| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. | 
 |  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar | 
 |  */ | 
 | #include <linux/sched.h>		/* test_thread_flag(), ...	*/ | 
 | #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/ | 
 | #include <linux/kdebug.h>		/* oops_begin/end, ...		*/ | 
 | #include <linux/extable.h>		/* search_exception_tables	*/ | 
 | #include <linux/bootmem.h>		/* max_low_pfn			*/ | 
 | #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/ | 
 | #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/ | 
 | #include <linux/perf_event.h>		/* perf_sw_event		*/ | 
 | #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/ | 
 | #include <linux/prefetch.h>		/* prefetchw			*/ | 
 | #include <linux/context_tracking.h>	/* exception_enter(), ...	*/ | 
 | #include <linux/uaccess.h>		/* faulthandler_disabled()	*/ | 
 | #include <linux/mm_types.h> | 
 |  | 
 | #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/ | 
 | #include <asm/traps.h>			/* dotraplinkage, ...		*/ | 
 | #include <asm/pgalloc.h>		/* pgd_*(), ...			*/ | 
 | #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/ | 
 | #include <asm/vsyscall.h>		/* emulate_vsyscall		*/ | 
 | #include <asm/vm86.h>			/* struct vm86			*/ | 
 | #include <asm/mmu_context.h>		/* vma_pkey()			*/ | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <asm/trace/exceptions.h> | 
 |  | 
 | /* | 
 |  * Returns 0 if mmiotrace is disabled, or if the fault is not | 
 |  * handled by mmiotrace: | 
 |  */ | 
 | static nokprobe_inline int | 
 | kmmio_fault(struct pt_regs *regs, unsigned long addr) | 
 | { | 
 | 	if (unlikely(is_kmmio_active())) | 
 | 		if (kmmio_handler(regs, addr) == 1) | 
 | 			return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static nokprobe_inline int kprobes_fault(struct pt_regs *regs) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* kprobe_running() needs smp_processor_id() */ | 
 | 	if (kprobes_built_in() && !user_mode(regs)) { | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && kprobe_fault_handler(regs, 14)) | 
 | 			ret = 1; | 
 | 		preempt_enable(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Prefetch quirks: | 
 |  * | 
 |  * 32-bit mode: | 
 |  * | 
 |  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | 
 |  *   Check that here and ignore it. | 
 |  * | 
 |  * 64-bit mode: | 
 |  * | 
 |  *   Sometimes the CPU reports invalid exceptions on prefetch. | 
 |  *   Check that here and ignore it. | 
 |  * | 
 |  * Opcode checker based on code by Richard Brunner. | 
 |  */ | 
 | static inline int | 
 | check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, | 
 | 		      unsigned char opcode, int *prefetch) | 
 | { | 
 | 	unsigned char instr_hi = opcode & 0xf0; | 
 | 	unsigned char instr_lo = opcode & 0x0f; | 
 |  | 
 | 	switch (instr_hi) { | 
 | 	case 0x20: | 
 | 	case 0x30: | 
 | 		/* | 
 | 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | 
 | 		 * In X86_64 long mode, the CPU will signal invalid | 
 | 		 * opcode if some of these prefixes are present so | 
 | 		 * X86_64 will never get here anyway | 
 | 		 */ | 
 | 		return ((instr_lo & 7) == 0x6); | 
 | #ifdef CONFIG_X86_64 | 
 | 	case 0x40: | 
 | 		/* | 
 | 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes | 
 | 		 * Need to figure out under what instruction mode the | 
 | 		 * instruction was issued. Could check the LDT for lm, | 
 | 		 * but for now it's good enough to assume that long | 
 | 		 * mode only uses well known segments or kernel. | 
 | 		 */ | 
 | 		return (!user_mode(regs) || user_64bit_mode(regs)); | 
 | #endif | 
 | 	case 0x60: | 
 | 		/* 0x64 thru 0x67 are valid prefixes in all modes. */ | 
 | 		return (instr_lo & 0xC) == 0x4; | 
 | 	case 0xF0: | 
 | 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | 
 | 		return !instr_lo || (instr_lo>>1) == 1; | 
 | 	case 0x00: | 
 | 		/* Prefetch instruction is 0x0F0D or 0x0F18 */ | 
 | 		if (probe_kernel_address(instr, opcode)) | 
 | 			return 0; | 
 |  | 
 | 		*prefetch = (instr_lo == 0xF) && | 
 | 			(opcode == 0x0D || opcode == 0x18); | 
 | 		return 0; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) | 
 | { | 
 | 	unsigned char *max_instr; | 
 | 	unsigned char *instr; | 
 | 	int prefetch = 0; | 
 |  | 
 | 	/* | 
 | 	 * If it was a exec (instruction fetch) fault on NX page, then | 
 | 	 * do not ignore the fault: | 
 | 	 */ | 
 | 	if (error_code & X86_PF_INSTR) | 
 | 		return 0; | 
 |  | 
 | 	instr = (void *)convert_ip_to_linear(current, regs); | 
 | 	max_instr = instr + 15; | 
 |  | 
 | 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX) | 
 | 		return 0; | 
 |  | 
 | 	while (instr < max_instr) { | 
 | 		unsigned char opcode; | 
 |  | 
 | 		if (probe_kernel_address(instr, opcode)) | 
 | 			break; | 
 |  | 
 | 		instr++; | 
 |  | 
 | 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) | 
 | 			break; | 
 | 	} | 
 | 	return prefetch; | 
 | } | 
 |  | 
 | /* | 
 |  * A protection key fault means that the PKRU value did not allow | 
 |  * access to some PTE.  Userspace can figure out what PKRU was | 
 |  * from the XSAVE state, and this function fills out a field in | 
 |  * siginfo so userspace can discover which protection key was set | 
 |  * on the PTE. | 
 |  * | 
 |  * If we get here, we know that the hardware signaled a X86_PF_PK | 
 |  * fault and that there was a VMA once we got in the fault | 
 |  * handler.  It does *not* guarantee that the VMA we find here | 
 |  * was the one that we faulted on. | 
 |  * | 
 |  * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4); | 
