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); | 
 | 	up_write(&curseg->journal_rwsem); | 
 |  | 
 | 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); | 
 | 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); | 
 | 	curseg->next_segno = segno; | 
 | 	reset_curseg(sbi, type, 0); | 
 | 	curseg->alloc_type = ckpt->alloc_type[type]; | 
 | 	curseg->next_blkoff = blk_off; | 
 | 	mutex_unlock(&curseg->curseg_mutex); | 
 | out: | 
 | 	f2fs_put_page(new, 1); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int restore_curseg_summaries(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; | 
 | 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; | 
 | 	int type = CURSEG_HOT_DATA; | 
 | 	int err; | 
 |  | 
 | 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { | 
 | 		int npages = f2fs_npages_for_summary_flush(sbi, true); | 
 |  | 
 | 		if (npages >= 2) | 
 | 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, | 
 | 							META_CP, true); | 
 |  | 
 | 		/* restore for compacted data summary */ | 
 | 		err = read_compacted_summaries(sbi); | 
 | 		if (err) | 
 | 			return err; | 
 | 		type = CURSEG_HOT_NODE; | 
 | 	} | 
 |  | 
 | 	if (__exist_node_summaries(sbi)) | 
 | 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), | 
 | 					NR_CURSEG_TYPE - type, META_CP, true); | 
 |  | 
 | 	for (; type <= CURSEG_COLD_NODE; type++) { | 
 | 		err = read_normal_summaries(sbi, type); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* sanity check for summary blocks */ | 
 | 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || | 
 | 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { | 
 | 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", | 
 | 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned char *kaddr; | 
 | 	struct f2fs_summary *summary; | 
 | 	struct curseg_info *seg_i; | 
 | 	int written_size = 0; | 
 | 	int i, j; | 
 |  | 
 | 	page = f2fs_grab_meta_page(sbi, blkaddr++); | 
 | 	kaddr = (unsigned char *)page_address(page); | 
 | 	memset(kaddr, 0, PAGE_SIZE); | 
 |  | 
 | 	/* Step 1: write nat cache */ | 
 | 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); | 
 | 	written_size += SUM_JOURNAL_SIZE; | 
 |  | 
 | 	/* Step 2: write sit cache */ | 
 | 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
 | 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); | 
 | 	written_size += SUM_JOURNAL_SIZE; | 
 |  | 
 | 	/* Step 3: write summary entries */ | 
 | 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { | 
 | 		unsigned short blkoff; | 
 | 		seg_i = CURSEG_I(sbi, i); | 
 | 		if (sbi->ckpt->alloc_type[i] == SSR) | 
 | 			blkoff = sbi->blocks_per_seg; | 
 | 		else | 
 | 			blkoff = curseg_blkoff(sbi, i); | 
 |  | 
 | 		for (j = 0; j < blkoff; j++) { | 
 | 			if (!page) { | 
 | 				page = f2fs_grab_meta_page(sbi, blkaddr++); | 
 | 				kaddr = (unsigned char *)page_address(page); | 
 | 				memset(kaddr, 0, PAGE_SIZE); | 
 | 				written_size = 0; | 
 | 			} | 
 | 			summary = (struct f2fs_summary *)(kaddr + written_size); | 
 | 			*summary = seg_i->sum_blk->entries[j]; | 
 | 			written_size += SUMMARY_SIZE; | 
 |  | 
 | 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE - | 
 | 							SUM_FOOTER_SIZE) | 
 | 				continue; | 
 |  | 
 | 			set_page_dirty(page); | 
 | 			f2fs_put_page(page, 1); | 
 | 			page = NULL; | 
 | 		} | 
 | 	} | 
 | 	if (page) { | 
 | 		set_page_dirty(page); | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void write_normal_summaries(struct f2fs_sb_info *sbi, | 
 | 					block_t blkaddr, int type) | 
 | { | 
 | 	int i, end; | 
 | 	if (IS_DATASEG(type)) | 
 | 		end = type + NR_CURSEG_DATA_TYPE; | 
 | 	else | 
 | 		end = type + NR_CURSEG_NODE_TYPE; | 
 |  | 
 | 	for (i = type; i < end; i++) | 
 | 		write_current_sum_page(sbi, i, blkaddr + (i - type)); | 
 | } | 
 |  | 
 | void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | 
 | { | 
 | 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) | 
