| /* | 
 |  * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
 |  *		operating system.  INET is implemented using the  BSD Socket | 
 |  *		interface as the means of communication with the user level. | 
 |  * | 
 |  *		Implementation of the Transmission Control Protocol(TCP). | 
 |  * | 
 |  * Authors:	Ross Biro | 
 |  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
 |  *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
 |  *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
 |  *		Florian La Roche, <flla@stud.uni-sb.de> | 
 |  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
 |  *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
 |  *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
 |  *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
 |  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
 |  *		Jorge Cwik, <jorge@laser.satlink.net> | 
 |  */ | 
 |  | 
 | /* | 
 |  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP. | 
 |  *				:	Fragmentation on mtu decrease | 
 |  *				:	Segment collapse on retransmit | 
 |  *				:	AF independence | 
 |  * | 
 |  *		Linus Torvalds	:	send_delayed_ack | 
 |  *		David S. Miller	:	Charge memory using the right skb | 
 |  *					during syn/ack processing. | 
 |  *		David S. Miller :	Output engine completely rewritten. | 
 |  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr. | 
 |  *		Cacophonix Gaul :	draft-minshall-nagle-01 | 
 |  *		J Hadi Salim	:	ECN support | 
 |  * | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "TCP: " fmt | 
 |  | 
 | #include <net/tcp.h> | 
 |  | 
 | #include <linux/compiler.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/module.h> | 
 | #include <linux/static_key.h> | 
 |  | 
 | #include <trace/events/tcp.h> | 
 |  | 
 | static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, | 
 | 			   int push_one, gfp_t gfp); | 
 |  | 
 | /* Account for new data that has been sent to the network. */ | 
 | static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned int prior_packets = tp->packets_out; | 
 |  | 
 | 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
 |  | 
 | 	__skb_unlink(skb, &sk->sk_write_queue); | 
 | 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); | 
 |  | 
 | 	if (tp->highest_sack == NULL) | 
 | 		tp->highest_sack = skb; | 
 |  | 
 | 	tp->packets_out += tcp_skb_pcount(skb); | 
 | 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) | 
 | 		tcp_rearm_rto(sk); | 
 |  | 
 | 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, | 
 | 		      tcp_skb_pcount(skb)); | 
 | } | 
 |  | 
 | /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one | 
 |  * window scaling factor due to loss of precision. | 
 |  * If window has been shrunk, what should we make? It is not clear at all. | 
 |  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | 
 |  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | 
 |  * invalid. OK, let's make this for now: | 
 |  */ | 
 | static inline __u32 tcp_acceptable_seq(const struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) || | 
 | 	    (tp->rx_opt.wscale_ok && | 
 | 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) | 
 | 		return tp->snd_nxt; | 
 | 	else | 
 | 		return tcp_wnd_end(tp); | 
 | } | 
 |  | 
 | /* Calculate mss to advertise in SYN segment. | 
 |  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | 
 |  * | 
 |  * 1. It is independent of path mtu. | 
 |  * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | 
 |  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | 
 |  *    attached devices, because some buggy hosts are confused by | 
 |  *    large MSS. | 
 |  * 4. We do not make 3, we advertise MSS, calculated from first | 
 |  *    hop device mtu, but allow to raise it to ip_rt_min_advmss. | 
 |  *    This may be overridden via information stored in routing table. | 
 |  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | 
 |  *    probably even Jumbo". | 
 |  */ | 
 | static __u16 tcp_advertise_mss(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct dst_entry *dst = __sk_dst_get(sk); | 
 | 	int mss = tp->advmss; | 
 |  | 
 | 	if (dst) { | 
 | 		unsigned int metric = dst_metric_advmss(dst); | 
 |  | 
 | 		if (metric < mss) { | 
 | 			mss = metric; | 
 | 			tp->advmss = mss; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return (__u16)mss; | 
 | } | 
 |  | 
 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | 
 |  * This is the first part of cwnd validation mechanism. | 
 |  */ | 
 | void tcp_cwnd_restart(struct sock *sk, s32 delta) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); | 
 | 	u32 cwnd = tp->snd_cwnd; | 
 |  | 
 | 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART); | 
 |  | 
 | 	tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
 | 	restart_cwnd = min(restart_cwnd, cwnd); | 
 |  | 
 | 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) | 
 | 		cwnd >>= 1; | 
 | 	tp->snd_cwnd = max(cwnd, restart_cwnd); | 
 | 	tp->snd_cwnd_stamp = tcp_jiffies32; | 
 | 	tp->snd_cwnd_used = 0; | 
 | } | 
 |  | 
 | /* Congestion state accounting after a packet has been sent. */ | 
 | static void tcp_event_data_sent(struct tcp_sock *tp, | 
 | 				struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	const u32 now = tcp_jiffies32; | 
 |  | 
 | 	if (tcp_packets_in_flight(tp) == 0) | 
 | 		tcp_ca_event(sk, CA_EVENT_TX_START); | 
 |  | 
 | 	tp->lsndtime = now; | 
 |  | 
 | 	/* If it is a reply for ato after last received | 
 | 	 * packet, enter pingpong mode. | 
 | 	 */ | 
 | 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) | 
 | 		icsk->icsk_ack.pingpong = 1; | 
 | } | 
 |  | 
 | /* Account for an ACK we sent. */ | 
 | static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, | 
 | 				      u32 rcv_nxt) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { | 
 | 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, | 
 | 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH); | 
 | 		tp->compressed_ack = TCP_FASTRETRANS_THRESH; | 
 | 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) | 
 | 			__sock_put(sk); | 
 | 	} | 
 |  | 
 | 	if (unlikely(rcv_nxt != tp->rcv_nxt)) | 
 | 		return;  /* Special ACK sent by DCTCP to reflect ECN */ | 
 | 	tcp_dec_quickack_mode(sk, pkts); | 
 | 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); | 
 | } | 
 |  | 
 | /* Determine a window scaling and initial window to offer. | 
 |  * Based on the assumption that the given amount of space | 
 |  * will be offered. Store the results in the tp structure. | 
 |  * NOTE: for smooth operation initial space offering should | 
 |  * be a multiple of mss if possible. We assume here that mss >= 1. | 
 |  * This MUST be enforced by all callers. | 
 |  */ | 
 | void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, | 
 | 			       __u32 *rcv_wnd, __u32 *window_clamp, | 
 | 			       int wscale_ok, __u8 *rcv_wscale, | 
 | 			       __u32 init_rcv_wnd) | 
 | { | 
 | 	unsigned int space = (__space < 0 ? 0 : __space); | 
 |  | 
 | 	/* If no clamp set the clamp to the max possible scaled window */ | 
 | 	if (*window_clamp == 0) | 
 | 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); | 
 | 	space = min(*window_clamp, space); | 
 |  | 
 | 	/* Quantize space offering to a multiple of mss if possible. */ | 
 | 	if (space > mss) | 
 | 		space = rounddown(space, mss); | 
 |  | 
 | 	/* NOTE: offering an initial window larger than 32767 | 
 | 	 * will break some buggy TCP stacks. If the admin tells us | 
 | 	 * it is likely we could be speaking with such a buggy stack | 
 | 	 * we will truncate our initial window offering to 32K-1 | 
 | 	 * unless the remote has sent us a window scaling option, | 
 | 	 * which we interpret as a sign the remote TCP is not | 
 | 	 * misinterpreting the window field as a signed quantity. | 
 | 	 */ | 
 | 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) | 
 | 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW); | 
 | 	else | 
 | 		(*rcv_wnd) = min_t(u32, space, U16_MAX); | 
 |  | 
 | 	if (init_rcv_wnd) | 
 | 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); | 
 |  | 
 | 	(*rcv_wscale) = 0; | 
 | 	if (wscale_ok) { | 
 | 		/* Set window scaling on max possible window */ | 
 | 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); | 
 | 		space = max_t(u32, space, sysctl_rmem_max); | 
 | 		space = min_t(u32, space, *window_clamp); | 
 | 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { | 
 | 			space >>= 1; | 
 | 			(*rcv_wscale)++; | 
 | 		} | 
 | 	} | 
 | 	/* Set the clamp no higher than max representable value */ | 
 | 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); | 
 | } | 
 | EXPORT_SYMBOL(tcp_select_initial_window); | 
 |  | 
 | /* Chose a new window to advertise, update state in tcp_sock for the | 
 |  * socket, and return result with RFC1323 scaling applied.  The return | 
 |  * value can be stuffed directly into th->window for an outgoing | 
 |  * frame. | 
 |  */ | 
 | static u16 tcp_select_window(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 old_win = tp->rcv_wnd; | 
 | 	u32 cur_win = tcp_receive_window(tp); | 
 | 	u32 new_win = __tcp_select_window(sk); | 
 |  | 
 | 	/* Never shrink the offered window */ | 
 | 	if (new_win < cur_win) { | 
 | 		/* Danger Will Robinson! | 
 | 		 * Don't update rcv_wup/rcv_wnd here or else | 
 | 		 * we will not be able to advertise a zero | 
 | 		 * window in time.  --DaveM | 
 | 		 * | 
 | 		 * Relax Will Robinson. | 
 | 		 */ | 
 | 		if (new_win == 0) | 
 | 			NET_INC_STATS(sock_net(sk), | 
 | 				      LINUX_MIB_TCPWANTZEROWINDOWADV); | 
 | 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); | 
 | 	} | 
 | 	tp->rcv_wnd = new_win; | 
 | 	tp->rcv_wup = tp->rcv_nxt; | 
 |  | 
 | 	/* Make sure we do not exceed the maximum possible | 
 | 	 * scaled window. | 
 | 	 */ | 
 | 	if (!tp->rx_opt.rcv_wscale && | 
 | 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) | 
 | 		new_win = min(new_win, MAX_TCP_WINDOW); | 
 | 	else | 
 | 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | 
 |  | 
 | 	/* RFC1323 scaling applied */ | 
 | 	new_win >>= tp->rx_opt.rcv_wscale; | 
 |  | 
 | 	/* If we advertise zero window, disable fast path. */ | 
 | 	if (new_win == 0) { | 
 | 		tp->pred_flags = 0; | 
 | 		if (old_win) | 
 | 			NET_INC_STATS(sock_net(sk), | 
 | 				      LINUX_MIB_TCPTOZEROWINDOWADV); | 
 | 	} else if (old_win == 0) { | 
 | 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); | 
 | 	} | 
 |  | 
 | 	return new_win; | 
 | } | 
 |  | 
 | /* Packet ECN state for a SYN-ACK */ | 
 | static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; | 
 | 	if (!(tp->ecn_flags & TCP_ECN_OK)) | 
 | 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; | 
 | 	else if (tcp_ca_needs_ecn(sk) || | 
 | 		 tcp_bpf_ca_needs_ecn(sk)) | 
 | 		INET_ECN_xmit(sk); | 
 | } | 
 |  | 
 | /* Packet ECN state for a SYN.  */ | 
 | static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); | 
 | 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || | 
 | 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn; | 
 |  | 
 | 	if (!use_ecn) { | 
 | 		const struct dst_entry *dst = __sk_dst_get(sk); | 
 |  | 
 | 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) | 
 | 			use_ecn = true; | 
 | 	} | 
 |  | 
 | 	tp->ecn_flags = 0; | 
 |  | 
 | 	if (use_ecn) { | 
 | 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; | 
 | 		tp->ecn_flags = TCP_ECN_OK; | 
 | 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) | 
 | 			INET_ECN_xmit(sk); | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) | 
 | 		/* tp->ecn_flags are cleared at a later point in time when | 
 | 		 * SYN ACK is ultimatively being received. | 
 | 		 */ | 
 | 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); | 
 | } | 
 |  | 
 | static void | 
 | tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) | 
 | { | 
 | 	if (inet_rsk(req)->ecn_ok) | 
 | 		th->ece = 1; | 
 | } | 
 |  | 
 | /* Set up ECN state for a packet on a ESTABLISHED socket that is about to | 
 |  * be sent. | 
 |  */ | 
 | static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, | 
 | 			 struct tcphdr *th, int tcp_header_len) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tp->ecn_flags & TCP_ECN_OK) { | 
 | 		/* Not-retransmitted data segment: set ECT and inject CWR. */ | 
 | 		if (skb->len != tcp_header_len && | 
 | 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { | 
 | 			INET_ECN_xmit(sk); | 
 | 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { | 
 | 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; | 
 | 				th->cwr = 1; | 
 | 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; | 
 | 			} | 
 | 		} else if (!tcp_ca_needs_ecn(sk)) { | 
 | 			/* ACK or retransmitted segment: clear ECT|CE */ | 
 | 			INET_ECN_dontxmit(sk); | 
 | 		} | 
 | 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) | 
 | 			th->ece = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* Constructs common control bits of non-data skb. If SYN/FIN is present, | 
 |  * auto increment end seqno. | 
 |  */ | 
 | static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) | 
 | { | 
 | 	skb->ip_summed = CHECKSUM_PARTIAL; | 
 |  | 
 | 	TCP_SKB_CB(skb)->tcp_flags = flags; | 
 | 	TCP_SKB_CB(skb)->sacked = 0; | 
 |  | 
 | 	tcp_skb_pcount_set(skb, 1); | 
 |  | 
 | 	TCP_SKB_CB(skb)->seq = seq; | 
 | 	if (flags & (TCPHDR_SYN | TCPHDR_FIN)) | 
 | 		seq++; | 
 | 	TCP_SKB_CB(skb)->end_seq = seq; | 
 | } | 
 |  | 
 | static inline bool tcp_urg_mode(const struct tcp_sock *tp) | 
 | { | 
 | 	return tp->snd_una != tp->snd_up; | 
 | } | 
 |  | 
 | #define OPTION_SACK_ADVERTISE	(1 << 0) | 
 | #define OPTION_TS		(1 << 1) | 
 | #define OPTION_MD5		(1 << 2) | 
 | #define OPTION_WSCALE		(1 << 3) | 
 | #define OPTION_FAST_OPEN_COOKIE	(1 << 8) | 
 | #define OPTION_SMC		(1 << 9) | 
 |  | 
 | static void smc_options_write(__be32 *ptr, u16 *options) | 
 | { | 
 | #if IS_ENABLED(CONFIG_SMC) | 
 | 	if (static_branch_unlikely(&tcp_have_smc)) { | 
 | 		if (unlikely(OPTION_SMC & *options)) { | 
 | 			*ptr++ = htonl((TCPOPT_NOP  << 24) | | 
 | 				       (TCPOPT_NOP  << 16) | | 
 | 				       (TCPOPT_EXP <<  8) | | 
 | 				       (TCPOLEN_EXP_SMC_BASE)); | 
 | 			*ptr++ = htonl(TCPOPT_SMC_MAGIC); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | struct tcp_out_options { | 
 | 	u16 options;		/* bit field of OPTION_* */ | 
 | 	u16 mss;		/* 0 to disable */ | 
 | 	u8 ws;			/* window scale, 0 to disable */ | 
 | 	u8 num_sack_blocks;	/* number of SACK blocks to include */ | 
 | 	u8 hash_size;		/* bytes in hash_location */ | 
 | 	__u8 *hash_location;	/* temporary pointer, overloaded */ | 
 | 	__u32 tsval, tsecr;	/* need to include OPTION_TS */ | 
 | 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */ | 
 | }; | 
 |  | 
 | /* Write previously computed TCP options to the packet. | 
 |  * | 
 |  * Beware: Something in the Internet is very sensitive to the ordering of | 
 |  * TCP options, we learned this through the hard way, so be careful here. | 
 |  * Luckily we can at least blame others for their non-compliance but from | 
 |  * inter-operability perspective it seems that we're somewhat stuck with | 
 |  * the ordering which we have been using if we want to keep working with | 
 |  * those broken things (not that it currently hurts anybody as there isn't | 
 |  * particular reason why the ordering would need to be changed). | 
 |  * | 
 |  * At least SACK_PERM as the first option is known to lead to a disaster | 
 |  * (but it may well be that other scenarios fail similarly). | 
 |  */ | 
 | static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, | 
 | 			      struct tcp_out_options *opts) | 
 | { | 
 | 	u16 options = opts->options;	/* mungable copy */ | 
 |  | 
 | 	if (unlikely(OPTION_MD5 & options)) { | 
 | 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | | 
 | 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); | 
 | 		/* overload cookie hash location */ | 
 | 		opts->hash_location = (__u8 *)ptr; | 
 | 		ptr += 4; | 
 | 	} | 
 |  | 
 | 	if (unlikely(opts->mss)) { | 
