| /* | 
 |  * raid1.c : Multiple Devices driver for Linux | 
 |  * | 
 |  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat | 
 |  * | 
 |  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
 |  * | 
 |  * RAID-1 management functions. | 
 |  * | 
 |  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 | 
 |  * | 
 |  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> | 
 |  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> | 
 |  * | 
 |  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support | 
 |  * bitmapped intelligence in resync: | 
 |  * | 
 |  *      - bitmap marked during normal i/o | 
 |  *      - bitmap used to skip nondirty blocks during sync | 
 |  * | 
 |  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: | 
 |  * - persistent bitmap code | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * (for example /usr/src/linux/COPYING); if not, write to the Free | 
 |  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/module.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/ratelimit.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | #include "md.h" | 
 | #include "raid1.h" | 
 | #include "md-bitmap.h" | 
 |  | 
 | #define UNSUPPORTED_MDDEV_FLAGS		\ | 
 | 	((1L << MD_HAS_JOURNAL) |	\ | 
 | 	 (1L << MD_JOURNAL_CLEAN) |	\ | 
 | 	 (1L << MD_HAS_PPL) |		\ | 
 | 	 (1L << MD_HAS_MULTIPLE_PPLS)) | 
 |  | 
 | /* | 
 |  * Number of guaranteed r1bios in case of extreme VM load: | 
 |  */ | 
 | #define	NR_RAID1_BIOS 256 | 
 |  | 
 | /* when we get a read error on a read-only array, we redirect to another | 
 |  * device without failing the first device, or trying to over-write to | 
 |  * correct the read error.  To keep track of bad blocks on a per-bio | 
 |  * level, we store IO_BLOCKED in the appropriate 'bios' pointer | 
 |  */ | 
 | #define IO_BLOCKED ((struct bio *)1) | 
 | /* When we successfully write to a known bad-block, we need to remove the | 
 |  * bad-block marking which must be done from process context.  So we record | 
 |  * the success by setting devs[n].bio to IO_MADE_GOOD | 
 |  */ | 
 | #define IO_MADE_GOOD ((struct bio *)2) | 
 |  | 
 | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) | 
 |  | 
 | /* When there are this many requests queue to be written by | 
 |  * the raid1 thread, we become 'congested' to provide back-pressure | 
 |  * for writeback. | 
 |  */ | 
 | static int max_queued_requests = 1024; | 
 |  | 
 | static void allow_barrier(struct r1conf *conf, sector_t sector_nr); | 
 | static void lower_barrier(struct r1conf *conf, sector_t sector_nr); | 
 |  | 
 | #define raid1_log(md, fmt, args...)				\ | 
 | 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) | 
 |  | 
 | #include "raid1-10.c" | 
 |  | 
 | /* | 
 |  * for resync bio, r1bio pointer can be retrieved from the per-bio | 
 |  * 'struct resync_pages'. | 
 |  */ | 
 | static inline struct r1bio *get_resync_r1bio(struct bio *bio) | 
 | { | 
 | 	return get_resync_pages(bio)->raid_bio; | 
 | } | 
 |  | 
 | static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct pool_info *pi = data; | 
 | 	int size = offsetof(struct r1bio, bios[pi->raid_disks]); | 
 |  | 
 | 	/* allocate a r1bio with room for raid_disks entries in the bios array */ | 
 | 	return kzalloc(size, gfp_flags); | 
 | } | 
 |  | 
 | static void r1bio_pool_free(void *r1_bio, void *data) | 
 | { | 
 | 	kfree(r1_bio); | 
 | } | 
 |  | 
 | #define RESYNC_DEPTH 32 | 
 | #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) | 
 | #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) | 
 | #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) | 
 | #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) | 
 | #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) | 
 |  | 
 | static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct pool_info *pi = data; | 
 | 	struct r1bio *r1_bio; | 
 | 	struct bio *bio; | 
 | 	int need_pages; | 
 | 	int j; | 
 | 	struct resync_pages *rps; | 
 |  | 
 | 	r1_bio = r1bio_pool_alloc(gfp_flags, pi); | 
 | 	if (!r1_bio) | 
 | 		return NULL; | 
 |  | 
 | 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), | 
 | 			    gfp_flags); | 
 | 	if (!rps) | 
 | 		goto out_free_r1bio; | 
 |  | 
 | 	/* | 
 | 	 * Allocate bios : 1 for reading, n-1 for writing | 
 | 	 */ | 
 | 	for (j = pi->raid_disks ; j-- ; ) { | 
 | 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		r1_bio->bios[j] = bio; | 
 | 	} | 
 | 	/* | 
 | 	 * Allocate RESYNC_PAGES data pages and attach them to | 
 | 	 * the first bio. | 
 | 	 * If this is a user-requested check/repair, allocate | 
 | 	 * RESYNC_PAGES for each bio. | 
 | 	 */ | 
 | 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) | 
 | 		need_pages = pi->raid_disks; | 
 | 	else | 
 | 		need_pages = 1; | 
 | 	for (j = 0; j < pi->raid_disks; j++) { | 
 | 		struct resync_pages *rp = &rps[j]; | 
 |  | 
 | 		bio = r1_bio->bios[j]; | 
 |  | 
 | 		if (j < need_pages) { | 
 | 			if (resync_alloc_pages(rp, gfp_flags)) | 
 | 				goto out_free_pages; | 
 | 		} else { | 
 | 			memcpy(rp, &rps[0], sizeof(*rp)); | 
 | 			resync_get_all_pages(rp); | 
 | 		} | 
 |  | 
 | 		rp->raid_bio = r1_bio; | 
 | 		bio->bi_private = rp; | 
 | 	} | 
 |  | 
 | 	r1_bio->master_bio = NULL; | 
 |  | 
 | 	return r1_bio; | 
 |  | 
 | out_free_pages: | 
 | 	while (--j >= 0) | 
 | 		resync_free_pages(&rps[j]); | 
 |  | 
 | out_free_bio: | 
 | 	while (++j < pi->raid_disks) | 
 | 		bio_put(r1_bio->bios[j]); | 
 | 	kfree(rps); | 
 |  | 
 | out_free_r1bio: | 
 | 	r1bio_pool_free(r1_bio, data); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void r1buf_pool_free(void *__r1_bio, void *data) | 
 | { | 
 | 	struct pool_info *pi = data; | 
 | 	int i; | 
 | 	struct r1bio *r1bio = __r1_bio; | 
 | 	struct resync_pages *rp = NULL; | 
 |  | 
 | 	for (i = pi->raid_disks; i--; ) { | 
 | 		rp = get_resync_pages(r1bio->bios[i]); | 
 | 		resync_free_pages(rp); | 
 | 		bio_put(r1bio->bios[i]); | 
 | 	} | 
 |  | 
 | 	/* resync pages array stored in the 1st bio's .bi_private */ | 
 | 	kfree(rp); | 
 |  | 
 | 	r1bio_pool_free(r1bio, data); | 
 | } | 
 |  | 
 | static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		struct bio **bio = r1_bio->bios + i; | 
 | 		if (!BIO_SPECIAL(*bio)) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_r1bio(struct r1bio *r1_bio) | 
 | { | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 |  | 
 | 	put_all_bios(conf, r1_bio); | 
 | 	mempool_free(r1_bio, &conf->r1bio_pool); | 
 | } | 
 |  | 
 | static void put_buf(struct r1bio *r1_bio) | 
 | { | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 | 	sector_t sect = r1_bio->sector; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		struct bio *bio = r1_bio->bios[i]; | 
 | 		if (bio->bi_end_io) | 
 | 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); | 
 | 	} | 
 |  | 
 | 	mempool_free(r1_bio, &conf->r1buf_pool); | 
 |  | 
 | 	lower_barrier(conf, sect); | 
 | } | 
 |  | 
 | static void reschedule_retry(struct r1bio *r1_bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct mddev *mddev = r1_bio->mddev; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int idx; | 
 |  | 
 | 	idx = sector_to_idx(r1_bio->sector); | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	list_add(&r1_bio->retry_list, &conf->retry_list); | 
 | 	atomic_inc(&conf->nr_queued[idx]); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | /* | 
 |  * raid_end_bio_io() is called when we have finished servicing a mirrored | 
 |  * operation and are ready to return a success/failure code to the buffer | 
 |  * cache layer. | 
 |  */ | 
 | static void call_bio_endio(struct r1bio *r1_bio) | 
 | { | 
 | 	struct bio *bio = r1_bio->master_bio; | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 |  | 
 | 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
 | 		bio->bi_status = BLK_STS_IOERR; | 
 |  | 
 | 	bio_endio(bio); | 
 | 	/* | 
 | 	 * Wake up any possible resync thread that waits for the device | 
 | 	 * to go idle. | 
 | 	 */ | 
 | 	allow_barrier(conf, r1_bio->sector); | 
 | } | 
 |  | 
 | static void raid_end_bio_io(struct r1bio *r1_bio) | 
 | { | 
 | 	struct bio *bio = r1_bio->master_bio; | 
 |  | 
 | 	/* if nobody has done the final endio yet, do it now */ | 
 | 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
 | 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n", | 
 | 			 (bio_data_dir(bio) == WRITE) ? "write" : "read", | 
 | 			 (unsigned long long) bio->bi_iter.bi_sector, | 
 | 			 (unsigned long long) bio_end_sector(bio) - 1); | 
 |  | 
 | 		call_bio_endio(r1_bio); | 
 | 	} | 
 | 	free_r1bio(r1_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Update disk head position estimator based on IRQ completion info. | 
 |  */ | 
 | static inline void update_head_pos(int disk, struct r1bio *r1_bio) | 
 | { | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 |  | 
 | 	conf->mirrors[disk].head_position = | 
 | 		r1_bio->sector + (r1_bio->sectors); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the disk number which triggered given bio | 
 |  */ | 
 | static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) | 
 | { | 
 | 	int mirror; | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 | 	int raid_disks = conf->raid_disks; | 
 |  | 
 | 	for (mirror = 0; mirror < raid_disks * 2; mirror++) | 
 | 		if (r1_bio->bios[mirror] == bio) | 
 | 			break; | 
 |  | 
 | 	BUG_ON(mirror == raid_disks * 2); | 
 | 	update_head_pos(mirror, r1_bio); | 
 |  | 
 | 	return mirror; | 
 | } | 
 |  | 
 | static void raid1_end_read_request(struct bio *bio) | 
 | { | 
 | 	int uptodate = !bio->bi_status; | 
 | 	struct r1bio *r1_bio = bio->bi_private; | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 | 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
 |  | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	update_head_pos(r1_bio->read_disk, r1_bio); | 
 |  | 
 | 	if (uptodate) | 
 | 		set_bit(R1BIO_Uptodate, &r1_bio->state); | 
 | 	else if (test_bit(FailFast, &rdev->flags) && | 
 | 		 test_bit(R1BIO_FailFast, &r1_bio->state)) | 
 | 		/* This was a fail-fast read so we definitely | 
 | 		 * want to retry */ | 
 | 		; | 
 | 	else { | 
 | 		/* If all other devices have failed, we want to return | 
 | 		 * the error upwards rather than fail the last device. | 
 | 		 * Here we redefine "uptodate" to mean "Don't want to retry" | 
 | 		 */ | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (r1_bio->mddev->degraded == conf->raid_disks || | 
 | 		    (r1_bio->mddev->degraded == conf->raid_disks-1 && | 
 | 		     test_bit(In_sync, &rdev->flags))) | 
 | 			uptodate = 1; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	} | 
 |  | 
 | 	if (uptodate) { | 
 | 		raid_end_bio_io(r1_bio); | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 | 	} else { | 
 | 		/* | 
 | 		 * oops, read error: | 
 | 		 */ | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", | 
 | 				   mdname(conf->mddev), | 
 | 				   bdevname(rdev->bdev, b), | 
 | 				   (unsigned long long)r1_bio->sector); | 
 | 		set_bit(R1BIO_ReadError, &r1_bio->state); | 
 | 		reschedule_retry(r1_bio); | 
 | 		/* don't drop the reference on read_disk yet */ | 
 | 	} | 
 | } | 
 |  | 
 | static void close_write(struct r1bio *r1_bio) | 
 | { | 
 | 	/* it really is the end of this request */ | 
 | 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
 | 		bio_free_pages(r1_bio->behind_master_bio); | 
 | 		bio_put(r1_bio->behind_master_bio); | 
 | 		r1_bio->behind_master_bio = NULL; | 
 | 	} | 
 | 	/* clear the bitmap if all writes complete successfully */ | 
 | 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, | 
 | 			   r1_bio->sectors, | 
 | 			   !test_bit(R1BIO_Degraded, &r1_bio->state), | 
 | 			   test_bit(R1BIO_BehindIO, &r1_bio->state)); | 
 | 	md_write_end(r1_bio->mddev); | 
 | } | 
 |  | 
 | static void r1_bio_write_done(struct r1bio *r1_bio) | 
 | { | 
 | 	if (!atomic_dec_and_test(&r1_bio->remaining)) | 
 | 		return; | 
 |  | 
 | 	if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 		reschedule_retry(r1_bio); | 
 | 	else { | 
 | 		close_write(r1_bio); | 
 | 		if (test_bit(R1BIO_MadeGood, &r1_bio->state)) | 
 | 			reschedule_retry(r1_bio); | 
 | 		else | 
 | 			raid_end_bio_io(r1_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void raid1_end_write_request(struct bio *bio) | 
 | { | 
 | 	struct r1bio *r1_bio = bio->bi_private; | 
 | 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); | 
 | 	struct r1conf *conf = r1_bio->mddev->private; | 
 | 	struct bio *to_put = NULL; | 
 | 	int mirror = find_bio_disk(r1_bio, bio); | 
 | 	struct md_rdev *rdev = conf->mirrors[mirror].rdev; | 
 | 	bool discard_error; | 
 |  | 
 | 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; | 
 |  | 
 | 	/* | 
 | 	 * 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	if (bio->bi_status && !discard_error) { | 
 | 		set_bit(WriteErrorSeen,	&rdev->flags); | 
 | 		if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 			set_bit(MD_RECOVERY_NEEDED, & | 
 | 				conf->mddev->recovery); | 
 |  | 
 | 		if (test_bit(FailFast, &rdev->flags) && | 
 | 		    (bio->bi_opf & MD_FAILFAST) && | 
 | 		    /* We never try FailFast to WriteMostly devices */ | 
 | 		    !test_bit(WriteMostly, &rdev->flags)) { | 
 | 			md_error(r1_bio->mddev, rdev); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * When the device is faulty, it is not necessary to | 
 | 		 * handle write error. | 
 | 		 * For failfast, this is the only remaining device, | 
 | 		 * We need to retry the write without FailFast. | 
 | 		 */ | 
 | 		if (!test_bit(Faulty, &rdev->flags)) | 
 | 			set_bit(R1BIO_WriteError, &r1_bio->state); | 
 | 		else { | 
 | 			/* Finished with this branch */ | 
 | 			r1_bio->bios[mirror] = NULL; | 