 |  * 2. T1   : set PKRU to deny access to pkey=4, touches page | 
 |  * 3. T1   : faults... | 
 |  * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5); | 
 |  * 5. T1   : enters fault handler, takes mmap_sem, etc... | 
 |  * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really | 
 |  *	     faulted on a pte with its pkey=4. | 
 |  */ | 
 | static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info, | 
 | 		u32 *pkey) | 
 | { | 
 | 	/* This is effectively an #ifdef */ | 
 | 	if (!boot_cpu_has(X86_FEATURE_OSPKE)) | 
 | 		return; | 
 |  | 
 | 	/* Fault not from Protection Keys: nothing to do */ | 
 | 	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV)) | 
 | 		return; | 
 | 	/* | 
 | 	 * force_sig_info_fault() is called from a number of | 
 | 	 * contexts, some of which have a VMA and some of which | 
 | 	 * do not.  The X86_PF_PK handing happens after we have a | 
 | 	 * valid VMA, so we should never reach this without a | 
 | 	 * valid VMA. | 
 | 	 */ | 
 | 	if (!pkey) { | 
 | 		WARN_ONCE(1, "PKU fault with no VMA passed in"); | 
 | 		info->si_pkey = 0; | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * si_pkey should be thought of as a strong hint, but not | 
 | 	 * absolutely guranteed to be 100% accurate because of | 
 | 	 * the race explained above. | 
 | 	 */ | 
 | 	info->si_pkey = *pkey; | 
 | } | 
 |  | 
 | static void | 
 | force_sig_info_fault(int si_signo, int si_code, unsigned long address, | 
 | 		     struct task_struct *tsk, u32 *pkey, int fault) | 
 | { | 
 | 	unsigned lsb = 0; | 
 | 	siginfo_t info; | 
 |  | 
 | 	clear_siginfo(&info); | 
 | 	info.si_signo	= si_signo; | 
 | 	info.si_errno	= 0; | 
 | 	info.si_code	= si_code; | 
 | 	info.si_addr	= (void __user *)address; | 
 | 	if (fault & VM_FAULT_HWPOISON_LARGE) | 
 | 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));  | 
 | 	if (fault & VM_FAULT_HWPOISON) | 
 | 		lsb = PAGE_SHIFT; | 
 | 	info.si_addr_lsb = lsb; | 
 |  | 
 | 	fill_sig_info_pkey(si_signo, si_code, &info, pkey); | 
 |  | 
 | 	force_sig_info(si_signo, &info, tsk); | 
 | } | 
 |  | 
 | DEFINE_SPINLOCK(pgd_lock); | 
 | LIST_HEAD(pgd_list); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	unsigned index = pgd_index(address); | 
 | 	pgd_t *pgd_k; | 
 | 	p4d_t *p4d, *p4d_k; | 
 | 	pud_t *pud, *pud_k; | 
 | 	pmd_t *pmd, *pmd_k; | 
 |  | 
 | 	pgd += index; | 
 | 	pgd_k = init_mm.pgd + index; | 
 |  | 
 | 	if (!pgd_present(*pgd_k)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE | 
 | 	 * and redundant with the set_pmd() on non-PAE. As would | 
 | 	 * set_p4d/set_pud. | 
 | 	 */ | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	p4d_k = p4d_offset(pgd_k, address); | 
 | 	if (!p4d_present(*p4d_k)) | 
 | 		return NULL; | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	pud_k = pud_offset(p4d_k, address); | 
 | 	if (!pud_present(*pud_k)) | 
 | 		return NULL; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	pmd_k = pmd_offset(pud_k, address); | 
 |  | 
 | 	if (pmd_present(*pmd) != pmd_present(*pmd_k)) | 
 | 		set_pmd(pmd, *pmd_k); | 
 |  | 
 | 	if (!pmd_present(*pmd_k)) | 
 | 		return NULL; | 
 | 	else | 
 | 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); | 
 |  | 
 | 	return pmd_k; | 
 | } | 
 |  | 
 | void vmalloc_sync_all(void) | 
 | { | 
 | 	unsigned long address; | 
 |  | 
 | 	if (SHARED_KERNEL_PMD) | 
 | 		return; | 
 |  | 
 | 	for (address = VMALLOC_START & PMD_MASK; | 
 | 	     address >= TASK_SIZE_MAX && address < VMALLOC_END; | 
 | 	     address += PMD_SIZE) { | 
 | 		struct page *page; | 
 |  | 
 | 		spin_lock(&pgd_lock); | 
 | 		list_for_each_entry(page, &pgd_list, lru) { | 
 | 			spinlock_t *pgt_lock; | 
 |  | 
 | 			/* the pgt_lock only for Xen */ | 
 | 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock; | 
 |  | 
 | 			spin_lock(pgt_lock); | 
 | 			vmalloc_sync_one(page_address(page), address); | 
 | 			spin_unlock(pgt_lock); | 
 | 		} | 
 | 		spin_unlock(&pgd_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * 32-bit: | 
 |  * | 
 |  *   Handle a fault on the vmalloc or module mapping area | 
 |  */ | 
 | static noinline int vmalloc_fault(unsigned long address) | 
 | { | 
 | 	unsigned long pgd_paddr; | 
 | 	pmd_t *pmd_k; | 
 | 	pte_t *pte_k; | 
 |  | 
 | 	/* Make sure we are in vmalloc area: */ | 
 | 	if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * Synchronize this task's top level page-table | 
 | 	 * with the 'reference' page table. | 
 | 	 * | 
 | 	 * Do _not_ use "current" here. We might be inside | 
 | 	 * an interrupt in the middle of a task switch.. | 
 | 	 */ | 
 | 	pgd_paddr = read_cr3_pa(); | 
 | 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | 
 | 	if (!pmd_k) | 
 | 		return -1; | 
 |  | 
 | 	if (pmd_large(*pmd_k)) | 
 | 		return 0; | 
 |  | 
 | 	pte_k = pte_offset_kernel(pmd_k, address); | 
 | 	if (!pte_present(*pte_k)) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | NOKPROBE_SYMBOL(vmalloc_fault); | 
 |  | 
 | /* | 
 |  * Did it hit the DOS screen memory VA from vm86 mode? | 
 |  */ | 
 | static inline void | 
 | check_v8086_mode(struct pt_regs *regs, unsigned long address, | 
 | 		 struct task_struct *tsk) | 
 | { | 
 | #ifdef CONFIG_VM86 | 
 | 	unsigned long bit; | 
 |  | 
 | 	if (!v8086_mode(regs) || !tsk->thread.vm86) | 
 | 		return; | 
 |  | 
 | 	bit = (address - 0xA0000) >> PAGE_SHIFT; | 
 | 	if (bit < 32) | 
 | 		tsk->thread.vm86->screen_bitmap |= 1 << bit; | 
 | #endif | 
 | } | 
 |  | 
 | static bool low_pfn(unsigned long pfn) | 
 | { | 
 | 	return pfn < max_low_pfn; | 
 | } | 
 |  | 
 | static void dump_pagetable(unsigned long address) | 