 | 		write_compacted_summaries(sbi, start_blk); | 
 | 	else | 
 | 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); | 
 | } | 
 |  | 
 | void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) | 
 | { | 
 | 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); | 
 | } | 
 |  | 
 | int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, | 
 | 					unsigned int val, int alloc) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (type == NAT_JOURNAL) { | 
 | 		for (i = 0; i < nats_in_cursum(journal); i++) { | 
 | 			if (le32_to_cpu(nid_in_journal(journal, i)) == val) | 
 | 				return i; | 
 | 		} | 
 | 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) | 
 | 			return update_nats_in_cursum(journal, 1); | 
 | 	} else if (type == SIT_JOURNAL) { | 
 | 		for (i = 0; i < sits_in_cursum(journal); i++) | 
 | 			if (le32_to_cpu(segno_in_journal(journal, i)) == val) | 
 | 				return i; | 
 | 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) | 
 | 			return update_sits_in_cursum(journal, 1); | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, | 
 | 					unsigned int segno) | 
 | { | 
 | 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); | 
 | } | 
 |  | 
 | static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, | 
 | 					unsigned int start) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	struct page *page; | 
 | 	pgoff_t src_off, dst_off; | 
 |  | 
 | 	src_off = current_sit_addr(sbi, start); | 
 | 	dst_off = next_sit_addr(sbi, src_off); | 
 |  | 
 | 	page = f2fs_grab_meta_page(sbi, dst_off); | 
 | 	seg_info_to_sit_page(sbi, page, start); | 
 |  | 
 | 	set_page_dirty(page); | 
 | 	set_to_next_sit(sit_i, start); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct sit_entry_set *grab_sit_entry_set(void) | 
 | { | 
 | 	struct sit_entry_set *ses = | 
 | 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); | 
 |  | 
 | 	ses->entry_cnt = 0; | 
 | 	INIT_LIST_HEAD(&ses->set_list); | 
 | 	return ses; | 
 | } | 
 |  | 
 | static void release_sit_entry_set(struct sit_entry_set *ses) | 
 | { | 
 | 	list_del(&ses->set_list); | 
 | 	kmem_cache_free(sit_entry_set_slab, ses); | 
 | } | 
 |  | 
 | static void adjust_sit_entry_set(struct sit_entry_set *ses, | 
 | 						struct list_head *head) | 
 | { | 
 | 	struct sit_entry_set *next = ses; | 
 |  | 
 | 	if (list_is_last(&ses->set_list, head)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry_continue(next, head, set_list) | 
 | 		if (ses->entry_cnt <= next->entry_cnt) | 
 | 			break; | 
 |  | 
 | 	list_move_tail(&ses->set_list, &next->set_list); | 
 | } | 
 |  | 
 | static void add_sit_entry(unsigned int segno, struct list_head *head) | 
 | { | 
 | 	struct sit_entry_set *ses; | 
 | 	unsigned int start_segno = START_SEGNO(segno); | 
 |  | 
 | 	list_for_each_entry(ses, head, set_list) { | 
 | 		if (ses->start_segno == start_segno) { | 
 | 			ses->entry_cnt++; | 
 | 			adjust_sit_entry_set(ses, head); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ses = grab_sit_entry_set(); | 
 |  | 
 | 	ses->start_segno = start_segno; | 
 | 	ses->entry_cnt++; | 
 | 	list_add(&ses->set_list, head); | 
 | } | 
 |  | 
 | static void add_sits_in_set(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_sm_info *sm_info = SM_I(sbi); | 
 | 	struct list_head *set_list = &sm_info->sit_entry_set; | 
 | 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; | 
 | 	unsigned int segno; | 
 |  | 
 | 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) | 
 | 		add_sit_entry(segno, set_list); | 
 | } | 
 |  | 
 | static void remove_sits_in_journal(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	int i; | 
 |  | 
 | 	down_write(&curseg->journal_rwsem); | 
 | 	for (i = 0; i < sits_in_cursum(journal); i++) { | 
 | 		unsigned int segno; | 
 | 		bool dirtied; | 
 |  | 
 | 		segno = le32_to_cpu(segno_in_journal(journal, i)); | 
 | 		dirtied = __mark_sit_entry_dirty(sbi, segno); | 