 | 			to_put = bio; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Set R1BIO_Uptodate in our master bio, so that we | 
 | 		 * will return a good error code for to the higher | 
 | 		 * levels even if IO on some other mirrored buffer | 
 | 		 * fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation | 
 | 		 * to user-side. So if something waits for IO, then it | 
 | 		 * will wait for the 'master' bio. | 
 | 		 */ | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 |  | 
 | 		r1_bio->bios[mirror] = NULL; | 
 | 		to_put = bio; | 
 | 		/* | 
 | 		 * Do not set R1BIO_Uptodate if the current device is | 
 | 		 * rebuilding or Faulty. This is because we cannot use | 
 | 		 * such device for properly reading the data back (we could | 
 | 		 * potentially use it, if the current write would have felt | 
 | 		 * before rdev->recovery_offset, but for simplicity we don't | 
 | 		 * check this here. | 
 | 		 */ | 
 | 		if (test_bit(In_sync, &rdev->flags) && | 
 | 		    !test_bit(Faulty, &rdev->flags)) | 
 | 			set_bit(R1BIO_Uptodate, &r1_bio->state); | 
 |  | 
 | 		/* Maybe we can clear some bad blocks. */ | 
 | 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, | 
 | 				&first_bad, &bad_sectors) && !discard_error) { | 
 | 			r1_bio->bios[mirror] = IO_MADE_GOOD; | 
 | 			set_bit(R1BIO_MadeGood, &r1_bio->state); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (behind) { | 
 | 		if (test_bit(WriteMostly, &rdev->flags)) | 
 | 			atomic_dec(&r1_bio->behind_remaining); | 
 |  | 
 | 		/* | 
 | 		 * In behind mode, we ACK the master bio once the I/O | 
 | 		 * has safely reached all non-writemostly | 
 | 		 * disks. Setting the Returned bit ensures that this | 
 | 		 * gets done only once -- we don't ever want to return | 
 | 		 * -EIO here, instead we'll wait | 
 | 		 */ | 
 | 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && | 
 | 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) { | 
 | 			/* Maybe we can return now */ | 
 | 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { | 
 | 				struct bio *mbio = r1_bio->master_bio; | 
 | 				pr_debug("raid1: behind end write sectors" | 
 | 					 " %llu-%llu\n", | 
 | 					 (unsigned long long) mbio->bi_iter.bi_sector, | 
 | 					 (unsigned long long) bio_end_sector(mbio) - 1); | 
 | 				call_bio_endio(r1_bio); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (r1_bio->bios[mirror] == NULL) | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 |  | 
 | 	/* | 
 | 	 * Let's see if all mirrored write operations have finished | 
 | 	 * already. | 
 | 	 */ | 
 | 	r1_bio_write_done(r1_bio); | 
 |  | 
 | 	if (to_put) | 
 | 		bio_put(to_put); | 
 | } | 
 |  | 
 | static sector_t align_to_barrier_unit_end(sector_t start_sector, | 
 | 					  sector_t sectors) | 
 | { | 
 | 	sector_t len; | 
 |  | 
 | 	WARN_ON(sectors == 0); | 
 | 	/* | 
 | 	 * len is the number of sectors from start_sector to end of the | 
 | 	 * barrier unit which start_sector belongs to. | 
 | 	 */ | 
 | 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - | 
 | 	      start_sector; | 
 |  | 
 | 	if (len > sectors) | 
 | 		len = sectors; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine returns the disk from which the requested read should | 
 |  * be done. There is a per-array 'next expected sequential IO' sector | 
 |  * number - if this matches on the next IO then we use the last disk. | 
 |  * There is also a per-disk 'last know head position' sector that is | 
 |  * maintained from IRQ contexts, both the normal and the resync IO | 
 |  * completion handlers update this position correctly. If there is no | 
 |  * perfect sequential match then we pick the disk whose head is closest. | 
 |  * | 
 |  * If there are 2 mirrors in the same 2 devices, performance degrades | 
 |  * because position is mirror, not device based. | 
 |  * | 
 |  * The rdev for the device selected will have nr_pending incremented. | 
 |  */ | 
 | static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) | 
 | { | 
 | 	const sector_t this_sector = r1_bio->sector; | 
 | 	int sectors; | 
 | 	int best_good_sectors; | 
 | 	int best_disk, best_dist_disk, best_pending_disk; | 
 | 	int has_nonrot_disk; | 
 | 	int disk; | 
 | 	sector_t best_dist; | 
 | 	unsigned int min_pending; | 
 | 	struct md_rdev *rdev; | 
 | 	int choose_first; | 
 | 	int choose_next_idle; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * Check if we can balance. We can balance on the whole | 
 | 	 * device if no resync is going on, or below the resync window. | 
 | 	 * We take the first readable disk when above the resync window. | 
 | 	 */ | 
 |  retry: | 
 | 	sectors = r1_bio->sectors; | 
 | 	best_disk = -1; | 
 | 	best_dist_disk = -1; | 
 | 	best_dist = MaxSector; | 
 | 	best_pending_disk = -1; | 
 | 	min_pending = UINT_MAX; | 
 | 	best_good_sectors = 0; | 
 | 	has_nonrot_disk = 0; | 
 | 	choose_next_idle = 0; | 
 | 	clear_bit(R1BIO_FailFast, &r1_bio->state); | 
 |  | 
 | 	if ((conf->mddev->recovery_cp < this_sector + sectors) || | 
 | 	    (mddev_is_clustered(conf->mddev) && | 
 | 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, | 
 | 		    this_sector + sectors))) | 
 | 		choose_first = 1; | 
 | 	else | 
 | 		choose_first = 0; | 
 |  | 
 | 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { | 
 | 		sector_t dist; | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 | 		unsigned int pending; | 
 | 		bool nonrot; | 
 |  | 
 | 		rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
 | 		if (r1_bio->bios[disk] == IO_BLOCKED | 
 | 		    || rdev == NULL | 
 | 		    || test_bit(Faulty, &rdev->flags)) | 
 | 			continue; | 
 | 		if (!test_bit(In_sync, &rdev->flags) && | 
 | 		    rdev->recovery_offset < this_sector + sectors) | 
 | 			continue; | 
 | 		if (test_bit(WriteMostly, &rdev->flags)) { | 
 | 			/* Don't balance among write-mostly, just | 
 | 			 * use the first as a last resort */ | 
 | 			if (best_dist_disk < 0) { | 
 | 				if (is_badblock(rdev, this_sector, sectors, | 
 | 						&first_bad, &bad_sectors)) { | 
 | 					if (first_bad <= this_sector) | 
 | 						/* Cannot use this */ | 
 | 						continue; | 
 | 					best_good_sectors = first_bad - this_sector; | 
 | 				} else | 
 | 					best_good_sectors = sectors; | 
 | 				best_dist_disk = disk; | 
 | 				best_pending_disk = disk; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		/* This is a reasonable device to use.  It might | 
 | 		 * even be best. | 
 | 		 */ | 
 | 		if (is_badblock(rdev, this_sector, sectors, | 
 | 				&first_bad, &bad_sectors)) { | 
 | 			if (best_dist < MaxSector) | 
 | 				/* already have a better device */ | 
 | 				continue; | 
 | 			if (first_bad <= this_sector) { | 
 | 				/* cannot read here. If this is the 'primary' | 
 | 				 * device, then we must not read beyond | 
 | 				 * bad_sectors from another device.. | 
 | 				 */ | 
 | 				bad_sectors -= (this_sector - first_bad); | 
 | 				if (choose_first && sectors > bad_sectors) | 
 | 					sectors = bad_sectors; | 
 | 				if (best_good_sectors > sectors) | 
 | 					best_good_sectors = sectors; | 
 |  | 
 | 			} else { | 
 | 				sector_t good_sectors = first_bad - this_sector; | 
 | 				if (good_sectors > best_good_sectors) { | 
 | 					best_good_sectors = good_sectors; | 
 | 					best_disk = disk; | 
 | 				} | 
 | 				if (choose_first) | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} else { | 
 | 			if ((sectors > best_good_sectors) && (best_disk >= 0)) | 
 | 				best_disk = -1; | 
 | 			best_good_sectors = sectors; | 
 | 		} | 
 |  | 
 | 		if (best_disk >= 0) | 
 | 			/* At least two disks to choose from so failfast is OK */ | 
 | 			set_bit(R1BIO_FailFast, &r1_bio->state); | 
 |  | 
 | 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); | 
 | 		has_nonrot_disk |= nonrot; | 
 | 		pending = atomic_read(&rdev->nr_pending); | 
 | 		dist = abs(this_sector - conf->mirrors[disk].head_position); | 
 | 		if (choose_first) { | 
 | 			best_disk = disk; | 
 | 			break; | 
 | 		} | 
 | 		/* Don't change to another disk for sequential reads */ | 
 | 		if (conf->mirrors[disk].next_seq_sect == this_sector | 
 | 		    || dist == 0) { | 
 | 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; | 
 | 			struct raid1_info *mirror = &conf->mirrors[disk]; | 
 |  | 
 | 			best_disk = disk; | 
 | 			/* | 
 | 			 * If buffered sequential IO size exceeds optimal | 
 | 			 * iosize, check if there is idle disk. If yes, choose | 
 | 			 * the idle disk. read_balance could already choose an | 
 | 			 * idle disk before noticing it's a sequential IO in | 
 | 			 * this disk. This doesn't matter because this disk | 
 | 			 * will idle, next time it will be utilized after the | 
 | 			 * first disk has IO size exceeds optimal iosize. In | 
 | 			 * this way, iosize of the first disk will be optimal | 
 | 			 * iosize at least. iosize of the second disk might be | 
 | 			 * small, but not a big deal since when the second disk | 
 | 			 * starts IO, the first disk is likely still busy. | 
 | 			 */ | 
 | 			if (nonrot && opt_iosize > 0 && | 
 | 			    mirror->seq_start != MaxSector && | 
 | 			    mirror->next_seq_sect > opt_iosize && | 
 | 			    mirror->next_seq_sect - opt_iosize >= | 
 | 			    mirror->seq_start) { | 
 | 				choose_next_idle = 1; | 
 | 				continue; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (choose_next_idle) | 
 | 			continue; | 
 |  | 
 | 		if (min_pending > pending) { | 
 | 			min_pending = pending; | 
 | 			best_pending_disk = disk; | 
 | 		} | 
 |  | 
 | 		if (dist < best_dist) { | 
 | 			best_dist = dist; | 
 | 			best_dist_disk = disk; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If all disks are rotational, choose the closest disk. If any disk is | 
 | 	 * non-rotational, choose the disk with less pending request even the | 
 | 	 * disk is rotational, which might/might not be optimal for raids with | 
 | 	 * mixed ratation/non-rotational disks depending on workload. | 
 | 	 */ | 
 | 	if (best_disk == -1) { | 
 | 		if (has_nonrot_disk || min_pending == 0) | 
 | 			best_disk = best_pending_disk; | 
 | 		else | 
 | 			best_disk = best_dist_disk; | 
 | 	} | 
 |  | 
 | 	if (best_disk >= 0) { | 
 | 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev); | 
 | 		if (!rdev) | 
 | 			goto retry; | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		sectors = best_good_sectors; | 
 |  | 
 | 		if (conf->mirrors[best_disk].next_seq_sect != this_sector) | 
 | 			conf->mirrors[best_disk].seq_start = this_sector; | 
 |  | 
 | 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	*max_sectors = sectors; | 
 |  | 
 | 	return best_disk; | 
 | } | 
 |  | 
 | static int raid1_congested(struct mddev *mddev, int bits) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	if ((bits & (1 << WB_async_congested)) && | 
 | 	    conf->pending_count >= max_queued_requests) | 
 | 		return 1; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 			struct request_queue *q = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 			BUG_ON(!q); | 
 |  | 
 | 			/* Note the '|| 1' - when read_balance prefers | 
 | 			 * non-congested targets, it can be removed | 
 | 			 */ | 
 | 			if ((bits & (1 << WB_async_congested)) || 1) | 
 | 				ret |= bdi_congested(q->backing_dev_info, bits); | 
 | 			else | 
 | 				ret &= bdi_congested(q->backing_dev_info, bits); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void flush_bio_list(struct r1conf *conf, struct bio *bio) | 
 | { | 
 | 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */ | 
 | 	md_bitmap_unplug(conf->mddev->bitmap); | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	while (bio) { /* submit pending writes */ | 
 | 		struct bio *next = bio->bi_next; | 
 | 		struct md_rdev *rdev = (void *)bio->bi_disk; | 
 | 		bio->bi_next = NULL; | 
 | 		bio_set_dev(bio, rdev->bdev); | 
 | 		if (test_bit(Faulty, &rdev->flags)) { | 
 | 			bio_io_error(bio); | 
 | 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && | 
 | 				    !blk_queue_discard(bio->bi_disk->queue))) | 
 | 			/* Just ignore it */ | 
 | 			bio_endio(bio); | 
 | 		else | 
 | 			generic_make_request(bio); | 
 | 		bio = next; | 
 | 	} | 
 | } | 
 |  | 
 | static void flush_pending_writes(struct r1conf *conf) | 
 | { | 
 | 	/* Any writes that have been queued but are awaiting | 
 | 	 * bitmap updates get flushed here. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->device_lock); | 
 |  | 
 | 	if (conf->pending_bio_list.head) { | 
 | 		struct blk_plug plug; | 
 | 		struct bio *bio; | 
 |  | 
 | 		bio = bio_list_get(&conf->pending_bio_list); | 
 | 		conf->pending_count = 0; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 |  | 
 | 		/* | 
 | 		 * As this is called in a wait_event() loop (see freeze_array), | 
 | 		 * current->state might be TASK_UNINTERRUPTIBLE which will | 
 | 		 * cause a warning when we prepare to wait again.  As it is | 
 | 		 * rare that this path is taken, it is perfectly safe to force | 
 | 		 * us to go around the wait_event() loop again, so the warning | 
 | 		 * is a false-positive.  Silence the warning by resetting | 
 | 		 * thread state | 
 | 		 */ | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		blk_start_plug(&plug); | 
 | 		flush_bio_list(conf, bio); | 
 | 		blk_finish_plug(&plug); | 
 | 	} else | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | } | 
 |  | 
 | /* Barriers.... | 
 |  * Sometimes we need to suspend IO while we do something else, | 
 |  * either some resync/recovery, or reconfigure the array. | 
 |  * To do this we raise a 'barrier'. | 
 |  * The 'barrier' is a counter that can be raised multiple times | 
 |  * to count how many activities are happening which preclude | 
 |  * normal IO. | 
 |  * We can only raise the barrier if there is no pending IO. | 
 |  * i.e. if nr_pending == 0. | 