 | { | 
 | 	pgd_t *base = __va(read_cr3_pa()); | 
 | 	pgd_t *pgd = &base[pgd_index(address)]; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); | 
 | 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) | 
 | 		goto out; | 
 | #define pr_pde pr_cont | 
 | #else | 
 | #define pr_pde pr_info | 
 | #endif | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	pud = pud_offset(p4d, address); | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); | 
 | #undef pr_pde | 
 |  | 
 | 	/* | 
 | 	 * We must not directly access the pte in the highpte | 
 | 	 * case if the page table is located in highmem. | 
 | 	 * And let's rather not kmap-atomic the pte, just in case | 
 | 	 * it's allocated already: | 
 | 	 */ | 
 | 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) | 
 | 		goto out; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); | 
 | out: | 
 | 	pr_cont("\n"); | 
 | } | 
 |  | 
 | #else /* CONFIG_X86_64: */ | 
 |  | 
 | void vmalloc_sync_all(void) | 
 | { | 
 | 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END); | 
 | } | 
 |  | 
 | /* | 
 |  * 64-bit: | 
 |  * | 
 |  *   Handle a fault on the vmalloc area | 
 |  */ | 
 | static noinline int vmalloc_fault(unsigned long address) | 
 | { | 
 | 	pgd_t *pgd, *pgd_k; | 
 | 	p4d_t *p4d, *p4d_k; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* Make sure we are in vmalloc area: */ | 
 | 	if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * Copy kernel mappings over when needed. This can also | 
 | 	 * happen within a race in page table update. In the later | 
 | 	 * case just flush: | 
 | 	 */ | 
 | 	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address); | 
 | 	pgd_k = pgd_offset_k(address); | 
 | 	if (pgd_none(*pgd_k)) | 
 | 		return -1; | 
 |  | 
 | 	if (pgtable_l5_enabled()) { | 
 | 		if (pgd_none(*pgd)) { | 
 | 			set_pgd(pgd, *pgd_k); | 
 | 			arch_flush_lazy_mmu_mode(); | 
 | 		} else { | 
 | 			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* With 4-level paging, copying happens on the p4d level. */ | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	p4d_k = p4d_offset(pgd_k, address); | 
 | 	if (p4d_none(*p4d_k)) | 
 | 		return -1; | 
 |  | 
 | 	if (p4d_none(*p4d) && !pgtable_l5_enabled()) { | 
 | 		set_p4d(p4d, *p4d_k); | 
 | 		arch_flush_lazy_mmu_mode(); | 
 | 	} else { | 
 | 		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k)); | 
 | 	} | 
 |  | 
 | 	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4); | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (pud_none(*pud)) | 
 | 		return -1; | 
 |  | 
 | 	if (pud_large(*pud)) | 
 | 		return 0; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (pmd_none(*pmd)) | 
 | 		return -1; | 
 |  | 
 | 	if (pmd_large(*pmd)) | 
 | 		return 0; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	if (!pte_present(*pte)) | 
 | 		return -1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | NOKPROBE_SYMBOL(vmalloc_fault); | 
 |  | 
 | #ifdef CONFIG_CPU_SUP_AMD | 
 | static const char errata93_warning[] = | 
 | KERN_ERR  | 
 | "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | 
 | "******* Working around it, but it may cause SEGVs or burn power.\n" | 
 | "******* Please consider a BIOS update.\n" | 
 | "******* Disabling USB legacy in the BIOS may also help.\n"; | 
 | #endif | 
 |  | 
 | /* | 
 |  * No vm86 mode in 64-bit mode: | 
 |  */ | 
 | static inline void | 
 | check_v8086_mode(struct pt_regs *regs, unsigned long address, | 
 | 		 struct task_struct *tsk) | 
 | { | 
 | } | 
 |  | 
 | static int bad_address(void *p) | 
 | { | 
 | 	unsigned long dummy; | 
 |  | 
 | 	return probe_kernel_address((unsigned long *)p, dummy); | 
 | } | 
 |  | 
 | static void dump_pagetable(unsigned long address) | 
 | { | 
 | 	pgd_t *base = __va(read_cr3_pa()); | 
 | 	pgd_t *pgd = base + pgd_index(address); | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (bad_address(pgd)) | 
 | 		goto bad; | 
 |  | 
 | 	pr_info("PGD %lx ", pgd_val(*pgd)); | 
 |  | 
 | 	if (!pgd_present(*pgd)) | 
 | 		goto out; | 
 |  | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (bad_address(p4d)) | 
 | 		goto bad; | 
 |  | 
 | 	pr_cont("P4D %lx ", p4d_val(*p4d)); | 
 | 	if (!p4d_present(*p4d) || p4d_large(*p4d)) | 
 | 		goto out; | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (bad_address(pud)) | 
 | 		goto bad; | 
 |  | 
 | 	pr_cont("PUD %lx ", pud_val(*pud)); | 
 | 	if (!pud_present(*pud) || pud_large(*pud)) | 
 | 		goto out; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (bad_address(pmd)) | 
 | 		goto bad; | 
 |  | 
 | 	pr_cont("PMD %lx ", pmd_val(*pmd)); | 
 | 	if (!pmd_present(*pmd) || pmd_large(*pmd)) | 
 | 		goto out; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	if (bad_address(pte)) | 
 | 		goto bad; | 
 |  | 
 | 	pr_cont("PTE %lx", pte_val(*pte)); | 
 | out: | 
 | 	pr_cont("\n"); | 
 | 	return; | 
 | bad: | 
 | 	pr_info("BAD\n"); | 
 | } | 
 |  | 
 | #endif /* CONFIG_X86_64 */ | 
 |  | 
 | /* | 
 |  * Workaround for K8 erratum #93 & buggy BIOS. | 
 |  * | 
 |  * BIOS SMM functions are required to use a specific workaround | 
 |  * to avoid corruption of the 64bit RIP register on C stepping K8. | 
 |  * | 
 |  * A lot of BIOS that didn't get tested properly miss this. | 
 |  * | 
 |  * The OS sees this as a page fault with the upper 32bits of RIP cleared. | 
 |  * Try to work around it here. | 
 |  * | 
 |  * Note we only handle faults in kernel here. | 
 |  * Does nothing on 32-bit. | 
 |  */ | 
 | static int is_errata93(struct pt_regs *regs, unsigned long address) | 
 | { | 