 |  | 
 | 		if (!dirtied) | 
 | 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); | 
 | 	} | 
 | 	update_sits_in_cursum(journal, -i); | 
 | 	up_write(&curseg->journal_rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * CP calls this function, which flushes SIT entries including sit_journal, | 
 |  * and moves prefree segs to free segs. | 
 |  */ | 
 | void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap; | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	struct sit_entry_set *ses, *tmp; | 
 | 	struct list_head *head = &SM_I(sbi)->sit_entry_set; | 
 | 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); | 
 | 	struct seg_entry *se; | 
 |  | 
 | 	down_write(&sit_i->sentry_lock); | 
 |  | 
 | 	if (!sit_i->dirty_sentries) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * add and account sit entries of dirty bitmap in sit entry | 
 | 	 * set temporarily | 
 | 	 */ | 
 | 	add_sits_in_set(sbi); | 
 |  | 
 | 	/* | 
 | 	 * if there are no enough space in journal to store dirty sit | 
 | 	 * entries, remove all entries from journal and add and account | 
 | 	 * them in sit entry set. | 
 | 	 */ | 
 | 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || | 
 | 								!to_journal) | 
 | 		remove_sits_in_journal(sbi); | 
 |  | 
 | 	/* | 
 | 	 * there are two steps to flush sit entries: | 
 | 	 * #1, flush sit entries to journal in current cold data summary block. | 
 | 	 * #2, flush sit entries to sit page. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(ses, tmp, head, set_list) { | 
 | 		struct page *page = NULL; | 
 | 		struct f2fs_sit_block *raw_sit = NULL; | 
 | 		unsigned int start_segno = ses->start_segno; | 
 | 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, | 
 | 						(unsigned long)MAIN_SEGS(sbi)); | 
 | 		unsigned int segno = start_segno; | 
 |  | 
 | 		if (to_journal && | 
 | 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) | 
 | 			to_journal = false; | 
 |  | 
 | 		if (to_journal) { | 
 | 			down_write(&curseg->journal_rwsem); | 
 | 		} else { | 
 | 			page = get_next_sit_page(sbi, start_segno); | 
 | 			raw_sit = page_address(page); | 
 | 		} | 
 |  | 
 | 		/* flush dirty sit entries in region of current sit set */ | 
 | 		for_each_set_bit_from(segno, bitmap, end) { | 
 | 			int offset, sit_offset; | 
 |  | 
 | 			se = get_seg_entry(sbi, segno); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, | 
 | 						SIT_VBLOCK_MAP_SIZE)) | 
 | 				f2fs_bug_on(sbi, 1); | 
 | #endif | 
 |  | 
 | 			/* add discard candidates */ | 
 | 			if (!(cpc->reason & CP_DISCARD)) { | 
 | 				cpc->trim_start = segno; | 
 | 				add_discard_addrs(sbi, cpc, false); | 
 | 			} | 
 |  | 
 | 			if (to_journal) { | 
 | 				offset = f2fs_lookup_journal_in_cursum(journal, | 
 | 							SIT_JOURNAL, segno, 1); | 
 | 				f2fs_bug_on(sbi, offset < 0); | 
 | 				segno_in_journal(journal, offset) = | 
 | 							cpu_to_le32(segno); | 
 | 				seg_info_to_raw_sit(se, | 
 | 					&sit_in_journal(journal, offset)); | 
 | 				check_block_count(sbi, segno, | 
 | 					&sit_in_journal(journal, offset)); | 
 | 			} else { | 
 | 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); | 
 | 				seg_info_to_raw_sit(se, | 
 | 						&raw_sit->entries[sit_offset]); | 
 | 				check_block_count(sbi, segno, | 
 | 						&raw_sit->entries[sit_offset]); | 
 | 			} | 
 |  | 
 | 			__clear_bit(segno, bitmap); | 
 | 			sit_i->dirty_sentries--; | 
 | 			ses->entry_cnt--; | 
 | 		} | 
 |  | 
 | 		if (to_journal) | 
 | 			up_write(&curseg->journal_rwsem); | 
 | 		else | 
 | 			f2fs_put_page(page, 1); | 
 |  | 
 | 		f2fs_bug_on(sbi, ses->entry_cnt); | 
 | 		release_sit_entry_set(ses); | 
 | 	} | 
 |  | 
 | 	f2fs_bug_on(sbi, !list_empty(head)); | 
 | 	f2fs_bug_on(sbi, sit_i->dirty_sentries); | 
 | out: | 
 | 	if (cpc->reason & CP_DISCARD) { | 
 | 		__u64 trim_start = cpc->trim_start; | 
 |  | 
 | 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) | 