 |  * We choose only to raise the barrier if no-one is waiting for the | 
 |  * barrier to go down.  This means that as soon as an IO request | 
 |  * is ready, no other operations which require a barrier will start | 
 |  * until the IO request has had a chance. | 
 |  * | 
 |  * So: regular IO calls 'wait_barrier'.  When that returns there | 
 |  *    is no backgroup IO happening,  It must arrange to call | 
 |  *    allow_barrier when it has finished its IO. | 
 |  * backgroup IO calls must call raise_barrier.  Once that returns | 
 |  *    there is no normal IO happeing.  It must arrange to call | 
 |  *    lower_barrier when the particular background IO completes. | 
 |  */ | 
 | static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) | 
 | { | 
 | 	int idx = sector_to_idx(sector_nr); | 
 |  | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 |  | 
 | 	/* Wait until no block IO is waiting */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    !atomic_read(&conf->nr_waiting[idx]), | 
 | 			    conf->resync_lock); | 
 |  | 
 | 	/* block any new IO from starting */ | 
 | 	atomic_inc(&conf->barrier[idx]); | 
 | 	/* | 
 | 	 * In raise_barrier() we firstly increase conf->barrier[idx] then | 
 | 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly | 
 | 	 * increase conf->nr_pending[idx] then check conf->barrier[idx]. | 
 | 	 * A memory barrier here to make sure conf->nr_pending[idx] won't | 
 | 	 * be fetched before conf->barrier[idx] is increased. Otherwise | 
 | 	 * there will be a race between raise_barrier() and _wait_barrier(). | 
 | 	 */ | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	/* For these conditions we must wait: | 
 | 	 * A: while the array is in frozen state | 
 | 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O | 
 | 	 *    existing in corresponding I/O barrier bucket. | 
 | 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches | 
 | 	 *    max resync count which allowed on current I/O barrier bucket. | 
 | 	 */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    (!conf->array_frozen && | 
 | 			     !atomic_read(&conf->nr_pending[idx]) && | 
 | 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || | 
 | 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), | 
 | 			    conf->resync_lock); | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { | 
 | 		atomic_dec(&conf->barrier[idx]); | 
 | 		spin_unlock_irq(&conf->resync_lock); | 
 | 		wake_up(&conf->wait_barrier); | 
 | 		return -EINTR; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&conf->nr_sync_pending); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void lower_barrier(struct r1conf *conf, sector_t sector_nr) | 
 | { | 
 | 	int idx = sector_to_idx(sector_nr); | 
 |  | 
 | 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); | 
 |  | 
 | 	atomic_dec(&conf->barrier[idx]); | 
 | 	atomic_dec(&conf->nr_sync_pending); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void _wait_barrier(struct r1conf *conf, int idx) | 
 | { | 
 | 	/* | 
 | 	 * We need to increase conf->nr_pending[idx] very early here, | 
 | 	 * then raise_barrier() can be blocked when it waits for | 
 | 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding | 
 | 	 * conf->resync_lock when there is no barrier raised in same | 
 | 	 * barrier unit bucket. Also if the array is frozen, I/O | 
 | 	 * should be blocked until array is unfrozen. | 
 | 	 */ | 
 | 	atomic_inc(&conf->nr_pending[idx]); | 
 | 	/* | 
 | 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then | 
 | 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase | 
 | 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory | 
 | 	 * barrier is necessary here to make sure conf->barrier[idx] won't be | 
 | 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there | 
 | 	 * will be a race between _wait_barrier() and raise_barrier(). | 
 | 	 */ | 
 | 	smp_mb__after_atomic(); | 
 |  | 
 | 	/* | 
 | 	 * Don't worry about checking two atomic_t variables at same time | 
 | 	 * here. If during we check conf->barrier[idx], the array is | 
 | 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is | 
 | 	 * 0, it is safe to return and make the I/O continue. Because the | 
 | 	 * array is frozen, all I/O returned here will eventually complete | 
 | 	 * or be queued, no race will happen. See code comment in | 
 | 	 * frozen_array(). | 
 | 	 */ | 
 | 	if (!READ_ONCE(conf->array_frozen) && | 
 | 	    !atomic_read(&conf->barrier[idx])) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * After holding conf->resync_lock, conf->nr_pending[idx] | 
 | 	 * should be decreased before waiting for barrier to drop. | 
 | 	 * Otherwise, we may encounter a race condition because | 
 | 	 * raise_barrer() might be waiting for conf->nr_pending[idx] | 
 | 	 * to be 0 at same time. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	atomic_inc(&conf->nr_waiting[idx]); | 
 | 	atomic_dec(&conf->nr_pending[idx]); | 
 | 	/* | 
 | 	 * In case freeze_array() is waiting for | 
 | 	 * get_unqueued_pending() == extra | 
 | 	 */ | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	/* Wait for the barrier in same barrier unit bucket to drop. */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    !conf->array_frozen && | 
 | 			     !atomic_read(&conf->barrier[idx]), | 
 | 			    conf->resync_lock); | 
 | 	atomic_inc(&conf->nr_pending[idx]); | 
 | 	atomic_dec(&conf->nr_waiting[idx]); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) | 
 | { | 
 | 	int idx = sector_to_idx(sector_nr); | 
 |  | 
 | 	/* | 
 | 	 * Very similar to _wait_barrier(). The difference is, for read | 
 | 	 * I/O we don't need wait for sync I/O, but if the whole array | 
 | 	 * is frozen, the read I/O still has to wait until the array is | 
 | 	 * unfrozen. Since there is no ordering requirement with | 
 | 	 * conf->barrier[idx] here, memory barrier is unnecessary as well. | 
 | 	 */ | 
 | 	atomic_inc(&conf->nr_pending[idx]); | 
 |  | 
 | 	if (!READ_ONCE(conf->array_frozen)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	atomic_inc(&conf->nr_waiting[idx]); | 
 | 	atomic_dec(&conf->nr_pending[idx]); | 
 | 	/* | 
 | 	 * In case freeze_array() is waiting for | 
 | 	 * get_unqueued_pending() == extra | 
 | 	 */ | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	/* Wait for array to be unfrozen */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    !conf->array_frozen, | 
 | 			    conf->resync_lock); | 
 | 	atomic_inc(&conf->nr_pending[idx]); | 
 | 	atomic_dec(&conf->nr_waiting[idx]); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void wait_barrier(struct r1conf *conf, sector_t sector_nr) | 
 | { | 
 | 	int idx = sector_to_idx(sector_nr); | 
 |  | 
 | 	_wait_barrier(conf, idx); | 
 | } | 
 |  | 
 | static void _allow_barrier(struct r1conf *conf, int idx) | 
 | { | 
 | 	atomic_dec(&conf->nr_pending[idx]); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void allow_barrier(struct r1conf *conf, sector_t sector_nr) | 
 | { | 
 | 	int idx = sector_to_idx(sector_nr); | 
 |  | 
 | 	_allow_barrier(conf, idx); | 
 | } | 
 |  | 
 | /* conf->resync_lock should be held */ | 
 | static int get_unqueued_pending(struct r1conf *conf) | 
 | { | 
 | 	int idx, ret; | 
 |  | 
 | 	ret = atomic_read(&conf->nr_sync_pending); | 
 | 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) | 
 | 		ret += atomic_read(&conf->nr_pending[idx]) - | 
 | 			atomic_read(&conf->nr_queued[idx]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void freeze_array(struct r1conf *conf, int extra) | 
 | { | 
 | 	/* Stop sync I/O and normal I/O and wait for everything to | 
 | 	 * go quiet. | 
 | 	 * This is called in two situations: | 
 | 	 * 1) management command handlers (reshape, remove disk, quiesce). | 
 | 	 * 2) one normal I/O request failed. | 
 |  | 
 | 	 * After array_frozen is set to 1, new sync IO will be blocked at | 
 | 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() | 
 | 	 * or wait_read_barrier(). The flying I/Os will either complete or be | 
 | 	 * queued. When everything goes quite, there are only queued I/Os left. | 
 |  | 
 | 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the | 
 | 	 * barrier bucket index which this I/O request hits. When all sync and | 
 | 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum | 
 | 	 * of all conf->nr_queued[]. But normal I/O failure is an exception, | 
 | 	 * in handle_read_error(), we may call freeze_array() before trying to | 
 | 	 * fix the read error. In this case, the error read I/O is not queued, | 
 | 	 * so get_unqueued_pending() == 1. | 
 | 	 * | 
 | 	 * Therefore before this function returns, we need to wait until | 
 | 	 * get_unqueued_pendings(conf) gets equal to extra. For | 
 | 	 * normal I/O context, extra is 1, in rested situations extra is 0. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->array_frozen = 1; | 
 | 	raid1_log(conf->mddev, "wait freeze"); | 
 | 	wait_event_lock_irq_cmd( | 
 | 		conf->wait_barrier, | 
 | 		get_unqueued_pending(conf) == extra, | 
 | 		conf->resync_lock, | 
 | 		flush_pending_writes(conf)); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 | static void unfreeze_array(struct r1conf *conf) | 
 | { | 
 | 	/* reverse the effect of the freeze */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->array_frozen = 0; | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void alloc_behind_master_bio(struct r1bio *r1_bio, | 
 | 					   struct bio *bio) | 
 | { | 
 | 	int size = bio->bi_iter.bi_size; | 
 | 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	int i = 0; | 
 | 	struct bio *behind_bio = NULL; | 
 |  | 
 | 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); | 
 | 	if (!behind_bio) | 
 | 		return; | 
 |  | 
 | 	/* discard op, we don't support writezero/writesame yet */ | 
 | 	if (!bio_has_data(bio)) { | 
 | 		behind_bio->bi_iter.bi_size = size; | 
 | 		goto skip_copy; | 
 | 	} | 
 |  | 
 | 	behind_bio->bi_write_hint = bio->bi_write_hint; | 
 |  | 
 | 	while (i < vcnt && size) { | 
 | 		struct page *page; | 
 | 		int len = min_t(int, PAGE_SIZE, size); | 
 |  | 
 | 		page = alloc_page(GFP_NOIO); | 
 | 		if (unlikely(!page)) | 
 | 			goto free_pages; | 
 |  | 
 | 		bio_add_page(behind_bio, page, len, 0); | 
 |  | 
 | 		size -= len; | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	bio_copy_data(behind_bio, bio); | 
 | skip_copy: | 
 | 	r1_bio->behind_master_bio = behind_bio; | 
 | 	set_bit(R1BIO_BehindIO, &r1_bio->state); | 
 |  | 
 | 	return; | 
 |  | 
 | free_pages: | 
 | 	pr_debug("%dB behind alloc failed, doing sync I/O\n", | 
 | 		 bio->bi_iter.bi_size); | 
 | 	bio_free_pages(behind_bio); | 
 | 	bio_put(behind_bio); | 
 | } | 
 |  | 
 | struct raid1_plug_cb { | 
 | 	struct blk_plug_cb	cb; | 
 | 	struct bio_list		pending; | 
 | 	int			pending_cnt; | 
 | }; | 
 |  | 
 | static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
 | { | 
 | 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, | 
 | 						  cb); | 
 | 	struct mddev *mddev = plug->cb.data; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (from_schedule || current->bio_list) { | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		bio_list_merge(&conf->pending_bio_list, &plug->pending); | 
 | 		conf->pending_count += plug->pending_cnt; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		wake_up(&conf->wait_barrier); | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		kfree(plug); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* we aren't scheduling, so we can do the write-out directly. */ | 
 | 	bio = bio_list_get(&plug->pending); | 
 | 	flush_bio_list(conf, bio); | 
 | 	kfree(plug); | 
 | } | 
 |  | 
 | static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) | 
 | { | 
 | 	r1_bio->master_bio = bio; | 
 | 	r1_bio->sectors = bio_sectors(bio); | 
 | 	r1_bio->state = 0; | 
 | 	r1_bio->mddev = mddev; | 
 | 	r1_bio->sector = bio->bi_iter.bi_sector; | 
 | } | 
 |  | 
 | static inline struct r1bio * | 
 | alloc_r1bio(struct mddev *mddev, struct bio *bio) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct r1bio *r1_bio; | 
 |  | 
 | 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); | 
 | 	/* Ensure no bio records IO_BLOCKED */ | 
 | 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); | 
 | 	init_r1bio(r1_bio, mddev, bio); | 
 | 	return r1_bio; | 
 | } | 
 |  | 
 | static void raid1_read_request(struct mddev *mddev, struct bio *bio, | 
 | 			       int max_read_sectors, struct r1bio *r1_bio) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct raid1_info *mirror; | 
 | 	struct bio *read_bio; | 
 | 	struct bitmap *bitmap = mddev->bitmap; | 
 | 	const int op = bio_op(bio); | 
 | 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); | 
 | 	int max_sectors; | 
 | 	int rdisk; | 
 | 	bool print_msg = !!r1_bio; | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	/* | 
 | 	 * If r1_bio is set, we are blocking the raid1d thread | 
 | 	 * so there is a tiny risk of deadlock.  So ask for | 
 | 	 * emergency memory if needed. | 
 | 	 */ | 
 | 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; | 
 |  | 
 | 	if (print_msg) { | 
 | 		/* Need to get the block device name carefully */ | 
 | 		struct md_rdev *rdev; | 
 | 		rcu_read_lock(); | 
 | 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); | 
 | 		if (rdev) | 
 | 			bdevname(rdev->bdev, b); | 
 | 		else | 
 | 			strcpy(b, "???"); | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Still need barrier for READ in case that whole | 
 | 	 * array is frozen. | 
 | 	 */ | 
 | 	wait_read_barrier(conf, bio->bi_iter.bi_sector); | 
 |  | 
 | 	if (!r1_bio) | 
 | 		r1_bio = alloc_r1bio(mddev, bio); | 
 | 	else | 
 | 		init_r1bio(r1_bio, mddev, bio); | 
 | 	r1_bio->sectors = max_read_sectors; | 
