| /* | 
 |  * Copyright (C) 2010 Red Hat, Inc. | 
 |  * Copyright (c) 2016-2018 Christoph Hellwig. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/iomap.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/file.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * Execute a iomap write on a segment of the mapping that spans a | 
 |  * contiguous range of pages that have identical block mapping state. | 
 |  * | 
 |  * This avoids the need to map pages individually, do individual allocations | 
 |  * for each page and most importantly avoid the need for filesystem specific | 
 |  * locking per page. Instead, all the operations are amortised over the entire | 
 |  * range of pages. It is assumed that the filesystems will lock whatever | 
 |  * resources they require in the iomap_begin call, and release them in the | 
 |  * iomap_end call. | 
 |  */ | 
 | loff_t | 
 | iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags, | 
 | 		const struct iomap_ops *ops, void *data, iomap_actor_t actor) | 
 | { | 
 | 	struct iomap iomap = { 0 }; | 
 | 	loff_t written = 0, ret; | 
 |  | 
 | 	/* | 
 | 	 * Need to map a range from start position for length bytes. This can | 
 | 	 * span multiple pages - it is only guaranteed to return a range of a | 
 | 	 * single type of pages (e.g. all into a hole, all mapped or all | 
 | 	 * unwritten). Failure at this point has nothing to undo. | 
 | 	 * | 
 | 	 * If allocation is required for this range, reserve the space now so | 
 | 	 * that the allocation is guaranteed to succeed later on. Once we copy | 
 | 	 * the data into the page cache pages, then we cannot fail otherwise we | 
 | 	 * expose transient stale data. If the reserve fails, we can safely | 
 | 	 * back out at this point as there is nothing to undo. | 
 | 	 */ | 
 | 	ret = ops->iomap_begin(inode, pos, length, flags, &iomap); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	if (WARN_ON(iomap.offset > pos)) | 
 | 		return -EIO; | 
 | 	if (WARN_ON(iomap.length == 0)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * Cut down the length to the one actually provided by the filesystem, | 
 | 	 * as it might not be able to give us the whole size that we requested. | 
 | 	 */ | 
 | 	if (iomap.offset + iomap.length < pos + length) | 
 | 		length = iomap.offset + iomap.length - pos; | 
 |  | 
 | 	/* | 
 | 	 * Now that we have guaranteed that the space allocation will succeed. | 
 | 	 * we can do the copy-in page by page without having to worry about | 
 | 	 * failures exposing transient data. | 
 | 	 */ | 
 | 	written = actor(inode, pos, length, data, &iomap); | 
 |  | 
 | 	/* | 
 | 	 * Now the data has been copied, commit the range we've copied.  This | 
 | 	 * should not fail unless the filesystem has had a fatal error. | 
 | 	 */ | 
 | 	if (ops->iomap_end) { | 
 | 		ret = ops->iomap_end(inode, pos, length, | 
 | 				     written > 0 ? written : 0, | 
 | 				     flags, &iomap); | 
 | 	} | 
 |  | 
 | 	return written ? written : ret; | 
 | } | 
 |  | 
 | static sector_t | 
 | iomap_sector(struct iomap *iomap, loff_t pos) | 
 | { | 
 | 	return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT; | 
 | } | 
 |  | 
 | static struct iomap_page * | 
 | iomap_page_create(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 |  | 
 | 	if (iop || i_blocksize(inode) == PAGE_SIZE) | 
 | 		return iop; | 
 |  | 
 | 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); | 
 | 	atomic_set(&iop->read_count, 0); | 
 | 	atomic_set(&iop->write_count, 0); | 
 | 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * migrate_page_move_mapping() assumes that pages with private data have | 
 | 	 * their count elevated by 1. | 
 | 	 */ | 
 | 	get_page(page); | 
 | 	set_page_private(page, (unsigned long)iop); | 
 | 	SetPagePrivate(page); | 
 | 	return iop; | 
 | } | 
 |  | 
 | static void | 
 | iomap_page_release(struct page *page) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 |  | 
 | 	if (!iop) | 
 | 		return; | 
 | 	WARN_ON_ONCE(atomic_read(&iop->read_count)); | 
 | 	WARN_ON_ONCE(atomic_read(&iop->write_count)); | 
 | 	ClearPagePrivate(page); | 
 | 	set_page_private(page, 0); | 
 | 	put_page(page); | 
 | 	kfree(iop); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the range inside the page that we actually need to read. | 
 |  */ | 
 | static void | 
 | iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop, | 
 | 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp) | 
 | { | 
 | 	loff_t orig_pos = *pos; | 
 | 	loff_t isize = i_size_read(inode); | 
 | 	unsigned block_bits = inode->i_blkbits; | 
 | 	unsigned block_size = (1 << block_bits); | 
 | 	unsigned poff = offset_in_page(*pos); | 
 | 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length); | 
 | 	unsigned first = poff >> block_bits; | 
 | 	unsigned last = (poff + plen - 1) >> block_bits; | 
 |  | 
 | 	/* | 
 | 	 * If the block size is smaller than the page size we need to check the | 
 | 	 * per-block uptodate status and adjust the offset and length if needed | 
 | 	 * to avoid reading in already uptodate ranges. | 
 | 	 */ | 
 | 	if (iop) { | 
 | 		unsigned int i; | 
 |  | 
 | 		/* move forward for each leading block marked uptodate */ | 
 | 		for (i = first; i <= last; i++) { | 
 | 			if (!test_bit(i, iop->uptodate)) | 
 | 				break; | 
 | 			*pos += block_size; | 
 | 			poff += block_size; | 
 | 			plen -= block_size; | 
 | 			first++; | 
 | 		} | 
 |  | 
 | 		/* truncate len if we find any trailing uptodate block(s) */ | 
 | 		for ( ; i <= last; i++) { | 
 | 			if (test_bit(i, iop->uptodate)) { | 
 | 				plen -= (last - i + 1) * block_size; | 
 | 				last = i - 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the extent spans the block that contains the i_size we need to | 
 | 	 * handle both halves separately so that we properly zero data in the | 
 | 	 * page cache for blocks that are entirely outside of i_size. | 
 | 	 */ | 
 | 	if (orig_pos <= isize && orig_pos + length > isize) { | 
 | 		unsigned end = offset_in_page(isize - 1) >> block_bits; | 
 |  | 
 | 		if (first <= end && last > end) | 
 | 			plen -= (last - end) * block_size; | 
 | 	} | 
 |  | 
 | 	*offp = poff; | 
 | 	*lenp = plen; | 
 | } | 
 |  | 
 | static void | 
 | iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned first = off >> inode->i_blkbits; | 
 | 	unsigned last = (off + len - 1) >> inode->i_blkbits; | 
 | 	unsigned int i; | 
 | 	bool uptodate = true; | 
 |  | 
 | 	if (iop) { | 
 | 		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { | 
 | 			if (i >= first && i <= last) | 
 | 				set_bit(i, iop->uptodate); | 
 | 			else if (!test_bit(i, iop->uptodate)) | 
 | 				uptodate = false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (uptodate && !PageError(page)) | 
 | 		SetPageUptodate(page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_finish(struct iomap_page *iop, struct page *page) | 
 | { | 
 | 	if (!iop || atomic_dec_and_test(&iop->read_count)) | 
 | 		unlock_page(page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_page_end_io(struct bio_vec *bvec, int error) | 
 | { | 
 | 	struct page *page = bvec->bv_page; | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 |  | 
 | 	if (unlikely(error)) { | 
 | 		ClearPageUptodate(page); | 
 | 		SetPageError(page); | 
 | 	} else { | 
 | 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); | 
 | 	} | 
 |  | 
 | 	iomap_read_finish(iop, page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_inline_data(struct inode *inode, struct page *page, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	size_t size = i_size_read(inode); | 
 | 	void *addr; | 
 |  | 
 | 	if (PageUptodate(page)) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(page->index); | 
 | 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data)); | 
 |  | 
 | 	addr = kmap_atomic(page); | 
 | 	memcpy(addr, iomap->inline_data, size); | 
 | 	memset(addr + size, 0, PAGE_SIZE - size); | 
 | 	kunmap_atomic(addr); | 
 | 	SetPageUptodate(page); | 
 | } | 
 |  | 
 | static void | 
 | iomap_read_end_io(struct bio *bio) | 
 | { | 
 | 	int error = blk_status_to_errno(bio->bi_status); | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) | 