 | 			add_discard_addrs(sbi, cpc, false); | 
 |  | 
 | 		cpc->trim_start = trim_start; | 
 | 	} | 
 | 	up_write(&sit_i->sentry_lock); | 
 |  | 
 | 	set_prefree_as_free_segments(sbi); | 
 | } | 
 |  | 
 | static int build_sit_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | 
 | 	struct sit_info *sit_i; | 
 | 	unsigned int sit_segs, start; | 
 | 	char *src_bitmap, *bitmap; | 
 | 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; | 
 |  | 
 | 	/* allocate memory for SIT information */ | 
 | 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); | 
 | 	if (!sit_i) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SM_I(sbi)->sit_info = sit_i; | 
 |  | 
 | 	sit_i->sentries = | 
 | 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), | 
 | 					      MAIN_SEGS(sbi)), | 
 | 			      GFP_KERNEL); | 
 | 	if (!sit_i->sentries) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
 | 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, | 
 | 								GFP_KERNEL); | 
 | 	if (!sit_i->dirty_sentries_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; | 
 | #else | 
 | 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; | 
 | #endif | 
 | 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); | 
 | 	if (!sit_i->bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bitmap = sit_i->bitmap; | 
 |  | 
 | 	for (start = 0; start < MAIN_SEGS(sbi); start++) { | 
 | 		sit_i->sentries[start].cur_valid_map = bitmap; | 
 | 		bitmap += SIT_VBLOCK_MAP_SIZE; | 
 |  | 
 | 		sit_i->sentries[start].ckpt_valid_map = bitmap; | 
 | 		bitmap += SIT_VBLOCK_MAP_SIZE; | 
 |  | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 		sit_i->sentries[start].cur_valid_map_mir = bitmap; | 
 | 		bitmap += SIT_VBLOCK_MAP_SIZE; | 
 | #endif | 
 |  | 
 | 		sit_i->sentries[start].discard_map = bitmap; | 
 | 		bitmap += SIT_VBLOCK_MAP_SIZE; | 
 | 	} | 
 |  | 
 | 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); | 
 | 	if (!sit_i->tmp_map) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (__is_large_section(sbi)) { | 
 | 		sit_i->sec_entries = | 
 | 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), | 
 | 						      MAIN_SECS(sbi)), | 
 | 				      GFP_KERNEL); | 
 | 		if (!sit_i->sec_entries) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* get information related with SIT */ | 
 | 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; | 
 |  | 
 | 	/* setup SIT bitmap from ckeckpoint pack */ | 
 | 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); | 
 | 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); | 
 |  | 
 | 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); | 
 | 	if (!sit_i->sit_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, | 
 | 					sit_bitmap_size, GFP_KERNEL); | 
 | 	if (!sit_i->sit_bitmap_mir) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi, | 
 | 					main_bitmap_size, GFP_KERNEL); | 
 | 	if (!sit_i->invalid_segmap) | 
 | 		return -ENOMEM; | 
 | #endif | 
 |  | 
 | 	/* init SIT information */ | 
 | 	sit_i->s_ops = &default_salloc_ops; | 
 |  | 
 | 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); | 
 | 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; | 
 | 	sit_i->written_valid_blocks = 0; | 
 | 	sit_i->bitmap_size = sit_bitmap_size; | 
 | 	sit_i->dirty_sentries = 0; | 
 | 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; | 
 | 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); | 
 | 	sit_i->mounted_time = ktime_get_real_seconds(); | 
 | 	init_rwsem(&sit_i->sentry_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int build_free_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct free_segmap_info *free_i; | 
 | 	unsigned int bitmap_size, sec_bitmap_size; | 
 |  | 
 | 	/* allocate memory for free segmap information */ | 
 | 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); | 
 | 	if (!free_i) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SM_I(sbi)->free_info = free_i; | 