 | 		*ptr++ = htonl((TCPOPT_MSS << 24) | | 
 | 			       (TCPOLEN_MSS << 16) | | 
 | 			       opts->mss); | 
 | 	} | 
 |  | 
 | 	if (likely(OPTION_TS & options)) { | 
 | 		if (unlikely(OPTION_SACK_ADVERTISE & options)) { | 
 | 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) | | 
 | 				       (TCPOLEN_SACK_PERM << 16) | | 
 | 				       (TCPOPT_TIMESTAMP << 8) | | 
 | 				       TCPOLEN_TIMESTAMP); | 
 | 			options &= ~OPTION_SACK_ADVERTISE; | 
 | 		} else { | 
 | 			*ptr++ = htonl((TCPOPT_NOP << 24) | | 
 | 				       (TCPOPT_NOP << 16) | | 
 | 				       (TCPOPT_TIMESTAMP << 8) | | 
 | 				       TCPOLEN_TIMESTAMP); | 
 | 		} | 
 | 		*ptr++ = htonl(opts->tsval); | 
 | 		*ptr++ = htonl(opts->tsecr); | 
 | 	} | 
 |  | 
 | 	if (unlikely(OPTION_SACK_ADVERTISE & options)) { | 
 | 		*ptr++ = htonl((TCPOPT_NOP << 24) | | 
 | 			       (TCPOPT_NOP << 16) | | 
 | 			       (TCPOPT_SACK_PERM << 8) | | 
 | 			       TCPOLEN_SACK_PERM); | 
 | 	} | 
 |  | 
 | 	if (unlikely(OPTION_WSCALE & options)) { | 
 | 		*ptr++ = htonl((TCPOPT_NOP << 24) | | 
 | 			       (TCPOPT_WINDOW << 16) | | 
 | 			       (TCPOLEN_WINDOW << 8) | | 
 | 			       opts->ws); | 
 | 	} | 
 |  | 
 | 	if (unlikely(opts->num_sack_blocks)) { | 
 | 		struct tcp_sack_block *sp = tp->rx_opt.dsack ? | 
 | 			tp->duplicate_sack : tp->selective_acks; | 
 | 		int this_sack; | 
 |  | 
 | 		*ptr++ = htonl((TCPOPT_NOP  << 24) | | 
 | 			       (TCPOPT_NOP  << 16) | | 
 | 			       (TCPOPT_SACK <<  8) | | 
 | 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * | 
 | 						     TCPOLEN_SACK_PERBLOCK))); | 
 |  | 
 | 		for (this_sack = 0; this_sack < opts->num_sack_blocks; | 
 | 		     ++this_sack) { | 
 | 			*ptr++ = htonl(sp[this_sack].start_seq); | 
 | 			*ptr++ = htonl(sp[this_sack].end_seq); | 
 | 		} | 
 |  | 
 | 		tp->rx_opt.dsack = 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { | 
 | 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; | 
 | 		u8 *p = (u8 *)ptr; | 
 | 		u32 len; /* Fast Open option length */ | 
 |  | 
 | 		if (foc->exp) { | 
 | 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; | 
 | 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | | 
 | 				     TCPOPT_FASTOPEN_MAGIC); | 
 | 			p += TCPOLEN_EXP_FASTOPEN_BASE; | 
 | 		} else { | 
 | 			len = TCPOLEN_FASTOPEN_BASE + foc->len; | 
 | 			*p++ = TCPOPT_FASTOPEN; | 
 | 			*p++ = len; | 
 | 		} | 
 |  | 
 | 		memcpy(p, foc->val, foc->len); | 
 | 		if ((len & 3) == 2) { | 
 | 			p[foc->len] = TCPOPT_NOP; | 
 | 			p[foc->len + 1] = TCPOPT_NOP; | 
 | 		} | 
 | 		ptr += (len + 3) >> 2; | 
 | 	} | 
 |  | 
 | 	smc_options_write(ptr, &options); | 
 | } | 
 |  | 
 | static void smc_set_option(const struct tcp_sock *tp, | 
 | 			   struct tcp_out_options *opts, | 
 | 			   unsigned int *remaining) | 
 | { | 
 | #if IS_ENABLED(CONFIG_SMC) | 
 | 	if (static_branch_unlikely(&tcp_have_smc)) { | 
 | 		if (tp->syn_smc) { | 
 | 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { | 
 | 				opts->options |= OPTION_SMC; | 
 | 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void smc_set_option_cond(const struct tcp_sock *tp, | 
 | 				const struct inet_request_sock *ireq, | 
 | 				struct tcp_out_options *opts, | 
 | 				unsigned int *remaining) | 
 | { | 
 | #if IS_ENABLED(CONFIG_SMC) | 
 | 	if (static_branch_unlikely(&tcp_have_smc)) { | 
 | 		if (tp->syn_smc && ireq->smc_ok) { | 
 | 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { | 
 | 				opts->options |= OPTION_SMC; | 
 | 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* Compute TCP options for SYN packets. This is not the final | 
 |  * network wire format yet. | 
 |  */ | 
 | static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, | 
 | 				struct tcp_out_options *opts, | 
 | 				struct tcp_md5sig_key **md5) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned int remaining = MAX_TCP_OPTION_SPACE; | 
 | 	struct tcp_fastopen_request *fastopen = tp->fastopen_req; | 
 |  | 
 | 	*md5 = NULL; | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) { | 
 | 		*md5 = tp->af_specific->md5_lookup(sk, sk); | 
 | 		if (*md5) { | 
 | 			opts->options |= OPTION_MD5; | 
 | 			remaining -= TCPOLEN_MD5SIG_ALIGNED; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* We always get an MSS option.  The option bytes which will be seen in | 
 | 	 * normal data packets should timestamps be used, must be in the MSS | 
 | 	 * advertised.  But we subtract them from tp->mss_cache so that | 
 | 	 * calculations in tcp_sendmsg are simpler etc.  So account for this | 
 | 	 * fact here if necessary.  If we don't do this correctly, as a | 
 | 	 * receiver we won't recognize data packets as being full sized when we | 
 | 	 * should, and thus we won't abide by the delayed ACK rules correctly. | 
 | 	 * SACKs don't matter, we never delay an ACK when we have any of those | 
 | 	 * going out.  */ | 
 | 	opts->mss = tcp_advertise_mss(sk); | 
 | 	remaining -= TCPOLEN_MSS_ALIGNED; | 
 |  | 
 | 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { | 
 | 		opts->options |= OPTION_TS; | 
 | 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; | 
 | 		opts->tsecr = tp->rx_opt.ts_recent; | 
 | 		remaining -= TCPOLEN_TSTAMP_ALIGNED; | 
 | 	} | 
 | 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { | 
 | 		opts->ws = tp->rx_opt.rcv_wscale; | 
 | 		opts->options |= OPTION_WSCALE; | 
 | 		remaining -= TCPOLEN_WSCALE_ALIGNED; | 
 | 	} | 
 | 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { | 
 | 		opts->options |= OPTION_SACK_ADVERTISE; | 
 | 		if (unlikely(!(OPTION_TS & opts->options))) | 
 | 			remaining -= TCPOLEN_SACKPERM_ALIGNED; | 
 | 	} | 
 |  | 
 | 	if (fastopen && fastopen->cookie.len >= 0) { | 
 | 		u32 need = fastopen->cookie.len; | 
 |  | 
 | 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : | 
 | 					       TCPOLEN_FASTOPEN_BASE; | 
 | 		need = (need + 3) & ~3U;  /* Align to 32 bits */ | 
 | 		if (remaining >= need) { | 
 | 			opts->options |= OPTION_FAST_OPEN_COOKIE; | 
 | 			opts->fastopen_cookie = &fastopen->cookie; | 
 | 			remaining -= need; | 
 | 			tp->syn_fastopen = 1; | 
 | 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	smc_set_option(tp, opts, &remaining); | 
 |  | 
 | 	return MAX_TCP_OPTION_SPACE - remaining; | 
 | } | 
 |  | 
 | /* Set up TCP options for SYN-ACKs. */ | 
 | static unsigned int tcp_synack_options(const struct sock *sk, | 
 | 				       struct request_sock *req, | 
 | 				       unsigned int mss, struct sk_buff *skb, | 
 | 				       struct tcp_out_options *opts, | 
 | 				       const struct tcp_md5sig_key *md5, | 
 | 				       struct tcp_fastopen_cookie *foc) | 
 | { | 
 | 	struct inet_request_sock *ireq = inet_rsk(req); | 
 | 	unsigned int remaining = MAX_TCP_OPTION_SPACE; | 
 |  | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	if (md5) { | 
 | 		opts->options |= OPTION_MD5; | 
 | 		remaining -= TCPOLEN_MD5SIG_ALIGNED; | 
 |  | 
 | 		/* We can't fit any SACK blocks in a packet with MD5 + TS | 
 | 		 * options. There was discussion about disabling SACK | 
 | 		 * rather than TS in order to fit in better with old, | 
 | 		 * buggy kernels, but that was deemed to be unnecessary. | 
 | 		 */ | 
 | 		ireq->tstamp_ok &= !ireq->sack_ok; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* We always send an MSS option. */ | 
 | 	opts->mss = mss; | 
 | 	remaining -= TCPOLEN_MSS_ALIGNED; | 
 |  | 
 | 	if (likely(ireq->wscale_ok)) { | 
 | 		opts->ws = ireq->rcv_wscale; | 
 | 		opts->options |= OPTION_WSCALE; | 
 | 		remaining -= TCPOLEN_WSCALE_ALIGNED; | 
 | 	} | 
 | 	if (likely(ireq->tstamp_ok)) { | 
 | 		opts->options |= OPTION_TS; | 
 | 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; | 
 | 		opts->tsecr = req->ts_recent; | 
 | 		remaining -= TCPOLEN_TSTAMP_ALIGNED; | 
 | 	} | 
 | 	if (likely(ireq->sack_ok)) { | 
 | 		opts->options |= OPTION_SACK_ADVERTISE; | 
 | 		if (unlikely(!ireq->tstamp_ok)) | 
 | 			remaining -= TCPOLEN_SACKPERM_ALIGNED; | 
 | 	} | 
 | 	if (foc != NULL && foc->len >= 0) { | 
 | 		u32 need = foc->len; | 
 |  | 
 | 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : | 
 | 				   TCPOLEN_FASTOPEN_BASE; | 
 | 		need = (need + 3) & ~3U;  /* Align to 32 bits */ | 
 | 		if (remaining >= need) { | 
 | 			opts->options |= OPTION_FAST_OPEN_COOKIE; | 
 | 			opts->fastopen_cookie = foc; | 
 | 			remaining -= need; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); | 
 |  | 
 | 	return MAX_TCP_OPTION_SPACE - remaining; | 
 | } | 
 |  | 
 | /* Compute TCP options for ESTABLISHED sockets. This is not the | 
 |  * final wire format yet. | 
 |  */ | 
 | static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, | 
 | 					struct tcp_out_options *opts, | 
 | 					struct tcp_md5sig_key **md5) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned int size = 0; | 
 | 	unsigned int eff_sacks; | 
 |  | 
 | 	opts->options = 0; | 
 |  | 
 | 	*md5 = NULL; | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) { | 
 | 		*md5 = tp->af_specific->md5_lookup(sk, sk); | 
 | 		if (*md5) { | 
 | 			opts->options |= OPTION_MD5; | 
 | 			size += TCPOLEN_MD5SIG_ALIGNED; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (likely(tp->rx_opt.tstamp_ok)) { | 
 | 		opts->options |= OPTION_TS; | 
 | 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; | 
 | 		opts->tsecr = tp->rx_opt.ts_recent; | 
 | 		size += TCPOLEN_TSTAMP_ALIGNED; | 
 | 	} | 
 |  | 
 | 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; | 
 | 	if (unlikely(eff_sacks)) { | 
 | 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; | 
 | 		opts->num_sack_blocks = | 
 | 			min_t(unsigned int, eff_sacks, | 
 | 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) / | 
 | 			      TCPOLEN_SACK_PERBLOCK); | 
 | 		if (likely(opts->num_sack_blocks)) | 
 | 			size += TCPOLEN_SACK_BASE_ALIGNED + | 
 | 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; | 
 | 	} | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 |  | 
 | /* TCP SMALL QUEUES (TSQ) | 
 |  * | 
 |  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) | 
 |  * to reduce RTT and bufferbloat. | 
 |  * We do this using a special skb destructor (tcp_wfree). | 
 |  * | 
 |  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb | 
 |  * needs to be reallocated in a driver. | 
 |  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc | 
 |  * | 
 |  * Since transmit from skb destructor is forbidden, we use a tasklet | 
 |  * to process all sockets that eventually need to send more skbs. | 
 |  * We use one tasklet per cpu, with its own queue of sockets. | 
 |  */ | 
 | struct tsq_tasklet { | 
 | 	struct tasklet_struct	tasklet; | 
 | 	struct list_head	head; /* queue of tcp sockets */ | 
 | }; | 
 | static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); | 
 |  | 
 | static void tcp_tsq_write(struct sock *sk) | 
 | { | 
 | 	if ((1 << sk->sk_state) & | 
 | 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | | 
 | 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) { | 
 | 		struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 		if (tp->lost_out > tp->retrans_out && | 
 | 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) { | 
 | 			tcp_mstamp_refresh(tp); | 
 | 			tcp_xmit_retransmit_queue(sk); | 
 | 		} | 
 |  | 
 | 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, | 
 | 			       0, GFP_ATOMIC); | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_tsq_handler(struct sock *sk) | 
 | { | 
 | 	bh_lock_sock(sk); | 
 | 	if (!sock_owned_by_user(sk)) | 
 | 		tcp_tsq_write(sk); | 
 | 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) | 
 | 		sock_hold(sk); | 
 | 	bh_unlock_sock(sk); | 
 | } | 
 | /* | 
 |  * One tasklet per cpu tries to send more skbs. | 
 |  * We run in tasklet context but need to disable irqs when | 
 |  * transferring tsq->head because tcp_wfree() might | 
 |  * interrupt us (non NAPI drivers) | 
 |  */ | 
 | static void tcp_tasklet_func(unsigned long data) | 
 | { | 
 | 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; | 
 | 	LIST_HEAD(list); | 
 | 	unsigned long flags; | 
 | 	struct list_head *q, *n; | 
 | 	struct tcp_sock *tp; | 
 | 	struct sock *sk; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	list_splice_init(&tsq->head, &list); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	list_for_each_safe(q, n, &list) { | 
 | 		tp = list_entry(q, struct tcp_sock, tsq_node); | 
 | 		list_del(&tp->tsq_node); | 
 |  | 
 | 		sk = (struct sock *)tp; | 
 | 		smp_mb__before_atomic(); | 
 | 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); | 
 |  | 
 | 		tcp_tsq_handler(sk); | 
 | 		sk_free(sk); | 
 | 	} | 
 | } | 
 |  | 
 | #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\ | 
 | 			  TCPF_WRITE_TIMER_DEFERRED |	\ | 
 | 			  TCPF_DELACK_TIMER_DEFERRED |	\ | 
 | 			  TCPF_MTU_REDUCED_DEFERRED) | 
 | /** | 
 |  * tcp_release_cb - tcp release_sock() callback | 
 |  * @sk: socket | 
 |  * | 
 |  * called from release_sock() to perform protocol dependent | 
 |  * actions before socket release. | 
 |  */ | 
 | void tcp_release_cb(struct sock *sk) | 
 | { | 
 | 	unsigned long flags, nflags; | 
 |  | 
 | 	/* perform an atomic operation only if at least one flag is set */ | 
 | 	do { | 
 | 		flags = sk->sk_tsq_flags; | 
 | 		if (!(flags & TCP_DEFERRED_ALL)) | 
 | 			return; | 
 | 		nflags = flags & ~TCP_DEFERRED_ALL; | 
 | 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); | 
 |  | 
 | 	if (flags & TCPF_TSQ_DEFERRED) { | 
 | 		tcp_tsq_write(sk); | 
 | 		__sock_put(sk); | 
 | 	} | 
 | 	/* Here begins the tricky part : | 
 | 	 * We are called from release_sock() with : | 
 | 	 * 1) BH disabled | 
 | 	 * 2) sk_lock.slock spinlock held | 
 | 	 * 3) socket owned by us (sk->sk_lock.owned == 1) | 
 | 	 * | 
 | 	 * But following code is meant to be called from BH handlers, | 
 | 	 * so we should keep BH disabled, but early release socket ownership | 
 | 	 */ | 
 | 	sock_release_ownership(sk); | 
 |  | 
 | 	if (flags & TCPF_WRITE_TIMER_DEFERRED) { | 
 | 		tcp_write_timer_handler(sk); | 
 | 		__sock_put(sk); | 
 | 	} | 
 | 	if (flags & TCPF_DELACK_TIMER_DEFERRED) { | 
 | 		tcp_delack_timer_handler(sk); | 
 | 		__sock_put(sk); | 
 | 	} | 
 | 	if (flags & TCPF_MTU_REDUCED_DEFERRED) { | 
 | 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); | 
 | 		__sock_put(sk); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(tcp_release_cb); | 
 |  | 
 | void __init tcp_tasklet_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); | 
 |  | 
 | 		INIT_LIST_HEAD(&tsq->head); | 
 | 		tasklet_init(&tsq->tasklet, | 
 | 			     tcp_tasklet_func, | 
 | 			     (unsigned long)tsq); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Write buffer destructor automatically called from kfree_skb. | 
 |  * We can't xmit new skbs from this context, as we might already | 
 |  * hold qdisc lock. | 
 |  */ | 
 | void tcp_wfree(struct sk_buff *skb) | 
 | { | 
 | 	struct sock *sk = skb->sk; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned long flags, nval, oval; | 
 |  | 
 | 	/* Keep one reference on sk_wmem_alloc. | 
 | 	 * Will be released by sk_free() from here or tcp_tasklet_func() | 
 | 	 */ | 
 | 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); | 
 |  | 
 | 	/* If this softirq is serviced by ksoftirqd, we are likely under stress. | 
 | 	 * Wait until our queues (qdisc + devices) are drained. | 
 | 	 * This gives : | 
 | 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches) | 
 | 	 * - chance for incoming ACK (processed by another cpu maybe) | 
 | 	 *   to migrate this flow (skb->ooo_okay will be eventually set) | 
 | 	 */ | 
 | 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) | 
 | 		goto out; | 
 |  | 
 | 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { | 
 | 		struct tsq_tasklet *tsq; | 
 | 		bool empty; | 
 |  | 
 | 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) | 
 | 			goto out; | 
 |  | 
 | 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; | 
 | 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); | 
 | 		if (nval != oval) | 
 | 			continue; | 
 |  | 
 | 		/* queue this socket to tasklet queue */ | 