 | #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) | 
 | 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD | 
 | 	    || boot_cpu_data.x86 != 0xf) | 
 | 		return 0; | 
 |  | 
 | 	if (address != regs->ip) | 
 | 		return 0; | 
 |  | 
 | 	if ((address >> 32) != 0) | 
 | 		return 0; | 
 |  | 
 | 	address |= 0xffffffffUL << 32; | 
 | 	if ((address >= (u64)_stext && address <= (u64)_etext) || | 
 | 	    (address >= MODULES_VADDR && address <= MODULES_END)) { | 
 | 		printk_once(errata93_warning); | 
 | 		regs->ip = address; | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Work around K8 erratum #100 K8 in compat mode occasionally jumps | 
 |  * to illegal addresses >4GB. | 
 |  * | 
 |  * We catch this in the page fault handler because these addresses | 
 |  * are not reachable. Just detect this case and return.  Any code | 
 |  * segment in LDT is compatibility mode. | 
 |  */ | 
 | static int is_errata100(struct pt_regs *regs, unsigned long address) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) | 
 | 		return 1; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | 
 | { | 
 | #ifdef CONFIG_X86_F00F_BUG | 
 | 	unsigned long nr; | 
 |  | 
 | 	/* | 
 | 	 * Pentium F0 0F C7 C8 bug workaround: | 
 | 	 */ | 
 | 	if (boot_cpu_has_bug(X86_BUG_F00F)) { | 
 | 		nr = (address - idt_descr.address) >> 3; | 
 |  | 
 | 		if (nr == 6) { | 
 | 			do_invalid_op(regs, 0); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | show_fault_oops(struct pt_regs *regs, unsigned long error_code, | 
 | 		unsigned long address) | 
 | { | 
 | 	if (!oops_may_print()) | 
 | 		return; | 
 |  | 
 | 	if (error_code & X86_PF_INSTR) { | 
 | 		unsigned int level; | 
 | 		pgd_t *pgd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		pgd = __va(read_cr3_pa()); | 
 | 		pgd += pgd_index(address); | 
 |  | 
 | 		pte = lookup_address_in_pgd(pgd, address, &level); | 
 |  | 
 | 		if (pte && pte_present(*pte) && !pte_exec(*pte)) | 
 | 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", | 
 | 				from_kuid(&init_user_ns, current_uid())); | 
 | 		if (pte && pte_present(*pte) && pte_exec(*pte) && | 
 | 				(pgd_flags(*pgd) & _PAGE_USER) && | 
 | 				(__read_cr4() & X86_CR4_SMEP)) | 
 | 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", | 
 | 				from_kuid(&init_user_ns, current_uid())); | 
 | 	} | 
 |  | 
 | 	pr_alert("BUG: unable to handle kernel %s at %px\n", | 
 | 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request", | 
 | 		 (void *)address); | 
 |  | 
 | 	dump_pagetable(address); | 
 | } | 
 |  | 
 | static noinline void | 
 | pgtable_bad(struct pt_regs *regs, unsigned long error_code, | 
 | 	    unsigned long address) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	unsigned long flags; | 
 | 	int sig; | 
 |  | 
 | 	flags = oops_begin(); | 
 | 	tsk = current; | 
 | 	sig = SIGKILL; | 
 |  | 
 | 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | 
 | 	       tsk->comm, address); | 
 | 	dump_pagetable(address); | 
 |  | 
 | 	tsk->thread.cr2		= address; | 
 | 	tsk->thread.trap_nr	= X86_TRAP_PF; | 
 | 	tsk->thread.error_code	= error_code; | 
 |  | 
 | 	if (__die("Bad pagetable", regs, error_code)) | 
 | 		sig = 0; | 
 |  | 
 | 	oops_end(flags, regs, sig); | 
 | } | 
 |  | 
 | static noinline void | 
 | no_context(struct pt_regs *regs, unsigned long error_code, | 
 | 	   unsigned long address, int signal, int si_code) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	unsigned long flags; | 
 | 	int sig; | 
 |  | 
 | 	/* Are we prepared to handle this kernel fault? */ | 
 | 	if (fixup_exception(regs, X86_TRAP_PF)) { | 
 | 		/* | 
 | 		 * Any interrupt that takes a fault gets the fixup. This makes | 
 | 		 * the below recursive fault logic only apply to a faults from | 
 | 		 * task context. | 
 | 		 */ | 
 | 		if (in_interrupt()) | 
 | 			return; | 
 |  | 
 | 		/* | 
 | 		 * Per the above we're !in_interrupt(), aka. task context. | 
 | 		 * | 
 | 		 * In this case we need to make sure we're not recursively | 
 | 		 * faulting through the emulate_vsyscall() logic. | 
 | 		 */ | 
 | 		if (current->thread.sig_on_uaccess_err && signal) { | 
 | 			tsk->thread.trap_nr = X86_TRAP_PF; | 
 | 			tsk->thread.error_code = error_code | X86_PF_USER; | 
 | 			tsk->thread.cr2 = address; | 
 |  | 
 | 			/* XXX: hwpoison faults will set the wrong code. */ | 
 | 			force_sig_info_fault(signal, si_code, address, | 
 | 					     tsk, NULL, 0); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Barring that, we can do the fixup and be happy. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_VMAP_STACK | 
 | 	/* | 
 | 	 * Stack overflow?  During boot, we can fault near the initial | 
 | 	 * stack in the direct map, but that's not an overflow -- check | 
 | 	 * that we're in vmalloc space to avoid this. | 
 | 	 */ | 
 | 	if (is_vmalloc_addr((void *)address) && | 
 | 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) || | 
 | 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) { | 
 | 		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *); | 
 | 		/* | 
 | 		 * We're likely to be running with very little stack space | 
 | 		 * left.  It's plausible that we'd hit this condition but | 
 | 		 * double-fault even before we get this far, in which case | 
 | 		 * we're fine: the double-fault handler will deal with it. | 
 | 		 * | 
 | 		 * We don't want to make it all the way into the oops code | 
 | 		 * and then double-fault, though, because we're likely to | 
 | 		 * break the console driver and lose most of the stack dump. | 
 | 		 */ | 
 | 		asm volatile ("movq %[stack], %%rsp\n\t" | 