 |  | 
 | 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
 | 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); | 
 | 	if (!free_i->free_segmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); | 
 | 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); | 
 | 	if (!free_i->free_secmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* set all segments as dirty temporarily */ | 
 | 	memset(free_i->free_segmap, 0xff, bitmap_size); | 
 | 	memset(free_i->free_secmap, 0xff, sec_bitmap_size); | 
 |  | 
 | 	/* init free segmap information */ | 
 | 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); | 
 | 	free_i->free_segments = 0; | 
 | 	free_i->free_sections = 0; | 
 | 	spin_lock_init(&free_i->segmap_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int build_curseg(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct curseg_info *array; | 
 | 	int i; | 
 |  | 
 | 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), | 
 | 			     GFP_KERNEL); | 
 | 	if (!array) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SM_I(sbi)->curseg_array = array; | 
 |  | 
 | 	for (i = 0; i < NR_CURSEG_TYPE; i++) { | 
 | 		mutex_init(&array[i].curseg_mutex); | 
 | 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); | 
 | 		if (!array[i].sum_blk) | 
 | 			return -ENOMEM; | 
 | 		init_rwsem(&array[i].journal_rwsem); | 
 | 		array[i].journal = f2fs_kzalloc(sbi, | 
 | 				sizeof(struct f2fs_journal), GFP_KERNEL); | 
 | 		if (!array[i].journal) | 
 | 			return -ENOMEM; | 
 | 		array[i].segno = NULL_SEGNO; | 
 | 		array[i].next_blkoff = 0; | 
 | 	} | 
 | 	return restore_curseg_summaries(sbi); | 
 | } | 
 |  | 
 | static int build_sit_entries(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	struct seg_entry *se; | 
 | 	struct f2fs_sit_entry sit; | 
 | 	int sit_blk_cnt = SIT_BLK_CNT(sbi); | 
 | 	unsigned int i, start, end; | 
 | 	unsigned int readed, start_blk = 0; | 
 | 	int err = 0; | 
 | 	block_t total_node_blocks = 0; | 
 |  | 
 | 	do { | 
 | 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, | 
 | 							META_SIT, true); | 
 |  | 
 | 		start = start_blk * sit_i->sents_per_block; | 
 | 		end = (start_blk + readed) * sit_i->sents_per_block; | 
 |  | 
 | 		for (; start < end && start < MAIN_SEGS(sbi); start++) { | 
 | 			struct f2fs_sit_block *sit_blk; | 
 | 			struct page *page; | 
 |  | 
 | 			se = &sit_i->sentries[start]; | 
 | 			page = get_current_sit_page(sbi, start); | 
 | 			if (IS_ERR(page)) | 
 | 				return PTR_ERR(page); | 
 | 			sit_blk = (struct f2fs_sit_block *)page_address(page); | 
 | 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; | 
 | 			f2fs_put_page(page, 1); | 
 |  | 
 | 			err = check_block_count(sbi, start, &sit); | 
 | 			if (err) | 
 | 				return err; | 
 | 			seg_info_from_raw_sit(se, &sit); | 
 | 			if (IS_NODESEG(se->type)) | 
 | 				total_node_blocks += se->valid_blocks; | 
 |  | 
 | 			/* build discard map only one time */ | 
 | 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { | 
 | 				memset(se->discard_map, 0xff, | 
 | 					SIT_VBLOCK_MAP_SIZE); | 
 | 			} else { | 
 | 				memcpy(se->discard_map, | 
 | 					se->cur_valid_map, | 
 | 					SIT_VBLOCK_MAP_SIZE); | 
 | 				sbi->discard_blks += | 
 | 					sbi->blocks_per_seg - | 
 | 					se->valid_blocks; | 
 | 			} | 
 |  | 
 | 			if (__is_large_section(sbi)) | 
 | 				get_sec_entry(sbi, start)->valid_blocks += | 
 | 							se->valid_blocks; | 
 | 		} | 
 | 		start_blk += readed; | 
 | 	} while (start_blk < sit_blk_cnt); | 
 |  | 
 | 	down_read(&curseg->journal_rwsem); | 
 | 	for (i = 0; i < sits_in_cursum(journal); i++) { | 
 | 		unsigned int old_valid_blocks; | 
 |  | 
 | 		start = le32_to_cpu(segno_in_journal(journal, i)); | 
 | 		if (start >= MAIN_SEGS(sbi)) { | 
 | 			f2fs_err(sbi, "Wrong journal entry on segno %u", | 
 | 				 start); | 
 | 			err = -EFSCORRUPTED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		se = &sit_i->sentries[start]; | 