 | 		local_irq_save(flags); | 
 | 		tsq = this_cpu_ptr(&tsq_tasklet); | 
 | 		empty = list_empty(&tsq->head); | 
 | 		list_add(&tp->tsq_node, &tsq->head); | 
 | 		if (empty) | 
 | 			tasklet_schedule(&tsq->tasklet); | 
 | 		local_irq_restore(flags); | 
 | 		return; | 
 | 	} | 
 | out: | 
 | 	sk_free(sk); | 
 | } | 
 |  | 
 | /* Note: Called under soft irq. | 
 |  * We can call TCP stack right away, unless socket is owned by user. | 
 |  */ | 
 | enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) | 
 | { | 
 | 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); | 
 | 	struct sock *sk = (struct sock *)tp; | 
 |  | 
 | 	tcp_tsq_handler(sk); | 
 | 	sock_put(sk); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	u64 len_ns; | 
 | 	u32 rate; | 
 |  | 
 | 	if (!tcp_needs_internal_pacing(sk)) | 
 | 		return; | 
 | 	rate = sk->sk_pacing_rate; | 
 | 	if (!rate || rate == ~0U) | 
 | 		return; | 
 |  | 
 | 	len_ns = (u64)skb->len * NSEC_PER_SEC; | 
 | 	do_div(len_ns, rate); | 
 | 	hrtimer_start(&tcp_sk(sk)->pacing_timer, | 
 | 		      ktime_add_ns(ktime_get(), len_ns), | 
 | 		      HRTIMER_MODE_ABS_PINNED_SOFT); | 
 | 	sock_hold(sk); | 
 | } | 
 |  | 
 | static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) | 
 | { | 
 | 	skb->skb_mstamp = tp->tcp_mstamp; | 
 | 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); | 
 | } | 
 |  | 
 | /* This routine actually transmits TCP packets queued in by | 
 |  * tcp_do_sendmsg().  This is used by both the initial | 
 |  * transmission and possible later retransmissions. | 
 |  * All SKB's seen here are completely headerless.  It is our | 
 |  * job to build the TCP header, and pass the packet down to | 
 |  * IP so it can do the same plus pass the packet off to the | 
 |  * device. | 
 |  * | 
 |  * We are working here with either a clone of the original | 
 |  * SKB, or a fresh unique copy made by the retransmit engine. | 
 |  */ | 
 | static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, | 
 | 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct inet_sock *inet; | 
 | 	struct tcp_sock *tp; | 
 | 	struct tcp_skb_cb *tcb; | 
 | 	struct tcp_out_options opts; | 
 | 	unsigned int tcp_options_size, tcp_header_size; | 
 | 	struct sk_buff *oskb = NULL; | 
 | 	struct tcp_md5sig_key *md5; | 
 | 	struct tcphdr *th; | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(!skb || !tcp_skb_pcount(skb)); | 
 | 	tp = tcp_sk(sk); | 
 |  | 
 | 	if (clone_it) { | 
 | 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq | 
 | 			- tp->snd_una; | 
 | 		oskb = skb; | 
 |  | 
 | 		tcp_skb_tsorted_save(oskb) { | 
 | 			if (unlikely(skb_cloned(oskb))) | 
 | 				skb = pskb_copy(oskb, gfp_mask); | 
 | 			else | 
 | 				skb = skb_clone(oskb, gfp_mask); | 
 | 		} tcp_skb_tsorted_restore(oskb); | 
 |  | 
 | 		if (unlikely(!skb)) | 
 | 			return -ENOBUFS; | 
 | 	} | 
 | 	skb->skb_mstamp = tp->tcp_mstamp; | 
 |  | 
 | 	inet = inet_sk(sk); | 
 | 	tcb = TCP_SKB_CB(skb); | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 |  | 
 | 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) | 
 | 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); | 
 | 	else | 
 | 		tcp_options_size = tcp_established_options(sk, skb, &opts, | 
 | 							   &md5); | 
 | 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr); | 
 |  | 
 | 	/* if no packet is in qdisc/device queue, then allow XPS to select | 
 | 	 * another queue. We can be called from tcp_tsq_handler() | 
 | 	 * which holds one reference to sk. | 
 | 	 * | 
 | 	 * TODO: Ideally, in-flight pure ACK packets should not matter here. | 
 | 	 * One way to get this would be to set skb->truesize = 2 on them. | 
 | 	 */ | 
 | 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); | 
 |  | 
 | 	/* If we had to use memory reserve to allocate this skb, | 
 | 	 * this might cause drops if packet is looped back : | 
 | 	 * Other socket might not have SOCK_MEMALLOC. | 
 | 	 * Packets not looped back do not care about pfmemalloc. | 
 | 	 */ | 
 | 	skb->pfmemalloc = 0; | 
 |  | 
 | 	skb_push(skb, tcp_header_size); | 
 | 	skb_reset_transport_header(skb); | 
 |  | 
 | 	skb_orphan(skb); | 
 | 	skb->sk = sk; | 
 | 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; | 
 | 	skb_set_hash_from_sk(skb, sk); | 
 | 	refcount_add(skb->truesize, &sk->sk_wmem_alloc); | 
 |  | 
 | 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); | 
 |  | 
 | 	/* Build TCP header and checksum it. */ | 
 | 	th = (struct tcphdr *)skb->data; | 
 | 	th->source		= inet->inet_sport; | 
 | 	th->dest		= inet->inet_dport; | 
 | 	th->seq			= htonl(tcb->seq); | 
 | 	th->ack_seq		= htonl(rcv_nxt); | 
 | 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | | 
 | 					tcb->tcp_flags); | 
 |  | 
 | 	th->check		= 0; | 
 | 	th->urg_ptr		= 0; | 
 |  | 
 | 	/* The urg_mode check is necessary during a below snd_una win probe */ | 
 | 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { | 
 | 		if (before(tp->snd_up, tcb->seq + 0x10000)) { | 
 | 			th->urg_ptr = htons(tp->snd_up - tcb->seq); | 
 | 			th->urg = 1; | 
 | 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { | 
 | 			th->urg_ptr = htons(0xFFFF); | 
 | 			th->urg = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tcp_options_write((__be32 *)(th + 1), tp, &opts); | 
 | 	skb_shinfo(skb)->gso_type = sk->sk_gso_type; | 
 | 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { | 
 | 		th->window      = htons(tcp_select_window(sk)); | 
 | 		tcp_ecn_send(sk, skb, th, tcp_header_size); | 
 | 	} else { | 
 | 		/* RFC1323: The window in SYN & SYN/ACK segments | 
 | 		 * is never scaled. | 
 | 		 */ | 
 | 		th->window	= htons(min(tp->rcv_wnd, 65535U)); | 
 | 	} | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	/* Calculate the MD5 hash, as we have all we need now */ | 
 | 	if (md5) { | 
 | 		sk_nocaps_add(sk, NETIF_F_GSO_MASK); | 
 | 		tp->af_specific->calc_md5_hash(opts.hash_location, | 
 | 					       md5, sk, skb); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	icsk->icsk_af_ops->send_check(sk, skb); | 
 |  | 
 | 	if (likely(tcb->tcp_flags & TCPHDR_ACK)) | 
 | 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); | 
 |  | 
 | 	if (skb->len != tcp_header_size) { | 
 | 		tcp_event_data_sent(tp, sk); | 
 | 		tp->data_segs_out += tcp_skb_pcount(skb); | 
 | 		tp->bytes_sent += skb->len - tcp_header_size; | 
 | 		tcp_internal_pacing(sk, skb); | 
 | 	} | 
 |  | 
 | 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) | 
 | 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, | 
 | 			      tcp_skb_pcount(skb)); | 
 |  | 
 | 	tp->segs_out += tcp_skb_pcount(skb); | 
 | 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ | 
 | 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); | 
 | 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); | 
 |  | 
 | 	/* Our usage of tstamp should remain private */ | 
 | 	skb->tstamp = 0; | 
 |  | 
 | 	/* Cleanup our debris for IP stacks */ | 
 | 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), | 
 | 			       sizeof(struct inet6_skb_parm))); | 
 |  | 
 | 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); | 
 |  | 
 | 	if (unlikely(err > 0)) { | 
 | 		tcp_enter_cwr(sk); | 
 | 		err = net_xmit_eval(err); | 
 | 	} | 
 | 	if (!err && oskb) { | 
 | 		tcp_update_skb_after_send(tp, oskb); | 
 | 		tcp_rate_skb_sent(sk, oskb); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, | 
 | 			    gfp_t gfp_mask) | 
 | { | 
 | 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, | 
 | 				  tcp_sk(sk)->rcv_nxt); | 
 | } | 
 |  | 
 | /* This routine just queues the buffer for sending. | 
 |  * | 
 |  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | 
 |  * otherwise socket can stall. | 
 |  */ | 
 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Advance write_seq and place onto the write_queue. */ | 
 | 	tp->write_seq = TCP_SKB_CB(skb)->end_seq; | 
 | 	__skb_header_release(skb); | 
 | 	tcp_add_write_queue_tail(sk, skb); | 
 | 	sk->sk_wmem_queued += skb->truesize; | 
 | 	sk_mem_charge(sk, skb->truesize); | 
 | } | 
 |  | 
 | /* Initialize TSO segments for a packet. */ | 
 | static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) | 
 | { | 
 | 	if (skb->len <= mss_now) { | 
 | 		/* Avoid the costly divide in the normal | 
 | 		 * non-TSO case. | 
 | 		 */ | 
 | 		tcp_skb_pcount_set(skb, 1); | 
 | 		TCP_SKB_CB(skb)->tcp_gso_size = 0; | 
 | 	} else { | 
 | 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); | 
 | 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now; | 
 | 	} | 
 | } | 
 |  | 
 | /* Pcount in the middle of the write queue got changed, we need to do various | 
 |  * tweaks to fix counters | 
 |  */ | 
 | static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	tp->packets_out -= decr; | 
 |  | 
 | 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
 | 		tp->sacked_out -= decr; | 
 | 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) | 
 | 		tp->retrans_out -= decr; | 
 | 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) | 
 | 		tp->lost_out -= decr; | 
 |  | 
 | 	/* Reno case is special. Sigh... */ | 
 | 	if (tcp_is_reno(tp) && decr > 0) | 
 | 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr); | 
 |  | 
 | 	if (tp->lost_skb_hint && | 
 | 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && | 
 | 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) | 
 | 		tp->lost_cnt_hint -= decr; | 
 |  | 
 | 	tcp_verify_left_out(tp); | 
 | } | 
 |  | 
 | static bool tcp_has_tx_tstamp(const struct sk_buff *skb) | 
 | { | 
 | 	return TCP_SKB_CB(skb)->txstamp_ack || | 
 | 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); | 
 | } | 
 |  | 
 | static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) | 
 | { | 
 | 	struct skb_shared_info *shinfo = skb_shinfo(skb); | 
 |  | 
 | 	if (unlikely(tcp_has_tx_tstamp(skb)) && | 
 | 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { | 
 | 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2); | 
 | 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; | 
 |  | 
 | 		shinfo->tx_flags &= ~tsflags; | 
 | 		shinfo2->tx_flags |= tsflags; | 
 | 		swap(shinfo->tskey, shinfo2->tskey); | 
 | 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; | 
 | 		TCP_SKB_CB(skb)->txstamp_ack = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) | 
 | { | 
 | 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; | 
 | 	TCP_SKB_CB(skb)->eor = 0; | 
 | } | 
 |  | 
 | /* Insert buff after skb on the write or rtx queue of sk.  */ | 
 | static void tcp_insert_write_queue_after(struct sk_buff *skb, | 
 | 					 struct sk_buff *buff, | 
 | 					 struct sock *sk, | 
 | 					 enum tcp_queue tcp_queue) | 
 | { | 
 | 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) | 
 | 		__skb_queue_after(&sk->sk_write_queue, skb, buff); | 
 | 	else | 
 | 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); | 
 | } | 
 |  | 
 | /* Function to create two new TCP segments.  Shrinks the given segment | 
 |  * to the specified size and appends a new segment with the rest of the | 
 |  * packet to the list.  This won't be called frequently, I hope. | 
 |  * Remember, these are still headerless SKBs at this point. | 
 |  */ | 
 | int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, | 
 | 		 struct sk_buff *skb, u32 len, | 
 | 		 unsigned int mss_now, gfp_t gfp) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *buff; | 
 | 	int nsize, old_factor; | 
 | 	long limit; | 
 | 	int nlen; | 
 | 	u8 flags; | 
 |  | 
 | 	if (WARN_ON(len > skb->len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	nsize = skb_headlen(skb) - len; | 
 | 	if (nsize < 0) | 
 | 		nsize = 0; | 
 |  | 
 | 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. | 
 | 	 * We need some allowance to not penalize applications setting small | 
 | 	 * SO_SNDBUF values. | 
 | 	 * Also allow first and last skb in retransmit queue to be split. | 
 | 	 */ | 
 | 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); | 
 | 	if (unlikely((sk->sk_wmem_queued >> 1) > limit && | 
 | 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && | 
 | 		     skb != tcp_rtx_queue_head(sk) && | 
 | 		     skb != tcp_rtx_queue_tail(sk))) { | 
 | 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (skb_unclone(skb, gfp)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Get a new skb... force flag on. */ | 
 | 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true); | 
 | 	if (!buff) | 
 | 		return -ENOMEM; /* We'll just try again later. */ | 
 |  | 
 | 	sk->sk_wmem_queued += buff->truesize; | 
 | 	sk_mem_charge(sk, buff->truesize); | 
 | 	nlen = skb->len - len - nsize; | 
 | 	buff->truesize += nlen; | 
 | 	skb->truesize -= nlen; | 
 |  | 
 | 	/* Correct the sequence numbers. */ | 
 | 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
 | 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
 | 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
 |  | 
 | 	/* PSH and FIN should only be set in the second packet. */ | 
 | 	flags = TCP_SKB_CB(skb)->tcp_flags; | 
 | 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); | 
 | 	TCP_SKB_CB(buff)->tcp_flags = flags; | 
 | 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; | 
 | 	tcp_skb_fragment_eor(skb, buff); | 
 |  | 
 | 	skb_split(skb, buff, len); | 
 |  | 
 | 	buff->ip_summed = CHECKSUM_PARTIAL; | 
 |  | 
 | 	buff->tstamp = skb->tstamp; | 
 | 	tcp_fragment_tstamp(skb, buff); | 
 |  | 
 | 	old_factor = tcp_skb_pcount(skb); | 
 |  | 
 | 	/* Fix up tso_factor for both original and new SKB.  */ | 
 | 	tcp_set_skb_tso_segs(skb, mss_now); | 
 | 	tcp_set_skb_tso_segs(buff, mss_now); | 
 |  | 
 | 	/* Update delivered info for the new segment */ | 
 | 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; | 
 |  | 
 | 	/* If this packet has been sent out already, we must | 
 | 	 * adjust the various packet counters. | 
 | 	 */ | 
 | 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { | 
 | 		int diff = old_factor - tcp_skb_pcount(skb) - | 
 | 			tcp_skb_pcount(buff); | 
 |  | 
 | 		if (diff) | 
 | 			tcp_adjust_pcount(sk, skb, diff); | 
 | 	} | 
 |  | 
 | 	/* Link BUFF into the send queue. */ | 
 | 	__skb_header_release(buff); | 
 | 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); | 
 | 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) | 
 | 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This is similar to __pskb_pull_tail(). The difference is that pulled | 
 |  * data is not copied, but immediately discarded. | 
 |  */ | 
 | static int __pskb_trim_head(struct sk_buff *skb, int len) | 
 | { | 
 | 	struct skb_shared_info *shinfo; | 
 | 	int i, k, eat; | 
 |  | 
 | 	eat = min_t(int, len, skb_headlen(skb)); | 
 | 	if (eat) { | 
 | 		__skb_pull(skb, eat); | 
 | 		len -= eat; | 
 | 		if (!len) | 
 | 			return 0; | 
 | 	} | 
 | 	eat = len; | 
 | 	k = 0; | 
 | 	shinfo = skb_shinfo(skb); | 
 | 	for (i = 0; i < shinfo->nr_frags; i++) { | 
 | 		int size = skb_frag_size(&shinfo->frags[i]); | 
 |  | 
 | 		if (size <= eat) { | 
 | 			skb_frag_unref(skb, i); | 
 | 			eat -= size; | 
 | 		} else { | 
 | 			shinfo->frags[k] = shinfo->frags[i]; | 
 | 			if (eat) { | 
 | 				shinfo->frags[k].page_offset += eat; | 
 | 				skb_frag_size_sub(&shinfo->frags[k], eat); | 
 | 				eat = 0; | 
 | 			} | 
 | 			k++; | 
 | 		} | 
 | 	} | 
 | 	shinfo->nr_frags = k; | 
 |  | 
 | 	skb->data_len -= len; | 
 | 	skb->len = skb->data_len; | 
 | 	return len; | 
 | } | 
 |  | 
 | /* Remove acked data from a packet in the transmit queue. */ | 
 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | 
 | { | 
 | 	u32 delta_truesize; | 
 |  | 
 | 	if (skb_unclone(skb, GFP_ATOMIC)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	delta_truesize = __pskb_trim_head(skb, len); | 
 |  | 
 | 	TCP_SKB_CB(skb)->seq += len; | 
 | 	skb->ip_summed = CHECKSUM_PARTIAL; | 
 |  | 
 | 	if (delta_truesize) { | 
 | 		skb->truesize	   -= delta_truesize; | 
 | 		sk->sk_wmem_queued -= delta_truesize; | 
 | 		sk_mem_uncharge(sk, delta_truesize); | 
 | 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | 
 | 	} | 
 |  | 