 | 			      "call handle_stack_overflow\n\t" | 
 | 			      "1: jmp 1b" | 
 | 			      : ASM_CALL_CONSTRAINT | 
 | 			      : "D" ("kernel stack overflow (page fault)"), | 
 | 				"S" (regs), "d" (address), | 
 | 				[stack] "rm" (stack)); | 
 | 		unreachable(); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * 32-bit: | 
 | 	 * | 
 | 	 *   Valid to do another page fault here, because if this fault | 
 | 	 *   had been triggered by is_prefetch fixup_exception would have | 
 | 	 *   handled it. | 
 | 	 * | 
 | 	 * 64-bit: | 
 | 	 * | 
 | 	 *   Hall of shame of CPU/BIOS bugs. | 
 | 	 */ | 
 | 	if (is_prefetch(regs, error_code, address)) | 
 | 		return; | 
 |  | 
 | 	if (is_errata93(regs, address)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Oops. The kernel tried to access some bad page. We'll have to | 
 | 	 * terminate things with extreme prejudice: | 
 | 	 */ | 
 | 	flags = oops_begin(); | 
 |  | 
 | 	show_fault_oops(regs, error_code, address); | 
 |  | 
 | 	if (task_stack_end_corrupted(tsk)) | 
 | 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); | 
 |  | 
 | 	tsk->thread.cr2		= address; | 
 | 	tsk->thread.trap_nr	= X86_TRAP_PF; | 
 | 	tsk->thread.error_code	= error_code; | 
 |  | 
 | 	sig = SIGKILL; | 
 | 	if (__die("Oops", regs, error_code)) | 
 | 		sig = 0; | 
 |  | 
 | 	/* Executive summary in case the body of the oops scrolled away */ | 
 | 	printk(KERN_DEFAULT "CR2: %016lx\n", address); | 
 |  | 
 | 	oops_end(flags, regs, sig); | 
 | } | 
 |  | 
 | /* | 
 |  * Print out info about fatal segfaults, if the show_unhandled_signals | 
 |  * sysctl is set: | 
 |  */ | 
 | static inline void | 
 | show_signal_msg(struct pt_regs *regs, unsigned long error_code, | 
 | 		unsigned long address, struct task_struct *tsk) | 
 | { | 
 | 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; | 
 |  | 
 | 	if (!unhandled_signal(tsk, SIGSEGV)) | 
 | 		return; | 
 |  | 
 | 	if (!printk_ratelimit()) | 
 | 		return; | 
 |  | 
 | 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", | 
 | 		loglvl, tsk->comm, task_pid_nr(tsk), address, | 
 | 		(void *)regs->ip, (void *)regs->sp, error_code); | 
 |  | 
 | 	print_vma_addr(KERN_CONT " in ", regs->ip); | 
 |  | 
 | 	printk(KERN_CONT "\n"); | 
 |  | 
 | 	show_opcodes(regs, loglvl); | 
 | } | 
 |  | 
 | static void | 
 | __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
 | 		       unsigned long address, u32 *pkey, int si_code) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	/* User mode accesses just cause a SIGSEGV */ | 
 | 	if (error_code & X86_PF_USER) { | 
 | 		/* | 
 | 		 * It's possible to have interrupts off here: | 
 | 		 */ | 
 | 		local_irq_enable(); | 
 |  | 
 | 		/* | 
 | 		 * Valid to do another page fault here because this one came | 
 | 		 * from user space: | 
 | 		 */ | 
 | 		if (is_prefetch(regs, error_code, address)) | 
 | 			return; | 
 |  | 
 | 		if (is_errata100(regs, address)) | 
 | 			return; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 		/* | 
 | 		 * Instruction fetch faults in the vsyscall page might need | 
 | 		 * emulation. | 
 | 		 */ | 
 | 		if (unlikely((error_code & X86_PF_INSTR) && | 
 | 			     ((address & ~0xfff) == VSYSCALL_ADDR))) { | 
 | 			if (emulate_vsyscall(regs, address)) | 
 | 				return; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * To avoid leaking information about the kernel page table | 
 | 		 * layout, pretend that user-mode accesses to kernel addresses | 
 | 		 * are always protection faults. | 
 | 		 */ | 
 | 		if (address >= TASK_SIZE_MAX) | 
 | 			error_code |= X86_PF_PROT; | 
 |  | 
 | 		if (likely(show_unhandled_signals)) | 
 | 			show_signal_msg(regs, error_code, address, tsk); | 
 |  | 
 | 		tsk->thread.cr2		= address; | 
 | 		tsk->thread.error_code	= error_code; | 
 | 		tsk->thread.trap_nr	= X86_TRAP_PF; | 
 |  | 
 | 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (is_f00f_bug(regs, address)) | 
 | 		return; | 
 |  | 
 | 	no_context(regs, error_code, address, SIGSEGV, si_code); | 
 | } | 
 |  | 
 | static noinline void | 
 | bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, | 
 | 		     unsigned long address, u32 *pkey) | 
 | { | 
 | 	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR); | 
 | } | 
 |  | 
 | static void | 
 | __bad_area(struct pt_regs *regs, unsigned long error_code, | 
 | 	   unsigned long address,  struct vm_area_struct *vma, int si_code) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	u32 pkey; | 
 |  | 
 | 	if (vma) | 
 | 		pkey = vma_pkey(vma); | 
 |  | 
 | 	/* | 
 | 	 * Something tried to access memory that isn't in our memory map.. | 
 | 	 * Fix it, but check if it's kernel or user first.. | 
 | 	 */ | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	__bad_area_nosemaphore(regs, error_code, address, | 
 | 			       (vma) ? &pkey : NULL, si_code); | 
 | } | 
 |  | 
 | static noinline void | 
 | bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) | 
 | { | 
 | 	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR); | 
 | } | 
 |  | 
 | static inline bool bad_area_access_from_pkeys(unsigned long error_code, | 
 | 		struct vm_area_struct *vma) | 
 | { | 
 | 	/* This code is always called on the current mm */ | 
 | 	bool foreign = false; | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_OSPKE)) | 
 | 		return false; | 
 | 	if (error_code & X86_PF_PK) | 
 | 		return true; | 
 | 	/* this checks permission keys on the VMA: */ | 
 | 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), | 
 | 				       (error_code & X86_PF_INSTR), foreign)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static noinline void | 