 | 		sit = sit_in_journal(journal, i); | 
 |  | 
 | 		old_valid_blocks = se->valid_blocks; | 
 | 		if (IS_NODESEG(se->type)) | 
 | 			total_node_blocks -= old_valid_blocks; | 
 |  | 
 | 		err = check_block_count(sbi, start, &sit); | 
 | 		if (err) | 
 | 			break; | 
 | 		seg_info_from_raw_sit(se, &sit); | 
 | 		if (IS_NODESEG(se->type)) | 
 | 			total_node_blocks += se->valid_blocks; | 
 |  | 
 | 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { | 
 | 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); | 
 | 		} else { | 
 | 			memcpy(se->discard_map, se->cur_valid_map, | 
 | 						SIT_VBLOCK_MAP_SIZE); | 
 | 			sbi->discard_blks += old_valid_blocks; | 
 | 			sbi->discard_blks -= se->valid_blocks; | 
 | 		} | 
 |  | 
 | 		if (__is_large_section(sbi)) { | 
 | 			get_sec_entry(sbi, start)->valid_blocks += | 
 | 							se->valid_blocks; | 
 | 			get_sec_entry(sbi, start)->valid_blocks -= | 
 | 							old_valid_blocks; | 
 | 		} | 
 | 	} | 
 | 	up_read(&curseg->journal_rwsem); | 
 |  | 
 | 	if (!err && total_node_blocks != valid_node_count(sbi)) { | 
 | 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u", | 
 | 			 total_node_blocks, valid_node_count(sbi)); | 
 | 		err = -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void init_free_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	unsigned int start; | 
 | 	int type; | 
 |  | 
 | 	for (start = 0; start < MAIN_SEGS(sbi); start++) { | 
 | 		struct seg_entry *sentry = get_seg_entry(sbi, start); | 
 | 		if (!sentry->valid_blocks) | 
 | 			__set_free(sbi, start); | 
 | 		else | 
 | 			SIT_I(sbi)->written_valid_blocks += | 
 | 						sentry->valid_blocks; | 
 | 	} | 
 |  | 
 | 	/* set use the current segments */ | 
 | 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { | 
 | 		struct curseg_info *curseg_t = CURSEG_I(sbi, type); | 
 | 		__set_test_and_inuse(sbi, curseg_t->segno); | 
 | 	} | 
 | } | 
 |  | 
 | static void init_dirty_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	struct free_segmap_info *free_i = FREE_I(sbi); | 
 | 	unsigned int segno = 0, offset = 0; | 
 | 	unsigned short valid_blocks; | 
 |  | 
 | 	while (1) { | 
 | 		/* find dirty segment based on free segmap */ | 
 | 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); | 
 | 		if (segno >= MAIN_SEGS(sbi)) | 
 | 			break; | 
 | 		offset = segno + 1; | 
 | 		valid_blocks = get_valid_blocks(sbi, segno, false); | 
 | 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) | 
 | 			continue; | 
 | 		if (valid_blocks > sbi->blocks_per_seg) { | 
 | 			f2fs_bug_on(sbi, 1); | 
 | 			continue; | 
 | 		} | 
 | 		mutex_lock(&dirty_i->seglist_lock); | 
 | 		__locate_dirty_segment(sbi, segno, DIRTY); | 
 | 		mutex_unlock(&dirty_i->seglist_lock); | 
 | 	} | 
 | } | 
 |  | 
 | static int init_victim_secmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); | 
 |  | 
 | 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); | 
 | 	if (!dirty_i->victim_secmap) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int build_dirty_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i; | 
 | 	unsigned int bitmap_size, i; | 
 |  | 
 | 	/* allocate memory for dirty segments list information */ | 
 | 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), | 
 | 								GFP_KERNEL); | 
 | 	if (!dirty_i) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	SM_I(sbi)->dirty_info = dirty_i; | 
 | 	mutex_init(&dirty_i->seglist_lock); | 
 |  | 
 | 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); | 
 |  | 
 | 	for (i = 0; i < NR_DIRTY_TYPE; i++) { | 
 | 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, | 
 | 								GFP_KERNEL); | 
 | 		if (!dirty_i->dirty_segmap[i]) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	init_dirty_segmap(sbi); | 
 | 	return init_victim_secmap(sbi); | 
 | } | 
 |  | 
 | static int sanity_check_curseg(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; | 
