| /* | 
 |  * pid.c PID controller for testing cooling devices | 
 |  * | 
 |  * | 
 |  * | 
 |  * Copyright (C) 2012 Intel Corporation. All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License version | 
 |  * 2 or later as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * Author Name Jacob Pan <jacob.jun.pan@linux.intel.com> | 
 |  * | 
 |  */ | 
 |  | 
 | #include <unistd.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <stdint.h> | 
 | #include <sys/types.h> | 
 | #include <dirent.h> | 
 | #include <libintl.h> | 
 | #include <ctype.h> | 
 | #include <assert.h> | 
 | #include <time.h> | 
 | #include <limits.h> | 
 | #include <math.h> | 
 | #include <sys/stat.h> | 
 | #include <syslog.h> | 
 |  | 
 | #include "tmon.h" | 
 |  | 
 | /************************************************************************** | 
 |  * PID (Proportional-Integral-Derivative) controller is commonly used in | 
 |  * linear control system, consider the the process. | 
 |  * G(s) = U(s)/E(s) | 
 |  * kp = proportional gain | 
 |  * ki = integral gain | 
 |  * kd = derivative gain | 
 |  * Ts | 
 |  * We use type C Alan Bradley equation which takes set point off the | 
 |  * output dependency in P and D term. | 
 |  * | 
 |  *   y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k] | 
 |  *          - 2*x[k-1]+x[k-2])/Ts | 
 |  * | 
 |  * | 
 |  ***********************************************************************/ | 
 | struct pid_params p_param; | 
 | /* cached data from previous loop */ | 
 | static double xk_1, xk_2; /* input temperature x[k-#] */ | 
 |  | 
 | /* | 
 |  * TODO: make PID parameters tuned automatically, | 
 |  * 1. use CPU burn to produce open loop unit step response | 
 |  * 2. calculate PID based on Ziegler-Nichols rule | 
 |  * | 
 |  * add a flag for tuning PID | 
 |  */ | 
 | int init_thermal_controller(void) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* init pid params */ | 
 | 	p_param.ts = ticktime; | 
 | 	/* TODO: get it from TUI tuning tab */ | 
 | 	p_param.kp = .36; | 
 | 	p_param.ki = 5.0; | 
 | 	p_param.kd = 0.19; | 
 |  | 
 | 	p_param.t_target = target_temp_user; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void controller_reset(void) | 
 | { | 
 | 	/* TODO: relax control data when not over thermal limit */ | 
 | 	syslog(LOG_DEBUG, "TC inactive, relax p-state\n"); | 
 | 	p_param.y_k = 0.0; | 
 | 	xk_1 = 0.0; | 
 | 	xk_2 = 0.0; | 
 | 	set_ctrl_state(0); | 
 | } | 
 |  | 
 | /* To be called at time interval Ts. Type C PID controller. | 
 |  *    y[k] = y[k-1] - kp*(x[k] - x[k-1]) + Ki*Ts*e[k] - Kd*(x[k] | 
 |  *          - 2*x[k-1]+x[k-2])/Ts | 
 |  * TODO: add low pass filter for D term | 
 |  */ | 
 | #define GUARD_BAND (2) | 
 | void controller_handler(const double xk, double *yk) | 
 | { | 
 | 	double ek; | 
 | 	double p_term, i_term, d_term; | 
 |  | 
 | 	ek = p_param.t_target - xk; /* error */ | 
 | 	if (ek >= 3.0) { | 
 | 		syslog(LOG_DEBUG, "PID: %3.1f Below set point %3.1f, stop\n", | 
 | 			xk, p_param.t_target); | 
 | 		controller_reset(); | 
 | 		*yk = 0.0; | 
 | 		return; | 
 | 	} | 
 | 	/* compute intermediate PID terms */ | 
 | 	p_term = -p_param.kp * (xk - xk_1); | 
 | 	i_term = p_param.kp * p_param.ki * p_param.ts * ek; | 
 | 	d_term = -p_param.kp * p_param.kd * (xk - 2 * xk_1 + xk_2) / p_param.ts; | 
 | 	/* compute output */ | 
 | 	*yk += p_term + i_term + d_term; | 
 | 	/* update sample data */ | 
 | 	xk_1 = xk; | 
 | 	xk_2 = xk_1; | 
 |  | 
 | 	/* clamp output adjustment range */ | 
 | 	if (*yk < -LIMIT_HIGH) | 
 | 		*yk = -LIMIT_HIGH; | 
 | 	else if (*yk > -LIMIT_LOW) | 
 | 		*yk = -LIMIT_LOW; | 
 |  | 
 | 	p_param.y_k = *yk; | 
 |  | 
 | 	set_ctrl_state(lround(fabs(p_param.y_k))); | 
 |  | 
 | } |