 | 	/* Any change of skb->len requires recalculation of tso factor. */ | 
 | 	if (tcp_skb_pcount(skb) > 1) | 
 | 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Calculate MSS not accounting any TCP options.  */ | 
 | static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	int mss_now; | 
 |  | 
 | 	/* Calculate base mss without TCP options: | 
 | 	   It is MMS_S - sizeof(tcphdr) of rfc1122 | 
 | 	 */ | 
 | 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); | 
 |  | 
 | 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ | 
 | 	if (icsk->icsk_af_ops->net_frag_header_len) { | 
 | 		const struct dst_entry *dst = __sk_dst_get(sk); | 
 |  | 
 | 		if (dst && dst_allfrag(dst)) | 
 | 			mss_now -= icsk->icsk_af_ops->net_frag_header_len; | 
 | 	} | 
 |  | 
 | 	/* Clamp it (mss_clamp does not include tcp options) */ | 
 | 	if (mss_now > tp->rx_opt.mss_clamp) | 
 | 		mss_now = tp->rx_opt.mss_clamp; | 
 |  | 
 | 	/* Now subtract optional transport overhead */ | 
 | 	mss_now -= icsk->icsk_ext_hdr_len; | 
 |  | 
 | 	/* Then reserve room for full set of TCP options and 8 bytes of data */ | 
 | 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); | 
 | 	return mss_now; | 
 | } | 
 |  | 
 | /* Calculate MSS. Not accounting for SACKs here.  */ | 
 | int tcp_mtu_to_mss(struct sock *sk, int pmtu) | 
 | { | 
 | 	/* Subtract TCP options size, not including SACKs */ | 
 | 	return __tcp_mtu_to_mss(sk, pmtu) - | 
 | 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); | 
 | } | 
 |  | 
 | /* Inverse of above */ | 
 | int tcp_mss_to_mtu(struct sock *sk, int mss) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	int mtu; | 
 |  | 
 | 	mtu = mss + | 
 | 	      tp->tcp_header_len + | 
 | 	      icsk->icsk_ext_hdr_len + | 
 | 	      icsk->icsk_af_ops->net_header_len; | 
 |  | 
 | 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ | 
 | 	if (icsk->icsk_af_ops->net_frag_header_len) { | 
 | 		const struct dst_entry *dst = __sk_dst_get(sk); | 
 |  | 
 | 		if (dst && dst_allfrag(dst)) | 
 | 			mtu += icsk->icsk_af_ops->net_frag_header_len; | 
 | 	} | 
 | 	return mtu; | 
 | } | 
 | EXPORT_SYMBOL(tcp_mss_to_mtu); | 
 |  | 
 | /* MTU probing init per socket */ | 
 | void tcp_mtup_init(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct net *net = sock_net(sk); | 
 |  | 
 | 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; | 
 | 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + | 
 | 			       icsk->icsk_af_ops->net_header_len; | 
 | 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); | 
 | 	icsk->icsk_mtup.probe_size = 0; | 
 | 	if (icsk->icsk_mtup.enabled) | 
 | 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; | 
 | } | 
 | EXPORT_SYMBOL(tcp_mtup_init); | 
 |  | 
 | /* This function synchronize snd mss to current pmtu/exthdr set. | 
 |  | 
 |    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | 
 |    for TCP options, but includes only bare TCP header. | 
 |  | 
 |    tp->rx_opt.mss_clamp is mss negotiated at connection setup. | 
 |    It is minimum of user_mss and mss received with SYN. | 
 |    It also does not include TCP options. | 
 |  | 
 |    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. | 
 |  | 
 |    tp->mss_cache is current effective sending mss, including | 
 |    all tcp options except for SACKs. It is evaluated, | 
 |    taking into account current pmtu, but never exceeds | 
 |    tp->rx_opt.mss_clamp. | 
 |  | 
 |    NOTE1. rfc1122 clearly states that advertised MSS | 
 |    DOES NOT include either tcp or ip options. | 
 |  | 
 |    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache | 
 |    are READ ONLY outside this function.		--ANK (980731) | 
 |  */ | 
 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	int mss_now; | 
 |  | 
 | 	if (icsk->icsk_mtup.search_high > pmtu) | 
 | 		icsk->icsk_mtup.search_high = pmtu; | 
 |  | 
 | 	mss_now = tcp_mtu_to_mss(sk, pmtu); | 
 | 	mss_now = tcp_bound_to_half_wnd(tp, mss_now); | 
 |  | 
 | 	/* And store cached results */ | 
 | 	icsk->icsk_pmtu_cookie = pmtu; | 
 | 	if (icsk->icsk_mtup.enabled) | 
 | 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); | 
 | 	tp->mss_cache = mss_now; | 
 |  | 
 | 	return mss_now; | 
 | } | 
 | EXPORT_SYMBOL(tcp_sync_mss); | 
 |  | 
 | /* Compute the current effective MSS, taking SACKs and IP options, | 
 |  * and even PMTU discovery events into account. | 
 |  */ | 
 | unsigned int tcp_current_mss(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct dst_entry *dst = __sk_dst_get(sk); | 
 | 	u32 mss_now; | 
 | 	unsigned int header_len; | 
 | 	struct tcp_out_options opts; | 
 | 	struct tcp_md5sig_key *md5; | 
 |  | 
 | 	mss_now = tp->mss_cache; | 
 |  | 
 | 	if (dst) { | 
 | 		u32 mtu = dst_mtu(dst); | 
 | 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie) | 
 | 			mss_now = tcp_sync_mss(sk, mtu); | 
 | 	} | 
 |  | 
 | 	header_len = tcp_established_options(sk, NULL, &opts, &md5) + | 
 | 		     sizeof(struct tcphdr); | 
 | 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes | 
 | 	 * some common options. If this is an odd packet (because we have SACK | 
 | 	 * blocks etc) then our calculated header_len will be different, and | 
 | 	 * we have to adjust mss_now correspondingly */ | 
 | 	if (header_len != tp->tcp_header_len) { | 
 | 		int delta = (int) header_len - tp->tcp_header_len; | 
 | 		mss_now -= delta; | 
 | 	} | 
 |  | 
 | 	return mss_now; | 
 | } | 
 |  | 
 | /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. | 
 |  * As additional protections, we do not touch cwnd in retransmission phases, | 
 |  * and if application hit its sndbuf limit recently. | 
 |  */ | 
 | static void tcp_cwnd_application_limited(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && | 
 | 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { | 
 | 		/* Limited by application or receiver window. */ | 
 | 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); | 
 | 		u32 win_used = max(tp->snd_cwnd_used, init_win); | 
 | 		if (win_used < tp->snd_cwnd) { | 
 | 			tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
 | 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; | 
 | 		} | 
 | 		tp->snd_cwnd_used = 0; | 
 | 	} | 
 | 	tp->snd_cwnd_stamp = tcp_jiffies32; | 
 | } | 
 |  | 
 | static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) | 
 | { | 
 | 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Track the maximum number of outstanding packets in each | 
 | 	 * window, and remember whether we were cwnd-limited then. | 
 | 	 */ | 
 | 	if (!before(tp->snd_una, tp->max_packets_seq) || | 
 | 	    tp->packets_out > tp->max_packets_out) { | 
 | 		tp->max_packets_out = tp->packets_out; | 
 | 		tp->max_packets_seq = tp->snd_nxt; | 
 | 		tp->is_cwnd_limited = is_cwnd_limited; | 
 | 	} | 
 |  | 
 | 	if (tcp_is_cwnd_limited(sk)) { | 
 | 		/* Network is feed fully. */ | 
 | 		tp->snd_cwnd_used = 0; | 
 | 		tp->snd_cwnd_stamp = tcp_jiffies32; | 
 | 	} else { | 
 | 		/* Network starves. */ | 
 | 		if (tp->packets_out > tp->snd_cwnd_used) | 
 | 			tp->snd_cwnd_used = tp->packets_out; | 
 |  | 
 | 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && | 
 | 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && | 
 | 		    !ca_ops->cong_control) | 
 | 			tcp_cwnd_application_limited(sk); | 
 |  | 
 | 		/* The following conditions together indicate the starvation | 
 | 		 * is caused by insufficient sender buffer: | 
 | 		 * 1) just sent some data (see tcp_write_xmit) | 
 | 		 * 2) not cwnd limited (this else condition) | 
 | 		 * 3) no more data to send (tcp_write_queue_empty()) | 
 | 		 * 4) application is hitting buffer limit (SOCK_NOSPACE) | 
 | 		 */ | 
 | 		if (tcp_write_queue_empty(sk) && sk->sk_socket && | 
 | 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && | 
 | 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) | 
 | 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); | 
 | 	} | 
 | } | 
 |  | 
 | /* Minshall's variant of the Nagle send check. */ | 
 | static bool tcp_minshall_check(const struct tcp_sock *tp) | 
 | { | 
 | 	return after(tp->snd_sml, tp->snd_una) && | 
 | 		!after(tp->snd_sml, tp->snd_nxt); | 
 | } | 
 |  | 
 | /* Update snd_sml if this skb is under mss | 
 |  * Note that a TSO packet might end with a sub-mss segment | 
 |  * The test is really : | 
 |  * if ((skb->len % mss) != 0) | 
 |  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq; | 
 |  * But we can avoid doing the divide again given we already have | 
 |  *  skb_pcount = skb->len / mss_now | 
 |  */ | 
 | static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, | 
 | 				const struct sk_buff *skb) | 
 | { | 
 | 	if (skb->len < tcp_skb_pcount(skb) * mss_now) | 
 | 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq; | 
 | } | 
 |  | 
 | /* Return false, if packet can be sent now without violation Nagle's rules: | 
 |  * 1. It is full sized. (provided by caller in %partial bool) | 
 |  * 2. Or it contains FIN. (already checked by caller) | 
 |  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. | 
 |  * 4. Or TCP_CORK is not set, and all sent packets are ACKed. | 
 |  *    With Minshall's modification: all sent small packets are ACKed. | 
 |  */ | 
 | static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, | 
 | 			    int nonagle) | 
 | { | 
 | 	return partial && | 
 | 		((nonagle & TCP_NAGLE_CORK) || | 
 | 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); | 
 | } | 
 |  | 
 | /* Return how many segs we'd like on a TSO packet, | 
 |  * to send one TSO packet per ms | 
 |  */ | 
 | static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, | 
 | 			    int min_tso_segs) | 
 | { | 
 | 	u32 bytes, segs; | 
 |  | 
 | 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, | 
 | 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); | 
 |  | 
 | 	/* Goal is to send at least one packet per ms, | 
 | 	 * not one big TSO packet every 100 ms. | 
 | 	 * This preserves ACK clocking and is consistent | 
 | 	 * with tcp_tso_should_defer() heuristic. | 
 | 	 */ | 
 | 	segs = max_t(u32, bytes / mss_now, min_tso_segs); | 
 |  | 
 | 	return segs; | 
 | } | 
 |  | 
 | /* Return the number of segments we want in the skb we are transmitting. | 
 |  * See if congestion control module wants to decide; otherwise, autosize. | 
 |  */ | 
 | static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) | 
 | { | 
 | 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; | 
 | 	u32 min_tso, tso_segs; | 
 |  | 
 | 	min_tso = ca_ops->min_tso_segs ? | 
 | 			ca_ops->min_tso_segs(sk) : | 
 | 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; | 
 |  | 
 | 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); | 
 | 	return min_t(u32, tso_segs, sk->sk_gso_max_segs); | 
 | } | 
 |  | 
 | /* Returns the portion of skb which can be sent right away */ | 
 | static unsigned int tcp_mss_split_point(const struct sock *sk, | 
 | 					const struct sk_buff *skb, | 
 | 					unsigned int mss_now, | 
 | 					unsigned int max_segs, | 
 | 					int nonagle) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 partial, needed, window, max_len; | 
 |  | 
 | 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | 
 | 	max_len = mss_now * max_segs; | 
 |  | 
 | 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) | 
 | 		return max_len; | 
 |  | 
 | 	needed = min(skb->len, window); | 
 |  | 
 | 	if (max_len <= needed) | 
 | 		return max_len; | 
 |  | 
 | 	partial = needed % mss_now; | 
 | 	/* If last segment is not a full MSS, check if Nagle rules allow us | 
 | 	 * to include this last segment in this skb. | 
 | 	 * Otherwise, we'll split the skb at last MSS boundary | 
 | 	 */ | 
 | 	if (tcp_nagle_check(partial != 0, tp, nonagle)) | 
 | 		return needed - partial; | 
 |  | 
 | 	return needed; | 
 | } | 
 |  | 
 | /* Can at least one segment of SKB be sent right now, according to the | 
 |  * congestion window rules?  If so, return how many segments are allowed. | 
 |  */ | 
 | static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, | 
 | 					 const struct sk_buff *skb) | 
 | { | 
 | 	u32 in_flight, cwnd, halfcwnd; | 
 |  | 
 | 	/* Don't be strict about the congestion window for the final FIN.  */ | 
 | 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && | 
 | 	    tcp_skb_pcount(skb) == 1) | 
 | 		return 1; | 
 |  | 
 | 	in_flight = tcp_packets_in_flight(tp); | 
 | 	cwnd = tp->snd_cwnd; | 
 | 	if (in_flight >= cwnd) | 
 | 		return 0; | 
 |  | 
 | 	/* For better scheduling, ensure we have at least | 
 | 	 * 2 GSO packets in flight. | 
 | 	 */ | 
 | 	halfcwnd = max(cwnd >> 1, 1U); | 
 | 	return min(halfcwnd, cwnd - in_flight); | 
 | } | 
 |  | 
 | /* Initialize TSO state of a skb. | 
 |  * This must be invoked the first time we consider transmitting | 
 |  * SKB onto the wire. | 
 |  */ | 
 | static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) | 
 | { | 
 | 	int tso_segs = tcp_skb_pcount(skb); | 
 |  | 
 | 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { | 
 | 		tcp_set_skb_tso_segs(skb, mss_now); | 
 | 		tso_segs = tcp_skb_pcount(skb); | 
 | 	} | 
 | 	return tso_segs; | 
 | } | 
 |  | 
 |  | 
 | /* Return true if the Nagle test allows this packet to be | 
 |  * sent now. | 
 |  */ | 
 | static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, | 
 | 				  unsigned int cur_mss, int nonagle) | 
 | { | 
 | 	/* Nagle rule does not apply to frames, which sit in the middle of the | 
 | 	 * write_queue (they have no chances to get new data). | 
 | 	 * | 
 | 	 * This is implemented in the callers, where they modify the 'nonagle' | 
 | 	 * argument based upon the location of SKB in the send queue. | 
 | 	 */ | 
 | 	if (nonagle & TCP_NAGLE_PUSH) | 
 | 		return true; | 
 |  | 
 | 	/* Don't use the nagle rule for urgent data (or for the final FIN). */ | 
 | 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) | 
 | 		return true; | 
 |  | 
 | 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Does at least the first segment of SKB fit into the send window? */ | 
 | static bool tcp_snd_wnd_test(const struct tcp_sock *tp, | 
 | 			     const struct sk_buff *skb, | 
 | 			     unsigned int cur_mss) | 
 | { | 
 | 	u32 end_seq = TCP_SKB_CB(skb)->end_seq; | 
 |  | 
 | 	if (skb->len > cur_mss) | 
 | 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss; | 
 |  | 
 | 	return !after(end_seq, tcp_wnd_end(tp)); | 
 | } | 
 |  | 
 | /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet | 
 |  * which is put after SKB on the list.  It is very much like | 
 |  * tcp_fragment() except that it may make several kinds of assumptions | 
 |  * in order to speed up the splitting operation.  In particular, we | 
 |  * know that all the data is in scatter-gather pages, and that the | 
 |  * packet has never been sent out before (and thus is not cloned). | 
 |  */ | 
 | static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, | 
 | 			struct sk_buff *skb, unsigned int len, | 
 | 			unsigned int mss_now, gfp_t gfp) | 
 | { | 
 | 	struct sk_buff *buff; | 
 | 	int nlen = skb->len - len; | 
 | 	u8 flags; | 
 |  | 
 | 	/* All of a TSO frame must be composed of paged data.  */ | 
 | 	if (skb->len != skb->data_len) | 
 | 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); | 
 |  | 
 | 	buff = sk_stream_alloc_skb(sk, 0, gfp, true); | 
 | 	if (unlikely(!buff)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sk->sk_wmem_queued += buff->truesize; | 
 | 	sk_mem_charge(sk, buff->truesize); | 
 | 	buff->truesize += nlen; | 
 | 	skb->truesize -= nlen; | 
 |  | 
 | 	/* Correct the sequence numbers. */ | 
 | 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
 | 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
 | 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
 |  | 
 | 	/* PSH and FIN should only be set in the second packet. */ | 
 | 	flags = TCP_SKB_CB(skb)->tcp_flags; | 
 | 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); | 
 | 	TCP_SKB_CB(buff)->tcp_flags = flags; | 
 |  | 
 | 	/* This packet was never sent out yet, so no SACK bits. */ | 
 | 	TCP_SKB_CB(buff)->sacked = 0; | 
 |  | 