 | bad_area_access_error(struct pt_regs *regs, unsigned long error_code, | 
 | 		      unsigned long address, struct vm_area_struct *vma) | 
 | { | 
 | 	/* | 
 | 	 * This OSPKE check is not strictly necessary at runtime. | 
 | 	 * But, doing it this way allows compiler optimizations | 
 | 	 * if pkeys are compiled out. | 
 | 	 */ | 
 | 	if (bad_area_access_from_pkeys(error_code, vma)) | 
 | 		__bad_area(regs, error_code, address, vma, SEGV_PKUERR); | 
 | 	else | 
 | 		__bad_area(regs, error_code, address, vma, SEGV_ACCERR); | 
 | } | 
 |  | 
 | static void | 
 | do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, | 
 | 	  u32 *pkey, unsigned int fault) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	int code = BUS_ADRERR; | 
 |  | 
 | 	/* Kernel mode? Handle exceptions or die: */ | 
 | 	if (!(error_code & X86_PF_USER)) { | 
 | 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* User-space => ok to do another page fault: */ | 
 | 	if (is_prefetch(regs, error_code, address)) | 
 | 		return; | 
 |  | 
 | 	tsk->thread.cr2		= address; | 
 | 	tsk->thread.error_code	= error_code; | 
 | 	tsk->thread.trap_nr	= X86_TRAP_PF; | 
 |  | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { | 
 | 		printk(KERN_ERR | 
 | 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", | 
 | 			tsk->comm, tsk->pid, address); | 
 | 		code = BUS_MCEERR_AR; | 
 | 	} | 
 | #endif | 
 | 	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault); | 
 | } | 
 |  | 
 | static noinline void | 
 | mm_fault_error(struct pt_regs *regs, unsigned long error_code, | 
 | 	       unsigned long address, u32 *pkey, vm_fault_t fault) | 
 | { | 
 | 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { | 
 | 		no_context(regs, error_code, address, 0, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (fault & VM_FAULT_OOM) { | 
 | 		/* Kernel mode? Handle exceptions or die: */ | 
 | 		if (!(error_code & X86_PF_USER)) { | 
 | 			no_context(regs, error_code, address, | 
 | 				   SIGSEGV, SEGV_MAPERR); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We ran out of memory, call the OOM killer, and return the | 
 | 		 * userspace (which will retry the fault, or kill us if we got | 
 | 		 * oom-killed): | 
 | 		 */ | 
 | 		pagefault_out_of_memory(); | 
 | 	} else { | 
 | 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| | 
 | 			     VM_FAULT_HWPOISON_LARGE)) | 
 | 			do_sigbus(regs, error_code, address, pkey, fault); | 
 | 		else if (fault & VM_FAULT_SIGSEGV) | 
 | 			bad_area_nosemaphore(regs, error_code, address, pkey); | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int spurious_fault_check(unsigned long error_code, pte_t *pte) | 
 | { | 
 | 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) | 
 | 		return 0; | 
 |  | 
 | 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Note: We do not do lazy flushing on protection key | 
 | 	 * changes, so no spurious fault will ever set X86_PF_PK. | 
 | 	 */ | 
 | 	if ((error_code & X86_PF_PK)) | 
 | 		return 1; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle a spurious fault caused by a stale TLB entry. | 
 |  * | 
 |  * This allows us to lazily refresh the TLB when increasing the | 
 |  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it | 
 |  * eagerly is very expensive since that implies doing a full | 
 |  * cross-processor TLB flush, even if no stale TLB entries exist | 
 |  * on other processors. | 
 |  * | 
 |  * Spurious faults may only occur if the TLB contains an entry with | 
 |  * fewer permission than the page table entry.  Non-present (P = 0) | 
 |  * and reserved bit (R = 1) faults are never spurious. | 
 |  * | 
 |  * There are no security implications to leaving a stale TLB when | 
 |  * increasing the permissions on a page. | 
 |  * | 
 |  * Returns non-zero if a spurious fault was handled, zero otherwise. | 
 |  * | 
 |  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 | 
 |  * (Optional Invalidation). | 
 |  */ | 
 | static noinline int | 
 | spurious_fault(unsigned long error_code, unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Only writes to RO or instruction fetches from NX may cause | 
 | 	 * spurious faults. | 
 | 	 * | 
 | 	 * These could be from user or supervisor accesses but the TLB | 
 | 	 * is only lazily flushed after a kernel mapping protection | 
 | 	 * change, so user accesses are not expected to cause spurious | 
 | 	 * faults. | 
 | 	 */ | 
 | 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) && | 
 | 	    error_code != (X86_PF_INSTR | X86_PF_PROT)) | 
 | 		return 0; | 
 |  | 
 | 	pgd = init_mm.pgd + pgd_index(address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		return 0; | 
 |  | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (!p4d_present(*p4d)) | 
 | 		return 0; | 
 |  | 
 | 	if (p4d_large(*p4d)) | 
 | 		return spurious_fault_check(error_code, (pte_t *) p4d); | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		return 0; | 
 |  | 
 | 	if (pud_large(*pud)) | 
 | 		return spurious_fault_check(error_code, (pte_t *) pud); | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return 0; | 
 |  | 
 | 	if (pmd_large(*pmd)) | 
 | 		return spurious_fault_check(error_code, (pte_t *) pmd); | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 | 	if (!pte_present(*pte)) | 
 | 		return 0; | 
 |  | 
 | 	ret = spurious_fault_check(error_code, pte); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we have permissions in PMD. | 
 | 	 * If not, then there's a bug in the page tables: | 
 | 	 */ | 
 | 	ret = spurious_fault_check(error_code, (pte_t *) pmd); | 
 | 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | NOKPROBE_SYMBOL(spurious_fault); | 
 |  | 
 | int show_unhandled_signals = 1; | 
 |  | 
 | static inline int | 
 | access_error(unsigned long error_code, struct vm_area_struct *vma) | 
 | { | 
 | 	/* This is only called for the current mm, so: */ | 
 | 	bool foreign = false; | 
 |  | 
 | 	/* | 
 | 	 * Read or write was blocked by protection keys.  This is | 
 | 	 * always an unconditional error and can never result in | 
 | 	 * a follow-up action to resolve the fault, like a COW. | 
 | 	 */ | 
 | 	if (error_code & X86_PF_PK) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Make sure to check the VMA so that we do not perform | 
 | 	 * faults just to hit a X86_PF_PK as soon as we fill in a | 
 | 	 * page. | 
 | 	 */ | 
 | 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), | 
 | 				       (error_code & X86_PF_INSTR), foreign)) | 
 | 		return 1; | 
 |  | 
 | 	if (error_code & X86_PF_WRITE) { | 
 | 		/* write, present and write, not present: */ | 
 | 		if (unlikely(!(vma->vm_flags & VM_WRITE))) | 
 | 			return 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* read, present: */ | 
 | 	if (unlikely(error_code & X86_PF_PROT)) | 
 | 		return 1; | 
 |  | 
 | 	/* read, not present: */ | 
 | 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fault_in_kernel_space(unsigned long address) | 
 | { | 
 | 	return address >= TASK_SIZE_MAX; | 
 | } | 
 |  | 
 | static inline bool smap_violation(int error_code, struct pt_regs *regs) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_X86_SMAP)) | 
 | 		return false; | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_SMAP)) | 
 | 		return false; | 
 |  | 
 | 	if (error_code & X86_PF_USER) | 
 | 		return false; | 
 |  | 
 | 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine handles page faults.  It determines the address, | 
 |  * and the problem, and then passes it off to one of the appropriate | 
 |  * routines. | 
 |  */ | 
 | static noinline void | 
 | __do_page_fault(struct pt_regs *regs, unsigned long error_code, | 
 | 		unsigned long address) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct *mm; | 
 | 	vm_fault_t fault, major = 0; | 
 | 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
 | 	u32 pkey; | 
 |  | 
 | 	tsk = current; | 
 | 	mm = tsk->mm; | 
 |  | 
 | 	prefetchw(&mm->mmap_sem); | 
 |  | 
 | 	if (unlikely(kmmio_fault(regs, address))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We fault-in kernel-space virtual memory on-demand. The | 
 | 	 * 'reference' page table is init_mm.pgd. | 
 | 	 * | 
 | 	 * NOTE! We MUST NOT take any locks for this case. We may | 
 | 	 * be in an interrupt or a critical region, and should | 
 | 	 * only copy the information from the master page table, | 
 | 	 * nothing more. | 
 | 	 * | 
 | 	 * This verifies that the fault happens in kernel space | 
 | 	 * (error_code & 4) == 0, and that the fault was not a | 
 | 	 * protection error (error_code & 9) == 0. | 
 | 	 */ | 
 | 	if (unlikely(fault_in_kernel_space(address))) { | 
 | 		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { | 
 | 			if (vmalloc_fault(address) >= 0) | 
 | 				return; | 
 | 		} | 
 |  | 
 | 		/* Can handle a stale RO->RW TLB: */ | 
 | 		if (spurious_fault(error_code, address)) | 
 | 			return; | 
 |  | 
 | 		/* kprobes don't want to hook the spurious faults: */ | 
 | 		if (kprobes_fault(regs)) | 
 | 			return; | 
 | 		/* | 
 | 		 * Don't take the mm semaphore here. If we fixup a prefetch | 
 | 		 * fault we could otherwise deadlock: | 
 | 		 */ | 
 | 		bad_area_nosemaphore(regs, error_code, address, NULL); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* kprobes don't want to hook the spurious faults: */ | 
 | 	if (unlikely(kprobes_fault(regs))) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(error_code & X86_PF_RSVD)) | 
 | 		pgtable_bad(regs, error_code, address); | 
 |  | 
 | 	if (unlikely(smap_violation(error_code, regs))) { | 
 | 		bad_area_nosemaphore(regs, error_code, address, NULL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're in an interrupt, have no user context or are running | 
 | 	 * in a region with pagefaults disabled then we must not take the fault | 
 | 	 */ | 
 | 	if (unlikely(faulthandler_disabled() || !mm)) { | 
 | 		bad_area_nosemaphore(regs, error_code, address, NULL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's safe to allow irq's after cr2 has been saved and the | 
 | 	 * vmalloc fault has been handled. | 
 | 	 * | 
 | 	 * User-mode registers count as a user access even for any | 
 | 	 * potential system fault or CPU buglet: | 
 | 	 */ | 
 | 	if (user_mode(regs)) { | 
 | 		local_irq_enable(); | 
 | 		error_code |= X86_PF_USER; | 
 | 		flags |= FAULT_FLAG_USER; | 
 | 	} else { | 
 | 		if (regs->flags & X86_EFLAGS_IF) | 
 | 			local_irq_enable(); | 
 | 	} | 
 |  | 
 | 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); | 
 |  | 
 | 	if (error_code & X86_PF_WRITE) | 
 | 		flags |= FAULT_FLAG_WRITE; | 
 | 	if (error_code & X86_PF_INSTR) | 
 | 		flags |= FAULT_FLAG_INSTRUCTION; | 
 |  | 
 | 	/* | 
 | 	 * When running in the kernel we expect faults to occur only to | 
 | 	 * addresses in user space.  All other faults represent errors in | 
 | 	 * the kernel and should generate an OOPS.  Unfortunately, in the | 
 | 	 * case of an erroneous fault occurring in a code path which already | 
 | 	 * holds mmap_sem we will deadlock attempting to validate the fault | 
 | 	 * against the address space.  Luckily the kernel only validly | 