 |  | 
 | 	/* | 
 | 	 * make_request() can abort the operation when read-ahead is being | 
 | 	 * used and no empty request is available. | 
 | 	 */ | 
 | 	rdisk = read_balance(conf, r1_bio, &max_sectors); | 
 |  | 
 | 	if (rdisk < 0) { | 
 | 		/* couldn't find anywhere to read from */ | 
 | 		if (print_msg) { | 
 | 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", | 
 | 					    mdname(mddev), | 
 | 					    b, | 
 | 					    (unsigned long long)r1_bio->sector); | 
 | 		} | 
 | 		raid_end_bio_io(r1_bio); | 
 | 		return; | 
 | 	} | 
 | 	mirror = conf->mirrors + rdisk; | 
 |  | 
 | 	if (print_msg) | 
 | 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", | 
 | 				    mdname(mddev), | 
 | 				    (unsigned long long)r1_bio->sector, | 
 | 				    bdevname(mirror->rdev->bdev, b)); | 
 |  | 
 | 	if (test_bit(WriteMostly, &mirror->rdev->flags) && | 
 | 	    bitmap) { | 
 | 		/* | 
 | 		 * Reading from a write-mostly device must take care not to | 
 | 		 * over-take any writes that are 'behind' | 
 | 		 */ | 
 | 		raid1_log(mddev, "wait behind writes"); | 
 | 		wait_event(bitmap->behind_wait, | 
 | 			   atomic_read(&bitmap->behind_writes) == 0); | 
 | 	} | 
 |  | 
 | 	if (max_sectors < bio_sectors(bio)) { | 
 | 		struct bio *split = bio_split(bio, max_sectors, | 
 | 					      gfp, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		generic_make_request(bio); | 
 | 		bio = split; | 
 | 		r1_bio->master_bio = bio; | 
 | 		r1_bio->sectors = max_sectors; | 
 | 	} | 
 |  | 
 | 	r1_bio->read_disk = rdisk; | 
 |  | 
 | 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); | 
 |  | 
 | 	r1_bio->bios[rdisk] = read_bio; | 
 |  | 
 | 	read_bio->bi_iter.bi_sector = r1_bio->sector + | 
 | 		mirror->rdev->data_offset; | 
 | 	bio_set_dev(read_bio, mirror->rdev->bdev); | 
 | 	read_bio->bi_end_io = raid1_end_read_request; | 
 | 	bio_set_op_attrs(read_bio, op, do_sync); | 
 | 	if (test_bit(FailFast, &mirror->rdev->flags) && | 
 | 	    test_bit(R1BIO_FailFast, &r1_bio->state)) | 
 | 	        read_bio->bi_opf |= MD_FAILFAST; | 
 | 	read_bio->bi_private = r1_bio; | 
 |  | 
 | 	if (mddev->gendisk) | 
 | 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, | 
 | 				disk_devt(mddev->gendisk), r1_bio->sector); | 
 |  | 
 | 	generic_make_request(read_bio); | 
 | } | 
 |  | 
 | static void raid1_write_request(struct mddev *mddev, struct bio *bio, | 
 | 				int max_write_sectors) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct r1bio *r1_bio; | 
 | 	int i, disks; | 
 | 	struct bitmap *bitmap = mddev->bitmap; | 
 | 	unsigned long flags; | 
 | 	struct md_rdev *blocked_rdev; | 
 | 	struct blk_plug_cb *cb; | 
 | 	struct raid1_plug_cb *plug = NULL; | 
 | 	int first_clone; | 
 | 	int max_sectors; | 
 |  | 
 | 	if (mddev_is_clustered(mddev) && | 
 | 	     md_cluster_ops->area_resyncing(mddev, WRITE, | 
 | 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) { | 
 |  | 
 | 		DEFINE_WAIT(w); | 
 | 		for (;;) { | 
 | 			prepare_to_wait(&conf->wait_barrier, | 
 | 					&w, TASK_IDLE); | 
 | 			if (!md_cluster_ops->area_resyncing(mddev, WRITE, | 
 | 							bio->bi_iter.bi_sector, | 
 | 							bio_end_sector(bio))) | 
 | 				break; | 
 | 			schedule(); | 
 | 		} | 
 | 		finish_wait(&conf->wait_barrier, &w); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Register the new request and wait if the reconstruction | 
 | 	 * thread has put up a bar for new requests. | 
 | 	 * Continue immediately if no resync is active currently. | 
 | 	 */ | 
 | 	wait_barrier(conf, bio->bi_iter.bi_sector); | 
 |  | 
 | 	r1_bio = alloc_r1bio(mddev, bio); | 
 | 	r1_bio->sectors = max_write_sectors; | 
 |  | 
 | 	if (conf->pending_count >= max_queued_requests) { | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		raid1_log(mddev, "wait queued"); | 
 | 		wait_event(conf->wait_barrier, | 
 | 			   conf->pending_count < max_queued_requests); | 
 | 	} | 
 | 	/* first select target devices under rcu_lock and | 
 | 	 * inc refcount on their rdev.  Record them by setting | 
 | 	 * bios[x] to bio | 
 | 	 * If there are known/acknowledged bad blocks on any device on | 
 | 	 * which we have seen a write error, we want to avoid writing those | 
 | 	 * blocks. | 
 | 	 * This potentially requires several writes to write around | 
 | 	 * the bad blocks.  Each set of writes gets it's own r1bio | 
 | 	 * with a set of bios attached. | 
 | 	 */ | 
 |  | 
 | 	disks = conf->raid_disks * 2; | 
 |  retry_write: | 
 | 	blocked_rdev = NULL; | 
 | 	rcu_read_lock(); | 
 | 	max_sectors = r1_bio->sectors; | 
 | 	for (i = 0;  i < disks; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			blocked_rdev = rdev; | 
 | 			break; | 
 | 		} | 
 | 		r1_bio->bios[i] = NULL; | 
 | 		if (!rdev || test_bit(Faulty, &rdev->flags)) { | 
 | 			if (i < conf->raid_disks) | 
 | 				set_bit(R1BIO_Degraded, &r1_bio->state); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		if (test_bit(WriteErrorSeen, &rdev->flags)) { | 
 | 			sector_t first_bad; | 
 | 			int bad_sectors; | 
 | 			int is_bad; | 
 |  | 
 | 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, | 
 | 					     &first_bad, &bad_sectors); | 
 | 			if (is_bad < 0) { | 
 | 				/* mustn't write here until the bad block is | 
 | 				 * acknowledged*/ | 
 | 				set_bit(BlockedBadBlocks, &rdev->flags); | 
 | 				blocked_rdev = rdev; | 
 | 				break; | 
 | 			} | 
 | 			if (is_bad && first_bad <= r1_bio->sector) { | 
 | 				/* Cannot write here at all */ | 
 | 				bad_sectors -= (r1_bio->sector - first_bad); | 
 | 				if (bad_sectors < max_sectors) | 
 | 					/* mustn't write more than bad_sectors | 
 | 					 * to other devices yet | 
 | 					 */ | 
 | 					max_sectors = bad_sectors; | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				/* We don't set R1BIO_Degraded as that | 
 | 				 * only applies if the disk is | 
 | 				 * missing, so it might be re-added, | 
 | 				 * and we want to know to recover this | 
 | 				 * chunk. | 
 | 				 * In this case the device is here, | 
 | 				 * and the fact that this chunk is not | 
 | 				 * in-sync is recorded in the bad | 
 | 				 * block log | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			if (is_bad) { | 
 | 				int good_sectors = first_bad - r1_bio->sector; | 
 | 				if (good_sectors < max_sectors) | 
 | 					max_sectors = good_sectors; | 
 | 			} | 
 | 		} | 
 | 		r1_bio->bios[i] = bio; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		/* Wait for this device to become unblocked */ | 
 | 		int j; | 
 |  | 
 | 		for (j = 0; j < i; j++) | 
 | 			if (r1_bio->bios[j]) | 
 | 				rdev_dec_pending(conf->mirrors[j].rdev, mddev); | 
 | 		r1_bio->state = 0; | 
 | 		allow_barrier(conf, bio->bi_iter.bi_sector); | 
 | 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
 | 		wait_barrier(conf, bio->bi_iter.bi_sector); | 
 | 		goto retry_write; | 
 | 	} | 
 |  | 
 | 	if (max_sectors < bio_sectors(bio)) { | 
 | 		struct bio *split = bio_split(bio, max_sectors, | 
 | 					      GFP_NOIO, &conf->bio_split); | 
 | 		bio_chain(split, bio); | 
 | 		generic_make_request(bio); | 
 | 		bio = split; | 
 | 		r1_bio->master_bio = bio; | 
 | 		r1_bio->sectors = max_sectors; | 
 | 	} | 
 |  | 
 | 	atomic_set(&r1_bio->remaining, 1); | 
 | 	atomic_set(&r1_bio->behind_remaining, 0); | 
 |  | 
 | 	first_clone = 1; | 
 |  | 
 | 	for (i = 0; i < disks; i++) { | 
 | 		struct bio *mbio = NULL; | 
 | 		if (!r1_bio->bios[i]) | 
 | 			continue; | 
 |  | 
 |  | 
 | 		if (first_clone) { | 
 | 			/* do behind I/O ? | 
 | 			 * Not if there are too many, or cannot | 
 | 			 * allocate memory, or a reader on WriteMostly | 
 | 			 * is waiting for behind writes to flush */ | 
 | 			if (bitmap && | 
 | 			    (atomic_read(&bitmap->behind_writes) | 
 | 			     < mddev->bitmap_info.max_write_behind) && | 
 | 			    !waitqueue_active(&bitmap->behind_wait)) { | 
 | 				alloc_behind_master_bio(r1_bio, bio); | 
 | 			} | 
 |  | 
 | 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, | 
 | 					     test_bit(R1BIO_BehindIO, &r1_bio->state)); | 
 | 			first_clone = 0; | 
 | 		} | 
 |  | 
 | 		if (r1_bio->behind_master_bio) | 
 | 			mbio = bio_clone_fast(r1_bio->behind_master_bio, | 
 | 					      GFP_NOIO, &mddev->bio_set); | 
 | 		else | 
 | 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); | 
 |  | 
 | 		if (r1_bio->behind_master_bio) { | 
 | 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) | 
 | 				atomic_inc(&r1_bio->behind_remaining); | 
 | 		} | 
 |  | 
 | 		r1_bio->bios[i] = mbio; | 
 |  | 
 | 		mbio->bi_iter.bi_sector	= (r1_bio->sector + | 
 | 				   conf->mirrors[i].rdev->data_offset); | 
 | 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); | 
 | 		mbio->bi_end_io	= raid1_end_write_request; | 
 | 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); | 
 | 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && | 
 | 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && | 
 | 		    conf->raid_disks - mddev->degraded > 1) | 
 | 			mbio->bi_opf |= MD_FAILFAST; | 
 | 		mbio->bi_private = r1_bio; | 
 |  | 
 | 		atomic_inc(&r1_bio->remaining); | 
 |  | 
 | 		if (mddev->gendisk) | 
 | 			trace_block_bio_remap(mbio->bi_disk->queue, | 
 | 					      mbio, disk_devt(mddev->gendisk), | 
 | 					      r1_bio->sector); | 
 | 		/* flush_pending_writes() needs access to the rdev so...*/ | 
 | 		mbio->bi_disk = (void *)conf->mirrors[i].rdev; | 
 |  | 
 | 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); | 
 | 		if (cb) | 
 | 			plug = container_of(cb, struct raid1_plug_cb, cb); | 
 | 		else | 
 | 			plug = NULL; | 
 | 		if (plug) { | 
 | 			bio_list_add(&plug->pending, mbio); | 
 | 			plug->pending_cnt++; | 
 | 		} else { | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			bio_list_add(&conf->pending_bio_list, mbio); | 
 | 			conf->pending_count++; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			md_wakeup_thread(mddev->thread); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r1_bio_write_done(r1_bio); | 
 |  | 
 | 	/* In case raid1d snuck in to freeze_array */ | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static bool raid1_make_request(struct mddev *mddev, struct bio *bio) | 
 | { | 
 | 	sector_t sectors; | 
 |  | 
 | 	if (unlikely(bio->bi_opf & REQ_PREFLUSH) | 
 | 	    && md_flush_request(mddev, bio)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * There is a limit to the maximum size, but | 
 | 	 * the read/write handler might find a lower limit | 
 | 	 * due to bad blocks.  To avoid multiple splits, | 
 | 	 * we pass the maximum number of sectors down | 
 | 	 * and let the lower level perform the split. | 
 | 	 */ | 
 | 	sectors = align_to_barrier_unit_end( | 
 | 		bio->bi_iter.bi_sector, bio_sectors(bio)); | 
 |  | 
 | 	if (bio_data_dir(bio) == READ) | 
 | 		raid1_read_request(mddev, bio, sectors, NULL); | 
 | 	else { | 
 | 		if (!md_write_start(mddev,bio)) | 
 | 			return false; | 
 | 		raid1_write_request(mddev, bio, sectors); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | static void raid1_status(struct seq_file *seq, struct mddev *mddev) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int i; | 
 |  | 
 | 	seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
 | 		   conf->raid_disks - mddev->degraded); | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		seq_printf(seq, "%s", | 
 | 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	seq_printf(seq, "]"); | 
 | } | 
 |  | 
 | static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * If it is not operational, then we have already marked it as dead | 
 | 	 * else if it is the last working disks, ignore the error, let the | 
 | 	 * next level up know. | 
 | 	 * else mark the drive as failed | 
 | 	 */ | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	if (test_bit(In_sync, &rdev->flags) | 
 | 	    && (conf->raid_disks - mddev->degraded) == 1) { | 
 | 		/* | 
 | 		 * Don't fail the drive, act as though we were just a | 
 | 		 * normal single drive. | 
 | 		 * However don't try a recovery from this drive as | 
 | 		 * it is very likely to fail. | 
 | 		 */ | 
 | 		conf->recovery_disabled = mddev->recovery_disabled; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		return; | 
 | 	} | 
 | 	set_bit(Blocked, &rdev->flags); | 
 | 	if (test_and_clear_bit(In_sync, &rdev->flags)) { | 
 | 		mddev->degraded++; | 
 | 		set_bit(Faulty, &rdev->flags); | 
 | 	} else | 
 | 		set_bit(Faulty, &rdev->flags); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	/* | 
 | 	 * if recovery is running, make sure it aborts. | 
 | 	 */ | 
 | 	set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 	set_mask_bits(&mddev->sb_flags, 0, | 
 | 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
 | 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" | 
 | 		"md/raid1:%s: Operation continuing on %d devices.\n", | 
 | 		mdname(mddev), bdevname(rdev->bdev, b), | 
 | 		mdname(mddev), conf->raid_disks - mddev->degraded); | 
 | } | 
 |  | 
 | static void print_conf(struct r1conf *conf) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	pr_debug("RAID1 conf printout:\n"); | 
 | 	if (!conf) { | 
 | 		pr_debug("(!conf)\n"); | 
 | 		return; | 
 | 	} | 
 | 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, | 
 | 		 conf->raid_disks); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev) | 
 | 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", | 
 | 				 i, !test_bit(In_sync, &rdev->flags), | 
 | 				 !test_bit(Faulty, &rdev->flags), | 
 | 				 bdevname(rdev->bdev,b)); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void close_sync(struct r1conf *conf) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { | 
 | 		_wait_barrier(conf, idx); | 
 | 		_allow_barrier(conf, idx); | 
 | 	} | 
 |  | 
 | 	mempool_exit(&conf->r1buf_pool); | 
 | } | 