 | 	tcp_skb_fragment_eor(skb, buff); | 
 |  | 
 | 	buff->ip_summed = CHECKSUM_PARTIAL; | 
 | 	skb_split(skb, buff, len); | 
 | 	tcp_fragment_tstamp(skb, buff); | 
 |  | 
 | 	/* Fix up tso_factor for both original and new SKB.  */ | 
 | 	tcp_set_skb_tso_segs(skb, mss_now); | 
 | 	tcp_set_skb_tso_segs(buff, mss_now); | 
 |  | 
 | 	/* Link BUFF into the send queue. */ | 
 | 	__skb_header_release(buff); | 
 | 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Try to defer sending, if possible, in order to minimize the amount | 
 |  * of TSO splitting we do.  View it as a kind of TSO Nagle test. | 
 |  * | 
 |  * This algorithm is from John Heffner. | 
 |  */ | 
 | static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, | 
 | 				 bool *is_cwnd_limited, | 
 | 				 bool *is_rwnd_limited, | 
 | 				 u32 max_segs) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	u32 age, send_win, cong_win, limit, in_flight; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *head; | 
 | 	int win_divisor; | 
 |  | 
 | 	if (icsk->icsk_ca_state >= TCP_CA_Recovery) | 
 | 		goto send_now; | 
 |  | 
 | 	/* Avoid bursty behavior by allowing defer | 
 | 	 * only if the last write was recent. | 
 | 	 */ | 
 | 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) | 
 | 		goto send_now; | 
 |  | 
 | 	in_flight = tcp_packets_in_flight(tp); | 
 |  | 
 | 	BUG_ON(tcp_skb_pcount(skb) <= 1); | 
 | 	BUG_ON(tp->snd_cwnd <= in_flight); | 
 |  | 
 | 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | 
 |  | 
 | 	/* From in_flight test above, we know that cwnd > in_flight.  */ | 
 | 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; | 
 |  | 
 | 	limit = min(send_win, cong_win); | 
 |  | 
 | 	/* If a full-sized TSO skb can be sent, do it. */ | 
 | 	if (limit >= max_segs * tp->mss_cache) | 
 | 		goto send_now; | 
 |  | 
 | 	/* Middle in queue won't get any more data, full sendable already? */ | 
 | 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) | 
 | 		goto send_now; | 
 |  | 
 | 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); | 
 | 	if (win_divisor) { | 
 | 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); | 
 |  | 
 | 		/* If at least some fraction of a window is available, | 
 | 		 * just use it. | 
 | 		 */ | 
 | 		chunk /= win_divisor; | 
 | 		if (limit >= chunk) | 
 | 			goto send_now; | 
 | 	} else { | 
 | 		/* Different approach, try not to defer past a single | 
 | 		 * ACK.  Receiver should ACK every other full sized | 
 | 		 * frame, so if we have space for more than 3 frames | 
 | 		 * then send now. | 
 | 		 */ | 
 | 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) | 
 | 			goto send_now; | 
 | 	} | 
 |  | 
 | 	/* TODO : use tsorted_sent_queue ? */ | 
 | 	head = tcp_rtx_queue_head(sk); | 
 | 	if (!head) | 
 | 		goto send_now; | 
 | 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); | 
 | 	/* If next ACK is likely to come too late (half srtt), do not defer */ | 
 | 	if (age < (tp->srtt_us >> 4)) | 
 | 		goto send_now; | 
 |  | 
 | 	/* Ok, it looks like it is advisable to defer. | 
 | 	 * Three cases are tracked : | 
 | 	 * 1) We are cwnd-limited | 
 | 	 * 2) We are rwnd-limited | 
 | 	 * 3) We are application limited. | 
 | 	 */ | 
 | 	if (cong_win < send_win) { | 
 | 		if (cong_win <= skb->len) { | 
 | 			*is_cwnd_limited = true; | 
 | 			return true; | 
 | 		} | 
 | 	} else { | 
 | 		if (send_win <= skb->len) { | 
 | 			*is_rwnd_limited = true; | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If this packet won't get more data, do not wait. */ | 
 | 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
 | 		goto send_now; | 
 |  | 
 | 	return true; | 
 |  | 
 | send_now: | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void tcp_mtu_check_reprobe(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct net *net = sock_net(sk); | 
 | 	u32 interval; | 
 | 	s32 delta; | 
 |  | 
 | 	interval = net->ipv4.sysctl_tcp_probe_interval; | 
 | 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; | 
 | 	if (unlikely(delta >= interval * HZ)) { | 
 | 		int mss = tcp_current_mss(sk); | 
 |  | 
 | 		/* Update current search range */ | 
 | 		icsk->icsk_mtup.probe_size = 0; | 
 | 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + | 
 | 			sizeof(struct tcphdr) + | 
 | 			icsk->icsk_af_ops->net_header_len; | 
 | 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); | 
 |  | 
 | 		/* Update probe time stamp */ | 
 | 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; | 
 | 	} | 
 | } | 
 |  | 
 | static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) | 
 | { | 
 | 	struct sk_buff *skb, *next; | 
 |  | 
 | 	skb = tcp_send_head(sk); | 
 | 	tcp_for_write_queue_from_safe(skb, next, sk) { | 
 | 		if (len <= skb->len) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) | 
 | 			return false; | 
 |  | 
 | 		len -= skb->len; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Create a new MTU probe if we are ready. | 
 |  * MTU probe is regularly attempting to increase the path MTU by | 
 |  * deliberately sending larger packets.  This discovers routing | 
 |  * changes resulting in larger path MTUs. | 
 |  * | 
 |  * Returns 0 if we should wait to probe (no cwnd available), | 
 |  *         1 if a probe was sent, | 
 |  *         -1 otherwise | 
 |  */ | 
 | static int tcp_mtu_probe(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb, *nskb, *next; | 
 | 	struct net *net = sock_net(sk); | 
 | 	int probe_size; | 
 | 	int size_needed; | 
 | 	int copy, len; | 
 | 	int mss_now; | 
 | 	int interval; | 
 |  | 
 | 	/* Not currently probing/verifying, | 
 | 	 * not in recovery, | 
 | 	 * have enough cwnd, and | 
 | 	 * not SACKing (the variable headers throw things off) | 
 | 	 */ | 
 | 	if (likely(!icsk->icsk_mtup.enabled || | 
 | 		   icsk->icsk_mtup.probe_size || | 
 | 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open || | 
 | 		   tp->snd_cwnd < 11 || | 
 | 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack)) | 
 | 		return -1; | 
 |  | 
 | 	/* Use binary search for probe_size between tcp_mss_base, | 
 | 	 * and current mss_clamp. if (search_high - search_low) | 
 | 	 * smaller than a threshold, backoff from probing. | 
 | 	 */ | 
 | 	mss_now = tcp_current_mss(sk); | 
 | 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + | 
 | 				    icsk->icsk_mtup.search_low) >> 1); | 
 | 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; | 
 | 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; | 
 | 	/* When misfortune happens, we are reprobing actively, | 
 | 	 * and then reprobe timer has expired. We stick with current | 
 | 	 * probing process by not resetting search range to its orignal. | 
 | 	 */ | 
 | 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || | 
 | 		interval < net->ipv4.sysctl_tcp_probe_threshold) { | 
 | 		/* Check whether enough time has elaplased for | 
 | 		 * another round of probing. | 
 | 		 */ | 
 | 		tcp_mtu_check_reprobe(sk); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* Have enough data in the send queue to probe? */ | 
 | 	if (tp->write_seq - tp->snd_nxt < size_needed) | 
 | 		return -1; | 
 |  | 
 | 	if (tp->snd_wnd < size_needed) | 
 | 		return -1; | 
 | 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) | 
 | 		return 0; | 
 |  | 
 | 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */ | 
 | 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { | 
 | 		if (!tcp_packets_in_flight(tp)) | 
 | 			return -1; | 
 | 		else | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) | 
 | 		return -1; | 
 |  | 
 | 	/* We're allowed to probe.  Build it now. */ | 
 | 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); | 
 | 	if (!nskb) | 
 | 		return -1; | 
 | 	sk->sk_wmem_queued += nskb->truesize; | 
 | 	sk_mem_charge(sk, nskb->truesize); | 
 |  | 
 | 	skb = tcp_send_head(sk); | 
 |  | 
 | 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; | 
 | 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; | 
 | 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; | 
 | 	TCP_SKB_CB(nskb)->sacked = 0; | 
 | 	nskb->csum = 0; | 
 | 	nskb->ip_summed = CHECKSUM_PARTIAL; | 
 |  | 
 | 	tcp_insert_write_queue_before(nskb, skb, sk); | 
 | 	tcp_highest_sack_replace(sk, skb, nskb); | 
 |  | 
 | 	len = 0; | 
 | 	tcp_for_write_queue_from_safe(skb, next, sk) { | 
 | 		copy = min_t(int, skb->len, probe_size - len); | 
 | 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); | 
 |  | 
 | 		if (skb->len <= copy) { | 
 | 			/* We've eaten all the data from this skb. | 
 | 			 * Throw it away. */ | 
 | 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; | 
 | 			/* If this is the last SKB we copy and eor is set | 
 | 			 * we need to propagate it to the new skb. | 
 | 			 */ | 
 | 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; | 
 | 			tcp_skb_collapse_tstamp(nskb, skb); | 
 | 			tcp_unlink_write_queue(skb, sk); | 
 | 			sk_wmem_free_skb(sk, skb); | 
 | 		} else { | 
 | 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & | 
 | 						   ~(TCPHDR_FIN|TCPHDR_PSH); | 
 | 			if (!skb_shinfo(skb)->nr_frags) { | 
 | 				skb_pull(skb, copy); | 
 | 			} else { | 
 | 				__pskb_trim_head(skb, copy); | 
 | 				tcp_set_skb_tso_segs(skb, mss_now); | 
 | 			} | 
 | 			TCP_SKB_CB(skb)->seq += copy; | 
 | 		} | 
 |  | 
 | 		len += copy; | 
 |  | 
 | 		if (len >= probe_size) | 
 | 			break; | 
 | 	} | 
 | 	tcp_init_tso_segs(nskb, nskb->len); | 
 |  | 
 | 	/* We're ready to send.  If this fails, the probe will | 
 | 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). | 
 | 	 */ | 
 | 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { | 
 | 		/* Decrement cwnd here because we are sending | 
 | 		 * effectively two packets. */ | 
 | 		tp->snd_cwnd--; | 
 | 		tcp_event_new_data_sent(sk, nskb); | 
 |  | 
 | 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); | 
 | 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; | 
 | 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | static bool tcp_pacing_check(const struct sock *sk) | 
 | { | 
 | 	return tcp_needs_internal_pacing(sk) && | 
 | 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); | 
 | } | 
 |  | 
 | /* TCP Small Queues : | 
 |  * Control number of packets in qdisc/devices to two packets / or ~1 ms. | 
 |  * (These limits are doubled for retransmits) | 
 |  * This allows for : | 
 |  *  - better RTT estimation and ACK scheduling | 
 |  *  - faster recovery | 
 |  *  - high rates | 
 |  * Alas, some drivers / subsystems require a fair amount | 
 |  * of queued bytes to ensure line rate. | 
 |  * One example is wifi aggregation (802.11 AMPDU) | 
 |  */ | 
 | static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, | 
 | 				  unsigned int factor) | 
 | { | 
 | 	unsigned int limit; | 
 |  | 
 | 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); | 
 | 	limit = min_t(u32, limit, | 
 | 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); | 
 | 	limit <<= factor; | 
 |  | 
 | 	if (refcount_read(&sk->sk_wmem_alloc) > limit) { | 
 | 		/* Always send skb if rtx queue is empty. | 
 | 		 * No need to wait for TX completion to call us back, | 
 | 		 * after softirq/tasklet schedule. | 
 | 		 * This helps when TX completions are delayed too much. | 
 | 		 */ | 
 | 		if (tcp_rtx_queue_empty(sk)) | 
 | 			return false; | 
 |  | 
 | 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); | 
 | 		/* It is possible TX completion already happened | 
 | 		 * before we set TSQ_THROTTLED, so we must | 
 | 		 * test again the condition. | 
 | 		 */ | 
 | 		smp_mb__after_atomic(); | 
 | 		if (refcount_read(&sk->sk_wmem_alloc) > limit) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) | 
 | { | 
 | 	const u32 now = tcp_jiffies32; | 
 | 	enum tcp_chrono old = tp->chrono_type; | 
 |  | 
 | 	if (old > TCP_CHRONO_UNSPEC) | 
 | 		tp->chrono_stat[old - 1] += now - tp->chrono_start; | 
 | 	tp->chrono_start = now; | 
 | 	tp->chrono_type = new; | 
 | } | 
 |  | 
 | void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* If there are multiple conditions worthy of tracking in a | 
 | 	 * chronograph then the highest priority enum takes precedence | 
 | 	 * over the other conditions. So that if something "more interesting" | 
 | 	 * starts happening, stop the previous chrono and start a new one. | 
 | 	 */ | 
 | 	if (type > tp->chrono_type) | 
 | 		tcp_chrono_set(tp, type); | 
 | } | 
 |  | 
 | void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 |  | 
 | 	/* There are multiple conditions worthy of tracking in a | 
 | 	 * chronograph, so that the highest priority enum takes | 
 | 	 * precedence over the other conditions (see tcp_chrono_start). | 
 | 	 * If a condition stops, we only stop chrono tracking if | 
 | 	 * it's the "most interesting" or current chrono we are | 
 | 	 * tracking and starts busy chrono if we have pending data. | 
 | 	 */ | 
 | 	if (tcp_rtx_and_write_queues_empty(sk)) | 
 | 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); | 
 | 	else if (type == tp->chrono_type) | 
 | 		tcp_chrono_set(tp, TCP_CHRONO_BUSY); | 
 | } | 
 |  | 
 | /* This routine writes packets to the network.  It advances the | 
 |  * send_head.  This happens as incoming acks open up the remote | 
 |  * window for us. | 
 |  * | 
 |  * LARGESEND note: !tcp_urg_mode is overkill, only frames between | 
 |  * snd_up-64k-mss .. snd_up cannot be large. However, taking into | 
 |  * account rare use of URG, this is not a big flaw. | 
 |  * | 
 |  * Send at most one packet when push_one > 0. Temporarily ignore | 
 |  * cwnd limit to force at most one packet out when push_one == 2. | 
 |  | 
 |  * Returns true, if no segments are in flight and we have queued segments, | 
 |  * but cannot send anything now because of SWS or another problem. | 
 |  */ | 
 | static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, | 
 | 			   int push_one, gfp_t gfp) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int tso_segs, sent_pkts; | 
 | 	int cwnd_quota; | 
 | 	int result; | 
 | 	bool is_cwnd_limited = false, is_rwnd_limited = false; | 
 | 	u32 max_segs; | 
 |  | 
 | 	sent_pkts = 0; | 
 |  | 
 | 	tcp_mstamp_refresh(tp); | 
 | 	if (!push_one) { | 
 | 		/* Do MTU probing. */ | 
 | 		result = tcp_mtu_probe(sk); | 
 | 		if (!result) { | 
 | 			return false; | 
 | 		} else if (result > 0) { | 
 | 			sent_pkts = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	max_segs = tcp_tso_segs(sk, mss_now); | 
 | 	while ((skb = tcp_send_head(sk))) { | 
 | 		unsigned int limit; | 
 |  | 
 | 		if (tcp_pacing_check(sk)) | 
 | 			break; | 
 |  | 
 | 		tso_segs = tcp_init_tso_segs(skb, mss_now); | 
 | 		BUG_ON(!tso_segs); | 
 |  | 
 | 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { | 
 | 			/* "skb_mstamp" is used as a start point for the retransmit timer */ | 
 | 			tcp_update_skb_after_send(tp, skb); | 
 | 			goto repair; /* Skip network transmission */ | 
 | 		} | 
 |  | 
 | 		cwnd_quota = tcp_cwnd_test(tp, skb); | 
 | 		if (!cwnd_quota) { | 
 | 			if (push_one == 2) | 
 | 				/* Force out a loss probe pkt. */ | 
 | 				cwnd_quota = 1; | 
 | 			else | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { | 
 | 			is_rwnd_limited = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (tso_segs == 1) { | 
 | 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now, | 
 | 						     (tcp_skb_is_last(sk, skb) ? | 
 | 						      nonagle : TCP_NAGLE_PUSH)))) | 
 | 				break; | 
 | 		} else { | 
 | 			if (!push_one && | 
 | 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited, | 
 | 						 &is_rwnd_limited, max_segs)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		limit = mss_now; | 
 | 		if (tso_segs > 1 && !tcp_urg_mode(tp)) | 
 | 			limit = tcp_mss_split_point(sk, skb, mss_now, | 
 | 						    min_t(unsigned int, | 
 | 							  cwnd_quota, | 
 | 							  max_segs), | 
 | 						    nonagle); | 
 |  | 
 | 		if (skb->len > limit && | 
 | 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, | 
 | 					  skb, limit, mss_now, gfp))) | 
 | 			break; | 
 |  | 
 | 		if (tcp_small_queue_check(sk, skb, 0)) | 
 | 			break; | 
 |  | 
 | 		/* Argh, we hit an empty skb(), presumably a thread | 
 | 		 * is sleeping in sendmsg()/sk_stream_wait_memory(). | 
 | 		 * We do not want to send a pure-ack packet and have | 
 | 		 * a strange looking rtx queue with empty packet(s). | 
 | 		 */ | 
 | 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) | 
 | 			break; | 
 |  | 
 | 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) | 
 | 			break; | 
 |  | 
 | repair: | 
 | 		/* Advance the send_head.  This one is sent out. | 
 | 		 * This call will increment packets_out. | 
 | 		 */ | 
 | 		tcp_event_new_data_sent(sk, skb); | 
 |  | 
 | 		tcp_minshall_update(tp, mss_now, skb); | 
 | 		sent_pkts += tcp_skb_pcount(skb); | 
 |  | 
 | 		if (push_one) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (is_rwnd_limited) | 
 | 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); | 
 | 	else | 
 | 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); | 
 |  | 
 | 	if (likely(sent_pkts)) { | 
 | 		if (tcp_in_cwnd_reduction(sk)) | 
 | 			tp->prr_out += sent_pkts; | 
 |  | 
 | 		/* Send one loss probe per tail loss episode. */ | 
 | 		if (push_one != 2) | 
 | 			tcp_schedule_loss_probe(sk, false); | 
 | 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); | 
 | 		tcp_cwnd_validate(sk, is_cwnd_limited); | 
 | 		return false; | 
 | 	} | 
 | 	return !tp->packets_out && !tcp_write_queue_empty(sk); | 
 | } | 
 |  | 
 | bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 timeout, rto_delta_us; | 
 | 	int early_retrans; | 
 |  | 
 | 	/* Don't do any loss probe on a Fast Open connection before 3WHS | 
 | 	 * finishes. | 
 | 	 */ | 
 | 	if (tp->fastopen_rsk) | 
 | 		return false; | 
 |  | 
 | 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; | 
 | 	/* Schedule a loss probe in 2*RTT for SACK capable connections | 
 | 	 * not in loss recovery, that are either limited by cwnd or application. | 
 | 	 */ | 
 | 	if ((early_retrans != 3 && early_retrans != 4) || | 
 | 	    !tp->packets_out || !tcp_is_sack(tp) || | 
 | 	    (icsk->icsk_ca_state != TCP_CA_Open && | 
 | 	     icsk->icsk_ca_state != TCP_CA_CWR)) | 
 | 		return false; | 
 |  | 
 | 	/* Probe timeout is 2*rtt. Add minimum RTO to account | 
 | 	 * for delayed ack when there's one outstanding packet. If no RTT | 
 | 	 * sample is available then probe after TCP_TIMEOUT_INIT. | 
 | 	 */ | 
 | 	if (tp->srtt_us) { | 
 | 		timeout = usecs_to_jiffies(tp->srtt_us >> 2); | 
 | 		if (tp->packets_out == 1) | 
 | 			timeout += TCP_RTO_MIN; | 
 | 		else | 
 | 			timeout += TCP_TIMEOUT_MIN; | 
 | 	} else { | 
 | 		timeout = TCP_TIMEOUT_INIT; | 
 | 	} | 
 |  | 
 | 	/* If the RTO formula yields an earlier time, then use that time. */ | 
 | 	rto_delta_us = advancing_rto ? | 
 | 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) : | 
 | 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */ | 
 | 	if (rto_delta_us > 0) | 
 | 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); | 
 |  | 
 | 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, | 
 | 				  TCP_RTO_MAX); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Thanks to skb fast clones, we can detect if a prior transmit of | 
 |  * a packet is still in a qdisc or driver queue. | 
 |  * In this case, there is very little point doing a retransmit ! | 
 |  */ | 
 | static bool skb_still_in_host_queue(const struct sock *sk, | 
 | 				    const struct sk_buff *skb) | 
 | { | 
 | 	if (unlikely(skb_fclone_busy(sk, skb))) { | 
 | 		NET_INC_STATS(sock_net(sk), | 
 | 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* When probe timeout (PTO) fires, try send a new segment if possible, else | 
 |  * retransmit the last segment. | 
 |  */ | 
 | void tcp_send_loss_probe(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	int pcount; | 
 | 	int mss = tcp_current_mss(sk); | 
 |  | 
 | 	skb = tcp_send_head(sk); | 
 | 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) { | 
 | 		pcount = tp->packets_out; | 
 | 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); | 
 | 		if (tp->packets_out > pcount) | 
 | 			goto probe_sent; | 
 | 		goto rearm_timer; | 
 | 	} | 
 | 	skb = skb_rb_last(&sk->tcp_rtx_queue); | 
 | 	if (unlikely(!skb)) { | 
 | 		WARN_ONCE(tp->packets_out, | 
 | 			  "invalid inflight: %u state %u cwnd %u mss %d\n", | 
 | 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); | 
 | 		inet_csk(sk)->icsk_pending = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* At most one outstanding TLP retransmission. */ | 
 | 	if (tp->tlp_high_seq) | 
 | 		goto rearm_timer; | 
 |  | 
 | 	if (skb_still_in_host_queue(sk, skb)) | 
 | 		goto rearm_timer; | 
 |  | 
 | 	pcount = tcp_skb_pcount(skb); | 
 | 	if (WARN_ON(!pcount)) | 
 | 		goto rearm_timer; | 
 |  | 
 | 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { | 
 | 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, | 
 | 					  (pcount - 1) * mss, mss, | 
 | 					  GFP_ATOMIC))) | 
 | 			goto rearm_timer; | 
 | 		skb = skb_rb_next(skb); | 
 | 	} | 
 |  | 
 | 	if (WARN_ON(!skb || !tcp_skb_pcount(skb))) | 
 | 		goto rearm_timer; | 
 |  | 
 | 	if (__tcp_retransmit_skb(sk, skb, 1)) | 
 | 		goto rearm_timer; | 
 |  | 
 | 	/* Record snd_nxt for loss detection. */ | 
 | 	tp->tlp_high_seq = tp->snd_nxt; | 
 |  | 
 | probe_sent: | 
 | 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); | 
 | 	/* Reset s.t. tcp_rearm_rto will restart timer from now */ | 
 | 	inet_csk(sk)->icsk_pending = 0; | 
 | rearm_timer: | 
 | 	tcp_rearm_rto(sk); | 
 | } | 
 |  | 
 | /* Push out any pending frames which were held back due to | 
 |  * TCP_CORK or attempt at coalescing tiny packets. | 
 |  * The socket must be locked by the caller. | 
 |  */ | 
 | void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, | 
 | 			       int nonagle) | 
 | { | 
 | 	/* If we are closed, the bytes will have to remain here. | 
 | 	 * In time closedown will finish, we empty the write queue and | 
 | 	 * all will be happy. | 
 | 	 */ | 
 | 	if (unlikely(sk->sk_state == TCP_CLOSE)) | 
 | 		return; | 
 |  | 
 | 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0, | 
 | 			   sk_gfp_mask(sk, GFP_ATOMIC))) | 
 | 		tcp_check_probe_timer(sk); | 
 | } | 
 |  | 
 | /* Send _single_ skb sitting at the send head. This function requires | 
 |  * true push pending frames to setup probe timer etc. | 
 |  */ | 
 | void tcp_push_one(struct sock *sk, unsigned int mss_now) | 
 | { | 
 | 	struct sk_buff *skb = tcp_send_head(sk); | 
 |  | 
 | 	BUG_ON(!skb || skb->len < mss_now); | 
 |  | 
 | 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); | 
 | } | 
 |  | 
 | /* This function returns the amount that we can raise the | 
 |  * usable window based on the following constraints | 
 |  * | 
 |  * 1. The window can never be shrunk once it is offered (RFC 793) | 
 |  * 2. We limit memory per socket | 
 |  * | 
 |  * RFC 1122: | 
 |  * "the suggested [SWS] avoidance algorithm for the receiver is to keep | 
 |  *  RECV.NEXT + RCV.WIN fixed until: | 
 |  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | 
 |  * | 
 |  * i.e. don't raise the right edge of the window until you can raise | 
 |  * it at least MSS bytes. | 
 |  * | 
 |  * Unfortunately, the recommended algorithm breaks header prediction, | 
 |  * since header prediction assumes th->window stays fixed. | 
 |  * | 
 |  * Strictly speaking, keeping th->window fixed violates the receiver | 
 |  * side SWS prevention criteria. The problem is that under this rule | 
 |  * a stream of single byte packets will cause the right side of the | 
 |  * window to always advance by a single byte. | 
 |  * | 
 |  * Of course, if the sender implements sender side SWS prevention | 
 |  * then this will not be a problem. | 
 |  * | 
 |  * BSD seems to make the following compromise: | 
 |  * | 
 |  *	If the free space is less than the 1/4 of the maximum | 
 |  *	space available and the free space is less than 1/2 mss, | 
 |  *	then set the window to 0. | 
 |  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | 
 |  *	Otherwise, just prevent the window from shrinking | 
 |  *	and from being larger than the largest representable value. | 
 |  * | 
 |  * This prevents incremental opening of the window in the regime | 
 |  * where TCP is limited by the speed of the reader side taking | 
 |  * data out of the TCP receive queue. It does nothing about | 
 |  * those cases where the window is constrained on the sender side | 
 |  * because the pipeline is full. | 
 |  * | 
 |  * BSD also seems to "accidentally" limit itself to windows that are a | 
 |  * multiple of MSS, at least until the free space gets quite small. | 
 |  * This would appear to be a side effect of the mbuf implementation. | 
 |  * Combining these two algorithms results in the observed behavior | 
 |  * of having a fixed window size at almost all times. | 
 |  * | 
 |  * Below we obtain similar behavior by forcing the offered window to | 
 |  * a multiple of the mss when it is feasible to do so. | 
 |  * | 
 |  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | 
 |  * Regular options like TIMESTAMP are taken into account. | 
 |  */ | 
 | u32 __tcp_select_window(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	/* MSS for the peer's data.  Previous versions used mss_clamp | 
 | 	 * here.  I don't know if the value based on our guesses | 
 | 	 * of peer's MSS is better for the performance.  It's more correct | 
 | 	 * but may be worse for the performance because of rcv_mss | 
 | 	 * fluctuations.  --SAW  1998/11/1 | 
 | 	 */ | 
 | 	int mss = icsk->icsk_ack.rcv_mss; | 
 | 	int free_space = tcp_space(sk); | 
 | 	int allowed_space = tcp_full_space(sk); | 
 | 	int full_space = min_t(int, tp->window_clamp, allowed_space); | 
 | 	int window; | 
 |  | 
 | 	if (unlikely(mss > full_space)) { | 
 | 		mss = full_space; | 
 | 		if (mss <= 0) | 
 | 			return 0; | 
 | 	} | 
 | 	if (free_space < (full_space >> 1)) { | 
 | 		icsk->icsk_ack.quick = 0; | 
 |  | 
 | 		if (tcp_under_memory_pressure(sk)) | 
 | 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, | 
 | 					       4U * tp->advmss); | 
 |  | 
 | 		/* free_space might become our new window, make sure we don't | 
 | 		 * increase it due to wscale. | 
 | 		 */ | 
 | 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); | 
 |  | 
 | 		/* if free space is less than mss estimate, or is below 1/16th | 
 | 		 * of the maximum allowed, try to move to zero-window, else | 
 | 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and | 
 | 		 * new incoming data is dropped due to memory limits. | 
 | 		 * With large window, mss test triggers way too late in order | 
 | 		 * to announce zero window in time before rmem limit kicks in. | 
 | 		 */ | 
 | 		if (free_space < (allowed_space >> 4) || free_space < mss) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (free_space > tp->rcv_ssthresh) | 
 | 		free_space = tp->rcv_ssthresh; | 
 |  | 
 | 	/* Don't do rounding if we are using window scaling, since the | 
 | 	 * scaled window will not line up with the MSS boundary anyway. | 
 | 	 */ | 
 | 	if (tp->rx_opt.rcv_wscale) { | 
 | 		window = free_space; | 
 |  | 
 | 		/* Advertise enough space so that it won't get scaled away. | 
 | 		 * Import case: prevent zero window announcement if | 
 | 		 * 1<<rcv_wscale > mss. | 
 | 		 */ | 
 | 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); | 
 | 	} else { | 
 | 		window = tp->rcv_wnd; | 
 | 		/* Get the largest window that is a nice multiple of mss. | 
 | 		 * Window clamp already applied above. | 
 | 		 * If our current window offering is within 1 mss of the | 
 | 		 * free space we just keep it. This prevents the divide | 
 | 		 * and multiply from happening most of the time. | 
 | 		 * We also don't do any window rounding when the free space | 
 | 		 * is too small. | 
 | 		 */ | 
 | 		if (window <= free_space - mss || window > free_space) | 
 | 			window = rounddown(free_space, mss); | 
 | 		else if (mss == full_space && | 
 | 			 free_space > window + (full_space >> 1)) | 
 | 			window = free_space; | 
 | 	} | 
 |  | 
 | 	return window; | 
 | } | 
 |  | 
 | void tcp_skb_collapse_tstamp(struct sk_buff *skb, | 
 | 			     const struct sk_buff *next_skb) | 
 | { | 
 | 	if (unlikely(tcp_has_tx_tstamp(next_skb))) { | 
 | 		const struct skb_shared_info *next_shinfo = | 
 | 			skb_shinfo(next_skb); | 
 | 		struct skb_shared_info *shinfo = skb_shinfo(skb); | 
 |  | 
 | 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; | 
 | 		shinfo->tskey = next_shinfo->tskey; | 
 | 		TCP_SKB_CB(skb)->txstamp_ack |= | 
 | 			TCP_SKB_CB(next_skb)->txstamp_ack; | 
 | 	} | 
 | } | 
 |  | 
 | /* Collapses two adjacent SKB's during retransmission. */ | 
 | static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *next_skb = skb_rb_next(skb); | 
 | 	int next_skb_size; | 
 |  | 
 | 	next_skb_size = next_skb->len; | 
 |  | 
 | 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); | 
 |  | 
 | 	if (next_skb_size) { | 
 | 		if (next_skb_size <= skb_availroom(skb)) | 
 | 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), | 
 | 				      next_skb_size); | 
 | 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) | 
 | 			return false; | 
 | 	} | 
 | 	tcp_highest_sack_replace(sk, next_skb, skb); | 
 |  | 
 | 	/* Update sequence range on original skb. */ | 
 | 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | 
 |  | 
 | 	/* Merge over control information. This moves PSH/FIN etc. over */ | 
 | 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; | 
 |  | 
 | 	/* All done, get rid of second SKB and account for it so | 
 | 	 * packet counting does not break. | 
 | 	 */ | 
 | 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; | 
 | 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; | 
 |  | 
 | 	/* changed transmit queue under us so clear hints */ | 
 | 	tcp_clear_retrans_hints_partial(tp); | 
 | 	if (next_skb == tp->retransmit_skb_hint) | 
 | 		tp->retransmit_skb_hint = skb; | 
 |  | 
 | 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); | 
 |  | 
 | 	tcp_skb_collapse_tstamp(skb, next_skb); | 
 |  | 
 | 	tcp_rtx_queue_unlink_and_free(next_skb, sk); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Check if coalescing SKBs is legal. */ | 
 | static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	if (tcp_skb_pcount(skb) > 1) | 
 | 		return false; | 
 | 	if (skb_cloned(skb)) | 
 | 		return false; | 
 | 	/* Some heuristics for collapsing over SACK'd could be invented */ | 
 | 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Collapse packets in the retransmit queue to make to create | 
 |  * less packets on the wire. This is only done on retransmission. | 
 |  */ | 
 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, | 
 | 				     int space) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb = to, *tmp; | 
 | 	bool first = true; | 
 |  | 
 | 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) | 
 | 		return; | 
 | 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) | 
 | 		return; | 
 |  | 
 | 	skb_rbtree_walk_from_safe(skb, tmp) { | 
 | 		if (!tcp_can_collapse(sk, skb)) | 
 | 			break; | 
 |  | 
 | 		if (!tcp_skb_can_collapse_to(to)) | 
 | 			break; | 
 |  | 
 | 		space -= skb->len; | 
 |  | 
 | 		if (first) { | 
 | 			first = false; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (space < 0) | 
 | 			break; | 
 |  | 
 | 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) | 
 | 			break; | 
 |  | 
 | 		if (!tcp_collapse_retrans(sk, to)) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /* This retransmits one SKB.  Policy decisions and retransmit queue | 
 |  * state updates are done by the caller.  Returns non-zero if an | 
 |  * error occurred which prevented the send. | 
 |  */ | 
 | int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned int cur_mss; | 
 | 	int diff, len, err; | 
 |  | 
 |  | 
 | 	/* Inconclusive MTU probe */ | 
 | 	if (icsk->icsk_mtup.probe_size) | 
 | 		icsk->icsk_mtup.probe_size = 0; | 
 |  | 
 | 	/* Do not sent more than we queued. 1/4 is reserved for possible | 