 | 		iomap_read_page_end_io(bvec, error); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | struct iomap_readpage_ctx { | 
 | 	struct page		*cur_page; | 
 | 	bool			cur_page_in_bio; | 
 | 	bool			is_readahead; | 
 | 	struct bio		*bio; | 
 | 	struct list_head	*pages; | 
 | }; | 
 |  | 
 | static loff_t | 
 | iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	struct iomap_readpage_ctx *ctx = data; | 
 | 	struct page *page = ctx->cur_page; | 
 | 	struct iomap_page *iop = iomap_page_create(inode, page); | 
 | 	bool is_contig = false; | 
 | 	loff_t orig_pos = pos; | 
 | 	unsigned poff, plen; | 
 | 	sector_t sector; | 
 |  | 
 | 	if (iomap->type == IOMAP_INLINE) { | 
 | 		WARN_ON_ONCE(pos); | 
 | 		iomap_read_inline_data(inode, page, iomap); | 
 | 		return PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	/* zero post-eof blocks as the page may be mapped */ | 
 | 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen); | 
 | 	if (plen == 0) | 
 | 		goto done; | 
 |  | 
 | 	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) { | 
 | 		zero_user(page, poff, plen); | 
 | 		iomap_set_range_uptodate(page, poff, plen); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	ctx->cur_page_in_bio = true; | 
 |  | 
 | 	/* | 
 | 	 * Try to merge into a previous segment if we can. | 
 | 	 */ | 
 | 	sector = iomap_sector(iomap, pos); | 
 | 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) { | 
 | 		if (__bio_try_merge_page(ctx->bio, page, plen, poff)) | 
 | 			goto done; | 
 | 		is_contig = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we start a new segment we need to increase the read count, and we | 
 | 	 * need to do so before submitting any previous full bio to make sure | 
 | 	 * that we don't prematurely unlock the page. | 
 | 	 */ | 
 | 	if (iop) | 
 | 		atomic_inc(&iop->read_count); | 
 |  | 
 | 	if (!ctx->bio || !is_contig || bio_full(ctx->bio)) { | 
 | 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); | 
 | 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 |  | 
 | 		if (ctx->bio) | 
 | 			submit_bio(ctx->bio); | 
 |  | 
 | 		if (ctx->is_readahead) /* same as readahead_gfp_mask */ | 
 | 			gfp |= __GFP_NORETRY | __GFP_NOWARN; | 
 | 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs)); | 
 | 		ctx->bio->bi_opf = REQ_OP_READ; | 
 | 		if (ctx->is_readahead) | 
 | 			ctx->bio->bi_opf |= REQ_RAHEAD; | 
 | 		ctx->bio->bi_iter.bi_sector = sector; | 
 | 		bio_set_dev(ctx->bio, iomap->bdev); | 
 | 		ctx->bio->bi_end_io = iomap_read_end_io; | 
 | 	} | 
 |  | 
 | 	__bio_add_page(ctx->bio, page, plen, poff); | 
 | done: | 
 | 	/* | 
 | 	 * Move the caller beyond our range so that it keeps making progress. | 
 | 	 * For that we have to include any leading non-uptodate ranges, but | 
 | 	 * we can skip trailing ones as they will be handled in the next | 
 | 	 * iteration. | 
 | 	 */ | 
 | 	return pos - orig_pos + plen; | 
 | } | 
 |  | 
 | int | 
 | iomap_readpage(struct page *page, const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_readpage_ctx ctx = { .cur_page = page }; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned poff; | 
 | 	loff_t ret; | 
 |  | 
 | 	for (poff = 0; poff < PAGE_SIZE; poff += ret) { | 
 | 		ret = iomap_apply(inode, page_offset(page) + poff, | 
 | 				PAGE_SIZE - poff, 0, ops, &ctx, | 
 | 				iomap_readpage_actor); | 
 | 		if (ret <= 0) { | 
 | 			WARN_ON_ONCE(ret == 0); | 
 | 			SetPageError(page); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ctx.bio) { | 
 | 		submit_bio(ctx.bio); | 
 | 		WARN_ON_ONCE(!ctx.cur_page_in_bio); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(ctx.cur_page_in_bio); | 
 | 		unlock_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Just like mpage_readpages and block_read_full_page we always | 
 | 	 * return 0 and just mark the page as PageError on errors.  This | 
 | 	 * should be cleaned up all through the stack eventually. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_readpage); | 
 |  | 
 | static struct page * | 
 | iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos, | 
 | 		loff_t length, loff_t *done) | 
 | { | 
 | 	while (!list_empty(pages)) { | 
 | 		struct page *page = lru_to_page(pages); | 
 |  | 
 | 		if (page_offset(page) >= (u64)pos + length) | 
 | 			break; | 
 |  | 
 | 		list_del(&page->lru); | 
 | 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index, | 
 | 				GFP_NOFS)) | 
 | 			return page; | 
 |  | 
 | 		/* | 
 | 		 * If we already have a page in the page cache at index we are | 
 | 		 * done.  Upper layers don't care if it is uptodate after the | 
 | 		 * readpages call itself as every page gets checked again once | 
 | 		 * actually needed. | 
 | 		 */ | 
 | 		*done += PAGE_SIZE; | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap) | 
 | { | 
 | 	struct iomap_readpage_ctx *ctx = data; | 
 | 	loff_t done, ret; | 
 |  | 
 | 	for (done = 0; done < length; done += ret) { | 
 | 		if (ctx->cur_page && offset_in_page(pos + done) == 0) { | 
 | 			if (!ctx->cur_page_in_bio) | 
 | 				unlock_page(ctx->cur_page); | 
 | 			put_page(ctx->cur_page); | 
 | 			ctx->cur_page = NULL; | 
 | 		} | 
 | 		if (!ctx->cur_page) { | 
 | 			ctx->cur_page = iomap_next_page(inode, ctx->pages, | 
 | 					pos, length, &done); | 
 | 			if (!ctx->cur_page) | 
 | 				break; | 
 | 			ctx->cur_page_in_bio = false; | 
 | 		} | 
 | 		ret = iomap_readpage_actor(inode, pos + done, length - done, | 
 | 				ctx, iomap); | 
 | 	} | 
 |  | 
 | 	return done; | 
 | } | 
 |  | 
 | int | 
 | iomap_readpages(struct address_space *mapping, struct list_head *pages, | 
 | 		unsigned nr_pages, const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_readpage_ctx ctx = { | 
 | 		.pages		= pages, | 
 | 		.is_readahead	= true, | 
 | 	}; | 
 | 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru)); | 
 | 	loff_t last = page_offset(list_entry(pages->next, struct page, lru)); | 
 | 	loff_t length = last - pos + PAGE_SIZE, ret = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		ret = iomap_apply(mapping->host, pos, length, 0, ops, | 
 | 				&ctx, iomap_readpages_actor); | 
 | 		if (ret <= 0) { | 
 | 			WARN_ON_ONCE(ret == 0); | 
 | 			goto done; | 
 | 		} | 
 | 		pos += ret; | 
 | 		length -= ret; | 
 | 	} | 
 | 	ret = 0; | 
 | done: | 
 | 	if (ctx.bio) | 
 | 		submit_bio(ctx.bio); | 
 | 	if (ctx.cur_page) { | 
 | 		if (!ctx.cur_page_in_bio) | 
 | 			unlock_page(ctx.cur_page); | 
 | 		put_page(ctx.cur_page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check that we didn't lose a page due to the arcance calling | 
 | 	 * conventions.. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages)); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_readpages); | 
 |  | 
 | /* | 
 |  * iomap_is_partially_uptodate checks whether blocks within a page are | 
 |  * uptodate or not. | 
 |  * | 
 |  * Returns true if all blocks which correspond to a file portion | 
 |  * we want to read within the page are uptodate. | 
 |  */ | 
 | int | 
 | iomap_is_partially_uptodate(struct page *page, unsigned long from, | 
 | 		unsigned long count) | 
 | { | 
 | 	struct iomap_page *iop = to_iomap_page(page); | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned len, first, last; | 
 | 	unsigned i; | 
 |  | 
 | 	/* Limit range to one page */ | 
 | 	len = min_t(unsigned, PAGE_SIZE - from, count); | 
 |  | 
 | 	/* First and last blocks in range within page */ | 
 | 	first = from >> inode->i_blkbits; | 
 | 	last = (from + len - 1) >> inode->i_blkbits; | 
 |  | 
 | 	if (iop) { | 
 | 		for (i = first; i <= last; i++) | 
 | 			if (!test_bit(i, iop->uptodate)) | 
 | 				return 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); | 
 |  | 
 | int | 
 | iomap_releasepage(struct page *page, gfp_t gfp_mask) | 
 | { | 
 | 	/* | 
 | 	 * mm accommodates an old ext3 case where clean pages might not have had | 
 | 	 * the dirty bit cleared. Thus, it can send actual dirty pages to | 
 | 	 * ->releasepage() via shrink_active_list(), skip those here. | 
 | 	 */ | 
 | 	if (PageDirty(page) || PageWriteback(page)) | 
 | 		return 0; | 
 | 	iomap_page_release(page); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_releasepage); | 
 |  | 
 | void | 
 | iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len) | 
 | { | 
 | 	/* | 
 | 	 * If we are invalidating the entire page, clear the dirty state from it | 
 | 	 * and release it to avoid unnecessary buildup of the LRU. | 
 | 	 */ | 
 | 	if (offset == 0 && len == PAGE_SIZE) { | 
 | 		WARN_ON_ONCE(PageWriteback(page)); | 
 | 		cancel_dirty_page(page); | 
 | 		iomap_page_release(page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_invalidatepage); | 
 |  | 
 | #ifdef CONFIG_MIGRATION | 
 | int | 
 | iomap_migrate_page(struct address_space *mapping, struct page *newpage, | 
 | 		struct page *page, enum migrate_mode mode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); | 
 | 	if (ret != MIGRATEPAGE_SUCCESS) | 
 | 		return ret; | 
 |  | 
 | 	if (page_has_private(page)) { | 
 | 		ClearPagePrivate(page); | 
 | 		get_page(newpage); | 
 | 		set_page_private(newpage, page_private(page)); | 
 | 		set_page_private(page, 0); | 
 | 		put_page(page); | 
 | 		SetPagePrivate(newpage); | 
 | 	} | 
 |  | 
 | 	if (mode != MIGRATE_SYNC_NO_COPY) | 
 | 		migrate_page_copy(newpage, page); | 
 | 	else | 
 | 		migrate_page_states(newpage, page); | 
 | 	return MIGRATEPAGE_SUCCESS; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_migrate_page); | 
 | #endif /* CONFIG_MIGRATION */ | 
 |  | 
 | static void | 
 | iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) | 
 | { | 
 | 	loff_t i_size = i_size_read(inode); | 
 |  | 
 | 	/* | 
 | 	 * Only truncate newly allocated pages beyoned EOF, even if the | 
 | 	 * write started inside the existing inode size. | 
 | 	 */ | 
 | 	if (pos + len > i_size) | 
 | 		truncate_pagecache_range(inode, max(pos, i_size), pos + len); | 
 | } | 
 |  | 
 | static int | 
 | iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page, | 
 | 		unsigned poff, unsigned plen, unsigned from, unsigned to, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	struct bio_vec bvec; | 
 | 	struct bio bio; | 
 |  | 
 | 	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) { | 
 | 		zero_user_segments(page, poff, from, to, poff + plen); | 
 | 		iomap_set_range_uptodate(page, poff, plen); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bio_init(&bio, &bvec, 1); | 
 | 	bio.bi_opf = REQ_OP_READ; | 
 | 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); | 
 | 	bio_set_dev(&bio, iomap->bdev); | 
 | 	__bio_add_page(&bio, page, plen, poff); | 
 | 	return submit_bio_wait(&bio); | 
 | } | 
 |  | 
 | static int | 
 | __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, | 
 | 		struct page *page, struct iomap *iomap) | 
 | { | 
 | 	struct iomap_page *iop = iomap_page_create(inode, page); | 
 | 	loff_t block_size = i_blocksize(inode); | 
 | 	loff_t block_start = pos & ~(block_size - 1); | 
 | 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); | 
 | 	unsigned from = offset_in_page(pos), to = from + len, poff, plen; | 
 | 	int status = 0; | 
 |  | 
 | 	if (PageUptodate(page)) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		iomap_adjust_read_range(inode, iop, &block_start, | 
 | 				block_end - block_start, &poff, &plen); | 
 | 		if (plen == 0) | 
 | 			break; | 
 |  | 
 | 		if ((from > poff && from < poff + plen) || | 
 | 		    (to > poff && to < poff + plen)) { | 
 | 			status = iomap_read_page_sync(inode, block_start, page, | 
 | 					poff, plen, from, to, iomap); | 
 | 			if (status) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 	} while ((block_start += plen) < block_end); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static int | 
 | iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags, | 
 | 		struct page **pagep, struct iomap *iomap) | 
 | { | 
 | 	pgoff_t index = pos >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 | 	int status = 0; | 
 |  | 
 | 	BUG_ON(pos + len > iomap->offset + iomap->length); | 
 |  | 
 | 	if (fatal_signal_pending(current)) | 
 | 		return -EINTR; | 
 |  | 
 | 	page = grab_cache_page_write_begin(inode->i_mapping, index, flags); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (iomap->type == IOMAP_INLINE) | 
 | 		iomap_read_inline_data(inode, page, iomap); | 
 | 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD) | 
 | 		status = __block_write_begin_int(page, pos, len, NULL, iomap); | 
 | 	else | 
 | 		status = __iomap_write_begin(inode, pos, len, page, iomap); | 
 | 	if (unlikely(status)) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		page = NULL; | 
 |  | 
 | 		iomap_write_failed(inode, pos, len); | 
 | 	} | 
 |  | 
 | 	*pagep = page; | 
 | 	return status; | 
 | } | 
 |  | 
 | int | 
 | iomap_set_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	int newly_dirty; | 
 |  | 
 | 	if (unlikely(!mapping)) | 
 | 		return !TestSetPageDirty(page); | 
 |  | 
 | 	/* | 
 | 	 * Lock out page->mem_cgroup migration to keep PageDirty | 
 | 	 * synchronized with per-memcg dirty page counters. | 
 | 	 */ | 
 | 	lock_page_memcg(page); | 
 | 	newly_dirty = !TestSetPageDirty(page); | 
 | 	if (newly_dirty) | 
 | 		__set_page_dirty(page, mapping, 0); | 
 | 	unlock_page_memcg(page); | 
 |  | 
 | 	if (newly_dirty) | 
 | 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 | 	return newly_dirty; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_set_page_dirty); | 
 |  | 
 | static int | 
 | __iomap_write_end(struct inode *inode, loff_t pos, unsigned len, | 
 | 		unsigned copied, struct page *page, struct iomap *iomap) | 
 | { | 
 | 	flush_dcache_page(page); | 
 |  | 
 | 	/* | 
 | 	 * The blocks that were entirely written will now be uptodate, so we | 
 | 	 * don't have to worry about a readpage reading them and overwriting a | 
 | 	 * partial write.  However if we have encountered a short write and only | 
 | 	 * partially written into a block, it will not be marked uptodate, so a | 
 | 	 * readpage might come in and destroy our partial write. | 
 | 	 * | 
 | 	 * Do the simplest thing, and just treat any short write to a non | 
 | 	 * uptodate page as a zero-length write, and force the caller to redo | 
 | 	 * the whole thing. | 
 | 	 */ | 
 | 	if (unlikely(copied < len && !PageUptodate(page))) { | 
 | 		copied = 0; | 
 | 	} else { | 
 | 		iomap_set_range_uptodate(page, offset_in_page(pos), len); | 
 | 		iomap_set_page_dirty(page); | 
 | 	} | 
 | 	return __generic_write_end(inode, pos, copied, page); | 
 | } | 
 |  | 
 | static int | 
 | iomap_write_end_inline(struct inode *inode, struct page *page, | 
 | 		struct iomap *iomap, loff_t pos, unsigned copied) | 
 | { | 
 | 	void *addr; | 
 |  | 
 | 	WARN_ON_ONCE(!PageUptodate(page)); | 
 | 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); | 
 |  | 
 | 	addr = kmap_atomic(page); | 
 | 	memcpy(iomap->inline_data + pos, addr + pos, copied); | 
 | 	kunmap_atomic(addr); | 
 |  | 
 | 	mark_inode_dirty(inode); | 
 | 	__generic_write_end(inode, pos, copied, page); | 
 | 	return copied; | 
 | } | 
 |  | 
 | static int | 
 | iomap_write_end(struct inode *inode, loff_t pos, unsigned len, | 
 | 		unsigned copied, struct page *page, struct iomap *iomap) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (iomap->type == IOMAP_INLINE) { | 
 | 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied); | 
 | 	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) { | 
 | 		ret = generic_write_end(NULL, inode->i_mapping, pos, len, | 
 | 				copied, page, NULL); | 
 | 	} else { | 
 | 		ret = __iomap_write_end(inode, pos, len, copied, page, iomap); | 
 | 	} | 
 |  | 
 | 	if (iomap->page_done) | 
 | 		iomap->page_done(inode, pos, copied, page, iomap); | 
 |  | 
 | 	if (ret < len) | 
 | 		iomap_write_failed(inode, pos, len); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	struct iov_iter *i = data; | 
 | 	long status = 0; | 
 | 	ssize_t written = 0; | 
 | 	unsigned int flags = AOP_FLAG_NOFS; | 
 |  | 
 | 	do { | 
 | 		struct page *page; | 
 | 		unsigned long offset;	/* Offset into pagecache page */ | 
 | 		unsigned long bytes;	/* Bytes to write to page */ | 
 | 		size_t copied;		/* Bytes copied from user */ | 
 |  | 
 | 		offset = offset_in_page(pos); | 
 | 		bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
 | 						iov_iter_count(i)); | 
 | again: | 
 | 		if (bytes > length) | 
 | 			bytes = length; | 
 |  | 
 | 		/* | 