 | 	 * references user space from well defined areas of code, which are | 
 | 	 * listed in the exceptions table. | 
 | 	 * | 
 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 	 * the source reference check when there is a possibility of a | 
 | 	 * deadlock. Attempt to lock the address space, if we cannot we then | 
 | 	 * validate the source. If this is invalid we can skip the address | 
 | 	 * space check, thus avoiding the deadlock: | 
 | 	 */ | 
 | 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 
 | 		if (!(error_code & X86_PF_USER) && | 
 | 		    !search_exception_tables(regs->ip)) { | 
 | 			bad_area_nosemaphore(regs, error_code, address, NULL); | 
 | 			return; | 
 | 		} | 
 | retry: | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} else { | 
 | 		/* | 
 | 		 * The above down_read_trylock() might have succeeded in | 
 | 		 * which case we'll have missed the might_sleep() from | 
 | 		 * down_read(): | 
 | 		 */ | 
 | 		might_sleep(); | 
 | 	} | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	if (unlikely(!vma)) { | 
 | 		bad_area(regs, error_code, address); | 
 | 		return; | 
 | 	} | 
 | 	if (likely(vma->vm_start <= address)) | 
 | 		goto good_area; | 
 | 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { | 
 | 		bad_area(regs, error_code, address); | 
 | 		return; | 
 | 	} | 
 | 	if (error_code & X86_PF_USER) { | 
 | 		/* | 
 | 		 * Accessing the stack below %sp is always a bug. | 
 | 		 * The large cushion allows instructions like enter | 
 | 		 * and pusha to work. ("enter $65535, $31" pushes | 
 | 		 * 32 pointers and then decrements %sp by 65535.) | 
 | 		 */ | 
 | 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { | 
 | 			bad_area(regs, error_code, address); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (unlikely(expand_stack(vma, address))) { | 
 | 		bad_area(regs, error_code, address); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, we have a good vm_area for this memory access, so | 
 | 	 * we can handle it.. | 
 | 	 */ | 
 | good_area: | 
 | 	if (unlikely(access_error(error_code, vma))) { | 
 | 		bad_area_access_error(regs, error_code, address, vma); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if | 
 | 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked. | 
 | 	 * | 
 | 	 * Note that handle_userfault() may also release and reacquire mmap_sem | 
 | 	 * (and not return with VM_FAULT_RETRY), when returning to userland to | 
 | 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval | 
 | 	 * (potentially after handling any pending signal during the return to | 
 | 	 * userland). The return to userland is identified whenever | 
 | 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. | 
 | 	 * Thus we have to be careful about not touching vma after handling the | 
 | 	 * fault, so we read the pkey beforehand. | 
 | 	 */ | 
 | 	pkey = vma_pkey(vma); | 
 | 	fault = handle_mm_fault(vma, address, flags); | 
 | 	major |= fault & VM_FAULT_MAJOR; | 
 |  | 
 | 	/* | 
 | 	 * If we need to retry the mmap_sem has already been released, | 
 | 	 * and if there is a fatal signal pending there is no guarantee | 
 | 	 * that we made any progress. Handle this case first. | 
 | 	 */ | 
 | 	if (unlikely(fault & VM_FAULT_RETRY)) { | 
 | 		/* Retry at most once */ | 
 | 		if (flags & FAULT_FLAG_ALLOW_RETRY) { | 
 | 			flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
 | 			flags |= FAULT_FLAG_TRIED; | 
 | 			if (!fatal_signal_pending(tsk)) | 
 | 				goto retry; | 
 | 		} | 
 |  | 
 | 		/* User mode? Just return to handle the fatal exception */ | 
 | 		if (flags & FAULT_FLAG_USER) | 
 | 			return; | 
 |  | 
 | 		/* Not returning to user mode? Handle exceptions or die: */ | 
 | 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (unlikely(fault & VM_FAULT_ERROR)) { | 
 | 		mm_fault_error(regs, error_code, address, &pkey, fault); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Major/minor page fault accounting. If any of the events | 
 | 	 * returned VM_FAULT_MAJOR, we account it as a major fault. | 
 | 	 */ | 
 | 	if (major) { | 
 | 		tsk->maj_flt++; | 
 | 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); | 
 | 	} else { | 
 | 		tsk->min_flt++; | 
 | 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); | 
 | 	} | 
 |  | 
 | 	check_v8086_mode(regs, address, tsk); | 
 | } | 
 | NOKPROBE_SYMBOL(__do_page_fault); | 
 |  | 
 | static nokprobe_inline void | 
 | trace_page_fault_entries(unsigned long address, struct pt_regs *regs, | 
 | 			 unsigned long error_code) | 
 | { | 
 | 	if (user_mode(regs)) | 
 | 		trace_page_fault_user(address, regs, error_code); | 
 | 	else | 
 | 		trace_page_fault_kernel(address, regs, error_code); | 
 | } | 
 |  | 
 | /* | 
 |  * We must have this function blacklisted from kprobes, tagged with notrace | 
 |  * and call read_cr2() before calling anything else. To avoid calling any | 
 |  * kind of tracing machinery before we've observed the CR2 value. | 
 |  * | 
 |  * exception_{enter,exit}() contains all sorts of tracepoints. | 
 |  */ | 
 | dotraplinkage void notrace | 
 | do_page_fault(struct pt_regs *regs, unsigned long error_code) | 
 | { | 
 | 	unsigned long address = read_cr2(); /* Get the faulting address */ | 
 | 	enum ctx_state prev_state; | 
 |  | 
 | 	prev_state = exception_enter(); | 
 | 	if (trace_pagefault_enabled()) | 
 | 		trace_page_fault_entries(address, regs, error_code); | 
 |  | 
 | 	__do_page_fault(regs, error_code, address); | 
 | 	exception_exit(prev_state); | 
 | } | 
 | NOKPROBE_SYMBOL(do_page_fault); |