 | 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused. | 
 | 	 */ | 
 | 	for (i = 0; i < NO_CHECK_TYPE; i++) { | 
 | 		struct curseg_info *curseg = CURSEG_I(sbi, i); | 
 | 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno); | 
 | 		unsigned int blkofs = curseg->next_blkoff; | 
 |  | 
 | 		if (f2fs_test_bit(blkofs, se->cur_valid_map)) | 
 | 			goto out; | 
 |  | 
 | 		if (curseg->alloc_type == SSR) | 
 | 			continue; | 
 |  | 
 | 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { | 
 | 			if (!f2fs_test_bit(blkofs, se->cur_valid_map)) | 
 | 				continue; | 
 | out: | 
 | 			f2fs_err(sbi, | 
 | 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", | 
 | 				 i, curseg->segno, curseg->alloc_type, | 
 | 				 curseg->next_blkoff, blkofs); | 
 | 			return -EFSCORRUPTED; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update min, max modified time for cost-benefit GC algorithm | 
 |  */ | 
 | static void init_min_max_mtime(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 | 	unsigned int segno; | 
 |  | 
 | 	down_write(&sit_i->sentry_lock); | 
 |  | 
 | 	sit_i->min_mtime = ULLONG_MAX; | 
 |  | 
 | 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { | 
 | 		unsigned int i; | 
 | 		unsigned long long mtime = 0; | 
 |  | 
 | 		for (i = 0; i < sbi->segs_per_sec; i++) | 
 | 			mtime += get_seg_entry(sbi, segno + i)->mtime; | 
 |  | 
 | 		mtime = div_u64(mtime, sbi->segs_per_sec); | 
 |  | 
 | 		if (sit_i->min_mtime > mtime) | 
 | 			sit_i->min_mtime = mtime; | 
 | 	} | 
 | 	sit_i->max_mtime = get_mtime(sbi, false); | 
 | 	up_write(&sit_i->sentry_lock); | 
 | } | 
 |  | 
 | int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	struct f2fs_sm_info *sm_info; | 
 | 	int err; | 
 |  | 
 | 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); | 
 | 	if (!sm_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* init sm info */ | 
 | 	sbi->sm_info = sm_info; | 
 | 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); | 
 | 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); | 
 | 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count); | 
 | 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); | 
 | 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); | 
 | 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); | 
 | 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); | 
 | 	sm_info->rec_prefree_segments = sm_info->main_segments * | 
 | 					DEF_RECLAIM_PREFREE_SEGMENTS / 100; | 
 | 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) | 
 | 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; | 
 |  | 
 | 	if (!test_opt(sbi, LFS)) | 
 | 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; | 
 | 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; | 
 | 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; | 
 | 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; | 
 | 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; | 
 | 	sm_info->min_ssr_sections = reserved_sections(sbi); | 
 |  | 
 | 	INIT_LIST_HEAD(&sm_info->sit_entry_set); | 
 |  | 
 | 	init_rwsem(&sm_info->curseg_lock); | 
 |  | 
 | 	if (!f2fs_readonly(sbi->sb)) { | 
 | 		err = f2fs_create_flush_cmd_control(sbi); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	err = create_discard_cmd_control(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = build_sit_info(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = build_free_segmap(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = build_curseg(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* reinit free segmap based on SIT */ | 
 | 	err = build_sit_entries(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	init_free_segmap(sbi); | 
 | 	err = build_dirty_segmap(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = sanity_check_curseg(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	init_min_max_mtime(sbi); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void discard_dirty_segmap(struct f2fs_sb_info *sbi, | 
