| /* Copyright Statement: |
| * |
| * This software/firmware and related documentation ("MediaTek Software") are |
| * protected under relevant copyright laws. The information contained herein |
| * is confidential and proprietary to MediaTek Inc. and/or its licensors. |
| * Without the prior written permission of MediaTek inc. and/or its licensors, |
| * any reproduction, modification, use or disclosure of MediaTek Software, |
| * and information contained herein, in whole or in part, shall be strictly prohibited. |
| */ |
| /* MediaTek Inc. (C) 2010. All rights reserved. |
| * |
| * BY OPENING THIS FILE, RECEIVER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND AGREES |
| * THAT THE SOFTWARE/FIRMWARE AND ITS DOCUMENTATIONS ("MEDIATEK SOFTWARE") |
| * RECEIVED FROM MEDIATEK AND/OR ITS REPRESENTATIVES ARE PROVIDED TO RECEIVER ON |
| * AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. |
| * NEITHER DOES MEDIATEK PROVIDE ANY WARRANTY WHATSOEVER WITH RESPECT TO THE |
| * SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR |
| * SUPPLIED WITH THE MEDIATEK SOFTWARE, AND RECEIVER AGREES TO LOOK ONLY TO SUCH |
| * THIRD PARTY FOR ANY WARRANTY CLAIM RELATING THERETO. RECEIVER EXPRESSLY ACKNOWLEDGES |
| * THAT IT IS RECEIVER'S SOLE RESPONSIBILITY TO OBTAIN FROM ANY THIRD PARTY ALL PROPER LICENSES |
| * CONTAINED IN MEDIATEK SOFTWARE. MEDIATEK SHALL ALSO NOT BE RESPONSIBLE FOR ANY MEDIATEK |
| * SOFTWARE RELEASES MADE TO RECEIVER'S SPECIFICATION OR TO CONFORM TO A PARTICULAR |
| * STANDARD OR OPEN FORUM. RECEIVER'S SOLE AND EXCLUSIVE REMEDY AND MEDIATEK'S ENTIRE AND |
| * CUMULATIVE LIABILITY WITH RESPECT TO THE MEDIATEK SOFTWARE RELEASED HEREUNDER WILL BE, |
| * AT MEDIATEK'S OPTION, TO REVISE OR REPLACE THE MEDIATEK SOFTWARE AT ISSUE, |
| * OR REFUND ANY SOFTWARE LICENSE FEES OR SERVICE CHARGE PAID BY RECEIVER TO |
| * MEDIATEK FOR SUCH MEDIATEK SOFTWARE AT ISSUE. |
| * |
| * The following software/firmware and/or related documentation ("MediaTek Software") |
| * have been modified by MediaTek Inc. All revisions are subject to any receiver's |
| * applicable license agreements with MediaTek Inc. |
| */ |
| |
| |
| #include <platform/mt_typedefs.h> |
| #include "platform.h" |
| |
| #include "memory.h" |
| #include "emi.h" |
| |
| #define MOD "MEM" |
| |
| #include "emi_hw.h" |
| #include <emi_mpu_mt.h> |
| #include "dramc_int_global.h" |
| #include <platform/mtk_vcore_opp.h> |
| |
| |
| u32 g_ddr_reserve_enable = 0; |
| u32 g_ddr_reserve_success = 0; |
| u32 g_ddr_reserve_ready = 0; |
| u32 g_ddr_reserve_ta_err = 0; |
| |
| |
| #if MEM_TEST |
| int complex_mem_test (unsigned int start, unsigned int len); |
| static int simple_mem_test(unsigned int start, unsigned int len); |
| extern unsigned int set_emi_before_rank1_mem_test(void); |
| extern void restore_emi_after_rank1_mem_test(void); |
| #endif |
| |
| // -------------------------------------------------------- |
| // init EMI |
| // -------------------------------------------------------- |
| void mt_mem_init(void) |
| { |
| unsigned int emi_cona; |
| int region, dgroup; |
| |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| initialize_boot_para(); |