 | 		 * Bring in the user page that we will copy from _first_. | 
 | 		 * Otherwise there's a nasty deadlock on copying from the | 
 | 		 * same page as we're writing to, without it being marked | 
 | 		 * up-to-date. | 
 | 		 * | 
 | 		 * Not only is this an optimisation, but it is also required | 
 | 		 * to check that the address is actually valid, when atomic | 
 | 		 * usercopies are used, below. | 
 | 		 */ | 
 | 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | 
 | 			status = -EFAULT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		status = iomap_write_begin(inode, pos, bytes, flags, &page, | 
 | 				iomap); | 
 | 		if (unlikely(status)) | 
 | 			break; | 
 |  | 
 | 		if (mapping_writably_mapped(inode->i_mapping)) | 
 | 			flush_dcache_page(page); | 
 |  | 
 | 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); | 
 |  | 
 | 		flush_dcache_page(page); | 
 |  | 
 | 		status = iomap_write_end(inode, pos, bytes, copied, page, | 
 | 				iomap); | 
 | 		if (unlikely(status < 0)) | 
 | 			break; | 
 | 		copied = status; | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		iov_iter_advance(i, copied); | 
 | 		if (unlikely(copied == 0)) { | 
 | 			/* | 
 | 			 * If we were unable to copy any data at all, we must | 
 | 			 * fall back to a single segment length write. | 
 | 			 * | 
 | 			 * If we didn't fallback here, we could livelock | 
 | 			 * because not all segments in the iov can be copied at | 
 | 			 * once without a pagefault. | 
 | 			 */ | 
 | 			bytes = min_t(unsigned long, PAGE_SIZE - offset, | 
 | 						iov_iter_single_seg_count(i)); | 
 | 			goto again; | 
 | 		} | 
 | 		pos += copied; | 
 | 		written += copied; | 
 | 		length -= copied; | 
 |  | 
 | 		balance_dirty_pages_ratelimited(inode->i_mapping); | 
 | 	} while (iov_iter_count(i) && length); | 
 |  | 
 | 	return written ? written : status; | 
 | } | 
 |  | 
 | ssize_t | 
 | iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct inode *inode = iocb->ki_filp->f_mapping->host; | 
 | 	loff_t pos = iocb->ki_pos, ret = 0, written = 0; | 
 |  | 
 | 	while (iov_iter_count(iter)) { | 
 | 		ret = iomap_apply(inode, pos, iov_iter_count(iter), | 
 | 				IOMAP_WRITE, ops, iter, iomap_write_actor); | 
 | 		if (ret <= 0) | 
 | 			break; | 
 | 		pos += ret; | 
 | 		written += ret; | 
 | 	} | 
 |  | 
 | 	return written ? written : ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_file_buffered_write); | 
 |  | 
 | static struct page * | 
 | __iomap_read_page(struct inode *inode, loff_t offset) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct page *page; | 
 |  | 
 | 	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL); | 
 | 	if (IS_ERR(page)) | 
 | 		return page; | 
 | 	if (!PageUptodate(page)) { | 
 | 		put_page(page); | 
 | 		return ERR_PTR(-EIO); | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	long status = 0; | 
 | 	ssize_t written = 0; | 
 |  | 
 | 	do { | 
 | 		struct page *page, *rpage; | 
 | 		unsigned long offset;	/* Offset into pagecache page */ | 
 | 		unsigned long bytes;	/* Bytes to write to page */ | 
 |  | 
 | 		offset = offset_in_page(pos); | 
 | 		bytes = min_t(loff_t, PAGE_SIZE - offset, length); | 
 |  | 
 | 		rpage = __iomap_read_page(inode, pos); | 
 | 		if (IS_ERR(rpage)) | 
 | 			return PTR_ERR(rpage); | 
 |  | 
 | 		status = iomap_write_begin(inode, pos, bytes, | 
 | 					   AOP_FLAG_NOFS, &page, iomap); | 
 | 		put_page(rpage); | 
 | 		if (unlikely(status)) | 
 | 			return status; | 
 |  | 
 | 		WARN_ON_ONCE(!PageUptodate(page)); | 
 |  | 
 | 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap); | 
 | 		if (unlikely(status <= 0)) { | 
 | 			if (WARN_ON_ONCE(status == 0)) | 
 | 				return -EIO; | 
 | 			return status; | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		pos += status; | 
 | 		written += status; | 
 | 		length -= status; | 
 |  | 
 | 		balance_dirty_pages_ratelimited(inode->i_mapping); | 
 | 	} while (length); | 
 |  | 
 | 	return written; | 
 | } | 
 |  | 
 | int | 
 | iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t ret; | 
 |  | 
 | 	while (len) { | 
 | 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL, | 
 | 				iomap_dirty_actor); | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 | 		pos += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_file_dirty); | 
 |  | 
 | static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, | 
 | 		unsigned bytes, struct iomap *iomap) | 
 | { | 
 | 	struct page *page; | 
 | 	int status; | 
 |  | 
 | 	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page, | 
 | 				   iomap); | 
 | 	if (status) | 
 | 		return status; | 
 |  | 
 | 	zero_user(page, offset, bytes); | 
 | 	mark_page_accessed(page); | 
 |  | 
 | 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap); | 
 | } | 
 |  | 
 | static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev, | 
 | 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes); | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, | 
 | 		void *data, struct iomap *iomap) | 
 | { | 
 | 	bool *did_zero = data; | 
 | 	loff_t written = 0; | 
 | 	int status; | 
 |  | 
 | 	/* already zeroed?  we're done. */ | 
 | 	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) | 
 | 	    	return count; | 
 |  | 
 | 	do { | 
 | 		unsigned offset, bytes; | 
 |  | 
 | 		offset = offset_in_page(pos); | 
 | 		bytes = min_t(loff_t, PAGE_SIZE - offset, count); | 
 |  | 
 | 		if (IS_DAX(inode)) | 
 | 			status = iomap_dax_zero(pos, offset, bytes, iomap); | 
 | 		else | 
 | 			status = iomap_zero(inode, pos, offset, bytes, iomap); | 
 | 		if (status < 0) | 
 | 			return status; | 
 |  | 
 | 		pos += bytes; | 
 | 		count -= bytes; | 
 | 		written += bytes; | 
 | 		if (did_zero) | 
 | 			*did_zero = true; | 
 | 	} while (count > 0); | 
 |  | 
 | 	return written; | 
 | } | 
 |  | 
 | int | 
 | iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t ret; | 
 |  | 
 | 	while (len > 0) { | 
 | 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO, | 
 | 				ops, did_zero, iomap_zero_range_actor); | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 |  | 
 | 		pos += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_zero_range); | 
 |  | 
 | int | 
 | iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	unsigned int blocksize = i_blocksize(inode); | 
 | 	unsigned int off = pos & (blocksize - 1); | 
 |  | 
 | 	/* Block boundary? Nothing to do */ | 
 | 	if (!off) | 
 | 		return 0; | 
 | 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_truncate_page); | 
 |  | 
 | static loff_t | 
 | iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap) | 
 | { | 
 | 	struct page *page = data; | 
 | 	int ret; | 
 |  | 
 | 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) { | 
 | 		ret = __block_write_begin_int(page, pos, length, NULL, iomap); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		block_commit_write(page, 0, length); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(!PageUptodate(page)); | 
 | 		iomap_page_create(inode, page); | 
 | 		set_page_dirty(page); | 
 | 	} | 
 |  | 
 | 	return length; | 
 | } | 
 |  | 
 | int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) | 
 | { | 
 | 	struct page *page = vmf->page; | 
 | 	struct inode *inode = file_inode(vmf->vma->vm_file); | 
 | 	unsigned long length; | 
 | 	loff_t offset, size; | 
 | 	ssize_t ret; | 
 |  | 
 | 	lock_page(page); | 
 | 	size = i_size_read(inode); | 
 | 	if ((page->mapping != inode->i_mapping) || | 
 | 	    (page_offset(page) > size)) { | 
 | 		/* We overload EFAULT to mean page got truncated */ | 
 | 		ret = -EFAULT; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* page is wholly or partially inside EOF */ | 
 | 	if (((page->index + 1) << PAGE_SHIFT) > size) | 
 | 		length = offset_in_page(size); | 
 | 	else | 
 | 		length = PAGE_SIZE; | 
 |  | 
 | 	offset = page_offset(page); | 
 | 	while (length > 0) { | 
 | 		ret = iomap_apply(inode, offset, length, | 
 | 				IOMAP_WRITE | IOMAP_FAULT, ops, page, | 
 | 				iomap_page_mkwrite_actor); | 
 | 		if (unlikely(ret <= 0)) | 
 | 			goto out_unlock; | 
 | 		offset += ret; | 
 | 		length -= ret; | 
 | 	} | 
 |  | 
 | 	wait_for_stable_page(page); | 
