| /* | 
 |  * Kernel-based Virtual Machine -- Performance Monitoring Unit support | 
 |  * | 
 |  * Copyright 2015 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@redhat.com> | 
 |  *   Gleb Natapov <gleb@redhat.com> | 
 |  *   Wei Huang    <wei@redhat.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/perf_event.h> | 
 | #include <asm/perf_event.h> | 
 | #include "x86.h" | 
 | #include "cpuid.h" | 
 | #include "lapic.h" | 
 | #include "pmu.h" | 
 |  | 
 | /* NOTE: | 
 |  * - Each perf counter is defined as "struct kvm_pmc"; | 
 |  * - There are two types of perf counters: general purpose (gp) and fixed. | 
 |  *   gp counters are stored in gp_counters[] and fixed counters are stored | 
 |  *   in fixed_counters[] respectively. Both of them are part of "struct | 
 |  *   kvm_pmu"; | 
 |  * - pmu.c understands the difference between gp counters and fixed counters. | 
 |  *   However AMD doesn't support fixed-counters; | 
 |  * - There are three types of index to access perf counters (PMC): | 
 |  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD | 
 |  *        has MSR_K7_PERFCTRn. | 
 |  *     2. MSR Index (named idx): This normally is used by RDPMC instruction. | 
 |  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access | 
 |  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except | 
 |  *        that it also supports fixed counters. idx can be used to as index to | 
 |  *        gp and fixed counters. | 
 |  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU | 
 |  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across | 
 |  *        all perf counters (both gp and fixed). The mapping relationship | 
 |  *        between pmc and perf counters is as the following: | 
 |  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters | 
 |  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed | 
 |  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters | 
 |  */ | 
 |  | 
 | static void kvm_pmi_trigger_fn(struct irq_work *irq_work) | 
 | { | 
 | 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); | 
 | 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); | 
 |  | 
 | 	kvm_pmu_deliver_pmi(vcpu); | 
 | } | 
 |  | 
 | static void kvm_perf_overflow(struct perf_event *perf_event, | 
 | 			      struct perf_sample_data *data, | 
 | 			      struct pt_regs *regs) | 
 | { | 
 | 	struct kvm_pmc *pmc = perf_event->overflow_handler_context; | 
 | 	struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
 |  | 
 | 	if (!test_and_set_bit(pmc->idx, | 
 | 			      (unsigned long *)&pmu->reprogram_pmi)) { | 
 | 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status); | 
 | 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_perf_overflow_intr(struct perf_event *perf_event, | 
 | 				   struct perf_sample_data *data, | 
 | 				   struct pt_regs *regs) | 
 | { | 
 | 	struct kvm_pmc *pmc = perf_event->overflow_handler_context; | 
 | 	struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
 |  | 
 | 	if (!test_and_set_bit(pmc->idx, | 
 | 			      (unsigned long *)&pmu->reprogram_pmi)) { | 
 | 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status); | 
 | 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu); | 
 |  | 
 | 		/* | 
 | 		 * Inject PMI. If vcpu was in a guest mode during NMI PMI | 
 | 		 * can be ejected on a guest mode re-entry. Otherwise we can't | 
 | 		 * be sure that vcpu wasn't executing hlt instruction at the | 
 | 		 * time of vmexit and is not going to re-enter guest mode until | 
 | 		 * woken up. So we should wake it, but this is impossible from | 
 | 		 * NMI context. Do it from irq work instead. | 
 | 		 */ | 
 | 		if (!kvm_is_in_guest()) | 
 | 			irq_work_queue(&pmc_to_pmu(pmc)->irq_work); | 
 | 		else | 
 | 			kvm_make_request(KVM_REQ_PMI, pmc->vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, | 
 | 				  unsigned config, bool exclude_user, | 
 | 				  bool exclude_kernel, bool intr, | 
 | 				  bool in_tx, bool in_tx_cp) | 
 | { | 
 | 	struct perf_event *event; | 
 | 	struct perf_event_attr attr = { | 
 | 		.type = type, | 
 | 		.size = sizeof(attr), | 
 | 		.pinned = true, | 
 | 		.exclude_idle = true, | 
 | 		.exclude_host = 1, | 
 | 		.exclude_user = exclude_user, | 
 | 		.exclude_kernel = exclude_kernel, | 
 | 		.config = config, | 
 | 	}; | 
 |  | 
 | 	attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); | 
 |  | 
 | 	if (in_tx) | 
 | 		attr.config |= HSW_IN_TX; | 
 | 	if (in_tx_cp) { | 
 | 		/* | 
 | 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero | 
 | 		 * period. Just clear the sample period so at least | 
 | 		 * allocating the counter doesn't fail. | 
 | 		 */ | 
 | 		attr.sample_period = 0; | 
 | 		attr.config |= HSW_IN_TX_CHECKPOINTED; | 
 | 	} | 
 |  | 
 | 	event = perf_event_create_kernel_counter(&attr, -1, current, | 
 | 						 intr ? kvm_perf_overflow_intr : | 
 | 						 kvm_perf_overflow, pmc); | 
 | 	if (IS_ERR(event)) { | 
 | 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", | 
 | 			    PTR_ERR(event), pmc->idx); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pmc->perf_event = event; | 
 | 	clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi); | 
 | } | 
 |  | 
 | void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) | 
 | { | 
 | 	unsigned config, type = PERF_TYPE_RAW; | 
 | 	u8 event_select, unit_mask; | 
 |  | 
 | 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) | 
 | 		printk_once("kvm pmu: pin control bit is ignored\n"); | 
 |  | 
 | 	pmc->eventsel = eventsel; | 
 |  | 
 | 	pmc_stop_counter(pmc); | 
 |  | 