 |  | 
 | static int raid1_spare_active(struct mddev *mddev) | 
 | { | 
 | 	int i; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int count = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Find all failed disks within the RAID1 configuration | 
 | 	 * and mark them readable. | 
 | 	 * Called under mddev lock, so rcu protection not needed. | 
 | 	 * device_lock used to avoid races with raid1_end_read_request | 
 | 	 * which expects 'In_sync' flags and ->degraded to be consistent. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		struct md_rdev *rdev = conf->mirrors[i].rdev; | 
 | 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; | 
 | 		if (repl | 
 | 		    && !test_bit(Candidate, &repl->flags) | 
 | 		    && repl->recovery_offset == MaxSector | 
 | 		    && !test_bit(Faulty, &repl->flags) | 
 | 		    && !test_and_set_bit(In_sync, &repl->flags)) { | 
 | 			/* replacement has just become active */ | 
 | 			if (!rdev || | 
 | 			    !test_and_clear_bit(In_sync, &rdev->flags)) | 
 | 				count++; | 
 | 			if (rdev) { | 
 | 				/* Replaced device not technically | 
 | 				 * faulty, but we need to be sure | 
 | 				 * it gets removed and never re-added | 
 | 				 */ | 
 | 				set_bit(Faulty, &rdev->flags); | 
 | 				sysfs_notify_dirent_safe( | 
 | 					rdev->sysfs_state); | 
 | 			} | 
 | 		} | 
 | 		if (rdev | 
 | 		    && rdev->recovery_offset == MaxSector | 
 | 		    && !test_bit(Faulty, &rdev->flags) | 
 | 		    && !test_and_set_bit(In_sync, &rdev->flags)) { | 
 | 			count++; | 
 | 			sysfs_notify_dirent_safe(rdev->sysfs_state); | 
 | 		} | 
 | 	} | 
 | 	mddev->degraded -= count; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	print_conf(conf); | 
 | 	return count; | 
 | } | 
 |  | 
 | static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int err = -EEXIST; | 
 | 	int mirror = 0; | 
 | 	struct raid1_info *p; | 
 | 	int first = 0; | 
 | 	int last = conf->raid_disks - 1; | 
 |  | 
 | 	if (mddev->recovery_disabled == conf->recovery_disabled) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (md_integrity_add_rdev(rdev, mddev)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (rdev->raid_disk >= 0) | 
 | 		first = last = rdev->raid_disk; | 
 |  | 
 | 	/* | 
 | 	 * find the disk ... but prefer rdev->saved_raid_disk | 
 | 	 * if possible. | 
 | 	 */ | 
 | 	if (rdev->saved_raid_disk >= 0 && | 
 | 	    rdev->saved_raid_disk >= first && | 
 | 	    rdev->saved_raid_disk < conf->raid_disks && | 
 | 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
 | 		first = last = rdev->saved_raid_disk; | 
 |  | 
 | 	for (mirror = first; mirror <= last; mirror++) { | 
 | 		p = conf->mirrors+mirror; | 
 | 		if (!p->rdev) { | 
 |  | 
 | 			if (mddev->gendisk) | 
 | 				disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 						  rdev->data_offset << 9); | 
 |  | 
 | 			p->head_position = 0; | 
 | 			rdev->raid_disk = mirror; | 
 | 			err = 0; | 
 | 			/* As all devices are equivalent, we don't need a full recovery | 
 | 			 * if this was recently any drive of the array | 
 | 			 */ | 
 | 			if (rdev->saved_raid_disk < 0) | 
 | 				conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p->rdev, rdev); | 
 | 			break; | 
 | 		} | 
 | 		if (test_bit(WantReplacement, &p->rdev->flags) && | 
 | 		    p[conf->raid_disks].rdev == NULL) { | 
 | 			/* Add this device as a replacement */ | 
 | 			clear_bit(In_sync, &rdev->flags); | 
 | 			set_bit(Replacement, &rdev->flags); | 
 | 			rdev->raid_disk = mirror; | 
 | 			err = 0; | 
 | 			conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
 | 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int err = 0; | 
 | 	int number = rdev->raid_disk; | 
 | 	struct raid1_info *p = conf->mirrors + number; | 
 |  | 
 | 	if (rdev != p->rdev) | 
 | 		p = conf->mirrors + conf->raid_disks + number; | 
 |  | 
 | 	print_conf(conf); | 
 | 	if (rdev == p->rdev) { | 
 | 		if (test_bit(In_sync, &rdev->flags) || | 
 | 		    atomic_read(&rdev->nr_pending)) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		/* Only remove non-faulty devices if recovery | 
 | 		 * is not possible. | 
 | 		 */ | 
 | 		if (!test_bit(Faulty, &rdev->flags) && | 
 | 		    mddev->recovery_disabled != conf->recovery_disabled && | 
 | 		    mddev->degraded < conf->raid_disks) { | 
 | 			err = -EBUSY; | 
 | 			goto abort; | 
 | 		} | 
 | 		p->rdev = NULL; | 
 | 		if (!test_bit(RemoveSynchronized, &rdev->flags)) { | 
 | 			synchronize_rcu(); | 
 | 			if (atomic_read(&rdev->nr_pending)) { | 
 | 				/* lost the race, try later */ | 
 | 				err = -EBUSY; | 
 | 				p->rdev = rdev; | 
 | 				goto abort; | 
 | 			} | 
 | 		} | 
 | 		if (conf->mirrors[conf->raid_disks + number].rdev) { | 
 | 			/* We just removed a device that is being replaced. | 
 | 			 * Move down the replacement.  We drain all IO before | 
 | 			 * doing this to avoid confusion. | 
 | 			 */ | 
 | 			struct md_rdev *repl = | 
 | 				conf->mirrors[conf->raid_disks + number].rdev; | 
 | 			freeze_array(conf, 0); | 
 | 			if (atomic_read(&repl->nr_pending)) { | 
 | 				/* It means that some queued IO of retry_list | 
 | 				 * hold repl. Thus, we cannot set replacement | 
 | 				 * as NULL, avoiding rdev NULL pointer | 
 | 				 * dereference in sync_request_write and | 
 | 				 * handle_write_finished. | 
 | 				 */ | 
 | 				err = -EBUSY; | 
 | 				unfreeze_array(conf); | 
 | 				goto abort; | 
 | 			} | 
 | 			clear_bit(Replacement, &repl->flags); | 
 | 			p->rdev = repl; | 
 | 			conf->mirrors[conf->raid_disks + number].rdev = NULL; | 
 | 			unfreeze_array(conf); | 
 | 		} | 
 |  | 
 | 		clear_bit(WantReplacement, &rdev->flags); | 
 | 		err = md_integrity_register(mddev); | 
 | 	} | 
 | abort: | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void end_sync_read(struct bio *bio) | 
 | { | 
 | 	struct r1bio *r1_bio = get_resync_r1bio(bio); | 
 |  | 
 | 	update_head_pos(r1_bio->read_disk, r1_bio); | 
 |  | 
 | 	/* | 
 | 	 * we have read a block, now it needs to be re-written, | 
 | 	 * or re-read if the read failed. | 
 | 	 * We don't do much here, just schedule handling by raid1d | 
 | 	 */ | 
 | 	if (!bio->bi_status) | 
 | 		set_bit(R1BIO_Uptodate, &r1_bio->state); | 
 |  | 
 | 	if (atomic_dec_and_test(&r1_bio->remaining)) | 
 | 		reschedule_retry(r1_bio); | 
 | } | 
 |  | 
 | static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) | 
 | { | 
 | 	sector_t sync_blocks = 0; | 
 | 	sector_t s = r1_bio->sector; | 
 | 	long sectors_to_go = r1_bio->sectors; | 
 |  | 
 | 	/* make sure these bits don't get cleared. */ | 
 | 	do { | 
 | 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); | 
 | 		s += sync_blocks; | 
 | 		sectors_to_go -= sync_blocks; | 
 | 	} while (sectors_to_go > 0); | 
 | } | 
 |  | 
 | static void end_sync_write(struct bio *bio) | 
 | { | 
 | 	int uptodate = !bio->bi_status; | 
 | 	struct r1bio *r1_bio = get_resync_r1bio(bio); | 
 | 	struct mddev *mddev = r1_bio->mddev; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 | 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; | 
 |  | 
 | 	if (!uptodate) { | 
 | 		abort_sync_write(mddev, r1_bio); | 
 | 		set_bit(WriteErrorSeen, &rdev->flags); | 
 | 		if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 			set_bit(MD_RECOVERY_NEEDED, & | 
 | 				mddev->recovery); | 
 | 		set_bit(R1BIO_WriteError, &r1_bio->state); | 
 | 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, | 
 | 			       &first_bad, &bad_sectors) && | 
 | 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, | 
 | 				r1_bio->sector, | 
 | 				r1_bio->sectors, | 
 | 				&first_bad, &bad_sectors) | 
 | 		) | 
 | 		set_bit(R1BIO_MadeGood, &r1_bio->state); | 
 |  | 
 | 	if (atomic_dec_and_test(&r1_bio->remaining)) { | 
 | 		int s = r1_bio->sectors; | 
 | 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
 | 		    test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 			reschedule_retry(r1_bio); | 
 | 		else { | 
 | 			put_buf(r1_bio); | 
 | 			md_done_sync(mddev, s, uptodate); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
 | 			    int sectors, struct page *page, int rw) | 
 | { | 
 | 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) | 
 | 		/* success */ | 
 | 		return 1; | 
 | 	if (rw == WRITE) { | 
 | 		set_bit(WriteErrorSeen, &rdev->flags); | 
 | 		if (!test_and_set_bit(WantReplacement, | 
 | 				      &rdev->flags)) | 
 | 			set_bit(MD_RECOVERY_NEEDED, & | 
 | 				rdev->mddev->recovery); | 
 | 	} | 
 | 	/* need to record an error - either for the block or the device */ | 
 | 	if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
 | 		md_error(rdev->mddev, rdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fix_sync_read_error(struct r1bio *r1_bio) | 
 | { | 
 | 	/* Try some synchronous reads of other devices to get | 
 | 	 * good data, much like with normal read errors.  Only | 
 | 	 * read into the pages we already have so we don't | 
 | 	 * need to re-issue the read request. | 
 | 	 * We don't need to freeze the array, because being in an | 
 | 	 * active sync request, there is no normal IO, and | 
 | 	 * no overlapping syncs. | 
 | 	 * We don't need to check is_badblock() again as we | 
 | 	 * made sure that anything with a bad block in range | 
 | 	 * will have bi_end_io clear. | 
 | 	 */ | 
 | 	struct mddev *mddev = r1_bio->mddev; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct bio *bio = r1_bio->bios[r1_bio->read_disk]; | 
 | 	struct page **pages = get_resync_pages(bio)->pages; | 
 | 	sector_t sect = r1_bio->sector; | 
 | 	int sectors = r1_bio->sectors; | 
 | 	int idx = 0; | 
 | 	struct md_rdev *rdev; | 
 |  | 
 | 	rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
 | 	if (test_bit(FailFast, &rdev->flags)) { | 
 | 		/* Don't try recovering from here - just fail it | 
 | 		 * ... unless it is the last working device of course */ | 
 | 		md_error(mddev, rdev); | 
 | 		if (test_bit(Faulty, &rdev->flags)) | 
 | 			/* Don't try to read from here, but make sure | 
 | 			 * put_buf does it's thing | 
 | 			 */ | 
 | 			bio->bi_end_io = end_sync_write; | 
 | 	} | 
 |  | 
 | 	while(sectors) { | 
 | 		int s = sectors; | 
 | 		int d = r1_bio->read_disk; | 
 | 		int success = 0; | 
 | 		int start; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 | 		do { | 
 | 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) { | 
 | 				/* No rcu protection needed here devices | 
 | 				 * can only be removed when no resync is | 
 | 				 * active, and resync is currently active | 
 | 				 */ | 
 | 				rdev = conf->mirrors[d].rdev; | 
 | 				if (sync_page_io(rdev, sect, s<<9, | 
 | 						 pages[idx], | 
 | 						 REQ_OP_READ, 0, false)) { | 
 | 					success = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			d++; | 
 | 			if (d == conf->raid_disks * 2) | 
 | 				d = 0; | 
 | 		} while (!success && d != r1_bio->read_disk); | 
 |  | 
 | 		if (!success) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 | 			int abort = 0; | 
 | 			/* Cannot read from anywhere, this block is lost. | 
 | 			 * Record a bad block on each device.  If that doesn't | 
 | 			 * work just disable and interrupt the recovery. | 
 | 			 * Don't fail devices as that won't really help. | 
 | 			 */ | 
 | 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", | 
 | 					    mdname(mddev), bio_devname(bio, b), | 
 | 					    (unsigned long long)r1_bio->sector); | 
 | 			for (d = 0; d < conf->raid_disks * 2; d++) { | 
 | 				rdev = conf->mirrors[d].rdev; | 
 | 				if (!rdev || test_bit(Faulty, &rdev->flags)) | 
 | 					continue; | 
 | 				if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
 | 					abort = 1; | 
 | 			} | 
 | 			if (abort) { | 
 | 				conf->recovery_disabled = | 
 | 					mddev->recovery_disabled; | 
 | 				set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 				md_done_sync(mddev, r1_bio->sectors, 0); | 
 | 				put_buf(r1_bio); | 
 | 				return 0; | 
 | 			} | 
 | 			/* Try next page */ | 
 | 			sectors -= s; | 
 | 			sect += s; | 
 | 			idx++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		start = d; | 
 | 		/* write it back and re-read */ | 
 | 		while (d != r1_bio->read_disk) { | 
 | 			if (d == 0) | 
 | 				d = conf->raid_disks * 2; | 
 | 			d--; | 
 | 			if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
 | 				continue; | 
 | 			rdev = conf->mirrors[d].rdev; | 
 | 			if (r1_sync_page_io(rdev, sect, s, | 
 | 					    pages[idx], | 
 | 					    WRITE) == 0) { | 
 | 				r1_bio->bios[d]->bi_end_io = NULL; | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 			} | 
 | 		} | 
 | 		d = start; | 
 | 		while (d != r1_bio->read_disk) { | 
 | 			if (d == 0) | 
 | 				d = conf->raid_disks * 2; | 
 | 			d--; | 
 | 			if (r1_bio->bios[d]->bi_end_io != end_sync_read) | 
 | 				continue; | 
 | 			rdev = conf->mirrors[d].rdev; | 
 | 			if (r1_sync_page_io(rdev, sect, s, | 
 | 					    pages[idx], | 
 | 					    READ) != 0) | 
 | 				atomic_add(s, &rdev->corrected_errors); | 
 | 		} | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 		idx ++; | 
 | 	} | 
 | 	set_bit(R1BIO_Uptodate, &r1_bio->state); | 
 | 	bio->bi_status = 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void process_checks(struct r1bio *r1_bio) | 
 | { | 
 | 	/* We have read all readable devices.  If we haven't | 
 | 	 * got the block, then there is no hope left. | 
 | 	 * If we have, then we want to do a comparison | 
 | 	 * and skip the write if everything is the same. | 
 | 	 * If any blocks failed to read, then we need to | 
 | 	 * attempt an over-write | 
 | 	 */ | 
 | 	struct mddev *mddev = r1_bio->mddev; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int primary; | 
 | 	int i; | 
 | 	int vcnt; | 
 |  | 
 | 	/* Fix variable parts of all bios */ | 
 | 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		blk_status_t status; | 