 | 	return VM_FAULT_LOCKED; | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | 	return block_page_mkwrite_return(ret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_page_mkwrite); | 
 |  | 
 | struct fiemap_ctx { | 
 | 	struct fiemap_extent_info *fi; | 
 | 	struct iomap prev; | 
 | }; | 
 |  | 
 | static int iomap_to_fiemap(struct fiemap_extent_info *fi, | 
 | 		struct iomap *iomap, u32 flags) | 
 | { | 
 | 	switch (iomap->type) { | 
 | 	case IOMAP_HOLE: | 
 | 		/* skip holes */ | 
 | 		return 0; | 
 | 	case IOMAP_DELALLOC: | 
 | 		flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN; | 
 | 		break; | 
 | 	case IOMAP_MAPPED: | 
 | 		break; | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		flags |= FIEMAP_EXTENT_UNWRITTEN; | 
 | 		break; | 
 | 	case IOMAP_INLINE: | 
 | 		flags |= FIEMAP_EXTENT_DATA_INLINE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (iomap->flags & IOMAP_F_MERGED) | 
 | 		flags |= FIEMAP_EXTENT_MERGED; | 
 | 	if (iomap->flags & IOMAP_F_SHARED) | 
 | 		flags |= FIEMAP_EXTENT_SHARED; | 
 |  | 
 | 	return fiemap_fill_next_extent(fi, iomap->offset, | 
 | 			iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0, | 
 | 			iomap->length, flags); | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, | 
 | 		struct iomap *iomap) | 
 | { | 
 | 	struct fiemap_ctx *ctx = data; | 
 | 	loff_t ret = length; | 
 |  | 
 | 	if (iomap->type == IOMAP_HOLE) | 
 | 		return length; | 
 |  | 
 | 	ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0); | 
 | 	ctx->prev = *iomap; | 
 | 	switch (ret) { | 
 | 	case 0:		/* success */ | 
 | 		return length; | 
 | 	case 1:		/* extent array full */ | 
 | 		return 0; | 
 | 	default: | 
 | 		return ret; | 
 | 	} | 
 | } | 
 |  | 
 | int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi, | 
 | 		loff_t start, loff_t len, const struct iomap_ops *ops) | 
 | { | 
 | 	struct fiemap_ctx ctx; | 
 | 	loff_t ret; | 
 |  | 
 | 	memset(&ctx, 0, sizeof(ctx)); | 
 | 	ctx.fi = fi; | 
 | 	ctx.prev.type = IOMAP_HOLE; | 
 |  | 
 | 	ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (fi->fi_flags & FIEMAP_FLAG_SYNC) { | 
 | 		ret = filemap_write_and_wait(inode->i_mapping); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	while (len > 0) { | 
 | 		ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx, | 
 | 				iomap_fiemap_actor); | 
 | 		/* inode with no (attribute) mapping will give ENOENT */ | 
 | 		if (ret == -ENOENT) | 
 | 			break; | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 0) | 
 | 			break; | 
 |  | 
 | 		start += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	if (ctx.prev.type != IOMAP_HOLE) { | 
 | 		ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_fiemap); | 
 |  | 
 | /* | 
 |  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff. | 
 |  * Returns true if found and updates @lastoff to the offset in file. | 
 |  */ | 
 | static bool | 
 | page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff, | 
 | 		int whence) | 
 | { | 
 | 	const struct address_space_operations *ops = inode->i_mapping->a_ops; | 
 | 	unsigned int bsize = i_blocksize(inode), off; | 
 | 	bool seek_data = whence == SEEK_DATA; | 
 | 	loff_t poff = page_offset(page); | 
 |  | 
 | 	if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE)) | 
 | 		return false; | 
 |  | 
 | 	if (*lastoff < poff) { | 
 | 		/* | 
 | 		 * Last offset smaller than the start of the page means we found | 
 | 		 * a hole: | 
 | 		 */ | 
 | 		if (whence == SEEK_HOLE) | 
 | 			return true; | 
 | 		*lastoff = poff; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Just check the page unless we can and should check block ranges: | 
 | 	 */ | 
 | 	if (bsize == PAGE_SIZE || !ops->is_partially_uptodate) | 
 | 		return PageUptodate(page) == seek_data; | 
 |  | 
 | 	lock_page(page); | 
 | 	if (unlikely(page->mapping != inode->i_mapping)) | 
 | 		goto out_unlock_not_found; | 
 |  | 
 | 	for (off = 0; off < PAGE_SIZE; off += bsize) { | 
 | 		if (offset_in_page(*lastoff) >= off + bsize) | 
 | 			continue; | 
 | 		if (ops->is_partially_uptodate(page, off, bsize) == seek_data) { | 
 | 			unlock_page(page); | 
 | 			return true; | 
 | 		} | 
 | 		*lastoff = poff + off + bsize; | 
 | 	} | 
 |  | 
 | out_unlock_not_found: | 
 | 	unlock_page(page); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Seek for SEEK_DATA / SEEK_HOLE in the page cache. | 
 |  * | 
 |  * Within unwritten extents, the page cache determines which parts are holes | 
 |  * and which are data: uptodate buffer heads count as data; everything else | 
 |  * counts as a hole. | 
 |  * | 
 |  * Returns the resulting offset on successs, and -ENOENT otherwise. | 
 |  */ | 
 | static loff_t | 
 | page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length, | 
 | 		int whence) | 
 | { | 
 | 	pgoff_t index = offset >> PAGE_SHIFT; | 
 | 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE); | 
 | 	loff_t lastoff = offset; | 
 | 	struct pagevec pvec; | 
 |  | 
 | 	if (length <= 0) | 
 | 		return -ENOENT; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 |  | 
 | 	do { | 
 | 		unsigned nr_pages, i; | 
 |  | 
 | 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index, | 
 | 						end - 1); | 
 | 		if (nr_pages == 0) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (page_seek_hole_data(inode, page, &lastoff, whence)) | 
 | 				goto check_range; | 
 | 			lastoff = page_offset(page) + PAGE_SIZE; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 	} while (index < end); | 
 |  | 
 | 	/* When no page at lastoff and we are not done, we found a hole. */ | 
 | 	if (whence != SEEK_HOLE) | 
 | 		goto not_found; | 
 |  | 
 | check_range: | 
 | 	if (lastoff < offset + length) | 
 | 		goto out; | 
 | not_found: | 
 | 	lastoff = -ENOENT; | 
 | out: | 
 | 	pagevec_release(&pvec); | 
 | 	return lastoff; | 
 | } | 
 |  | 
 |  | 
 | static loff_t | 
 | iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length, | 
 | 		      void *data, struct iomap *iomap) | 
 | { | 
 | 	switch (iomap->type) { | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		offset = page_cache_seek_hole_data(inode, offset, length, | 
 | 						   SEEK_HOLE); | 
 | 		if (offset < 0) | 
 | 			return length; | 
 | 		/* fall through */ | 
 | 	case IOMAP_HOLE: | 
 | 		*(loff_t *)data = offset; | 
 | 		return 0; | 
 | 	default: | 
 | 		return length; | 
 | 	} | 
 | } | 
 |  | 
 | loff_t | 
 | iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t size = i_size_read(inode); | 
 | 	loff_t length = size - offset; | 
 | 	loff_t ret; | 
 |  | 
 | 	/* Nothing to be found before or beyond the end of the file. */ | 
 | 	if (offset < 0 || offset >= size) | 
 | 		return -ENXIO; | 
 |  | 
 | 	while (length > 0) { | 
 | 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops, | 
 | 				  &offset, iomap_seek_hole_actor); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 0) | 
 | 			break; | 
 |  | 
 | 		offset += ret; | 
 | 		length -= ret; | 
 | 	} | 
 |  | 
 | 	return offset; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_seek_hole); | 
 |  | 
 | static loff_t | 
 | iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length, | 
 | 		      void *data, struct iomap *iomap) | 
 | { | 
 | 	switch (iomap->type) { | 
 | 	case IOMAP_HOLE: | 
 | 		return length; | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		offset = page_cache_seek_hole_data(inode, offset, length, | 
 | 						   SEEK_DATA); | 
 | 		if (offset < 0) | 
 | 			return length; | 
 | 		/*FALLTHRU*/ | 
 | 	default: | 
 | 		*(loff_t *)data = offset; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | loff_t | 
 | iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops) | 
 | { | 
 | 	loff_t size = i_size_read(inode); | 
 | 	loff_t length = size - offset; | 
 | 	loff_t ret; | 
 |  | 
 | 	/* Nothing to be found before or beyond the end of the file. */ | 
 | 	if (offset < 0 || offset >= size) | 
 | 		return -ENXIO; | 
 |  | 
 | 	while (length > 0) { | 
 | 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops, | 
 | 				  &offset, iomap_seek_data_actor); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 0) | 
 | 			break; | 
 |  | 
 | 		offset += ret; | 
 | 		length -= ret; | 
 | 	} | 
 |  | 
 | 	if (length <= 0) | 
 | 		return -ENXIO; | 