| #endif |
| |
| #ifdef LAST_DRAMC |
| dram_fatal_exception_detection_start(); |
| |
| if (check_last_dram_fatal_exception() != 0 || check_gating_err_in_dramc_latch() != 0) { |
| #if SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| int ret; |
| print("[save time for cal] dram fatal exception found -> clear calibration data\n"); |
| ret = clean_dram_calibration_data(); |
| SET_DATA_FORMATTED_STORAGE_API_ERR(); |
| print("[save time for cal] clean_dram_calibration_data done (ret=%d)\n", ret); |
| #if (CFG_K_LOG_TO_STORAGE) |
| ret = set_err_flag_to_storage(); |
| print("[save cal log to storage] set_err_flag_to_storage done (ret=%d)\n", ret); |
| #endif |
| #endif |
| } |
| #endif |
| |
| /* clear EMI MPU protect setting */ |
| for (region = 0; region < EMI_MPU_REGION_NUM; region++) { |
| DRV_WriteReg32(EMI_MPU_SA(region), 0x0); |
| DRV_WriteReg32(EMI_MPU_EA(region), 0x0); |
| for (dgroup = EMI_MPU_DGROUP_NUM - 1; dgroup >= 0; dgroup--) |
| DRV_WriteReg32(EMI_MPU_APC(region, dgroup), 0x0); |
| #if defined(SUB_EMI_MPU_BASE) |
| DRV_WriteReg32(SUB_EMI_MPU_SA(region), 0x0); |
| DRV_WriteReg32(SUB_EMI_MPU_EA(region), 0x0); |
| for (dgroup = EMI_MPU_DGROUP_NUM - 1; dgroup >= 0; dgroup--) |
| DRV_WriteReg32(SUB_EMI_MPU_APC(region, dgroup), 0x0); |
| #endif |
| } |
| |
| #ifdef DDR_RESERVE_MODE |
| if((g_ddr_reserve_enable==1) && (g_ddr_reserve_success==1)) { |
| /* EMI register dummy read: give clock to EMI APB register to avoid DRAM access hang */ |
| emi_cona = *(volatile unsigned int *)(EMI_CONA); |
| print("[DDR Reserve mode] EMI dummy read CONA = 0x%x\n", emi_cona); |
| disable_dvfsrc(); |
| /* disable EMI APB protect */ |
| DRV_WriteReg32(EMI_MPU_CTRL, DRV_Reg32(EMI_MPU_CTRL)&0xFFFFFFFE); |
| |
| if (g_ddr_reserve_ta_err != 0) { |
| print("[DDR Reserve mode] TA2 ERR = %d -> overwrite tag.ddr_reserve_success to 0\n", g_ddr_reserve_ta_err); |
| } |
| } else /* normal boot */ |
| #endif |
| { |
| /* disable EMI APB protect */ |
| printf("EMI_MPU_CTRL=%x 1st\n",DRV_Reg32(EMI_MPU_CTRL)); |
| DRV_WriteReg32(EMI_MPU_CTRL, DRV_Reg32(EMI_MPU_CTRL)&0xFFFFFFFE); |
| printf("EMI_MPU_CTRL=%x 2nd\n",DRV_Reg32(EMI_MPU_CTRL)); |
| |
| /* force clear RGU control for DRAMC before calibration */ |
| drm_release_rg_dramc_conf_iso();//Release DRAMC/PHY conf ISO |
| drm_release_rg_dramc_iso();//Release PHY IO ISO |
| drm_release_rg_dramc_sref();//Let DRAM Leave SR |
| |
| mt_set_emi (); |
| |
| #if defined(LAST_DRAMC) & SUPPORT_SAVE_TIME_FOR_CALIBRATION |
| set_err_code_for_storage_api(); |
| #endif |
| } |
| |
| mt_set_emi_info(); |
| |
| #if MEM_TEST |
| unsigned rk0_err = 0, rk1_err = 0; |
| int i = 0; |
| |
| #ifdef DDR_RESERVE_MODE |
| g_ddr_reserve_ready = 0x9502; |
| /* Disable DDR-reserve mode in pre-loader stage then enable it again in kernel stage */ |
| drm_dram_reserved(0); |
| #endif |
| |
| /* CFG_UBOOT_MEMADDR is LK base addr */ |
| if ((i = complex_mem_test(MT2735_TEST_START, MEM_TEST_SIZE)) == 0) { |
| print ("[%s] 1st complex R/W mem test pass (start addr:0x%x)\n", MOD, MT2735_TEST_START); |
| } else { |
| print ("[%s] 1st complex R/W mem test fail :%x (start addr:0x%x)\n", MOD, i, MT2735_TEST_START); |