 | 		struct bio *b = r1_bio->bios[i]; | 
 | 		struct resync_pages *rp = get_resync_pages(b); | 
 | 		if (b->bi_end_io != end_sync_read) | 
 | 			continue; | 
 | 		/* fixup the bio for reuse, but preserve errno */ | 
 | 		status = b->bi_status; | 
 | 		bio_reset(b); | 
 | 		b->bi_status = status; | 
 | 		b->bi_iter.bi_sector = r1_bio->sector + | 
 | 			conf->mirrors[i].rdev->data_offset; | 
 | 		bio_set_dev(b, conf->mirrors[i].rdev->bdev); | 
 | 		b->bi_end_io = end_sync_read; | 
 | 		rp->raid_bio = r1_bio; | 
 | 		b->bi_private = rp; | 
 |  | 
 | 		/* initialize bvec table again */ | 
 | 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); | 
 | 	} | 
 | 	for (primary = 0; primary < conf->raid_disks * 2; primary++) | 
 | 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read && | 
 | 		    !r1_bio->bios[primary]->bi_status) { | 
 | 			r1_bio->bios[primary]->bi_end_io = NULL; | 
 | 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev); | 
 | 			break; | 
 | 		} | 
 | 	r1_bio->read_disk = primary; | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		int j; | 
 | 		struct bio *pbio = r1_bio->bios[primary]; | 
 | 		struct bio *sbio = r1_bio->bios[i]; | 
 | 		blk_status_t status = sbio->bi_status; | 
 | 		struct page **ppages = get_resync_pages(pbio)->pages; | 
 | 		struct page **spages = get_resync_pages(sbio)->pages; | 
 | 		struct bio_vec *bi; | 
 | 		int page_len[RESYNC_PAGES] = { 0 }; | 
 |  | 
 | 		if (sbio->bi_end_io != end_sync_read) | 
 | 			continue; | 
 | 		/* Now we can 'fixup' the error value */ | 
 | 		sbio->bi_status = 0; | 
 |  | 
 | 		bio_for_each_segment_all(bi, sbio, j) | 
 | 			page_len[j] = bi->bv_len; | 
 |  | 
 | 		if (!status) { | 
 | 			for (j = vcnt; j-- ; ) { | 
 | 				if (memcmp(page_address(ppages[j]), | 
 | 					   page_address(spages[j]), | 
 | 					   page_len[j])) | 
 | 					break; | 
 | 			} | 
 | 		} else | 
 | 			j = 0; | 
 | 		if (j >= 0) | 
 | 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); | 
 | 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) | 
 | 			      && !status)) { | 
 | 			/* No need to write to this device. */ | 
 | 			sbio->bi_end_io = NULL; | 
 | 			rdev_dec_pending(conf->mirrors[i].rdev, mddev); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		bio_copy_data(sbio, pbio); | 
 | 	} | 
 | } | 
 |  | 
 | static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int i; | 
 | 	int disks = conf->raid_disks * 2; | 
 | 	struct bio *wbio; | 
 |  | 
 | 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) | 
 | 		/* ouch - failed to read all of that. */ | 
 | 		if (!fix_sync_read_error(r1_bio)) | 
 | 			return; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
 | 		process_checks(r1_bio); | 
 |  | 
 | 	/* | 
 | 	 * schedule writes | 
 | 	 */ | 
 | 	atomic_set(&r1_bio->remaining, 1); | 
 | 	for (i = 0; i < disks ; i++) { | 
 | 		wbio = r1_bio->bios[i]; | 
 | 		if (wbio->bi_end_io == NULL || | 
 | 		    (wbio->bi_end_io == end_sync_read && | 
 | 		     (i == r1_bio->read_disk || | 
 | 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) | 
 | 			continue; | 
 | 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { | 
 | 			abort_sync_write(mddev, r1_bio); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); | 
 | 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) | 
 | 			wbio->bi_opf |= MD_FAILFAST; | 
 |  | 
 | 		wbio->bi_end_io = end_sync_write; | 
 | 		atomic_inc(&r1_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); | 
 |  | 
 | 		generic_make_request(wbio); | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_and_test(&r1_bio->remaining)) { | 
 | 		/* if we're here, all write(s) have completed, so clean up */ | 
 | 		int s = r1_bio->sectors; | 
 | 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
 | 		    test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 			reschedule_retry(r1_bio); | 
 | 		else { | 
 | 			put_buf(r1_bio); | 
 | 			md_done_sync(mddev, s, 1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is a kernel thread which: | 
 |  * | 
 |  *	1.	Retries failed read operations on working mirrors. | 
 |  *	2.	Updates the raid superblock when problems encounter. | 
 |  *	3.	Performs writes following reads for array synchronising. | 
 |  */ | 
 |  | 
 | static void fix_read_error(struct r1conf *conf, int read_disk, | 
 | 			   sector_t sect, int sectors) | 
 | { | 
 | 	struct mddev *mddev = conf->mddev; | 
 | 	while(sectors) { | 
 | 		int s = sectors; | 
 | 		int d = read_disk; | 
 | 		int success = 0; | 
 | 		int start; | 
 | 		struct md_rdev *rdev; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		do { | 
 | 			sector_t first_bad; | 
 | 			int bad_sectors; | 
 |  | 
 | 			rcu_read_lock(); | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    (test_bit(In_sync, &rdev->flags) || | 
 | 			     (!test_bit(Faulty, &rdev->flags) && | 
 | 			      rdev->recovery_offset >= sect + s)) && | 
 | 			    is_badblock(rdev, sect, s, | 
 | 					&first_bad, &bad_sectors) == 0) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				if (sync_page_io(rdev, sect, s<<9, | 
 | 					 conf->tmppage, REQ_OP_READ, 0, false)) | 
 | 					success = 1; | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				if (success) | 
 | 					break; | 
 | 			} else | 
 | 				rcu_read_unlock(); | 
 | 			d++; | 
 | 			if (d == conf->raid_disks * 2) | 
 | 				d = 0; | 
 | 		} while (!success && d != read_disk); | 
 |  | 
 | 		if (!success) { | 
 | 			/* Cannot read from anywhere - mark it bad */ | 
 | 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev; | 
 | 			if (!rdev_set_badblocks(rdev, sect, s, 0)) | 
 | 				md_error(mddev, rdev); | 
 | 			break; | 
 | 		} | 
 | 		/* write it back and re-read */ | 
 | 		start = d; | 
 | 		while (d != read_disk) { | 
 | 			if (d==0) | 
 | 				d = conf->raid_disks * 2; | 
 | 			d--; | 
 | 			rcu_read_lock(); | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    !test_bit(Faulty, &rdev->flags)) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				r1_sync_page_io(rdev, sect, s, | 
 | 						conf->tmppage, WRITE); | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 			} else | 
 | 				rcu_read_unlock(); | 
 | 		} | 
 | 		d = start; | 
 | 		while (d != read_disk) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 | 			if (d==0) | 
 | 				d = conf->raid_disks * 2; | 
 | 			d--; | 
 | 			rcu_read_lock(); | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    !test_bit(Faulty, &rdev->flags)) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				if (r1_sync_page_io(rdev, sect, s, | 
 | 						    conf->tmppage, READ)) { | 
 | 					atomic_add(s, &rdev->corrected_errors); | 
 | 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", | 
 | 						mdname(mddev), s, | 
 | 						(unsigned long long)(sect + | 
 | 								     rdev->data_offset), | 
 | 						bdevname(rdev->bdev, b)); | 
 | 				} | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 			} else | 
 | 				rcu_read_unlock(); | 
 | 		} | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 	} | 
 | } | 
 |  | 
 | static int narrow_write_error(struct r1bio *r1_bio, int i) | 
 | { | 
 | 	struct mddev *mddev = r1_bio->mddev; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev = conf->mirrors[i].rdev; | 
 |  | 
 | 	/* bio has the data to be written to device 'i' where | 
 | 	 * we just recently had a write error. | 
 | 	 * We repeatedly clone the bio and trim down to one block, | 
 | 	 * then try the write.  Where the write fails we record | 
 | 	 * a bad block. | 
 | 	 * It is conceivable that the bio doesn't exactly align with | 
 | 	 * blocks.  We must handle this somehow. | 
 | 	 * | 
 | 	 * We currently own a reference on the rdev. | 
 | 	 */ | 
 |  | 
 | 	int block_sectors; | 
 | 	sector_t sector; | 
 | 	int sectors; | 
 | 	int sect_to_write = r1_bio->sectors; | 
 | 	int ok = 1; | 
 |  | 
 | 	if (rdev->badblocks.shift < 0) | 
 | 		return 0; | 
 |  | 
 | 	block_sectors = roundup(1 << rdev->badblocks.shift, | 
 | 				bdev_logical_block_size(rdev->bdev) >> 9); | 
 | 	sector = r1_bio->sector; | 
 | 	sectors = ((sector + block_sectors) | 
 | 		   & ~(sector_t)(block_sectors - 1)) | 
 | 		- sector; | 
 |  | 
 | 	while (sect_to_write) { | 
 | 		struct bio *wbio; | 
 | 		if (sectors > sect_to_write) | 
 | 			sectors = sect_to_write; | 
 | 		/* Write at 'sector' for 'sectors'*/ | 
 |  | 
 | 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { | 
 | 			wbio = bio_clone_fast(r1_bio->behind_master_bio, | 
 | 					      GFP_NOIO, | 
 | 					      &mddev->bio_set); | 
 | 		} else { | 
 | 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, | 
 | 					      &mddev->bio_set); | 
 | 		} | 
 |  | 
 | 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); | 
 | 		wbio->bi_iter.bi_sector = r1_bio->sector; | 
 | 		wbio->bi_iter.bi_size = r1_bio->sectors << 9; | 
 |  | 
 | 		bio_trim(wbio, sector - r1_bio->sector, sectors); | 
 | 		wbio->bi_iter.bi_sector += rdev->data_offset; | 
 | 		bio_set_dev(wbio, rdev->bdev); | 
 |  | 
 | 		if (submit_bio_wait(wbio) < 0) | 
 | 			/* failure! */ | 
 | 			ok = rdev_set_badblocks(rdev, sector, | 
 | 						sectors, 0) | 
 | 				&& ok; | 
 |  | 
 | 		bio_put(wbio); | 
 | 		sect_to_write -= sectors; | 
 | 		sector += sectors; | 
 | 		sectors = block_sectors; | 
 | 	} | 
 | 	return ok; | 
 | } | 
 |  | 
 | static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
 | { | 
 | 	int m; | 
 | 	int s = r1_bio->sectors; | 
 | 	for (m = 0; m < conf->raid_disks * 2 ; m++) { | 
 | 		struct md_rdev *rdev = conf->mirrors[m].rdev; | 
 | 		struct bio *bio = r1_bio->bios[m]; | 
 | 		if (bio->bi_end_io == NULL) | 
 | 			continue; | 
 | 		if (!bio->bi_status && | 
 | 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) { | 
 | 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); | 
 | 		} | 
 | 		if (bio->bi_status && | 
 | 		    test_bit(R1BIO_WriteError, &r1_bio->state)) { | 
 | 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) | 
 | 				md_error(conf->mddev, rdev); | 
 | 		} | 
 | 	} | 
 | 	put_buf(r1_bio); | 
 | 	md_done_sync(conf->mddev, s, 1); | 
 | } | 
 |  | 
 | static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) | 
 | { | 
 | 	int m, idx; | 
 | 	bool fail = false; | 
 |  | 
 | 	for (m = 0; m < conf->raid_disks * 2 ; m++) | 
 | 		if (r1_bio->bios[m] == IO_MADE_GOOD) { | 
 | 			struct md_rdev *rdev = conf->mirrors[m].rdev; | 
 | 			rdev_clear_badblocks(rdev, | 
 | 					     r1_bio->sector, | 
 | 					     r1_bio->sectors, 0); | 
 | 			rdev_dec_pending(rdev, conf->mddev); | 
 | 		} else if (r1_bio->bios[m] != NULL) { | 
 | 			/* This drive got a write error.  We need to | 
 | 			 * narrow down and record precise write | 
 | 			 * errors. | 
 | 			 */ | 
 | 			fail = true; | 
 | 			if (!narrow_write_error(r1_bio, m)) { | 
 | 				md_error(conf->mddev, | 
 | 					 conf->mirrors[m].rdev); | 
 | 				/* an I/O failed, we can't clear the bitmap */ | 
 | 				set_bit(R1BIO_Degraded, &r1_bio->state); | 
 | 			} | 
 | 			rdev_dec_pending(conf->mirrors[m].rdev, | 
 | 					 conf->mddev); | 
 | 		} | 
 | 	if (fail) { | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list); | 
 | 		idx = sector_to_idx(r1_bio->sector); | 
 | 		atomic_inc(&conf->nr_queued[idx]); | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		/* | 
 | 		 * In case freeze_array() is waiting for condition | 
 | 		 * get_unqueued_pending() == extra to be true. | 
 | 		 */ | 
 | 		wake_up(&conf->wait_barrier); | 
 | 		md_wakeup_thread(conf->mddev->thread); | 
 | 	} else { | 
 | 		if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 			close_write(r1_bio); | 
 | 		raid_end_bio_io(r1_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) | 
 | { | 
 | 	struct mddev *mddev = conf->mddev; | 
 | 	struct bio *bio; | 
 | 	struct md_rdev *rdev; | 
 |  | 
 | 	clear_bit(R1BIO_ReadError, &r1_bio->state); | 
 | 	/* we got a read error. Maybe the drive is bad.  Maybe just | 
 | 	 * the block and we can fix it. | 
 | 	 * We freeze all other IO, and try reading the block from | 
 | 	 * other devices.  When we find one, we re-write | 
 | 	 * and check it that fixes the read error. | 
 | 	 * This is all done synchronously while the array is | 
 | 	 * frozen | 
 | 	 */ | 
 |  | 
 | 	bio = r1_bio->bios[r1_bio->read_disk]; | 
 | 	bio_put(bio); | 
 | 	r1_bio->bios[r1_bio->read_disk] = NULL; | 
 |  | 
 | 	rdev = conf->mirrors[r1_bio->read_disk].rdev; | 
 | 	if (mddev->ro == 0 | 
 | 	    && !test_bit(FailFast, &rdev->flags)) { | 
 | 		freeze_array(conf, 1); | 
 | 		fix_read_error(conf, r1_bio->read_disk, | 
 | 			       r1_bio->sector, r1_bio->sectors); | 
 | 		unfreeze_array(conf); | 
 | 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { | 
 | 		md_error(mddev, rdev); | 
 | 	} else { | 
 | 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; | 
 | 	} | 
 |  | 
 | 	rdev_dec_pending(rdev, conf->mddev); | 
 | 	allow_barrier(conf, r1_bio->sector); | 
 | 	bio = r1_bio->master_bio; | 
 |  | 
 | 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ | 
 | 	r1_bio->state = 0; | 
 | 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); | 
 | } | 
 |  | 
 | static void raid1d(struct md_thread *thread) | 
 | { | 
 | 	struct mddev *mddev = thread->mddev; | 
 | 	struct r1bio *r1_bio; | 
 | 	unsigned long flags; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct list_head *head = &conf->retry_list; | 
 | 	struct blk_plug plug; | 
 | 	int idx; | 
 |  | 
 | 	md_check_recovery(mddev); | 
 |  | 
 | 	if (!list_empty_careful(&conf->bio_end_io_list) && | 
 | 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { | 
 | 		LIST_HEAD(tmp); | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) | 
 | 			list_splice_init(&conf->bio_end_io_list, &tmp); | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		while (!list_empty(&tmp)) { | 