 | 	return offset; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_seek_data); | 
 |  | 
 | /* | 
 |  * Private flags for iomap_dio, must not overlap with the public ones in | 
 |  * iomap.h: | 
 |  */ | 
 | #define IOMAP_DIO_WRITE_FUA	(1 << 28) | 
 | #define IOMAP_DIO_NEED_SYNC	(1 << 29) | 
 | #define IOMAP_DIO_WRITE		(1 << 30) | 
 | #define IOMAP_DIO_DIRTY		(1 << 31) | 
 |  | 
 | struct iomap_dio { | 
 | 	struct kiocb		*iocb; | 
 | 	iomap_dio_end_io_t	*end_io; | 
 | 	loff_t			i_size; | 
 | 	loff_t			size; | 
 | 	atomic_t		ref; | 
 | 	unsigned		flags; | 
 | 	int			error; | 
 | 	bool			wait_for_completion; | 
 |  | 
 | 	union { | 
 | 		/* used during submission and for synchronous completion: */ | 
 | 		struct { | 
 | 			struct iov_iter		*iter; | 
 | 			struct task_struct	*waiter; | 
 | 			struct request_queue	*last_queue; | 
 | 			blk_qc_t		cookie; | 
 | 		} submit; | 
 |  | 
 | 		/* used for aio completion: */ | 
 | 		struct { | 
 | 			struct work_struct	work; | 
 | 		} aio; | 
 | 	}; | 
 | }; | 
 |  | 
 | static ssize_t iomap_dio_complete(struct iomap_dio *dio) | 
 | { | 
 | 	struct kiocb *iocb = dio->iocb; | 
 | 	struct inode *inode = file_inode(iocb->ki_filp); | 
 | 	loff_t offset = iocb->ki_pos; | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (dio->end_io) { | 
 | 		ret = dio->end_io(iocb, | 
 | 				dio->error ? dio->error : dio->size, | 
 | 				dio->flags); | 
 | 	} else { | 
 | 		ret = dio->error; | 
 | 	} | 
 |  | 
 | 	if (likely(!ret)) { | 
 | 		ret = dio->size; | 
 | 		/* check for short read */ | 
 | 		if (offset + ret > dio->i_size && | 
 | 		    !(dio->flags & IOMAP_DIO_WRITE)) | 
 | 			ret = dio->i_size - offset; | 
 | 		iocb->ki_pos += ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try again to invalidate clean pages which might have been cached by | 
 | 	 * non-direct readahead, or faulted in by get_user_pages() if the source | 
 | 	 * of the write was an mmap'ed region of the file we're writing.  Either | 
 | 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If | 
 | 	 * this invalidation fails, tough, the write still worked... | 
 | 	 * | 
 | 	 * And this page cache invalidation has to be after dio->end_io(), as | 
 | 	 * some filesystems convert unwritten extents to real allocations in | 
 | 	 * end_io() when necessary, otherwise a racing buffer read would cache | 
 | 	 * zeros from unwritten extents. | 
 | 	 */ | 
 | 	if (!dio->error && | 
 | 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { | 
 | 		int err; | 
 | 		err = invalidate_inode_pages2_range(inode->i_mapping, | 
 | 				offset >> PAGE_SHIFT, | 
 | 				(offset + dio->size - 1) >> PAGE_SHIFT); | 
 | 		if (err) | 
 | 			dio_warn_stale_pagecache(iocb->ki_filp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a DSYNC write, make sure we push it to stable storage now | 
 | 	 * that we've written data. | 
 | 	 */ | 
 | 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) | 
 | 		ret = generic_write_sync(iocb, ret); | 
 |  | 
 | 	inode_dio_end(file_inode(iocb->ki_filp)); | 
 | 	kfree(dio); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iomap_dio_complete_work(struct work_struct *work) | 
 | { | 
 | 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); | 
 | 	struct kiocb *iocb = dio->iocb; | 
 |  | 
 | 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Set an error in the dio if none is set yet.  We have to use cmpxchg | 
 |  * as the submission context and the completion context(s) can race to | 
 |  * update the error. | 
 |  */ | 
 | static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) | 
 | { | 
 | 	cmpxchg(&dio->error, 0, ret); | 
 | } | 
 |  | 
 | static void iomap_dio_bio_end_io(struct bio *bio) | 
 | { | 
 | 	struct iomap_dio *dio = bio->bi_private; | 
 | 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); | 
 |  | 
 | 	if (atomic_dec_and_test(&dio->ref)) { | 
 | 		if (dio->wait_for_completion) { | 
 | 			struct task_struct *waiter = dio->submit.waiter; | 
 | 			WRITE_ONCE(dio->submit.waiter, NULL); | 
 | 			wake_up_process(waiter); | 
 | 		} else if (dio->flags & IOMAP_DIO_WRITE) { | 
 | 			struct inode *inode = file_inode(dio->iocb->ki_filp); | 
 |  | 
 | 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work); | 
 | 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); | 
 | 		} else { | 
 | 			iomap_dio_complete_work(&dio->aio.work); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (should_dirty) { | 
 | 		bio_check_pages_dirty(bio); | 
 | 	} else { | 
 | 		struct bio_vec *bvec; | 
 | 		int i; | 
 |  | 
 | 		bio_for_each_segment_all(bvec, bio, i) | 
 | 			put_page(bvec->bv_page); | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static blk_qc_t | 
 | iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos, | 
 | 		unsigned len) | 
 | { | 
 | 	struct page *page = ZERO_PAGE(0); | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc(GFP_KERNEL, 1); | 
 | 	bio_set_dev(bio, iomap->bdev); | 
 | 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos); | 
 | 	bio->bi_private = dio; | 
 | 	bio->bi_end_io = iomap_dio_bio_end_io; | 
 |  | 
 | 	get_page(page); | 
 | 	__bio_add_page(bio, page, len, 0); | 
 | 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE); | 
 |  | 
 | 	atomic_inc(&dio->ref); | 
 | 	return submit_bio(bio); | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		struct iomap_dio *dio, struct iomap *iomap) | 
 | { | 
 | 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev)); | 
 | 	unsigned int fs_block_size = i_blocksize(inode), pad; | 
 | 	unsigned int align = iov_iter_alignment(dio->submit.iter); | 
 | 	struct iov_iter iter; | 
 | 	struct bio *bio; | 
 | 	bool need_zeroout = false; | 
 | 	bool use_fua = false; | 
 | 	int nr_pages, ret = 0; | 
 | 	size_t copied = 0; | 
 |  | 
 | 	if ((pos | length | align) & ((1 << blkbits) - 1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (iomap->type == IOMAP_UNWRITTEN) { | 
 | 		dio->flags |= IOMAP_DIO_UNWRITTEN; | 
 | 		need_zeroout = true; | 
 | 	} | 
 |  | 
 | 	if (iomap->flags & IOMAP_F_SHARED) | 
 | 		dio->flags |= IOMAP_DIO_COW; | 
 |  | 
 | 	if (iomap->flags & IOMAP_F_NEW) { | 
 | 		need_zeroout = true; | 
 | 	} else if (iomap->type == IOMAP_MAPPED) { | 
 | 		/* | 
 | 		 * Use a FUA write if we need datasync semantics, this is a pure | 
 | 		 * data IO that doesn't require any metadata updates (including | 
 | 		 * after IO completion such as unwritten extent conversion) and | 
 | 		 * the underlying device supports FUA. This allows us to avoid | 
 | 		 * cache flushes on IO completion. | 
 | 		 */ | 
 | 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && | 
 | 		    (dio->flags & IOMAP_DIO_WRITE_FUA) && | 
 | 		    blk_queue_fua(bdev_get_queue(iomap->bdev))) | 
 | 			use_fua = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Operate on a partial iter trimmed to the extent we were called for. | 
 | 	 * We'll update the iter in the dio once we're done with this extent. | 
 | 	 */ | 
 | 	iter = *dio->submit.iter; | 
 | 	iov_iter_truncate(&iter, length); | 
 |  | 
 | 	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES); | 
 | 	if (nr_pages <= 0) | 
 | 		return nr_pages; | 
 |  | 
 | 	if (need_zeroout) { | 
 | 		/* zero out from the start of the block to the write offset */ | 
 | 		pad = pos & (fs_block_size - 1); | 
 | 		if (pad) | 
 | 			iomap_dio_zero(dio, iomap, pos - pad, pad); | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		size_t n; | 
 | 		if (dio->error) { | 
 | 			iov_iter_revert(dio->submit.iter, copied); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		bio = bio_alloc(GFP_KERNEL, nr_pages); | 
 | 		bio_set_dev(bio, iomap->bdev); | 
 | 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos); | 
 | 		bio->bi_write_hint = dio->iocb->ki_hint; | 
 | 		bio->bi_ioprio = dio->iocb->ki_ioprio; | 
 | 		bio->bi_private = dio; | 
 | 		bio->bi_end_io = iomap_dio_bio_end_io; | 
 |  | 
 | 		ret = bio_iov_iter_get_pages(bio, &iter); | 
 | 		if (unlikely(ret)) { | 
 | 			/* | 
 | 			 * We have to stop part way through an IO. We must fall | 
 | 			 * through to the sub-block tail zeroing here, otherwise | 
 | 			 * this short IO may expose stale data in the tail of | 
 | 			 * the block we haven't written data to. | 