| #ifdef LAST_DRAMC |
| rk0_err = 1; |
| #else |
| ASSERT(0); |
| #endif |
| } |
| |
| #if DUAL_RANK_ENABLE |
| if (get_dram_rank_nr() >= 2) { |
| /* need to test rank1 */ |
| unsigned int rank1_start_address = DDR_BASE + set_emi_before_rank1_mem_test(); |
| |
| #ifdef DDR_RESERVE_MODE |
| /* simple mem test to avoid memory corruption in DDR reserve mode */ |
| if((g_ddr_reserve_enable==1) && (g_ddr_reserve_success==1)) { |
| i = simple_mem_test(rank1_start_address, MEM_TEST_SIZE); |
| } else |
| #endif |
| i = complex_mem_test(rank1_start_address, MEM_TEST_SIZE); |
| restore_emi_after_rank1_mem_test(); |
| if (i == 0) { |
| print("[%s] 2nd complex R/W mem test pass (start addr:0x%x, 0x0 @Rank1)\n", MOD, rank1_start_address); |
| } else { |
| print("[%s] 2nd complex R/W mem test fail :%x (start addr:0x%x, 0x0 @Rank1)\n", MOD, i, rank1_start_address); |
| #ifdef LAST_DRAMC |
| rk1_err = 1; |
| #else |
| ASSERT(0); |
| #endif |
| } |
| } |
| #endif |
| record_emi_snst(); |
| #ifdef LAST_DRAMC |
| init_ta2_all_channel(); |
| dram_fatal_set_cpu_rw_err((rk1_err << 1)|rk0_err); |
| |
| /* TODO: TA2 test */ |
| |
| /* check gating error */ |
| check_gating_error(); |
| |
| if (check_dram_fatal_exception() == 1) { |
| print("[dramc] fatal dram exception found! reset system..\n"); |
| ASSERT(0); |
| } |
| dram_fatal_exception_detection_end(); |
| #endif |
| |
| #endif |
| } |
| |
| |
| u64 mt_mem_size(void) |
| { |
| /* [TODO] query dram size instead of hardcode */ |
| u64 size; |
| |
| size = 0x20000000; |
| |
| //dprintf(CRITICAL, "mt_mem_size %zx\n", size); |
| |
| return size; |
| } |
| |
| |
| #if MEM_TEST |
| // -------------------------------------------------------- |
| // do memory test |
| // -------------------------------------------------------- |
| #define PATTERN1 0x5A5A5A5A |
| #define PATTERN2 0xA5A5A5A5 |
| |
| static int simple_mem_test(unsigned int start, unsigned int len) |
| { |
| unsigned int *MEM32_BASE = (unsigned int *) start; |
| unsigned int i, orig_val, new_val; |
| |
| for (i = 0; i < (len >> 2); ++i) { |
| orig_val = MEM32_BASE[i]; |
| dsb(); |
| MEM32_BASE[i] = PATTERN1; |
| dsb(); |
| new_val = MEM32_BASE[i]; |
| if (new_val != PATTERN1) |
| return -1; |
| dsb(); |
| MEM32_BASE[i] = orig_val; |
| } |
| |
| return 0; |
| } |
| |
| int |
| complex_mem_test (unsigned int start, unsigned int len) |
| { |
| unsigned char *MEM8_BASE = (unsigned char *) start; |
| unsigned short *MEM16_BASE = (unsigned short *) start; |
| unsigned int *MEM32_BASE = (unsigned int *) start; |
| unsigned int *MEM_BASE = (unsigned int *) start; |
| unsigned char pattern8; |
| unsigned short pattern16; |
| unsigned int i, j, size, pattern32; |
| unsigned int value; |
| |
| size = len >> 2; |
| |
| /* === Verify the tied bits (tied high) === */ |
| for (i = 0; i < size; i++) |
| { |
| MEM32_BASE[i] = 0; |
| } |
| |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0) |
| { |
| return -1; |
| } |
| else |
| { |
| MEM32_BASE[i] = 0xffffffff; |
| } |
| } |
| |
| /* === Verify the tied bits (tied low) === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xffffffff) |
| { |
| return -2; |
| } |
| else |
| MEM32_BASE[i] = 0x00; |
| } |
| |
| /* === Verify pattern 1 (0x00~0xff) === */ |
| pattern8 = 0x00; |
| for (i = 0; i < len; i++) |
| MEM8_BASE[i] = pattern8++; |
| pattern8 = 0x00; |
| for (i = 0; i < len; i++) |
| { |
| if (MEM8_BASE[i] != pattern8++) |
| { |
| return -3; |
| } |
| } |
| |
| /* === Verify pattern 2 (0x00~0xff) === */ |
| pattern8 = 0x00; |
| for (i = j = 0; i < len; i += 2, j++) |
| { |
| if (MEM8_BASE[i] == pattern8) |
| MEM16_BASE[j] = pattern8; |
| if (MEM16_BASE[j] != pattern8) |
| { |
| return -4; |
| } |
| pattern8 += 2; |
| } |
| |
| /* === Verify pattern 3 (0x00~0xffff) === */ |
| pattern16 = 0x00; |
| for (i = 0; i < (len >> 1); i++) |
| MEM16_BASE[i] = pattern16++; |
| pattern16 = 0x00; |
| for (i = 0; i < (len >> 1); i++) |
| { |
| if (MEM16_BASE[i] != pattern16++) |
| { |
| return -5; |
| } |
| } |
| |
| /* === Verify pattern 4 (0x00~0xffffffff) === */ |
| pattern32 = 0x00; |
| for (i = 0; i < (len >> 2); i++) |
| MEM32_BASE[i] = pattern32++; |
| pattern32 = 0x00; |
| for (i = 0; i < (len >> 2); i++) |
| { |
| if (MEM32_BASE[i] != pattern32++) |
| { |
| return -6; |
| } |
| } |
| |
| /* === Pattern 5: Filling memory range with 0x44332211 === */ |
| for (i = 0; i < size; i++) |
| MEM32_BASE[i] = 0x44332211; |
| |
| /* === Read Check then Fill Memory with a5a5a5a5 Pattern === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0x44332211) |
| { |
| return -7; |
| } |
| else |
| { |
| MEM32_BASE[i] = 0xa5a5a5a5; |
| } |
| } |
| |
| /* === Read Check then Fill Memory with 00 Byte Pattern at offset 0h === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xa5a5a5a5) |
| { |
| return -8; |
| } |
| else |
| { |
| MEM8_BASE[i * 4] = 0x00; |
| } |
| } |
| |
| /* === Read Check then Fill Memory with 00 Byte Pattern at offset 2h === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xa5a5a500) |
| { |
| return -9; |
| } |
| else |
| { |
| MEM8_BASE[i * 4 + 2] = 0x00; |
| } |
| } |
| |
| /* === Read Check then Fill Memory with 00 Byte Pattern at offset 1h === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xa500a500) |
| { |
| return -10; |
| } |
| else |
| { |
| MEM8_BASE[i * 4 + 1] = 0x00; |
| } |
| } |
| |
| /* === Read Check then Fill Memory with 00 Byte Pattern at offset 3h === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xa5000000) |
| { |
| return -11; |
| } |
| else |
| { |
| MEM8_BASE[i * 4 + 3] = 0x00; |
| } |
| } |
| |
| /* === Read Check then Fill Memory with ffff Word Pattern at offset 1h == */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0x00000000) |
| { |
| return -12; |
| } |
| else |
| { |
| MEM16_BASE[i * 2 + 1] = 0xffff; |
| } |
| } |
| |
| |
| /* === Read Check then Fill Memory with ffff Word Pattern at offset 0h == */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xffff0000) |
| { |
| return -13; |
| } |
| else |
| { |
| MEM16_BASE[i * 2] = 0xffff; |
| } |
| } |
| |
| |
| /*=== Read Check === */ |
| for (i = 0; i < size; i++) |
| { |
| if (MEM32_BASE[i] != 0xffffffff) |
| { |
| return -14; |
| } |
| } |
| |
| |
| /************************************************ |
| * Additional verification |
| ************************************************/ |