 | 			r1_bio = list_first_entry(&tmp, struct r1bio, | 
 | 						  retry_list); | 
 | 			list_del(&r1_bio->retry_list); | 
 | 			idx = sector_to_idx(r1_bio->sector); | 
 | 			atomic_dec(&conf->nr_queued[idx]); | 
 | 			if (mddev->degraded) | 
 | 				set_bit(R1BIO_Degraded, &r1_bio->state); | 
 | 			if (test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 				close_write(r1_bio); | 
 | 			raid_end_bio_io(r1_bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	for (;;) { | 
 |  | 
 | 		flush_pending_writes(conf); | 
 |  | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		r1_bio = list_entry(head->prev, struct r1bio, retry_list); | 
 | 		list_del(head->prev); | 
 | 		idx = sector_to_idx(r1_bio->sector); | 
 | 		atomic_dec(&conf->nr_queued[idx]); | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 		mddev = r1_bio->mddev; | 
 | 		conf = mddev->private; | 
 | 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) { | 
 | 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
 | 			    test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 				handle_sync_write_finished(conf, r1_bio); | 
 | 			else | 
 | 				sync_request_write(mddev, r1_bio); | 
 | 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || | 
 | 			   test_bit(R1BIO_WriteError, &r1_bio->state)) | 
 | 			handle_write_finished(conf, r1_bio); | 
 | 		else if (test_bit(R1BIO_ReadError, &r1_bio->state)) | 
 | 			handle_read_error(conf, r1_bio); | 
 | 		else | 
 | 			WARN_ON_ONCE(1); | 
 |  | 
 | 		cond_resched(); | 
 | 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) | 
 | 			md_check_recovery(mddev); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | static int init_resync(struct r1conf *conf) | 
 | { | 
 | 	int buffs; | 
 |  | 
 | 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
 | 	BUG_ON(mempool_initialized(&conf->r1buf_pool)); | 
 |  | 
 | 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, | 
 | 			    r1buf_pool_free, conf->poolinfo); | 
 | } | 
 |  | 
 | static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) | 
 | { | 
 | 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); | 
 | 	struct resync_pages *rps; | 
 | 	struct bio *bio; | 
 | 	int i; | 
 |  | 
 | 	for (i = conf->poolinfo->raid_disks; i--; ) { | 
 | 		bio = r1bio->bios[i]; | 
 | 		rps = bio->bi_private; | 
 | 		bio_reset(bio); | 
 | 		bio->bi_private = rps; | 
 | 	} | 
 | 	r1bio->master_bio = NULL; | 
 | 	return r1bio; | 
 | } | 
 |  | 
 | /* | 
 |  * perform a "sync" on one "block" | 
 |  * | 
 |  * We need to make sure that no normal I/O request - particularly write | 
 |  * requests - conflict with active sync requests. | 
 |  * | 
 |  * This is achieved by tracking pending requests and a 'barrier' concept | 
 |  * that can be installed to exclude normal IO requests. | 
 |  */ | 
 |  | 
 | static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, | 
 | 				   int *skipped) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	struct r1bio *r1_bio; | 
 | 	struct bio *bio; | 
 | 	sector_t max_sector, nr_sectors; | 
 | 	int disk = -1; | 
 | 	int i; | 
 | 	int wonly = -1; | 
 | 	int write_targets = 0, read_targets = 0; | 
 | 	sector_t sync_blocks; | 
 | 	int still_degraded = 0; | 
 | 	int good_sectors = RESYNC_SECTORS; | 
 | 	int min_bad = 0; /* number of sectors that are bad in all devices */ | 
 | 	int idx = sector_to_idx(sector_nr); | 
 | 	int page_idx = 0; | 
 |  | 
 | 	if (!mempool_initialized(&conf->r1buf_pool)) | 
 | 		if (init_resync(conf)) | 
 | 			return 0; | 
 |  | 
 | 	max_sector = mddev->dev_sectors; | 
 | 	if (sector_nr >= max_sector) { | 
 | 		/* If we aborted, we need to abort the | 
 | 		 * sync on the 'current' bitmap chunk (there will | 
 | 		 * only be one in raid1 resync. | 
 | 		 * We can find the current addess in mddev->curr_resync | 
 | 		 */ | 
 | 		if (mddev->curr_resync < max_sector) /* aborted */ | 
 | 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
 | 					   &sync_blocks, 1); | 
 | 		else /* completed sync */ | 
 | 			conf->fullsync = 0; | 
 |  | 
 | 		md_bitmap_close_sync(mddev->bitmap); | 
 | 		close_sync(conf); | 
 |  | 
 | 		if (mddev_is_clustered(mddev)) { | 
 | 			conf->cluster_sync_low = 0; | 
 | 			conf->cluster_sync_high = 0; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (mddev->bitmap == NULL && | 
 | 	    mddev->recovery_cp == MaxSector && | 
 | 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
 | 	    conf->fullsync == 0) { | 
 | 		*skipped = 1; | 
 | 		return max_sector - sector_nr; | 
 | 	} | 
 | 	/* before building a request, check if we can skip these blocks.. | 
 | 	 * This call the bitmap_start_sync doesn't actually record anything | 
 | 	 */ | 
 | 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && | 
 | 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
 | 		/* We can skip this block, and probably several more */ | 
 | 		*skipped = 1; | 
 | 		return sync_blocks; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is non-resync activity waiting for a turn, then let it | 
 | 	 * though before starting on this new sync request. | 
 | 	 */ | 
 | 	if (atomic_read(&conf->nr_waiting[idx])) | 
 | 		schedule_timeout_uninterruptible(1); | 
 |  | 
 | 	/* we are incrementing sector_nr below. To be safe, we check against | 
 | 	 * sector_nr + two times RESYNC_SECTORS | 
 | 	 */ | 
 |  | 
 | 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, | 
 | 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); | 
 |  | 
 |  | 
 | 	if (raise_barrier(conf, sector_nr)) | 
 | 		return 0; | 
 |  | 
 | 	r1_bio = raid1_alloc_init_r1buf(conf); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * If we get a correctably read error during resync or recovery, | 
 | 	 * we might want to read from a different device.  So we | 
 | 	 * flag all drives that could conceivably be read from for READ, | 
 | 	 * and any others (which will be non-In_sync devices) for WRITE. | 
 | 	 * If a read fails, we try reading from something else for which READ | 
 | 	 * is OK. | 
 | 	 */ | 
 |  | 
 | 	r1_bio->mddev = mddev; | 
 | 	r1_bio->sector = sector_nr; | 
 | 	r1_bio->state = 0; | 
 | 	set_bit(R1BIO_IsSync, &r1_bio->state); | 
 | 	/* make sure good_sectors won't go across barrier unit boundary */ | 
 | 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 | 		struct md_rdev *rdev; | 
 | 		bio = r1_bio->bios[i]; | 
 |  | 
 | 		rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev == NULL || | 
 | 		    test_bit(Faulty, &rdev->flags)) { | 
 | 			if (i < conf->raid_disks) | 
 | 				still_degraded = 1; | 
 | 		} else if (!test_bit(In_sync, &rdev->flags)) { | 
 | 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 			bio->bi_end_io = end_sync_write; | 
 | 			write_targets ++; | 
 | 		} else { | 
 | 			/* may need to read from here */ | 
 | 			sector_t first_bad = MaxSector; | 
 | 			int bad_sectors; | 
 |  | 
 | 			if (is_badblock(rdev, sector_nr, good_sectors, | 
 | 					&first_bad, &bad_sectors)) { | 
 | 				if (first_bad > sector_nr) | 
 | 					good_sectors = first_bad - sector_nr; | 
 | 				else { | 
 | 					bad_sectors -= (sector_nr - first_bad); | 
 | 					if (min_bad == 0 || | 
 | 					    min_bad > bad_sectors) | 
 | 						min_bad = bad_sectors; | 
 | 				} | 
 | 			} | 
 | 			if (sector_nr < first_bad) { | 
 | 				if (test_bit(WriteMostly, &rdev->flags)) { | 
 | 					if (wonly < 0) | 
 | 						wonly = i; | 
 | 				} else { | 
 | 					if (disk < 0) | 
 | 						disk = i; | 
 | 				} | 
 | 				bio_set_op_attrs(bio, REQ_OP_READ, 0); | 
 | 				bio->bi_end_io = end_sync_read; | 
 | 				read_targets++; | 
 | 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) && | 
 | 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && | 
 | 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { | 
 | 				/* | 
 | 				 * The device is suitable for reading (InSync), | 
 | 				 * but has bad block(s) here. Let's try to correct them, | 
 | 				 * if we are doing resync or repair. Otherwise, leave | 
 | 				 * this device alone for this sync request. | 
 | 				 */ | 
 | 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 				bio->bi_end_io = end_sync_write; | 
 | 				write_targets++; | 
 | 			} | 
 | 		} | 
 | 		if (rdev && bio->bi_end_io) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; | 
 | 			bio_set_dev(bio, rdev->bdev); | 
 | 			if (test_bit(FailFast, &rdev->flags)) | 
 | 				bio->bi_opf |= MD_FAILFAST; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	if (disk < 0) | 
 | 		disk = wonly; | 
 | 	r1_bio->read_disk = disk; | 
 |  | 
 | 	if (read_targets == 0 && min_bad > 0) { | 
 | 		/* These sectors are bad on all InSync devices, so we | 
 | 		 * need to mark them bad on all write targets | 
 | 		 */ | 
 | 		int ok = 1; | 
 | 		for (i = 0 ; i < conf->raid_disks * 2 ; i++) | 
 | 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) { | 
 | 				struct md_rdev *rdev = conf->mirrors[i].rdev; | 
 | 				ok = rdev_set_badblocks(rdev, sector_nr, | 
 | 							min_bad, 0 | 
 | 					) && ok; | 
 | 			} | 
 | 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
 | 		*skipped = 1; | 
 | 		put_buf(r1_bio); | 
 |  | 
 | 		if (!ok) { | 
 | 			/* Cannot record the badblocks, so need to | 
 | 			 * abort the resync. | 
 | 			 * If there are multiple read targets, could just | 
 | 			 * fail the really bad ones ??? | 
 | 			 */ | 
 | 			conf->recovery_disabled = mddev->recovery_disabled; | 
 | 			set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 			return 0; | 
 | 		} else | 
 | 			return min_bad; | 
 |  | 
 | 	} | 
 | 	if (min_bad > 0 && min_bad < good_sectors) { | 
 | 		/* only resync enough to reach the next bad->good | 
 | 		 * transition */ | 
 | 		good_sectors = min_bad; | 
 | 	} | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) | 
 | 		/* extra read targets are also write targets */ | 
 | 		write_targets += read_targets-1; | 
 |  | 
 | 	if (write_targets == 0 || read_targets == 0) { | 
 | 		/* There is nowhere to write, so all non-sync | 
 | 		 * drives must be failed - so we are finished | 
 | 		 */ | 
 | 		sector_t rv; | 
 | 		if (min_bad > 0) | 
 | 			max_sector = sector_nr + min_bad; | 
 | 		rv = max_sector - sector_nr; | 
 | 		*skipped = 1; | 
 | 		put_buf(r1_bio); | 
 | 		return rv; | 
 | 	} | 
 |  | 
 | 	if (max_sector > mddev->resync_max) | 
 | 		max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
 | 	if (max_sector > sector_nr + good_sectors) | 
 | 		max_sector = sector_nr + good_sectors; | 
 | 	nr_sectors = 0; | 
 | 	sync_blocks = 0; | 
 | 	do { | 
 | 		struct page *page; | 
 | 		int len = PAGE_SIZE; | 
 | 		if (sector_nr + (len>>9) > max_sector) | 
 | 			len = (max_sector - sector_nr) << 9; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		if (sync_blocks == 0) { | 
 | 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, | 
 | 						  &sync_blocks, still_degraded) && | 
 | 			    !conf->fullsync && | 
 | 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) | 
 | 				break; | 
 | 			if ((len >> 9) > sync_blocks) | 
 | 				len = sync_blocks<<9; | 
 | 		} | 
 |  | 
 | 		for (i = 0 ; i < conf->raid_disks * 2; i++) { | 
 | 			struct resync_pages *rp; | 
 |  | 
 | 			bio = r1_bio->bios[i]; | 
 | 			rp = get_resync_pages(bio); | 
 | 			if (bio->bi_end_io) { | 
 | 				page = resync_fetch_page(rp, page_idx); | 
 |  | 
 | 				/* | 
 | 				 * won't fail because the vec table is big | 
 | 				 * enough to hold all these pages | 
 | 				 */ | 
 | 				bio_add_page(bio, page, len, 0); | 
 | 			} | 
 | 		} | 
 | 		nr_sectors += len>>9; | 
 | 		sector_nr += len>>9; | 
 | 		sync_blocks -= (len>>9); | 
 | 	} while (++page_idx < RESYNC_PAGES); | 
 |  | 
 | 	r1_bio->sectors = nr_sectors; | 
 |  | 
 | 	if (mddev_is_clustered(mddev) && | 
 | 			conf->cluster_sync_high < sector_nr + nr_sectors) { | 
 | 		conf->cluster_sync_low = mddev->curr_resync_completed; | 
 | 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; | 
 | 		/* Send resync message */ | 
 | 		md_cluster_ops->resync_info_update(mddev, | 
 | 				conf->cluster_sync_low, | 
 | 				conf->cluster_sync_high); | 
 | 	} | 
 |  | 
 | 	/* For a user-requested sync, we read all readable devices and do a | 
 | 	 * compare | 
 | 	 */ | 
 | 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { | 
 | 		atomic_set(&r1_bio->remaining, read_targets); | 
 | 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { | 
 | 			bio = r1_bio->bios[i]; | 
 | 			if (bio->bi_end_io == end_sync_read) { | 
 | 				read_targets--; | 
 | 				md_sync_acct_bio(bio, nr_sectors); | 
 | 				if (read_targets == 1) | 
 | 					bio->bi_opf &= ~MD_FAILFAST; | 
 | 				generic_make_request(bio); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		atomic_set(&r1_bio->remaining, 1); | 
 | 		bio = r1_bio->bios[r1_bio->read_disk]; | 
 | 		md_sync_acct_bio(bio, nr_sectors); | 
 | 		if (read_targets == 1) | 
 | 			bio->bi_opf &= ~MD_FAILFAST; | 
 | 		generic_make_request(bio); | 
 |  | 
 | 	} | 
 | 	return nr_sectors; | 
 | } | 
 |  | 
 | static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
 | { | 
 | 	if (sectors) | 
 | 		return sectors; | 
 |  | 
 | 	return mddev->dev_sectors; | 
 | } | 
 |  | 
 | static struct r1conf *setup_conf(struct mddev *mddev) | 
 | { | 
 | 	struct r1conf *conf; | 
 | 	int i; | 
 | 	struct raid1_info *disk; | 
 | 	struct md_rdev *rdev; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); | 
 | 	if (!conf) | 
 | 		goto abort; | 
 |  | 
 | 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, | 
 | 				   sizeof(atomic_t), GFP_KERNEL); | 
 | 	if (!conf->nr_pending) | 
 | 		goto abort; | 
 |  | 
 | 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, | 
 | 				   sizeof(atomic_t), GFP_KERNEL); | 
 | 	if (!conf->nr_waiting) | 
 | 		goto abort; | 
 |  | 