 | 			 */ | 
 | 			bio_put(bio); | 
 | 			goto zero_tail; | 
 | 		} | 
 |  | 
 | 		n = bio->bi_iter.bi_size; | 
 | 		if (dio->flags & IOMAP_DIO_WRITE) { | 
 | 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; | 
 | 			if (use_fua) | 
 | 				bio->bi_opf |= REQ_FUA; | 
 | 			else | 
 | 				dio->flags &= ~IOMAP_DIO_WRITE_FUA; | 
 | 			task_io_account_write(n); | 
 | 		} else { | 
 | 			bio->bi_opf = REQ_OP_READ; | 
 | 			if (dio->flags & IOMAP_DIO_DIRTY) | 
 | 				bio_set_pages_dirty(bio); | 
 | 		} | 
 |  | 
 | 		iov_iter_advance(dio->submit.iter, n); | 
 |  | 
 | 		dio->size += n; | 
 | 		pos += n; | 
 | 		copied += n; | 
 |  | 
 | 		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES); | 
 |  | 
 | 		atomic_inc(&dio->ref); | 
 |  | 
 | 		dio->submit.last_queue = bdev_get_queue(iomap->bdev); | 
 | 		dio->submit.cookie = submit_bio(bio); | 
 | 	} while (nr_pages); | 
 |  | 
 | 	/* | 
 | 	 * We need to zeroout the tail of a sub-block write if the extent type | 
 | 	 * requires zeroing or the write extends beyond EOF. If we don't zero | 
 | 	 * the block tail in the latter case, we can expose stale data via mmap | 
 | 	 * reads of the EOF block. | 
 | 	 */ | 
 | zero_tail: | 
 | 	if (need_zeroout || | 
 | 	    ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { | 
 | 		/* zero out from the end of the write to the end of the block */ | 
 | 		pad = pos & (fs_block_size - 1); | 
 | 		if (pad) | 
 | 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad); | 
 | 	} | 
 | 	return copied ? copied : ret; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio) | 
 | { | 
 | 	length = iov_iter_zero(length, dio->submit.iter); | 
 | 	dio->size += length; | 
 | 	return length; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		struct iomap_dio *dio, struct iomap *iomap) | 
 | { | 
 | 	struct iov_iter *iter = dio->submit.iter; | 
 | 	size_t copied; | 
 |  | 
 | 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data)); | 
 |  | 
 | 	if (dio->flags & IOMAP_DIO_WRITE) { | 
 | 		loff_t size = inode->i_size; | 
 |  | 
 | 		if (pos > size) | 
 | 			memset(iomap->inline_data + size, 0, pos - size); | 
 | 		copied = copy_from_iter(iomap->inline_data + pos, length, iter); | 
 | 		if (copied) { | 
 | 			if (pos + copied > size) | 
 | 				i_size_write(inode, pos + copied); | 
 | 			mark_inode_dirty(inode); | 
 | 		} | 
 | 	} else { | 
 | 		copied = copy_to_iter(iomap->inline_data + pos, length, iter); | 
 | 	} | 
 | 	dio->size += copied; | 
 | 	return copied; | 
 | } | 
 |  | 
 | static loff_t | 
 | iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap) | 
 | { | 
 | 	struct iomap_dio *dio = data; | 
 |  | 
 | 	switch (iomap->type) { | 
 | 	case IOMAP_HOLE: | 
 | 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) | 
 | 			return -EIO; | 
 | 		return iomap_dio_hole_actor(length, dio); | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		if (!(dio->flags & IOMAP_DIO_WRITE)) | 
 | 			return iomap_dio_hole_actor(length, dio); | 
 | 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap); | 
 | 	case IOMAP_MAPPED: | 
 | 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap); | 
 | 	case IOMAP_INLINE: | 
 | 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap); | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		return -EIO; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO | 
 |  * is being issued as AIO or not.  This allows us to optimise pure data writes | 
 |  * to use REQ_FUA rather than requiring generic_write_sync() to issue a | 
 |  * REQ_FLUSH post write. This is slightly tricky because a single request here | 
 |  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued | 
 |  * may be pure data writes. In that case, we still need to do a full data sync | 
 |  * completion. | 
 |  */ | 
 | ssize_t | 
 | iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, | 
 | 		const struct iomap_ops *ops, iomap_dio_end_io_t end_io) | 
 | { | 
 | 	struct address_space *mapping = iocb->ki_filp->f_mapping; | 
 | 	struct inode *inode = file_inode(iocb->ki_filp); | 
 | 	size_t count = iov_iter_count(iter); | 
 | 	loff_t pos = iocb->ki_pos, start = pos; | 
 | 	loff_t end = iocb->ki_pos + count - 1, ret = 0; | 
 | 	unsigned int flags = IOMAP_DIRECT; | 
 | 	bool wait_for_completion = is_sync_kiocb(iocb); | 
 | 	struct blk_plug plug; | 
 | 	struct iomap_dio *dio; | 
 |  | 
 | 	lockdep_assert_held(&inode->i_rwsem); | 
 |  | 
 | 	if (!count) | 
 | 		return 0; | 
 |  | 
 | 	dio = kmalloc(sizeof(*dio), GFP_KERNEL); | 
 | 	if (!dio) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dio->iocb = iocb; | 
 | 	atomic_set(&dio->ref, 1); | 
 | 	dio->size = 0; | 
 | 	dio->i_size = i_size_read(inode); | 
 | 	dio->end_io = end_io; | 
 | 	dio->error = 0; | 
 | 	dio->flags = 0; | 
 |  | 
 | 	dio->submit.iter = iter; | 
 | 	dio->submit.waiter = current; | 
 | 	dio->submit.cookie = BLK_QC_T_NONE; | 
 | 	dio->submit.last_queue = NULL; | 
 |  | 
 | 	if (iov_iter_rw(iter) == READ) { | 
 | 		if (pos >= dio->i_size) | 
 | 			goto out_free_dio; | 
 |  | 
 | 		if (iter->type == ITER_IOVEC) | 
 | 			dio->flags |= IOMAP_DIO_DIRTY; | 
 | 	} else { | 
 | 		flags |= IOMAP_WRITE; | 
 | 		dio->flags |= IOMAP_DIO_WRITE; | 
 |  | 
 | 		/* for data sync or sync, we need sync completion processing */ | 
 | 		if (iocb->ki_flags & IOCB_DSYNC) | 
 | 			dio->flags |= IOMAP_DIO_NEED_SYNC; | 
 |  | 
 | 		/* | 
 | 		 * For datasync only writes, we optimistically try using FUA for | 
 | 		 * this IO.  Any non-FUA write that occurs will clear this flag, | 
 | 		 * hence we know before completion whether a cache flush is | 
 | 		 * necessary. | 
 | 		 */ | 
 | 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC) | 
 | 			dio->flags |= IOMAP_DIO_WRITE_FUA; | 
 | 	} | 
 |  | 
 | 	if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 		if (filemap_range_has_page(mapping, start, end)) { | 
 | 			ret = -EAGAIN; | 
 | 			goto out_free_dio; | 
 | 		} | 
 | 		flags |= IOMAP_NOWAIT; | 
 | 	} | 
 |  | 
 | 	ret = filemap_write_and_wait_range(mapping, start, end); | 
 | 	if (ret) | 
 | 		goto out_free_dio; | 
 |  | 
 | 	/* | 
 | 	 * Try to invalidate cache pages for the range we're direct | 
 | 	 * writing.  If this invalidation fails, tough, the write will | 
 | 	 * still work, but racing two incompatible write paths is a | 
 | 	 * pretty crazy thing to do, so we don't support it 100%. | 
 | 	 */ | 
 | 	ret = invalidate_inode_pages2_range(mapping, | 
 | 			start >> PAGE_SHIFT, end >> PAGE_SHIFT); | 
 | 	if (ret) | 
 | 		dio_warn_stale_pagecache(iocb->ki_filp); | 
 | 	ret = 0; | 
 |  | 
 | 	if (iov_iter_rw(iter) == WRITE && !wait_for_completion && | 
 | 	    !inode->i_sb->s_dio_done_wq) { | 
 | 		ret = sb_init_dio_done_wq(inode->i_sb); | 
 | 		if (ret < 0) | 
 | 			goto out_free_dio; | 
 | 	} | 
 |  | 
 | 	inode_dio_begin(inode); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	do { | 
 | 		ret = iomap_apply(inode, pos, count, flags, ops, dio, | 
 | 				iomap_dio_actor); | 
 | 		if (ret <= 0) { | 
 | 			/* magic error code to fall back to buffered I/O */ | 
 | 			if (ret == -ENOTBLK) { | 
 | 				wait_for_completion = true; | 
 | 				ret = 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		pos += ret; | 
 |  | 
 | 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size) { | 
 | 			/* | 
 | 			 * We only report that we've read data up to i_size. | 
 | 			 * Revert iter to a state corresponding to that as | 
 | 			 * some callers (such as splice code) rely on it. | 
 | 			 */ | 
 | 			iov_iter_revert(iter, pos - dio->i_size); | 
 | 			break; | 
 | 		} | 
 | 	} while ((count = iov_iter_count(iter)) > 0); | 
 | 	blk_finish_plug(&plug); | 
 |  | 
 | 	if (ret < 0) | 
 | 		iomap_dio_set_error(dio, ret); | 
 |  | 
 | 	/* | 
 | 	 * If all the writes we issued were FUA, we don't need to flush the | 
 | 	 * cache on IO completion. Clear the sync flag for this case. | 
 | 	 */ | 
 | 	if (dio->flags & IOMAP_DIO_WRITE_FUA) | 
 | 		dio->flags &= ~IOMAP_DIO_NEED_SYNC; | 
 |  | 
 | 	/* | 
 | 	 * We are about to drop our additional submission reference, which | 
 | 	 * might be the last reference to the dio.  There are three three | 
 | 	 * different ways we can progress here: | 
 | 	 * | 
 | 	 *  (a) If this is the last reference we will always complete and free | 
 | 	 *	the dio ourselves. | 
 | 	 *  (b) If this is not the last reference, and we serve an asynchronous | 
 | 	 *	iocb, we must never touch the dio after the decrement, the | 
 | 	 *	I/O completion handler will complete and free it. | 
 | 	 *  (c) If this is not the last reference, but we serve a synchronous | 
 | 	 *	iocb, the I/O completion handler will wake us up on the drop | 
 | 	 *	of the final reference, and we will complete and free it here | 
 | 	 *	after we got woken by the I/O completion handler. | 
 | 	 */ | 
 | 	dio->wait_for_completion = wait_for_completion; | 
 | 	if (!atomic_dec_and_test(&dio->ref)) { | 
 | 		if (!wait_for_completion) | 
 | 			return -EIOCBQUEUED; | 
 |  | 
 | 		for (;;) { | 
 | 			set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			if (!READ_ONCE(dio->submit.waiter)) | 
 | 				break; | 
 |  | 
 | 			if (!(iocb->ki_flags & IOCB_HIPRI) || | 
 | 			    !dio->submit.last_queue || | 
 | 			    !blk_poll(dio->submit.last_queue, | 
 | 					 dio->submit.cookie)) | 
 | 				io_schedule(); | 
 | 		} | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 	} | 
 |  | 
 | 	return iomap_dio_complete(dio); | 
 |  | 
 | out_free_dio: | 
 | 	kfree(dio); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_dio_rw); | 
 |  | 
 | /* Swapfile activation */ | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | struct iomap_swapfile_info { | 
 | 	struct iomap iomap;		/* accumulated iomap */ | 
 | 	struct swap_info_struct *sis; | 
 | 	uint64_t lowest_ppage;		/* lowest physical addr seen (pages) */ | 
 | 	uint64_t highest_ppage;		/* highest physical addr seen (pages) */ | 
 | 	unsigned long nr_pages;		/* number of pages collected */ | 
 | 	int nr_extents;			/* extent count */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Collect physical extents for this swap file.  Physical extents reported to | 
 |  * the swap code must be trimmed to align to a page boundary.  The logical | 
 |  * offset within the file is irrelevant since the swapfile code maps logical | 
 |  * page numbers of the swap device to the physical page-aligned extents. | 
 |  */ | 
 | static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi) | 
 | { | 
 | 	struct iomap *iomap = &isi->iomap; | 
 | 	unsigned long nr_pages; | 
 | 	uint64_t first_ppage; | 
 | 	uint64_t first_ppage_reported; | 
 | 	uint64_t next_ppage; | 
 | 	int error; | 
 |  | 
 | 	/* | 
 | 	 * Round the start up and the end down so that the physical | 
 | 	 * extent aligns to a page boundary. | 
 | 	 */ | 
 | 	first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT; | 
 | 	next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >> | 
 | 			PAGE_SHIFT; | 
 |  | 
 | 	/* Skip too-short physical extents. */ | 
 | 	if (first_ppage >= next_ppage) | 
 | 		return 0; | 
 | 	nr_pages = next_ppage - first_ppage; | 
 |  | 
 | 	/* | 
 | 	 * Calculate how much swap space we're adding; the first page contains | 
 | 	 * the swap header and doesn't count.  The mm still wants that first | 
 | 	 * page fed to add_swap_extent, however. | 
 | 	 */ | 
 | 	first_ppage_reported = first_ppage; | 
 | 	if (iomap->offset == 0) | 
 | 		first_ppage_reported++; | 
 | 	if (isi->lowest_ppage > first_ppage_reported) | 
 | 		isi->lowest_ppage = first_ppage_reported; | 
 | 	if (isi->highest_ppage < (next_ppage - 1)) | 
 | 		isi->highest_ppage = next_ppage - 1; | 
 |  | 
 | 	/* Add extent, set up for the next call. */ | 
 | 	error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage); | 
 | 	if (error < 0) | 
 | 		return error; | 
 | 	isi->nr_extents += error; | 
 | 	isi->nr_pages += nr_pages; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Accumulate iomaps for this swap file.  We have to accumulate iomaps because | 
 |  * swap only cares about contiguous page-aligned physical extents and makes no | 
 |  * distinction between written and unwritten extents. | 
 |  */ | 
 | static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos, | 
 | 		loff_t count, void *data, struct iomap *iomap) | 
 | { | 
 | 	struct iomap_swapfile_info *isi = data; | 
 | 	int error; | 
 |  | 
 | 	switch (iomap->type) { | 
 | 	case IOMAP_MAPPED: | 
 | 	case IOMAP_UNWRITTEN: | 
 | 		/* Only real or unwritten extents. */ | 
 | 		break; | 
 | 	case IOMAP_INLINE: | 
 | 		/* No inline data. */ | 
 | 		pr_err("swapon: file is inline\n"); | 
 | 		return -EINVAL; | 
 | 	default: | 
 | 		pr_err("swapon: file has unallocated extents\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* No uncommitted metadata or shared blocks. */ | 
 | 	if (iomap->flags & IOMAP_F_DIRTY) { | 
 | 		pr_err("swapon: file is not committed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (iomap->flags & IOMAP_F_SHARED) { | 
 | 		pr_err("swapon: file has shared extents\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Only one bdev per swap file. */ | 
 | 	if (iomap->bdev != isi->sis->bdev) { | 
 | 		pr_err("swapon: file is on multiple devices\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (isi->iomap.length == 0) { | 
 | 		/* No accumulated extent, so just store it. */ | 
 | 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap)); | 
 | 	} else if (isi->iomap.addr + isi->iomap.length == iomap->addr) { | 
 | 		/* Append this to the accumulated extent. */ | 
 | 		isi->iomap.length += iomap->length; | 
 | 	} else { | 
 | 		/* Otherwise, add the retained iomap and store this one. */ | 
 | 		error = iomap_swapfile_add_extent(isi); | 
 | 		if (error) | 
 | 			return error; | 
 | 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap)); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate a swap file's iomaps to construct physical extents that can be | 
 |  * passed to the swapfile subsystem. | 
 |  */ | 
 | int iomap_swapfile_activate(struct swap_info_struct *sis, | 
 | 		struct file *swap_file, sector_t *pagespan, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct iomap_swapfile_info isi = { | 
 | 		.sis = sis, | 
 | 		.lowest_ppage = (sector_t)-1ULL, | 
 | 	}; | 
 | 	struct address_space *mapping = swap_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	loff_t pos = 0; | 
 | 	loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE); | 
 | 	loff_t ret; | 
 |  | 
 | 	/* | 
 | 	 * Persist all file mapping metadata so that we won't have any | 
 | 	 * IOMAP_F_DIRTY iomaps. | 
 | 	 */ | 
 | 	ret = vfs_fsync(swap_file, 1); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	while (len > 0) { | 
 | 		ret = iomap_apply(inode, pos, len, IOMAP_REPORT, | 
 | 				ops, &isi, iomap_swapfile_activate_actor); | 
 | 		if (ret <= 0) | 
 | 			return ret; | 
 |  | 
 | 		pos += ret; | 
 | 		len -= ret; | 
 | 	} | 
 |  | 
 | 	if (isi.iomap.length) { | 
 | 		ret = iomap_swapfile_add_extent(&isi); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	*pagespan = 1 + isi.highest_ppage - isi.lowest_ppage; | 
 | 	sis->max = isi.nr_pages; | 
 | 	sis->pages = isi.nr_pages - 1; | 
 | 	sis->highest_bit = isi.nr_pages - 1; | 
 | 	return isi.nr_extents; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_swapfile_activate); | 
 | #endif /* CONFIG_SWAP */ | 
 |  | 
 | static loff_t | 
 | iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length, | 
 | 		void *data, struct iomap *iomap) | 
 | { | 
 | 	sector_t *bno = data, addr; | 
 |  | 
 | 	if (iomap->type == IOMAP_MAPPED) { | 
 | 		addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits; | 
 | 		if (addr > INT_MAX) | 
 | 			WARN(1, "would truncate bmap result\n"); | 
 | 		else | 
 | 			*bno = addr; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* legacy ->bmap interface.  0 is the error return (!) */ | 
 | sector_t | 
 | iomap_bmap(struct address_space *mapping, sector_t bno, | 
 | 		const struct iomap_ops *ops) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	loff_t pos = bno << inode->i_blkbits; | 
 | 	unsigned blocksize = i_blocksize(inode); | 
 |  | 
 | 	if (filemap_write_and_wait(mapping)) | 
 | 		return 0; | 
 |  | 
 | 	bno = 0; | 
 | 	iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor); | 
 | 	return bno; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iomap_bmap); |