 | 	 * copying overhead: fragmentation, tunneling, mangling etc. | 
 | 	 */ | 
 | 	if (refcount_read(&sk->sk_wmem_alloc) > | 
 | 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), | 
 | 		  sk->sk_sndbuf)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	if (skb_still_in_host_queue(sk, skb)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | 
 | 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { | 
 | 			WARN_ON_ONCE(1); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) | 
 | 		return -EHOSTUNREACH; /* Routing failure or similar. */ | 
 |  | 
 | 	cur_mss = tcp_current_mss(sk); | 
 |  | 
 | 	/* If receiver has shrunk his window, and skb is out of | 
 | 	 * new window, do not retransmit it. The exception is the | 
 | 	 * case, when window is shrunk to zero. In this case | 
 | 	 * our retransmit serves as a zero window probe. | 
 | 	 */ | 
 | 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && | 
 | 	    TCP_SKB_CB(skb)->seq != tp->snd_una) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	len = cur_mss * segs; | 
 | 	if (skb->len > len) { | 
 | 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, | 
 | 				 cur_mss, GFP_ATOMIC)) | 
 | 			return -ENOMEM; /* We'll try again later. */ | 
 | 	} else { | 
 | 		if (skb_unclone(skb, GFP_ATOMIC)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		diff = tcp_skb_pcount(skb); | 
 | 		tcp_set_skb_tso_segs(skb, cur_mss); | 
 | 		diff -= tcp_skb_pcount(skb); | 
 | 		if (diff) | 
 | 			tcp_adjust_pcount(sk, skb, diff); | 
 | 		if (skb->len < cur_mss) | 
 | 			tcp_retrans_try_collapse(sk, skb, cur_mss); | 
 | 	} | 
 |  | 
 | 	/* RFC3168, section 6.1.1.1. ECN fallback */ | 
 | 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) | 
 | 		tcp_ecn_clear_syn(sk, skb); | 
 |  | 
 | 	/* Update global and local TCP statistics. */ | 
 | 	segs = tcp_skb_pcount(skb); | 
 | 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); | 
 | 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) | 
 | 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); | 
 | 	tp->total_retrans += segs; | 
 | 	tp->bytes_retrans += skb->len; | 
 |  | 
 | 	/* make sure skb->data is aligned on arches that require it | 
 | 	 * and check if ack-trimming & collapsing extended the headroom | 
 | 	 * beyond what csum_start can cover. | 
 | 	 */ | 
 | 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || | 
 | 		     skb_headroom(skb) >= 0xFFFF)) { | 
 | 		struct sk_buff *nskb; | 
 |  | 
 | 		tcp_skb_tsorted_save(skb) { | 
 | 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); | 
 | 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : | 
 | 				     -ENOBUFS; | 
 | 		} tcp_skb_tsorted_restore(skb); | 
 |  | 
 | 		if (!err) { | 
 | 			tcp_update_skb_after_send(tp, skb); | 
 | 			tcp_rate_skb_sent(sk, skb); | 
 | 		} | 
 | 	} else { | 
 | 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
 | 	} | 
 |  | 
 | 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) | 
 | 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, | 
 | 				  TCP_SKB_CB(skb)->seq, segs, err); | 
 |  | 
 | 	if (likely(!err)) { | 
 | 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; | 
 | 		trace_tcp_retransmit_skb(sk, skb); | 
 | 	} else if (err != -EBUSY) { | 
 | 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int err = __tcp_retransmit_skb(sk, skb, segs); | 
 |  | 
 | 	if (err == 0) { | 
 | #if FASTRETRANS_DEBUG > 0 | 
 | 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { | 
 | 			net_dbg_ratelimited("retrans_out leaked\n"); | 
 | 		} | 
 | #endif | 
 | 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | 
 | 		tp->retrans_out += tcp_skb_pcount(skb); | 
 |  | 
 | 		/* Save stamp of the first retransmit. */ | 
 | 		if (!tp->retrans_stamp) | 
 | 			tp->retrans_stamp = tcp_skb_timestamp(skb); | 
 |  | 
 | 	} | 
 |  | 
 | 	if (tp->undo_retrans < 0) | 
 | 		tp->undo_retrans = 0; | 
 | 	tp->undo_retrans += tcp_skb_pcount(skb); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* This gets called after a retransmit timeout, and the initially | 
 |  * retransmitted data is acknowledged.  It tries to continue | 
 |  * resending the rest of the retransmit queue, until either | 
 |  * we've sent it all or the congestion window limit is reached. | 
 |  */ | 
 | void tcp_xmit_retransmit_queue(struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct sk_buff *skb, *rtx_head, *hole = NULL; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 max_segs; | 
 | 	int mib_idx; | 
 |  | 
 | 	if (!tp->packets_out) | 
 | 		return; | 
 |  | 
 | 	rtx_head = tcp_rtx_queue_head(sk); | 
 | 	skb = tp->retransmit_skb_hint ?: rtx_head; | 
 | 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); | 
 | 	skb_rbtree_walk_from(skb) { | 
 | 		__u8 sacked; | 
 | 		int segs; | 
 |  | 
 | 		if (tcp_pacing_check(sk)) | 
 | 			break; | 
 |  | 
 | 		/* we could do better than to assign each time */ | 
 | 		if (!hole) | 
 | 			tp->retransmit_skb_hint = skb; | 
 |  | 
 | 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp); | 
 | 		if (segs <= 0) | 
 | 			return; | 
 | 		sacked = TCP_SKB_CB(skb)->sacked; | 
 | 		/* In case tcp_shift_skb_data() have aggregated large skbs, | 
 | 		 * we need to make sure not sending too bigs TSO packets | 
 | 		 */ | 
 | 		segs = min_t(int, segs, max_segs); | 
 |  | 
 | 		if (tp->retrans_out >= tp->lost_out) { | 
 | 			break; | 
 | 		} else if (!(sacked & TCPCB_LOST)) { | 
 | 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) | 
 | 				hole = skb; | 
 | 			continue; | 
 |  | 
 | 		} else { | 
 | 			if (icsk->icsk_ca_state != TCP_CA_Loss) | 
 | 				mib_idx = LINUX_MIB_TCPFASTRETRANS; | 
 | 			else | 
 | 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; | 
 | 		} | 
 |  | 
 | 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) | 
 | 			continue; | 
 |  | 
 | 		if (tcp_small_queue_check(sk, skb, 1)) | 
 | 			return; | 
 |  | 
 | 		if (tcp_retransmit_skb(sk, skb, segs)) | 
 | 			return; | 
 |  | 
 | 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); | 
 |  | 
 | 		if (tcp_in_cwnd_reduction(sk)) | 
 | 			tp->prr_out += tcp_skb_pcount(skb); | 
 |  | 
 | 		if (skb == rtx_head && | 
 | 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) | 
 | 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
 | 						  inet_csk(sk)->icsk_rto, | 
 | 						  TCP_RTO_MAX); | 
 | 	} | 
 | } | 
 |  | 
 | /* We allow to exceed memory limits for FIN packets to expedite | 
 |  * connection tear down and (memory) recovery. | 
 |  * Otherwise tcp_send_fin() could be tempted to either delay FIN | 
 |  * or even be forced to close flow without any FIN. | 
 |  * In general, we want to allow one skb per socket to avoid hangs | 
 |  * with edge trigger epoll() | 
 |  */ | 
 | void sk_forced_mem_schedule(struct sock *sk, int size) | 
 | { | 
 | 	int amt; | 
 |  | 
 | 	if (size <= sk->sk_forward_alloc) | 
 | 		return; | 
 | 	amt = sk_mem_pages(size); | 
 | 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; | 
 | 	sk_memory_allocated_add(sk, amt); | 
 |  | 
 | 	if (mem_cgroup_sockets_enabled && sk->sk_memcg) | 
 | 		mem_cgroup_charge_skmem(sk->sk_memcg, amt); | 
 | } | 
 |  | 
 | /* Send a FIN. The caller locks the socket for us. | 
 |  * We should try to send a FIN packet really hard, but eventually give up. | 
 |  */ | 
 | void tcp_send_fin(struct sock *sk) | 
 | { | 
 | 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Optimization, tack on the FIN if we have one skb in write queue and | 
 | 	 * this skb was not yet sent, or we are under memory pressure. | 
 | 	 * Note: in the latter case, FIN packet will be sent after a timeout, | 
 | 	 * as TCP stack thinks it has already been transmitted. | 
 | 	 */ | 
 | 	if (!tskb && tcp_under_memory_pressure(sk)) | 
 | 		tskb = skb_rb_last(&sk->tcp_rtx_queue); | 
 |  | 
 | 	if (tskb) { | 
 | coalesce: | 
 | 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; | 
 | 		TCP_SKB_CB(tskb)->end_seq++; | 
 | 		tp->write_seq++; | 
 | 		if (tcp_write_queue_empty(sk)) { | 
 | 			/* This means tskb was already sent. | 
 | 			 * Pretend we included the FIN on previous transmit. | 
 | 			 * We need to set tp->snd_nxt to the value it would have | 
 | 			 * if FIN had been sent. This is because retransmit path | 
 | 			 * does not change tp->snd_nxt. | 
 | 			 */ | 
 | 			tp->snd_nxt++; | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); | 
 | 		if (unlikely(!skb)) { | 
 | 			if (tskb) | 
 | 				goto coalesce; | 
 | 			return; | 
 | 		} | 
 | 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); | 
 | 		skb_reserve(skb, MAX_TCP_HEADER); | 
 | 		sk_forced_mem_schedule(sk, skb->truesize); | 
 | 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | 
 | 		tcp_init_nondata_skb(skb, tp->write_seq, | 
 | 				     TCPHDR_ACK | TCPHDR_FIN); | 
 | 		tcp_queue_skb(sk, skb); | 
 | 	} | 
 | 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); | 
 | } | 
 |  | 
 | /* We get here when a process closes a file descriptor (either due to | 
 |  * an explicit close() or as a byproduct of exit()'ing) and there | 
 |  * was unread data in the receive queue.  This behavior is recommended | 
 |  * by RFC 2525, section 2.17.  -DaveM | 
 |  */ | 
 | void tcp_send_active_reset(struct sock *sk, gfp_t priority) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); | 
 |  | 
 | 	/* NOTE: No TCP options attached and we never retransmit this. */ | 
 | 	skb = alloc_skb(MAX_TCP_HEADER, priority); | 
 | 	if (!skb) { | 
 | 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Reserve space for headers and prepare control bits. */ | 
 | 	skb_reserve(skb, MAX_TCP_HEADER); | 
 | 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), | 
 | 			     TCPHDR_ACK | TCPHDR_RST); | 
 | 	tcp_mstamp_refresh(tcp_sk(sk)); | 
 | 	/* Send it off. */ | 
 | 	if (tcp_transmit_skb(sk, skb, 0, priority)) | 
 | 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); | 
 |  | 
 | 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST, | 
 | 	 * skb here is different to the troublesome skb, so use NULL | 
 | 	 */ | 
 | 	trace_tcp_send_reset(sk, NULL); | 
 | } | 
 |  | 
 | /* Send a crossed SYN-ACK during socket establishment. | 
 |  * WARNING: This routine must only be called when we have already sent | 
 |  * a SYN packet that crossed the incoming SYN that caused this routine | 
 |  * to get called. If this assumption fails then the initial rcv_wnd | 
 |  * and rcv_wscale values will not be correct. | 
 |  */ | 
 | int tcp_send_synack(struct sock *sk) | 
 | { | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	skb = tcp_rtx_queue_head(sk); | 
 | 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { | 
 | 		pr_err("%s: wrong queue state\n", __func__); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { | 
 | 		if (skb_cloned(skb)) { | 
 | 			struct sk_buff *nskb; | 
 |  | 
 | 			tcp_skb_tsorted_save(skb) { | 
 | 				nskb = skb_copy(skb, GFP_ATOMIC); | 
 | 			} tcp_skb_tsorted_restore(skb); | 
 | 			if (!nskb) | 
 | 				return -ENOMEM; | 
 | 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); | 
 | 			tcp_rtx_queue_unlink_and_free(skb, sk); | 
 | 			__skb_header_release(nskb); | 
 | 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); | 
 | 			sk->sk_wmem_queued += nskb->truesize; | 
 | 			sk_mem_charge(sk, nskb->truesize); | 
 | 			skb = nskb; | 
 | 		} | 
 |  | 
 | 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; | 
 | 		tcp_ecn_send_synack(sk, skb); | 
 | 	} | 
 | 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
 | } | 
 |  | 
 | /** | 
 |  * tcp_make_synack - Prepare a SYN-ACK. | 
 |  * sk: listener socket | 
 |  * dst: dst entry attached to the SYNACK | 
 |  * req: request_sock pointer | 
 |  * | 
 |  * Allocate one skb and build a SYNACK packet. | 
 |  * @dst is consumed : Caller should not use it again. | 
 |  */ | 
 | struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, | 
 | 				struct request_sock *req, | 
 | 				struct tcp_fastopen_cookie *foc, | 
 | 				enum tcp_synack_type synack_type) | 
 | { | 
 | 	struct inet_request_sock *ireq = inet_rsk(req); | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct tcp_md5sig_key *md5 = NULL; | 
 | 	struct tcp_out_options opts; | 
 | 	struct sk_buff *skb; | 
 | 	int tcp_header_size; | 
 | 	struct tcphdr *th; | 
 | 	int mss; | 
 |  | 
 | 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
 | 	if (unlikely(!skb)) { | 
 | 		dst_release(dst); | 
 | 		return NULL; | 
 | 	} | 
 | 	/* Reserve space for headers. */ | 
 | 	skb_reserve(skb, MAX_TCP_HEADER); | 
 |  | 
 | 	switch (synack_type) { | 
 | 	case TCP_SYNACK_NORMAL: | 
 | 		skb_set_owner_w(skb, req_to_sk(req)); | 
 | 		break; | 
 | 	case TCP_SYNACK_COOKIE: | 
 | 		/* Under synflood, we do not attach skb to a socket, | 
 | 		 * to avoid false sharing. | 
 | 		 */ | 
 | 		break; | 
 | 	case TCP_SYNACK_FASTOPEN: | 
 | 		/* sk is a const pointer, because we want to express multiple | 
 | 		 * cpu might call us concurrently. | 
 | 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw. | 
 | 		 */ | 
 | 		skb_set_owner_w(skb, (struct sock *)sk); | 
 | 		break; | 
 | 	} | 
 | 	skb_dst_set(skb, dst); | 
 |  | 
 | 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); | 
 |  | 
 | 	memset(&opts, 0, sizeof(opts)); | 
 | #ifdef CONFIG_SYN_COOKIES | 
 | 	if (unlikely(req->cookie_ts)) | 
 | 		skb->skb_mstamp = cookie_init_timestamp(req); | 
 | 	else | 
 | #endif | 
 | 		skb->skb_mstamp = tcp_clock_us(); | 
 |  | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	rcu_read_lock(); | 
 | 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); | 
 | #endif | 
 | 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); | 
 | 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, | 
 | 					     foc) + sizeof(*th); | 
 |  | 
 | 	skb_push(skb, tcp_header_size); | 
 | 	skb_reset_transport_header(skb); | 
 |  | 
 | 	th = (struct tcphdr *)skb->data; | 
 | 	memset(th, 0, sizeof(struct tcphdr)); | 
 | 	th->syn = 1; | 
 | 	th->ack = 1; | 
 | 	tcp_ecn_make_synack(req, th); | 
 | 	th->source = htons(ireq->ir_num); | 
 | 	th->dest = ireq->ir_rmt_port; | 
 | 	skb->mark = ireq->ir_mark; | 
 | 	skb->ip_summed = CHECKSUM_PARTIAL; | 
 | 	th->seq = htonl(tcp_rsk(req)->snt_isn); | 
 | 	/* XXX data is queued and acked as is. No buffer/window check */ | 
 | 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); | 
 |  | 
 | 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | 
 | 	th->window = htons(min(req->rsk_rcv_wnd, 65535U)); | 
 | 	tcp_options_write((__be32 *)(th + 1), NULL, &opts); | 
 | 	th->doff = (tcp_header_size >> 2); | 
 | 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); | 
 |  | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	/* Okay, we have all we need - do the md5 hash if needed */ | 
 | 	if (md5) | 
 | 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, | 
 | 					       md5, req_to_sk(req), skb); | 
 | 	rcu_read_unlock(); | 
 | #endif | 
 |  | 
 | 	/* Do not fool tcpdump (if any), clean our debris */ | 
 | 	skb->tstamp = 0; | 
 | 	return skb; | 
 | } | 
 | EXPORT_SYMBOL(tcp_make_synack); | 
 |  | 
 | static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	const struct tcp_congestion_ops *ca; | 
 | 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); | 
 |  | 
 | 	if (ca_key == TCP_CA_UNSPEC) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ca = tcp_ca_find_key(ca_key); | 
 | 	if (likely(ca && try_module_get(ca->owner))) { | 
 | 		module_put(icsk->icsk_ca_ops->owner); | 
 | 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); | 
 | 		icsk->icsk_ca_ops = ca; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* Do all connect socket setups that can be done AF independent. */ | 
 | static void tcp_connect_init(struct sock *sk) | 
 | { | 
 | 	const struct dst_entry *dst = __sk_dst_get(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	__u8 rcv_wscale; | 
 | 	u32 rcv_wnd; | 
 |  | 
 | 	/* We'll fix this up when we get a response from the other end. | 
 | 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | 
 | 	 */ | 
 | 	tp->tcp_header_len = sizeof(struct tcphdr); | 