 | 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, | 
 | 				  sizeof(atomic_t), GFP_KERNEL); | 
 | 	if (!conf->nr_queued) | 
 | 		goto abort; | 
 |  | 
 | 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR, | 
 | 				sizeof(atomic_t), GFP_KERNEL); | 
 | 	if (!conf->barrier) | 
 | 		goto abort; | 
 |  | 
 | 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), | 
 | 					    mddev->raid_disks, 2), | 
 | 				GFP_KERNEL); | 
 | 	if (!conf->mirrors) | 
 | 		goto abort; | 
 |  | 
 | 	conf->tmppage = alloc_page(GFP_KERNEL); | 
 | 	if (!conf->tmppage) | 
 | 		goto abort; | 
 |  | 
 | 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); | 
 | 	if (!conf->poolinfo) | 
 | 		goto abort; | 
 | 	conf->poolinfo->raid_disks = mddev->raid_disks * 2; | 
 | 	err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc, | 
 | 			   r1bio_pool_free, conf->poolinfo); | 
 | 	if (err) | 
 | 		goto abort; | 
 |  | 
 | 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); | 
 | 	if (err) | 
 | 		goto abort; | 
 |  | 
 | 	conf->poolinfo->mddev = mddev; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	spin_lock_init(&conf->device_lock); | 
 | 	rdev_for_each(rdev, mddev) { | 
 | 		int disk_idx = rdev->raid_disk; | 
 | 		if (disk_idx >= mddev->raid_disks | 
 | 		    || disk_idx < 0) | 
 | 			continue; | 
 | 		if (test_bit(Replacement, &rdev->flags)) | 
 | 			disk = conf->mirrors + mddev->raid_disks + disk_idx; | 
 | 		else | 
 | 			disk = conf->mirrors + disk_idx; | 
 |  | 
 | 		if (disk->rdev) | 
 | 			goto abort; | 
 | 		disk->rdev = rdev; | 
 | 		disk->head_position = 0; | 
 | 		disk->seq_start = MaxSector; | 
 | 	} | 
 | 	conf->raid_disks = mddev->raid_disks; | 
 | 	conf->mddev = mddev; | 
 | 	INIT_LIST_HEAD(&conf->retry_list); | 
 | 	INIT_LIST_HEAD(&conf->bio_end_io_list); | 
 |  | 
 | 	spin_lock_init(&conf->resync_lock); | 
 | 	init_waitqueue_head(&conf->wait_barrier); | 
 |  | 
 | 	bio_list_init(&conf->pending_bio_list); | 
 | 	conf->pending_count = 0; | 
 | 	conf->recovery_disabled = mddev->recovery_disabled - 1; | 
 |  | 
 | 	err = -EIO; | 
 | 	for (i = 0; i < conf->raid_disks * 2; i++) { | 
 |  | 
 | 		disk = conf->mirrors + i; | 
 |  | 
 | 		if (i < conf->raid_disks && | 
 | 		    disk[conf->raid_disks].rdev) { | 
 | 			/* This slot has a replacement. */ | 
 | 			if (!disk->rdev) { | 
 | 				/* No original, just make the replacement | 
 | 				 * a recovering spare | 
 | 				 */ | 
 | 				disk->rdev = | 
 | 					disk[conf->raid_disks].rdev; | 
 | 				disk[conf->raid_disks].rdev = NULL; | 
 | 			} else if (!test_bit(In_sync, &disk->rdev->flags)) | 
 | 				/* Original is not in_sync - bad */ | 
 | 				goto abort; | 
 | 		} | 
 |  | 
 | 		if (!disk->rdev || | 
 | 		    !test_bit(In_sync, &disk->rdev->flags)) { | 
 | 			disk->head_position = 0; | 
 | 			if (disk->rdev && | 
 | 			    (disk->rdev->saved_raid_disk < 0)) | 
 | 				conf->fullsync = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	conf->thread = md_register_thread(raid1d, mddev, "raid1"); | 
 | 	if (!conf->thread) | 
 | 		goto abort; | 
 |  | 
 | 	return conf; | 
 |  | 
 |  abort: | 
 | 	if (conf) { | 
 | 		mempool_exit(&conf->r1bio_pool); | 
 | 		kfree(conf->mirrors); | 
 | 		safe_put_page(conf->tmppage); | 
 | 		kfree(conf->poolinfo); | 
 | 		kfree(conf->nr_pending); | 
 | 		kfree(conf->nr_waiting); | 
 | 		kfree(conf->nr_queued); | 
 | 		kfree(conf->barrier); | 
 | 		bioset_exit(&conf->bio_split); | 
 | 		kfree(conf); | 
 | 	} | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void raid1_free(struct mddev *mddev, void *priv); | 
 | static int raid1_run(struct mddev *mddev) | 
 | { | 
 | 	struct r1conf *conf; | 
 | 	int i; | 
 | 	struct md_rdev *rdev; | 
 | 	int ret; | 
 | 	bool discard_supported = false; | 
 |  | 
 | 	if (mddev->level != 1) { | 
 | 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", | 
 | 			mdname(mddev), mddev->level); | 
 | 		return -EIO; | 
 | 	} | 
 | 	if (mddev->reshape_position != MaxSector) { | 
 | 		pr_warn("md/raid1:%s: reshape_position set but not supported\n", | 
 | 			mdname(mddev)); | 
 | 		return -EIO; | 
 | 	} | 
 | 	if (mddev_init_writes_pending(mddev) < 0) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * copy the already verified devices into our private RAID1 | 
 | 	 * bookkeeping area. [whatever we allocate in run(), | 
 | 	 * should be freed in raid1_free()] | 
 | 	 */ | 
 | 	if (mddev->private == NULL) | 
 | 		conf = setup_conf(mddev); | 
 | 	else | 
 | 		conf = mddev->private; | 
 |  | 
 | 	if (IS_ERR(conf)) | 
 | 		return PTR_ERR(conf); | 
 |  | 
 | 	if (mddev->queue) { | 
 | 		blk_queue_max_write_same_sectors(mddev->queue, 0); | 
 | 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0); | 
 | 	} | 
 |  | 
 | 	rdev_for_each(rdev, mddev) { | 
 | 		if (!mddev->gendisk) | 
 | 			continue; | 
 | 		disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 				  rdev->data_offset << 9); | 
 | 		if (blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
 | 			discard_supported = true; | 
 | 	} | 
 |  | 
 | 	mddev->degraded = 0; | 
 | 	for (i=0; i < conf->raid_disks; i++) | 
 | 		if (conf->mirrors[i].rdev == NULL || | 
 | 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || | 
 | 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags)) | 
 | 			mddev->degraded++; | 
 | 	/* | 
 | 	 * RAID1 needs at least one disk in active | 
 | 	 */ | 
 | 	if (conf->raid_disks - mddev->degraded < 1) { | 
 | 		ret = -EINVAL; | 
 | 		goto abort; | 
 | 	} | 
 |  | 
 | 	if (conf->raid_disks - mddev->degraded == 1) | 
 | 		mddev->recovery_cp = MaxSector; | 
 |  | 
 | 	if (mddev->recovery_cp != MaxSector) | 
 | 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", | 
 | 			mdname(mddev)); | 
 | 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n", | 
 | 		mdname(mddev), mddev->raid_disks - mddev->degraded, | 
 | 		mddev->raid_disks); | 
 |  | 
 | 	/* | 
 | 	 * Ok, everything is just fine now | 
 | 	 */ | 
 | 	mddev->thread = conf->thread; | 
 | 	conf->thread = NULL; | 
 | 	mddev->private = conf; | 
 | 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); | 
 |  | 
 | 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); | 
 |  | 
 | 	if (mddev->queue) { | 
 | 		if (discard_supported) | 
 | 			blk_queue_flag_set(QUEUE_FLAG_DISCARD, | 
 | 						mddev->queue); | 
 | 		else | 
 | 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD, | 
 | 						  mddev->queue); | 
 | 	} | 
 |  | 
 | 	ret =  md_integrity_register(mddev); | 
 | 	if (ret) { | 
 | 		md_unregister_thread(&mddev->thread); | 
 | 		goto abort; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | abort: | 
 | 	raid1_free(mddev, conf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void raid1_free(struct mddev *mddev, void *priv) | 
 | { | 
 | 	struct r1conf *conf = priv; | 
 |  | 
 | 	mempool_exit(&conf->r1bio_pool); | 
 | 	kfree(conf->mirrors); | 
 | 	safe_put_page(conf->tmppage); | 
 | 	kfree(conf->poolinfo); | 
 | 	kfree(conf->nr_pending); | 
 | 	kfree(conf->nr_waiting); | 
 | 	kfree(conf->nr_queued); | 
 | 	kfree(conf->barrier); | 
 | 	bioset_exit(&conf->bio_split); | 
 | 	kfree(conf); | 
 | } | 
 |  | 
 | static int raid1_resize(struct mddev *mddev, sector_t sectors) | 
 | { | 
 | 	/* no resync is happening, and there is enough space | 
 | 	 * on all devices, so we can resize. | 
 | 	 * We need to make sure resync covers any new space. | 
 | 	 * If the array is shrinking we should possibly wait until | 
 | 	 * any io in the removed space completes, but it hardly seems | 
 | 	 * worth it. | 
 | 	 */ | 
 | 	sector_t newsize = raid1_size(mddev, sectors, 0); | 
 | 	if (mddev->external_size && | 
 | 	    mddev->array_sectors > newsize) | 
 | 		return -EINVAL; | 
 | 	if (mddev->bitmap) { | 
 | 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	md_set_array_sectors(mddev, newsize); | 
 | 	if (sectors > mddev->dev_sectors && | 
 | 	    mddev->recovery_cp > mddev->dev_sectors) { | 
 | 		mddev->recovery_cp = mddev->dev_sectors; | 
 | 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 	} | 
 | 	mddev->dev_sectors = sectors; | 
 | 	mddev->resync_max_sectors = sectors; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int raid1_reshape(struct mddev *mddev) | 
 | { | 
 | 	/* We need to: | 
 | 	 * 1/ resize the r1bio_pool | 
 | 	 * 2/ resize conf->mirrors | 
 | 	 * | 
 | 	 * We allocate a new r1bio_pool if we can. | 
 | 	 * Then raise a device barrier and wait until all IO stops. | 
 | 	 * Then resize conf->mirrors and swap in the new r1bio pool. | 
 | 	 * | 
 | 	 * At the same time, we "pack" the devices so that all the missing | 
 | 	 * devices have the higher raid_disk numbers. | 
 | 	 */ | 
 | 	mempool_t newpool, oldpool; | 
 | 	struct pool_info *newpoolinfo; | 
 | 	struct raid1_info *newmirrors; | 
 | 	struct r1conf *conf = mddev->private; | 
 | 	int cnt, raid_disks; | 
 | 	unsigned long flags; | 
 | 	int d, d2; | 
 | 	int ret; | 
 |  | 
 | 	memset(&newpool, 0, sizeof(newpool)); | 
 | 	memset(&oldpool, 0, sizeof(oldpool)); | 
 |  | 
 | 	/* Cannot change chunk_size, layout, or level */ | 
 | 	if (mddev->chunk_sectors != mddev->new_chunk_sectors || | 
 | 	    mddev->layout != mddev->new_layout || | 
 | 	    mddev->level != mddev->new_level) { | 
 | 		mddev->new_chunk_sectors = mddev->chunk_sectors; | 
 | 		mddev->new_layout = mddev->layout; | 
 | 		mddev->new_level = mddev->level; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!mddev_is_clustered(mddev)) | 
 | 		md_allow_write(mddev); | 
 |  | 
 | 	raid_disks = mddev->raid_disks + mddev->delta_disks; | 
 |  | 
 | 	if (raid_disks < conf->raid_disks) { | 
 | 		cnt=0; | 
 | 		for (d= 0; d < conf->raid_disks; d++) | 
 | 			if (conf->mirrors[d].rdev) | 
 | 				cnt++; | 
 | 		if (cnt > raid_disks) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); | 
 | 	if (!newpoolinfo) | 
 | 		return -ENOMEM; | 
 | 	newpoolinfo->mddev = mddev; | 
 | 	newpoolinfo->raid_disks = raid_disks * 2; | 
 |  | 
 | 	ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc, | 
 | 			   r1bio_pool_free, newpoolinfo); | 
 | 	if (ret) { | 
 | 		kfree(newpoolinfo); | 
 | 		return ret; | 
 | 	} | 
 | 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), | 
 | 					 raid_disks, 2), | 
 | 			     GFP_KERNEL); | 
 | 	if (!newmirrors) { | 
 | 		kfree(newpoolinfo); | 
 | 		mempool_exit(&newpool); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	freeze_array(conf, 0); | 
 |  | 
 | 	/* ok, everything is stopped */ | 
 | 	oldpool = conf->r1bio_pool; | 
 | 	conf->r1bio_pool = newpool; | 
 |  | 
 | 	for (d = d2 = 0; d < conf->raid_disks; d++) { | 
 | 		struct md_rdev *rdev = conf->mirrors[d].rdev; | 
 | 		if (rdev && rdev->raid_disk != d2) { | 
 | 			sysfs_unlink_rdev(mddev, rdev); | 
 | 			rdev->raid_disk = d2; | 
 | 			sysfs_unlink_rdev(mddev, rdev); | 
 | 			if (sysfs_link_rdev(mddev, rdev)) | 
 | 				pr_warn("md/raid1:%s: cannot register rd%d\n", | 
 | 					mdname(mddev), rdev->raid_disk); | 
 | 		} | 
 | 		if (rdev) | 
 | 			newmirrors[d2++].rdev = rdev; | 
 | 	} | 
 | 	kfree(conf->mirrors); | 
 | 	conf->mirrors = newmirrors; | 
 | 	kfree(conf->poolinfo); | 
 | 	conf->poolinfo = newpoolinfo; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	mddev->degraded += (raid_disks - conf->raid_disks); | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	conf->raid_disks = mddev->raid_disks = raid_disks; | 
 | 	mddev->delta_disks = 0; | 
 |  | 
 | 	unfreeze_array(conf); | 
 |  | 
 | 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); | 
 | 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 	md_wakeup_thread(mddev->thread); | 
 |  | 
 | 	mempool_exit(&oldpool); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid1_quiesce(struct mddev *mddev, int quiesce) | 
 | { | 
 | 	struct r1conf *conf = mddev->private; | 
 |  | 
 | 	if (quiesce) | 
 | 		freeze_array(conf, 0); | 
 | 	else | 
 | 		unfreeze_array(conf); | 
 | } | 
 |  | 
 | static void *raid1_takeover(struct mddev *mddev) | 
 | { | 
 | 	/* raid1 can take over: | 
 | 	 *  raid5 with 2 devices, any layout or chunk size | 
 | 	 */ | 
 | 	if (mddev->level == 5 && mddev->raid_disks == 2) { | 
 | 		struct r1conf *conf; | 
 | 		mddev->new_level = 1; | 
 | 		mddev->new_layout = 0; | 
 | 		mddev->new_chunk_sectors = 0; | 
 | 		conf = setup_conf(mddev); | 
 | 		if (!IS_ERR(conf)) { | 
 | 			/* Array must appear to be quiesced */ | 
 | 			conf->array_frozen = 1; | 
 | 			mddev_clear_unsupported_flags(mddev, | 
 | 				UNSUPPORTED_MDDEV_FLAGS); | 
 | 		} | 
 | 		return conf; | 
 | 	} | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | static struct md_personality raid1_personality = | 
 | { | 
 | 	.name		= "raid1", | 
 | 	.level		= 1, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= raid1_make_request, | 
 | 	.run		= raid1_run, | 
 | 	.free		= raid1_free, | 
 | 	.status		= raid1_status, | 
 | 	.error_handler	= raid1_error, | 
 | 	.hot_add_disk	= raid1_add_disk, | 
 | 	.hot_remove_disk= raid1_remove_disk, | 
 | 	.spare_active	= raid1_spare_active, | 
 | 	.sync_request	= raid1_sync_request, | 
 | 	.resize		= raid1_resize, | 
 | 	.size		= raid1_size, | 
 | 	.check_reshape	= raid1_reshape, | 
 | 	.quiesce	= raid1_quiesce, | 
 | 	.takeover	= raid1_takeover, | 
 | 	.congested	= raid1_congested, | 
 | }; | 
 |  | 
 | static int __init raid_init(void) | 
 | { | 
 | 	return register_md_personality(&raid1_personality); | 
 | } | 
 |  | 
 | static void raid_exit(void) | 
 | { | 
 | 	unregister_md_personality(&raid1_personality); | 
 | } | 
 |  | 
 | module_init(raid_init); | 
 | module_exit(raid_exit); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); | 
 | MODULE_ALIAS("md-personality-3"); /* RAID1 */ | 
 | MODULE_ALIAS("md-raid1"); | 
 | MODULE_ALIAS("md-level-1"); | 
 |  | 
 | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |