| // SPDX-License-Identifier: GPL-2.0 | 
 | /* Support for MMIO probes. | 
 |  * Benfit many code from kprobes | 
 |  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>. | 
 |  *     2007 Alexander Eichner | 
 |  *     2008 Pekka Paalanen <pq@iki.fi> | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/list.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/io.h> | 
 | #include <linux/slab.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <linux/errno.h> | 
 | #include <asm/debugreg.h> | 
 | #include <linux/mmiotrace.h> | 
 |  | 
 | #define KMMIO_PAGE_HASH_BITS 4 | 
 | #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) | 
 |  | 
 | struct kmmio_fault_page { | 
 | 	struct list_head list; | 
 | 	struct kmmio_fault_page *release_next; | 
 | 	unsigned long addr; /* the requested address */ | 
 | 	pteval_t old_presence; /* page presence prior to arming */ | 
 | 	bool armed; | 
 |  | 
 | 	/* | 
 | 	 * Number of times this page has been registered as a part | 
 | 	 * of a probe. If zero, page is disarmed and this may be freed. | 
 | 	 * Used only by writers (RCU) and post_kmmio_handler(). | 
 | 	 * Protected by kmmio_lock, when linked into kmmio_page_table. | 
 | 	 */ | 
 | 	int count; | 
 |  | 
 | 	bool scheduled_for_release; | 
 | }; | 
 |  | 
 | struct kmmio_delayed_release { | 
 | 	struct rcu_head rcu; | 
 | 	struct kmmio_fault_page *release_list; | 
 | }; | 
 |  | 
 | struct kmmio_context { | 
 | 	struct kmmio_fault_page *fpage; | 
 | 	struct kmmio_probe *probe; | 
 | 	unsigned long saved_flags; | 
 | 	unsigned long addr; | 
 | 	int active; | 
 | }; | 
 |  | 
 | static DEFINE_SPINLOCK(kmmio_lock); | 
 |  | 
 | /* Protected by kmmio_lock */ | 
 | unsigned int kmmio_count; | 
 |  | 
 | /* Read-protected by RCU, write-protected by kmmio_lock. */ | 
 | static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; | 
 | static LIST_HEAD(kmmio_probes); | 
 |  | 
 | static struct list_head *kmmio_page_list(unsigned long addr) | 
 | { | 
 | 	unsigned int l; | 
 | 	pte_t *pte = lookup_address(addr, &l); | 
 |  | 
 | 	if (!pte) | 
 | 		return NULL; | 
 | 	addr &= page_level_mask(l); | 
 |  | 
 | 	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)]; | 
 | } | 
 |  | 
 | /* Accessed per-cpu */ | 
 | static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); | 
 |  | 
 | /* | 
 |  * this is basically a dynamic stabbing problem: | 
 |  * Could use the existing prio tree code or | 
 |  * Possible better implementations: | 
 |  * The Interval Skip List: A Data Structure for Finding All Intervals That | 
 |  * Overlap a Point (might be simple) | 
 |  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup | 
 |  */ | 
 | /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ | 
 | static struct kmmio_probe *get_kmmio_probe(unsigned long addr) | 
 | { | 
 | 	struct kmmio_probe *p; | 
 | 	list_for_each_entry_rcu(p, &kmmio_probes, list) { | 
 | 		if (addr >= p->addr && addr < (p->addr + p->len)) | 
 | 			return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* You must be holding RCU read lock. */ | 
 | static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr) | 
 | { | 
 | 	struct list_head *head; | 
 | 	struct kmmio_fault_page *f; | 
 | 	unsigned int l; | 
 | 	pte_t *pte = lookup_address(addr, &l); | 
 |  | 
 | 	if (!pte) | 
 | 		return NULL; | 
 | 	addr &= page_level_mask(l); | 
 | 	head = kmmio_page_list(addr); | 
 | 	list_for_each_entry_rcu(f, head, list) { | 
 | 		if (f->addr == addr) | 
 | 			return f; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) | 
 | { | 
 | 	pmd_t new_pmd; | 
 | 	pmdval_t v = pmd_val(*pmd); | 
 | 	if (clear) { | 
 | 		*old = v; | 
 | 		new_pmd = pmd_mknotpresent(*pmd); | 
 | 	} else { | 
 | 		/* Presume this has been called with clear==true previously */ | 
 | 		new_pmd = __pmd(*old); | 
 | 	} | 
 | 	set_pmd(pmd, new_pmd); | 
 | } | 
 |  | 
 | static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) | 
 | { | 
 | 	pteval_t v = pte_val(*pte); | 
 | 	if (clear) { | 
 | 		*old = v; | 
 | 		/* Nothing should care about address */ | 
 | 		pte_clear(&init_mm, 0, pte); | 
 | 	} else { | 
 | 		/* Presume this has been called with clear==true previously */ | 
 | 		set_pte_atomic(pte, __pte(*old)); | 
 | 	} | 
 | } | 
 |  | 
 | static int clear_page_presence(struct kmmio_fault_page *f, bool clear) | 
 | { | 
 | 	unsigned int level; | 
 | 	pte_t *pte = lookup_address(f->addr, &level); | 
 |  | 
 | 	if (!pte) { | 
 | 		pr_err("no pte for addr 0x%08lx\n", f->addr); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	switch (level) { | 
 | 	case PG_LEVEL_2M: | 
 | 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); | 
 | 		break; | 
 | 	case PG_LEVEL_4K: | 
 | 		clear_pte_presence(pte, clear, &f->old_presence); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("unexpected page level 0x%x.\n", level); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	__flush_tlb_one_kernel(f->addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark the given page as not present. Access to it will trigger a fault. | 
 |  * | 
 |  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the | 
 |  * protection is ignored here. RCU read lock is assumed held, so the struct | 
 |  * will not disappear unexpectedly. Furthermore, the caller must guarantee, | 
 |  * that double arming the same virtual address (page) cannot occur. | 
 |  * | 
 |  * Double disarming on the other hand is allowed, and may occur when a fault | 
 |  * and mmiotrace shutdown happen simultaneously. | 
 |  */ | 
 | static int arm_kmmio_fault_page(struct kmmio_fault_page *f) | 
 | { | 
 | 	int ret; | 
 | 	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); | 
 | 	if (f->armed) { | 
 | 		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n", | 
 | 			   f->addr, f->count, !!f->old_presence); | 
 | 	} | 
 | 	ret = clear_page_presence(f, true); | 
 | 	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"), | 
 | 		  f->addr); | 
 | 	f->armed = true; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** Restore the given page to saved presence state. */ | 
 | static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) | 
 | { | 
 | 	int ret = clear_page_presence(f, false); | 
 | 	WARN_ONCE(ret < 0, | 
 | 			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr); | 
 | 	f->armed = false; | 
 | } | 
 |  | 
 | /* | 
 |  * This is being called from do_page_fault(). | 
 |  * | 
 |  * We may be in an interrupt or a critical section. Also prefecthing may | 
 |  * trigger a page fault. We may be in the middle of process switch. | 
 |  * We cannot take any locks, because we could be executing especially | 
 |  * within a kmmio critical section. | 
 |  * | 
 |  * Local interrupts are disabled, so preemption cannot happen. | 
 |  * Do not enable interrupts, do not sleep, and watch out for other CPUs. | 
 |  */ | 
 | /* | 
 |  * Interrupts are disabled on entry as trap3 is an interrupt gate | 
 |  * and they remain disabled throughout this function. | 
 |  */ | 
 | int kmmio_handler(struct pt_regs *regs, unsigned long addr) | 
 | { | 
 | 	struct kmmio_context *ctx; | 
 | 	struct kmmio_fault_page *faultpage; | 
 | 	int ret = 0; /* default to fault not handled */ | 
 | 	unsigned long page_base = addr; | 
 | 	unsigned int l; | 
 | 	pte_t *pte = lookup_address(addr, &l); | 
 | 	if (!pte) | 
 | 		return -EINVAL; | 
 | 	page_base &= page_level_mask(l); | 
 |  | 
 | 	/* | 
 | 	 * Preemption is now disabled to prevent process switch during | 
 | 	 * single stepping. We can only handle one active kmmio trace | 
 | 	 * per cpu, so ensure that we finish it before something else | 
 | 	 * gets to run. We also hold the RCU read lock over single | 
 | 	 * stepping to avoid looking up the probe and kmmio_fault_page | 
 | 	 * again. | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	faultpage = get_kmmio_fault_page(page_base); | 
 | 	if (!faultpage) { | 
 | 		/* | 
 | 		 * Either this page fault is not caused by kmmio, or | 
 | 		 * another CPU just pulled the kmmio probe from under | 
 | 		 * our feet. The latter case should not be possible. | 
 | 		 */ | 
 | 		goto no_kmmio; | 
 | 	} | 
 |  | 
 | 	ctx = &get_cpu_var(kmmio_ctx); | 
 | 	if (ctx->active) { | 
 | 		if (page_base == ctx->addr) { | 
 | 			/* | 
 | 			 * A second fault on the same page means some other | 
 | 			 * condition needs handling by do_page_fault(), the | 
 | 			 * page really not being present is the most common. | 
 | 			 */ | 
 | 			pr_debug("secondary hit for 0x%08lx CPU %d.\n", | 
 | 				 addr, smp_processor_id()); | 
 |  | 
 | 			if (!faultpage->old_presence) | 
 | 				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", | 
 | 					addr, smp_processor_id()); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Prevent overwriting already in-flight context. | 
 | 			 * This should not happen, let's hope disarming at | 
 | 			 * least prevents a panic. | 
 | 			 */ | 
 | 			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", | 
 | 				 smp_processor_id(), addr); | 
 | 			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); | 
 | 			disarm_kmmio_fault_page(faultpage); | 
 | 		} | 
 | 		goto no_kmmio_ctx; | 
 | 	} | 
 | 	ctx->active++; | 
 |  | 
 | 	ctx->fpage = faultpage; | 
 | 	ctx->probe = get_kmmio_probe(page_base); | 
 | 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); | 
 | 	ctx->addr = page_base; | 
 |  | 
 | 	if (ctx->probe && ctx->probe->pre_handler) | 
 | 		ctx->probe->pre_handler(ctx->probe, regs, addr); | 
 |  | 
 | 	/* | 
 | 	 * Enable single-stepping and disable interrupts for the faulting | 
 | 	 * context. Local interrupts must not get enabled during stepping. | 
 | 	 */ | 
 | 	regs->flags |= X86_EFLAGS_TF; | 
 | 	regs->flags &= ~X86_EFLAGS_IF; | 
 |  | 
 | 	/* Now we set present bit in PTE and single step. */ | 
 | 	disarm_kmmio_fault_page(ctx->fpage); | 
 |  | 
 | 	/* | 
 | 	 * If another cpu accesses the same page while we are stepping, | 
 | 	 * the access will not be caught. It will simply succeed and the | 
 | 	 * only downside is we lose the event. If this becomes a problem, | 
 | 	 * the user should drop to single cpu before tracing. | 
 | 	 */ | 
 |  | 
 | 	put_cpu_var(kmmio_ctx); | 
 | 	return 1; /* fault handled */ | 
 |  | 
 | no_kmmio_ctx: | 
 | 	put_cpu_var(kmmio_ctx); | 
 | no_kmmio: | 
 | 	rcu_read_unlock(); | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap1 is an interrupt gate | 
 |  * and they remain disabled throughout this function. | 
 |  * This must always get called as the pair to kmmio_handler(). | 
 |  */ | 
 | static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); | 
 |  | 
 | 	if (!ctx->active) { | 
 | 		/* | 
 | 		 * debug traps without an active context are due to either | 
 | 		 * something external causing them (f.e. using a debugger while | 
 | 		 * mmio tracing enabled), or erroneous behaviour | 
 | 		 */ | 
 | 		pr_warning("unexpected debug trap on CPU %d.\n", | 
 | 			   smp_processor_id()); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ctx->probe && ctx->probe->post_handler) | 
 | 		ctx->probe->post_handler(ctx->probe, condition, regs); | 
 |  | 
 | 	/* Prevent racing against release_kmmio_fault_page(). */ | 
 | 	spin_lock(&kmmio_lock); | 
 | 	if (ctx->fpage->count) | 
 | 		arm_kmmio_fault_page(ctx->fpage); | 
 | 	spin_unlock(&kmmio_lock); | 
 |  | 
 | 	regs->flags &= ~X86_EFLAGS_TF; | 
 | 	regs->flags |= ctx->saved_flags; | 
 |  | 
 | 	/* These were acquired in kmmio_handler(). */ | 
 | 	ctx->active--; | 
 | 	BUG_ON(ctx->active); | 
 | 	rcu_read_unlock(); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, flags | 
 | 	 * will have TF set, in which case, continue the remaining processing | 
 | 	 * of do_debug, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (!(regs->flags & X86_EFLAGS_TF)) | 
 | 		ret = 1; | 
 | out: | 
 | 	put_cpu_var(kmmio_ctx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* You must be holding kmmio_lock. */ | 
 | static int add_kmmio_fault_page(unsigned long addr) | 
 | { | 
 | 	struct kmmio_fault_page *f; | 
 |  | 
 | 	f = get_kmmio_fault_page(addr); | 
 | 	if (f) { | 
 | 		if (!f->count) | 
 | 			arm_kmmio_fault_page(f); | 
 | 		f->count++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	f = kzalloc(sizeof(*f), GFP_ATOMIC); | 
 | 	if (!f) | 
 | 		return -1; | 
 |  | 
 | 	f->count = 1; | 
 | 	f->addr = addr; | 
 |  | 
 | 	if (arm_kmmio_fault_page(f)) { | 
 | 		kfree(f); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	list_add_rcu(&f->list, kmmio_page_list(f->addr)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* You must be holding kmmio_lock. */ | 
 | static void release_kmmio_fault_page(unsigned long addr, | 
 | 				struct kmmio_fault_page **release_list) | 
 | { | 
 | 	struct kmmio_fault_page *f; | 
 |  | 
 | 	f = get_kmmio_fault_page(addr); | 
 | 	if (!f) | 
 | 		return; | 
 |  | 
 | 	f->count--; | 
 | 	BUG_ON(f->count < 0); | 
 | 	if (!f->count) { | 
 | 		disarm_kmmio_fault_page(f); | 
 | 		if (!f->scheduled_for_release) { | 
 | 			f->release_next = *release_list; | 
 | 			*release_list = f; | 
 | 			f->scheduled_for_release = true; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * With page-unaligned ioremaps, one or two armed pages may contain | 
 |  * addresses from outside the intended mapping. Events for these addresses | 
 |  * are currently silently dropped. The events may result only from programming | 
 |  * mistakes by accessing addresses before the beginning or past the end of a | 
 |  * mapping. | 
 |  */ | 
 | int register_kmmio_probe(struct kmmio_probe *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	unsigned long size = 0; | 
 | 	unsigned long addr = p->addr & PAGE_MASK; | 
 | 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
 | 	unsigned int l; | 
 | 	pte_t *pte; | 
 |  | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	if (get_kmmio_probe(addr)) { | 
 | 		ret = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	pte = lookup_address(addr, &l); | 
 | 	if (!pte) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	kmmio_count++; | 
 | 	list_add_rcu(&p->list, &kmmio_probes); | 
 | 	while (size < size_lim) { | 
 | 		if (add_kmmio_fault_page(addr + size)) | 
 | 			pr_err("Unable to set page fault.\n"); | 
 | 		size += page_level_size(l); | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 | 	/* | 
 | 	 * XXX: What should I do here? | 
 | 	 * Here was a call to global_flush_tlb(), but it does not exist | 
 | 	 * anymore. It seems it's not needed after all. | 
 | 	 */ | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(register_kmmio_probe); | 
 |  | 
 | static void rcu_free_kmmio_fault_pages(struct rcu_head *head) | 
 | { | 
 | 	struct kmmio_delayed_release *dr = container_of( | 
 | 						head, | 
 | 						struct kmmio_delayed_release, | 
 | 						rcu); | 
 | 	struct kmmio_fault_page *f = dr->release_list; | 
 | 	while (f) { | 
 | 		struct kmmio_fault_page *next = f->release_next; | 
 | 		BUG_ON(f->count); | 
 | 		kfree(f); | 
 | 		f = next; | 
 | 	} | 
 | 	kfree(dr); | 
 | } | 
 |  | 
 | static void remove_kmmio_fault_pages(struct rcu_head *head) | 
 | { | 
 | 	struct kmmio_delayed_release *dr = | 
 | 		container_of(head, struct kmmio_delayed_release, rcu); | 
 | 	struct kmmio_fault_page *f = dr->release_list; | 
 | 	struct kmmio_fault_page **prevp = &dr->release_list; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	while (f) { | 
 | 		if (!f->count) { | 
 | 			list_del_rcu(&f->list); | 
 | 			prevp = &f->release_next; | 
 | 		} else { | 
 | 			*prevp = f->release_next; | 
 | 			f->release_next = NULL; | 
 | 			f->scheduled_for_release = false; | 
 | 		} | 
 | 		f = *prevp; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 |  | 
 | 	/* This is the real RCU destroy call. */ | 
 | 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a kmmio probe. You have to synchronize_rcu() before you can be | 
 |  * sure that the callbacks will not be called anymore. Only after that | 
 |  * you may actually release your struct kmmio_probe. | 
 |  * | 
 |  * Unregistering a kmmio fault page has three steps: | 
 |  * 1. release_kmmio_fault_page() | 
 |  *    Disarm the page, wait a grace period to let all faults finish. | 
 |  * 2. remove_kmmio_fault_pages() | 
 |  *    Remove the pages from kmmio_page_table. | 
 |  * 3. rcu_free_kmmio_fault_pages() | 
 |  *    Actually free the kmmio_fault_page structs as with RCU. | 
 |  */ | 
 | void unregister_kmmio_probe(struct kmmio_probe *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long size = 0; | 
 | 	unsigned long addr = p->addr & PAGE_MASK; | 
 | 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); | 
 | 	struct kmmio_fault_page *release_list = NULL; | 
 | 	struct kmmio_delayed_release *drelease; | 
 | 	unsigned int l; | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = lookup_address(addr, &l); | 
 | 	if (!pte) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&kmmio_lock, flags); | 
 | 	while (size < size_lim) { | 
 | 		release_kmmio_fault_page(addr + size, &release_list); | 
 | 		size += page_level_size(l); | 
 | 	} | 
 | 	list_del_rcu(&p->list); | 
 | 	kmmio_count--; | 
 | 	spin_unlock_irqrestore(&kmmio_lock, flags); | 
 |  | 
 | 	if (!release_list) | 
 | 		return; | 
 |  | 
 | 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); | 
 | 	if (!drelease) { | 
 | 		pr_crit("leaking kmmio_fault_page objects.\n"); | 
 | 		return; | 
 | 	} | 
 | 	drelease->release_list = release_list; | 
 |  | 
 | 	/* | 
 | 	 * This is not really RCU here. We have just disarmed a set of | 
 | 	 * pages so that they cannot trigger page faults anymore. However, | 
 | 	 * we cannot remove the pages from kmmio_page_table, | 
 | 	 * because a probe hit might be in flight on another CPU. The | 
 | 	 * pages are collected into a list, and they will be removed from | 
 | 	 * kmmio_page_table when it is certain that no probe hit related to | 
 | 	 * these pages can be in flight. RCU grace period sounds like a | 
 | 	 * good choice. | 
 | 	 * | 
 | 	 * If we removed the pages too early, kmmio page fault handler might | 
 | 	 * not find the respective kmmio_fault_page and determine it's not | 
 | 	 * a kmmio fault, when it actually is. This would lead to madness. | 
 | 	 */ | 
 | 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages); | 
 | } | 
 | EXPORT_SYMBOL(unregister_kmmio_probe); | 
 |  | 
 | static int | 
 | kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) | 
 | { | 
 | 	struct die_args *arg = args; | 
 | 	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); | 
 |  | 
 | 	if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) | 
 | 		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { | 
 | 			/* | 
 | 			 * Reset the BS bit in dr6 (pointed by args->err) to | 
 | 			 * denote completion of processing | 
 | 			 */ | 
 | 			*dr6_p &= ~DR_STEP; | 
 | 			return NOTIFY_STOP; | 
 | 		} | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block nb_die = { | 
 | 	.notifier_call = kmmio_die_notifier | 
 | }; | 
 |  | 
 | int kmmio_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) | 
 | 		INIT_LIST_HEAD(&kmmio_page_table[i]); | 
 |  | 
 | 	return register_die_notifier(&nb_die); | 
 | } | 
 |  | 
 | void kmmio_cleanup(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	unregister_die_notifier(&nb_die); | 
 | 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { | 
 | 		WARN_ONCE(!list_empty(&kmmio_page_table[i]), | 
 | 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); | 
 | 	} | 
 | } |