 | 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) | 
 | 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; | 
 |  | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 	if (tp->af_specific->md5_lookup(sk, sk)) | 
 | 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; | 
 | #endif | 
 |  | 
 | 	/* If user gave his TCP_MAXSEG, record it to clamp */ | 
 | 	if (tp->rx_opt.user_mss) | 
 | 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | 
 | 	tp->max_window = 0; | 
 | 	tcp_mtup_init(sk); | 
 | 	tcp_sync_mss(sk, dst_mtu(dst)); | 
 |  | 
 | 	tcp_ca_dst_init(sk, dst); | 
 |  | 
 | 	if (!tp->window_clamp) | 
 | 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | 
 | 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); | 
 |  | 
 | 	tcp_initialize_rcv_mss(sk); | 
 |  | 
 | 	/* limit the window selection if the user enforce a smaller rx buffer */ | 
 | 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && | 
 | 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) | 
 | 		tp->window_clamp = tcp_full_space(sk); | 
 |  | 
 | 	rcv_wnd = tcp_rwnd_init_bpf(sk); | 
 | 	if (rcv_wnd == 0) | 
 | 		rcv_wnd = dst_metric(dst, RTAX_INITRWND); | 
 |  | 
 | 	tcp_select_initial_window(sk, tcp_full_space(sk), | 
 | 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | 
 | 				  &tp->rcv_wnd, | 
 | 				  &tp->window_clamp, | 
 | 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling, | 
 | 				  &rcv_wscale, | 
 | 				  rcv_wnd); | 
 |  | 
 | 	tp->rx_opt.rcv_wscale = rcv_wscale; | 
 | 	tp->rcv_ssthresh = tp->rcv_wnd; | 
 |  | 
 | 	sk->sk_err = 0; | 
 | 	sock_reset_flag(sk, SOCK_DONE); | 
 | 	tp->snd_wnd = 0; | 
 | 	tcp_init_wl(tp, 0); | 
 | 	tcp_write_queue_purge(sk); | 
 | 	tp->snd_una = tp->write_seq; | 
 | 	tp->snd_sml = tp->write_seq; | 
 | 	tp->snd_up = tp->write_seq; | 
 | 	tp->snd_nxt = tp->write_seq; | 
 |  | 
 | 	if (likely(!tp->repair)) | 
 | 		tp->rcv_nxt = 0; | 
 | 	else | 
 | 		tp->rcv_tstamp = tcp_jiffies32; | 
 | 	tp->rcv_wup = tp->rcv_nxt; | 
 | 	tp->copied_seq = tp->rcv_nxt; | 
 |  | 
 | 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); | 
 | 	inet_csk(sk)->icsk_retransmits = 0; | 
 | 	tcp_clear_retrans(tp); | 
 | } | 
 |  | 
 | static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); | 
 |  | 
 | 	tcb->end_seq += skb->len; | 
 | 	__skb_header_release(skb); | 
 | 	sk->sk_wmem_queued += skb->truesize; | 
 | 	sk_mem_charge(sk, skb->truesize); | 
 | 	tp->write_seq = tcb->end_seq; | 
 | 	tp->packets_out += tcp_skb_pcount(skb); | 
 | } | 
 |  | 
 | /* Build and send a SYN with data and (cached) Fast Open cookie. However, | 
 |  * queue a data-only packet after the regular SYN, such that regular SYNs | 
 |  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges | 
 |  * only the SYN sequence, the data are retransmitted in the first ACK. | 
 |  * If cookie is not cached or other error occurs, falls back to send a | 
 |  * regular SYN with Fast Open cookie request option. | 
 |  */ | 
 | static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct tcp_fastopen_request *fo = tp->fastopen_req; | 
 | 	int space, err = 0; | 
 | 	struct sk_buff *syn_data; | 
 |  | 
 | 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */ | 
 | 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) | 
 | 		goto fallback; | 
 |  | 
 | 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and | 
 | 	 * user-MSS. Reserve maximum option space for middleboxes that add | 
 | 	 * private TCP options. The cost is reduced data space in SYN :( | 
 | 	 */ | 
 | 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); | 
 |  | 
 | 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - | 
 | 		MAX_TCP_OPTION_SPACE; | 
 |  | 
 | 	space = min_t(size_t, space, fo->size); | 
 |  | 
 | 	/* limit to order-0 allocations */ | 
 | 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); | 
 |  | 
 | 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); | 
 | 	if (!syn_data) | 
 | 		goto fallback; | 
 | 	syn_data->ip_summed = CHECKSUM_PARTIAL; | 
 | 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); | 
 | 	if (space) { | 
 | 		int copied = copy_from_iter(skb_put(syn_data, space), space, | 
 | 					    &fo->data->msg_iter); | 
 | 		if (unlikely(!copied)) { | 
 | 			tcp_skb_tsorted_anchor_cleanup(syn_data); | 
 | 			kfree_skb(syn_data); | 
 | 			goto fallback; | 
 | 		} | 
 | 		if (copied != space) { | 
 | 			skb_trim(syn_data, copied); | 
 | 			space = copied; | 
 | 		} | 
 | 	} | 
 | 	/* No more data pending in inet_wait_for_connect() */ | 
 | 	if (space == fo->size) | 
 | 		fo->data = NULL; | 
 | 	fo->copied = space; | 
 |  | 
 | 	tcp_connect_queue_skb(sk, syn_data); | 
 | 	if (syn_data->len) | 
 | 		tcp_chrono_start(sk, TCP_CHRONO_BUSY); | 
 |  | 
 | 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); | 
 |  | 
 | 	syn->skb_mstamp = syn_data->skb_mstamp; | 
 |  | 
 | 	/* Now full SYN+DATA was cloned and sent (or not), | 
 | 	 * remove the SYN from the original skb (syn_data) | 
 | 	 * we keep in write queue in case of a retransmit, as we | 
 | 	 * also have the SYN packet (with no data) in the same queue. | 
 | 	 */ | 
 | 	TCP_SKB_CB(syn_data)->seq++; | 
 | 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; | 
 | 	if (!err) { | 
 | 		tp->syn_data = (fo->copied > 0); | 
 | 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); | 
 | 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* data was not sent, put it in write_queue */ | 
 | 	__skb_queue_tail(&sk->sk_write_queue, syn_data); | 
 | 	tp->packets_out -= tcp_skb_pcount(syn_data); | 
 |  | 
 | fallback: | 
 | 	/* Send a regular SYN with Fast Open cookie request option */ | 
 | 	if (fo->cookie.len > 0) | 
 | 		fo->cookie.len = 0; | 
 | 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); | 
 | 	if (err) | 
 | 		tp->syn_fastopen = 0; | 
 | done: | 
 | 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */ | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Build a SYN and send it off. */ | 
 | int tcp_connect(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *buff; | 
 | 	int err; | 
 |  | 
 | 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); | 
 |  | 
 | 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) | 
 | 		return -EHOSTUNREACH; /* Routing failure or similar. */ | 
 |  | 
 | 	tcp_connect_init(sk); | 
 |  | 
 | 	if (unlikely(tp->repair)) { | 
 | 		tcp_finish_connect(sk, NULL); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); | 
 | 	if (unlikely(!buff)) | 
 | 		return -ENOBUFS; | 
 |  | 
 | 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); | 
 | 	tcp_mstamp_refresh(tp); | 
 | 	tp->retrans_stamp = tcp_time_stamp(tp); | 
 | 	tcp_connect_queue_skb(sk, buff); | 
 | 	tcp_ecn_send_syn(sk, buff); | 
 | 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); | 
 |  | 
 | 	/* Send off SYN; include data in Fast Open. */ | 
 | 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : | 
 | 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); | 
 | 	if (err == -ECONNREFUSED) | 
 | 		return err; | 
 |  | 
 | 	/* We change tp->snd_nxt after the tcp_transmit_skb() call | 
 | 	 * in order to make this packet get counted in tcpOutSegs. | 
 | 	 */ | 
 | 	tp->snd_nxt = tp->write_seq; | 
 | 	tp->pushed_seq = tp->write_seq; | 
 | 	buff = tcp_send_head(sk); | 
 | 	if (unlikely(buff)) { | 
 | 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq; | 
 | 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq; | 
 | 	} | 
 | 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); | 
 |  | 
 | 	/* Timer for repeating the SYN until an answer. */ | 
 | 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
 | 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tcp_connect); | 
 |  | 
 | /* Send out a delayed ack, the caller does the policy checking | 
 |  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check() | 
 |  * for details. | 
 |  */ | 
 | void tcp_send_delayed_ack(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	int ato = icsk->icsk_ack.ato; | 
 | 	unsigned long timeout; | 
 |  | 
 | 	if (ato > TCP_DELACK_MIN) { | 
 | 		const struct tcp_sock *tp = tcp_sk(sk); | 
 | 		int max_ato = HZ / 2; | 
 |  | 
 | 		if (icsk->icsk_ack.pingpong || | 
 | 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) | 
 | 			max_ato = TCP_DELACK_MAX; | 
 |  | 
 | 		/* Slow path, intersegment interval is "high". */ | 
 |  | 
 | 		/* If some rtt estimate is known, use it to bound delayed ack. | 
 | 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements | 
 | 		 * directly. | 
 | 		 */ | 
 | 		if (tp->srtt_us) { | 
 | 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), | 
 | 					TCP_DELACK_MIN); | 
 |  | 
 | 			if (rtt < max_ato) | 
 | 				max_ato = rtt; | 
 | 		} | 
 |  | 
 | 		ato = min(ato, max_ato); | 
 | 	} | 
 |  | 
 | 	/* Stay within the limit we were given */ | 
 | 	timeout = jiffies + ato; | 
 |  | 
 | 	/* Use new timeout only if there wasn't a older one earlier. */ | 
 | 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { | 
 | 		/* If delack timer was blocked or is about to expire, | 
 | 		 * send ACK now. | 
 | 		 */ | 
 | 		if (icsk->icsk_ack.blocked || | 
 | 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { | 
 | 			tcp_send_ack(sk); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (!time_before(timeout, icsk->icsk_ack.timeout)) | 
 | 			timeout = icsk->icsk_ack.timeout; | 
 | 	} | 
 | 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; | 
 | 	icsk->icsk_ack.timeout = timeout; | 
 | 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); | 
 | } | 
 |  | 
 | /* This routine sends an ack and also updates the window. */ | 
 | void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) | 
 | { | 
 | 	struct sk_buff *buff; | 
 |  | 
 | 	/* If we have been reset, we may not send again. */ | 
 | 	if (sk->sk_state == TCP_CLOSE) | 
 | 		return; | 
 |  | 
 | 	/* We are not putting this on the write queue, so | 
 | 	 * tcp_transmit_skb() will set the ownership to this | 
 | 	 * sock. | 
 | 	 */ | 
 | 	buff = alloc_skb(MAX_TCP_HEADER, | 
 | 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); | 
 | 	if (unlikely(!buff)) { | 
 | 		inet_csk_schedule_ack(sk); | 
 | 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; | 
 | 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, | 
 | 					  TCP_DELACK_MAX, TCP_RTO_MAX); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Reserve space for headers and prepare control bits. */ | 
 | 	skb_reserve(buff, MAX_TCP_HEADER); | 
 | 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); | 
 |  | 
 | 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing | 
 | 	 * too much. | 
 | 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 | 
 | 	 */ | 
 | 	skb_set_tcp_pure_ack(buff); | 
 |  | 
 | 	/* Send it off, this clears delayed acks for us. */ | 
 | 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__tcp_send_ack); | 
 |  | 
 | void tcp_send_ack(struct sock *sk) | 
 | { | 
 | 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); | 
 | } | 
 |  | 
 | /* This routine sends a packet with an out of date sequence | 
 |  * number. It assumes the other end will try to ack it. | 
 |  * | 
 |  * Question: what should we make while urgent mode? | 
 |  * 4.4BSD forces sending single byte of data. We cannot send | 
 |  * out of window data, because we have SND.NXT==SND.MAX... | 
 |  * | 
 |  * Current solution: to send TWO zero-length segments in urgent mode: | 
 |  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | 
 |  * out-of-date with SND.UNA-1 to probe window. | 
 |  */ | 
 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	/* We don't queue it, tcp_transmit_skb() sets ownership. */ | 
 | 	skb = alloc_skb(MAX_TCP_HEADER, | 
 | 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); | 
 | 	if (!skb) | 
 | 		return -1; | 
 |  | 
 | 	/* Reserve space for headers and set control bits. */ | 
 | 	skb_reserve(skb, MAX_TCP_HEADER); | 
 | 	/* Use a previous sequence.  This should cause the other | 
 | 	 * end to send an ack.  Don't queue or clone SKB, just | 
 | 	 * send it. | 
 | 	 */ | 
 | 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); | 
 | 	NET_INC_STATS(sock_net(sk), mib); | 
 | 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); | 
 | } | 
 |  | 
 | /* Called from setsockopt( ... TCP_REPAIR ) */ | 
 | void tcp_send_window_probe(struct sock *sk) | 
 | { | 
 | 	if (sk->sk_state == TCP_ESTABLISHED) { | 
 | 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; | 
 | 		tcp_mstamp_refresh(tcp_sk(sk)); | 
 | 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); | 
 | 	} | 
 | } | 
 |  | 
 | /* Initiate keepalive or window probe from timer. */ | 
 | int tcp_write_wakeup(struct sock *sk, int mib) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	if (sk->sk_state == TCP_CLOSE) | 
 | 		return -1; | 
 |  | 
 | 	skb = tcp_send_head(sk); | 
 | 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { | 
 | 		int err; | 
 | 		unsigned int mss = tcp_current_mss(sk); | 
 | 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; | 
 |  | 
 | 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | 
 | 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | 
 |  | 
 | 		/* We are probing the opening of a window | 
 | 		 * but the window size is != 0 | 
 | 		 * must have been a result SWS avoidance ( sender ) | 
 | 		 */ | 
 | 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | 
 | 		    skb->len > mss) { | 
 | 			seg_size = min(seg_size, mss); | 
 | 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; | 
 | 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, | 
 | 					 skb, seg_size, mss, GFP_ATOMIC)) | 
 | 				return -1; | 
 | 		} else if (!tcp_skb_pcount(skb)) | 
 | 			tcp_set_skb_tso_segs(skb, mss); | 
 |  | 
 | 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; | 
 | 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
 | 		if (!err) | 
 | 			tcp_event_new_data_sent(sk, skb); | 
 | 		return err; | 
 | 	} else { | 
 | 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) | 
 | 			tcp_xmit_probe_skb(sk, 1, mib); | 
 | 		return tcp_xmit_probe_skb(sk, 0, mib); | 
 | 	} | 
 | } | 
 |  | 
 | /* A window probe timeout has occurred.  If window is not closed send | 
 |  * a partial packet else a zero probe. | 
 |  */ | 
 | void tcp_send_probe0(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct net *net = sock_net(sk); | 
 | 	unsigned long probe_max; | 
 | 	int err; | 
 |  | 
 | 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); | 
 |  | 
 | 	if (tp->packets_out || tcp_write_queue_empty(sk)) { | 
 | 		/* Cancel probe timer, if it is not required. */ | 
 | 		icsk->icsk_probes_out = 0; | 
 | 		icsk->icsk_backoff = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (err <= 0) { | 
 | 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) | 
 | 			icsk->icsk_backoff++; | 
 | 		icsk->icsk_probes_out++; | 
 | 		probe_max = TCP_RTO_MAX; | 
 | 	} else { | 
 | 		/* If packet was not sent due to local congestion, | 
 | 		 * do not backoff and do not remember icsk_probes_out. | 
 | 		 * Let local senders to fight for local resources. | 
 | 		 * | 
 | 		 * Use accumulated backoff yet. | 
 | 		 */ | 
 | 		if (!icsk->icsk_probes_out) | 
 | 			icsk->icsk_probes_out = 1; | 
 | 		probe_max = TCP_RESOURCE_PROBE_INTERVAL; | 
 | 	} | 
 | 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | 
 | 				  tcp_probe0_when(sk, probe_max), | 
 | 				  TCP_RTO_MAX); | 
 | } | 
 |  | 
 | int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) | 
 | { | 
 | 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; | 
 | 	struct flowi fl; | 
 | 	int res; | 
 |  | 
 | 	tcp_rsk(req)->txhash = net_tx_rndhash(); | 
 | 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); | 
 | 	if (!res) { | 
 | 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); | 
 | 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); | 
 | 		if (unlikely(tcp_passive_fastopen(sk))) | 
 | 			tcp_sk(sk)->total_retrans++; | 
 | 		trace_tcp_retransmit_synack(sk, req); | 
 | 	} | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(tcp_rtx_synack); |