 | 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) | 
 | 		return; | 
 |  | 
 | 	event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; | 
 | 	unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; | 
 |  | 
 | 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | | 
 | 			  ARCH_PERFMON_EVENTSEL_INV | | 
 | 			  ARCH_PERFMON_EVENTSEL_CMASK | | 
 | 			  HSW_IN_TX | | 
 | 			  HSW_IN_TX_CHECKPOINTED))) { | 
 | 		config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc), | 
 | 						      event_select, | 
 | 						      unit_mask); | 
 | 		if (config != PERF_COUNT_HW_MAX) | 
 | 			type = PERF_TYPE_HARDWARE; | 
 | 	} | 
 |  | 
 | 	if (type == PERF_TYPE_RAW) | 
 | 		config = eventsel & X86_RAW_EVENT_MASK; | 
 |  | 
 | 	pmc_reprogram_counter(pmc, type, config, | 
 | 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR), | 
 | 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS), | 
 | 			      eventsel & ARCH_PERFMON_EVENTSEL_INT, | 
 | 			      (eventsel & HSW_IN_TX), | 
 | 			      (eventsel & HSW_IN_TX_CHECKPOINTED)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(reprogram_gp_counter); | 
 |  | 
 | void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) | 
 | { | 
 | 	unsigned en_field = ctrl & 0x3; | 
 | 	bool pmi = ctrl & 0x8; | 
 |  | 
 | 	pmc_stop_counter(pmc); | 
 |  | 
 | 	if (!en_field || !pmc_is_enabled(pmc)) | 
 | 		return; | 
 |  | 
 | 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, | 
 | 			      kvm_x86_ops->pmu_ops->find_fixed_event(idx), | 
 | 			      !(en_field & 0x2), /* exclude user */ | 
 | 			      !(en_field & 0x1), /* exclude kernel */ | 
 | 			      pmi, false, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(reprogram_fixed_counter); | 
 |  | 
 | void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) | 
 | { | 
 | 	struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); | 
 |  | 
 | 	if (!pmc) | 
 | 		return; | 
 |  | 
 | 	if (pmc_is_gp(pmc)) | 
 | 		reprogram_gp_counter(pmc, pmc->eventsel); | 
 | 	else { | 
 | 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED; | 
 | 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); | 
 |  | 
 | 		reprogram_fixed_counter(pmc, ctrl, idx); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(reprogram_counter); | 
 |  | 
 | void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
 | 	u64 bitmask; | 
 | 	int bit; | 
 |  | 
 | 	bitmask = pmu->reprogram_pmi; | 
 |  | 
 | 	for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { | 
 | 		struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit); | 
 |  | 
 | 		if (unlikely(!pmc || !pmc->perf_event)) { | 
 | 			clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		reprogram_counter(pmu, bit); | 
 | 	} | 
 | } | 
 |  | 
 | /* check if idx is a valid index to access PMU */ | 
 | int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx) | 
 | { | 
 | 	return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx); | 
 | } | 
 |  | 
 | bool is_vmware_backdoor_pmc(u32 pmc_idx) | 
 | { | 
 | 	switch (pmc_idx) { | 
 | 	case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
 | 	case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
 | 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
 | { | 
 | 	u64 ctr_val; | 
 |  | 
 | 	switch (idx) { | 
 | 	case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
 | 		ctr_val = rdtsc(); | 
 | 		break; | 
 | 	case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
 | 		ctr_val = ktime_get_boot_ns(); | 
 | 		break; | 
 | 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
 | 		ctr_val = ktime_get_boot_ns() + | 
 | 			vcpu->kvm->arch.kvmclock_offset; | 
 | 		break; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	*data = ctr_val; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
 | { | 
 | 	bool fast_mode = idx & (1u << 31); | 
 | 	struct kvm_pmc *pmc; | 
 | 	u64 mask = fast_mode ? ~0u : ~0ull; | 
 |  | 
 | 	if (is_vmware_backdoor_pmc(idx)) | 
 | 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data); | 
 |  | 
 | 	pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx, &mask); | 
 | 	if (!pmc) | 
 | 		return 1; | 
 |  | 
 | 	*data = pmc_read_counter(pmc) & mask; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (lapic_in_kernel(vcpu)) | 
 | 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); | 
 | } | 
 |  | 
 | bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) | 
 | { | 
 | 	return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr); | 
 | } | 
 |  | 
 | int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data) | 
 | { | 
 | 	return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data); | 
 | } | 
 |  | 
 | int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info); | 
 | } | 
 |  | 
 | /* refresh PMU settings. This function generally is called when underlying | 
 |  * settings are changed (such as changes of PMU CPUID by guest VMs), which | 
 |  * should rarely happen. | 
 |  */ | 
 | void kvm_pmu_refresh(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->pmu_ops->refresh(vcpu); | 
 | } | 
 |  | 
 | void kvm_pmu_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
 |  | 
 | 	irq_work_sync(&pmu->irq_work); | 
 | 	kvm_x86_ops->pmu_ops->reset(vcpu); | 
 | } | 
 |  | 
 | void kvm_pmu_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
 |  | 
 | 	memset(pmu, 0, sizeof(*pmu)); | 
 | 	kvm_x86_ops->pmu_ops->init(vcpu); | 
 | 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); | 
 | 	kvm_pmu_refresh(vcpu); | 
 | } | 
 |  | 
 | void kvm_pmu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_pmu_reset(vcpu); | 
 | } |