| /* === stage 1 => write 0 === */ |
| |
| for (i = 0; i < size; i++) |
| { |
| MEM_BASE[i] = PATTERN1; |
| } |
| |
| |
| /* === stage 2 => read 0, write 0xF === */ |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| |
| if (value != PATTERN1) |
| { |
| return -15; |
| } |
| MEM_BASE[i] = PATTERN2; |
| } |
| |
| |
| /* === stage 3 => read 0xF, write 0 === */ |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| if (value != PATTERN2) |
| { |
| return -16; |
| } |
| MEM_BASE[i] = PATTERN1; |
| } |
| |
| |
| /* === stage 4 => read 0, write 0xF === */ |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| if (value != PATTERN1) |
| { |
| return -17; |
| } |
| MEM_BASE[i] = PATTERN2; |
| } |
| |
| |
| /* === stage 5 => read 0xF, write 0 === */ |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| if (value != PATTERN2) |
| { |
| return -18; |
| } |
| MEM_BASE[i] = PATTERN1; |
| } |
| |
| |
| /* === stage 6 => read 0 === */ |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| if (value != PATTERN1) |
| { |
| return -19; |
| } |
| } |
| |
| |
| /* === 1/2/4-byte combination test === */ |
| i = (unsigned int) MEM_BASE; |
| |
| while (i < (unsigned int) MEM_BASE + (size << 2)) |
| { |
| *((unsigned char *) i) = 0x78; |
| i += 1; |
| *((unsigned char *) i) = 0x56; |
| i += 1; |
| *((unsigned short *) i) = 0x1234; |
| i += 2; |
| *((unsigned int *) i) = 0x12345678; |
| i += 4; |
| *((unsigned short *) i) = 0x5678; |
| i += 2; |
| *((unsigned char *) i) = 0x34; |
| i += 1; |
| *((unsigned char *) i) = 0x12; |
| i += 1; |
| *((unsigned int *) i) = 0x12345678; |
| i += 4; |
| *((unsigned char *) i) = 0x78; |
| i += 1; |
| *((unsigned char *) i) = 0x56; |
| i += 1; |
| *((unsigned short *) i) = 0x1234; |
| i += 2; |
| *((unsigned int *) i) = 0x12345678; |
| i += 4; |
| *((unsigned short *) i) = 0x5678; |
| i += 2; |
| *((unsigned char *) i) = 0x34; |
| i += 1; |
| *((unsigned char *) i) = 0x12; |
| i += 1; |
| *((unsigned int *) i) = 0x12345678; |
| i += 4; |
| } |
| for (i = 0; i < size; i++) |
| { |
| value = MEM_BASE[i]; |
| if (value != 0x12345678) |
| { |
| return -20; |
| } |
| } |
| |
| |
| /* === Verify pattern 1 (0x00~0xff) === */ |
| pattern8 = 0x00; |
| MEM8_BASE[0] = pattern8; |
| for (i = 0; i < size * 4; i++) |
| { |
| unsigned char waddr8, raddr8; |
| waddr8 = i + 1; |
| raddr8 = i; |
| if (i < size * 4 - 1) |
| MEM8_BASE[waddr8] = pattern8 + 1; |
| if (MEM8_BASE[raddr8] != pattern8) |
| { |
| return -21; |
| } |
| pattern8++; |
| } |
| |
| |
| /* === Verify pattern 2 (0x00~0xffff) === */ |
| pattern16 = 0x00; |
| MEM16_BASE[0] = pattern16; |
| for (i = 0; i < size * 2; i++) |
| { |
| if (i < size * 2 - 1) |
| MEM16_BASE[i + 1] = pattern16 + 1; |
| if (MEM16_BASE[i] != pattern16) |
| { |
| return -22; |
| } |
| pattern16++; |
| } |
| |
| |
| /* === Verify pattern 3 (0x00~0xffffffff) === */ |
| pattern32 = 0x00; |
| MEM32_BASE[0] = pattern32; |
| for (i = 0; i < size; i++) |
| { |
| if (i < size - 1) |
| MEM32_BASE[i + 1] = pattern32 + 1; |
| if (MEM32_BASE[i] != pattern32) |
| { |
| return -23; |
| } |
| pattern32++; |
| } |
| |
| return 0; |
| } |
| |
| #endif |