 | 		enum dirty_type dirty_type) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 |  | 
 | 	mutex_lock(&dirty_i->seglist_lock); | 
 | 	kvfree(dirty_i->dirty_segmap[dirty_type]); | 
 | 	dirty_i->nr_dirty[dirty_type] = 0; | 
 | 	mutex_unlock(&dirty_i->seglist_lock); | 
 | } | 
 |  | 
 | static void destroy_victim_secmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	kvfree(dirty_i->victim_secmap); | 
 | } | 
 |  | 
 | static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); | 
 | 	int i; | 
 |  | 
 | 	if (!dirty_i) | 
 | 		return; | 
 |  | 
 | 	/* discard pre-free/dirty segments list */ | 
 | 	for (i = 0; i < NR_DIRTY_TYPE; i++) | 
 | 		discard_dirty_segmap(sbi, i); | 
 |  | 
 | 	destroy_victim_secmap(sbi); | 
 | 	SM_I(sbi)->dirty_info = NULL; | 
 | 	kvfree(dirty_i); | 
 | } | 
 |  | 
 | static void destroy_curseg(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct curseg_info *array = SM_I(sbi)->curseg_array; | 
 | 	int i; | 
 |  | 
 | 	if (!array) | 
 | 		return; | 
 | 	SM_I(sbi)->curseg_array = NULL; | 
 | 	for (i = 0; i < NR_CURSEG_TYPE; i++) { | 
 | 		kvfree(array[i].sum_blk); | 
 | 		kvfree(array[i].journal); | 
 | 	} | 
 | 	kvfree(array); | 
 | } | 
 |  | 
 | static void destroy_free_segmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct free_segmap_info *free_i = SM_I(sbi)->free_info; | 
 | 	if (!free_i) | 
 | 		return; | 
 | 	SM_I(sbi)->free_info = NULL; | 
 | 	kvfree(free_i->free_segmap); | 
 | 	kvfree(free_i->free_secmap); | 
 | 	kvfree(free_i); | 
 | } | 
 |  | 
 | static void destroy_sit_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct sit_info *sit_i = SIT_I(sbi); | 
 |  | 
 | 	if (!sit_i) | 
 | 		return; | 
 |  | 
 | 	if (sit_i->sentries) | 
 | 		kvfree(sit_i->bitmap); | 
 | 	kvfree(sit_i->tmp_map); | 
 |  | 
 | 	kvfree(sit_i->sentries); | 
 | 	kvfree(sit_i->sec_entries); | 
 | 	kvfree(sit_i->dirty_sentries_bitmap); | 
 |  | 
 | 	SM_I(sbi)->sit_info = NULL; | 
 | 	kvfree(sit_i->sit_bitmap); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	kvfree(sit_i->sit_bitmap_mir); | 
 | 	kvfree(sit_i->invalid_segmap); | 
 | #endif | 
 | 	kvfree(sit_i); | 
 | } | 
 |  | 
 | void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_sm_info *sm_info = SM_I(sbi); | 
 |  | 
 | 	if (!sm_info) | 
 | 		return; | 
 | 	f2fs_destroy_flush_cmd_control(sbi, true); | 
 | 	destroy_discard_cmd_control(sbi); | 
 | 	destroy_dirty_segmap(sbi); | 
 | 	destroy_curseg(sbi); | 
 | 	destroy_free_segmap(sbi); | 
 | 	destroy_sit_info(sbi); | 
 | 	sbi->sm_info = NULL; | 
 | 	kvfree(sm_info); | 
 | } | 
 |  | 
 | int __init f2fs_create_segment_manager_caches(void) | 
 | { | 
 | 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry", | 
 | 			sizeof(struct discard_entry)); | 
 | 	if (!discard_entry_slab) | 
 | 		goto fail; | 
 |  | 
 | 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", | 
 | 			sizeof(struct discard_cmd)); | 
 | 	if (!discard_cmd_slab) | 
 | 		goto destroy_discard_entry; | 
 |  | 
 | 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", | 
 | 			sizeof(struct sit_entry_set)); | 
 | 	if (!sit_entry_set_slab) | 
 | 		goto destroy_discard_cmd; | 
 |  | 
 | 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", | 
 | 			sizeof(struct inmem_pages)); | 
 | 	if (!inmem_entry_slab) | 
 | 		goto destroy_sit_entry_set; | 
 | 	return 0; | 
 |  | 
 | destroy_sit_entry_set: | 
 | 	kmem_cache_destroy(sit_entry_set_slab); | 
 | destroy_discard_cmd: | 
 | 	kmem_cache_destroy(discard_cmd_slab); | 
 | destroy_discard_entry: | 
 | 	kmem_cache_destroy(discard_entry_slab); | 
 | fail: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void f2fs_destroy_segment_manager_caches(void) | 
 | { | 
 | 	kmem_cache_destroy(sit_entry_set_slab); | 
 | 	kmem_cache_destroy(discard_cmd_slab); | 
 | 	kmem_cache_destroy(discard_entry_slab); | 
 | 	kmem_cache_destroy(inmem_entry_slab); | 
 | } |