| /* | 
 |  * Persistent Memory Driver | 
 |  * | 
 |  * Copyright (c) 2014-2015, Intel Corporation. | 
 |  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>. | 
 |  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/init.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/set_memory.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/badblocks.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/pfn_t.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/nd.h> | 
 | #include <linux/backing-dev.h> | 
 | #include "pmem.h" | 
 | #include "pfn.h" | 
 | #include "nd.h" | 
 | #include "nd-core.h" | 
 |  | 
 | static struct device *to_dev(struct pmem_device *pmem) | 
 | { | 
 | 	/* | 
 | 	 * nvdimm bus services need a 'dev' parameter, and we record the device | 
 | 	 * at init in bb.dev. | 
 | 	 */ | 
 | 	return pmem->bb.dev; | 
 | } | 
 |  | 
 | static struct nd_region *to_region(struct pmem_device *pmem) | 
 | { | 
 | 	return to_nd_region(to_dev(pmem)->parent); | 
 | } | 
 |  | 
 | static void hwpoison_clear(struct pmem_device *pmem, | 
 | 		phys_addr_t phys, unsigned int len) | 
 | { | 
 | 	unsigned long pfn_start, pfn_end, pfn; | 
 |  | 
 | 	/* only pmem in the linear map supports HWPoison */ | 
 | 	if (is_vmalloc_addr(pmem->virt_addr)) | 
 | 		return; | 
 |  | 
 | 	pfn_start = PHYS_PFN(phys); | 
 | 	pfn_end = pfn_start + PHYS_PFN(len); | 
 | 	for (pfn = pfn_start; pfn < pfn_end; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		/* | 
 | 		 * Note, no need to hold a get_dev_pagemap() reference | 
 | 		 * here since we're in the driver I/O path and | 
 | 		 * outstanding I/O requests pin the dev_pagemap. | 
 | 		 */ | 
 | 		if (test_and_clear_pmem_poison(page)) | 
 | 			clear_mce_nospec(pfn); | 
 | 	} | 
 | } | 
 |  | 
 | static blk_status_t pmem_clear_poison(struct pmem_device *pmem, | 
 | 		phys_addr_t offset, unsigned int len) | 
 | { | 
 | 	struct device *dev = to_dev(pmem); | 
 | 	sector_t sector; | 
 | 	long cleared; | 
 | 	blk_status_t rc = BLK_STS_OK; | 
 |  | 
 | 	sector = (offset - pmem->data_offset) / 512; | 
 |  | 
 | 	cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len); | 
 | 	if (cleared < len) | 
 | 		rc = BLK_STS_IOERR; | 
 | 	if (cleared > 0 && cleared / 512) { | 
 | 		hwpoison_clear(pmem, pmem->phys_addr + offset, cleared); | 
 | 		cleared /= 512; | 
 | 		dev_dbg(dev, "%#llx clear %ld sector%s\n", | 
 | 				(unsigned long long) sector, cleared, | 
 | 				cleared > 1 ? "s" : ""); | 
 | 		badblocks_clear(&pmem->bb, sector, cleared); | 
 | 		if (pmem->bb_state) | 
 | 			sysfs_notify_dirent(pmem->bb_state); | 
 | 	} | 
 |  | 
 | 	arch_invalidate_pmem(pmem->virt_addr + offset, len); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void write_pmem(void *pmem_addr, struct page *page, | 
 | 		unsigned int off, unsigned int len) | 
 | { | 
 | 	unsigned int chunk; | 
 | 	void *mem; | 
 |  | 
 | 	while (len) { | 
 | 		mem = kmap_atomic(page); | 
 | 		chunk = min_t(unsigned int, len, PAGE_SIZE - off); | 
 | 		memcpy_flushcache(pmem_addr, mem + off, chunk); | 
 | 		kunmap_atomic(mem); | 
 | 		len -= chunk; | 
 | 		off = 0; | 
 | 		page++; | 
 | 		pmem_addr += chunk; | 
 | 	} | 
 | } | 
 |  | 
 | static blk_status_t read_pmem(struct page *page, unsigned int off, | 
 | 		void *pmem_addr, unsigned int len) | 
 | { | 
 | 	unsigned int chunk; | 
 | 	unsigned long rem; | 
 | 	void *mem; | 
 |  | 
 | 	while (len) { | 
 | 		mem = kmap_atomic(page); | 
 | 		chunk = min_t(unsigned int, len, PAGE_SIZE - off); | 
 | 		rem = memcpy_mcsafe(mem + off, pmem_addr, chunk); | 
 | 		kunmap_atomic(mem); | 
 | 		if (rem) | 
 | 			return BLK_STS_IOERR; | 
 | 		len -= chunk; | 
 | 		off = 0; | 
 | 		page++; | 
 | 		pmem_addr += chunk; | 
 | 	} | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page, | 
 | 			unsigned int len, unsigned int off, unsigned int op, | 
 | 			sector_t sector) | 
 | { | 
 | 	blk_status_t rc = BLK_STS_OK; | 
 | 	bool bad_pmem = false; | 
 | 	phys_addr_t pmem_off = sector * 512 + pmem->data_offset; | 
 | 	void *pmem_addr = pmem->virt_addr + pmem_off; | 
 |  | 
 | 	if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) | 
 | 		bad_pmem = true; | 
 |  | 
 | 	if (!op_is_write(op)) { | 
 | 		if (unlikely(bad_pmem)) | 
 | 			rc = BLK_STS_IOERR; | 
 | 		else { | 
 | 			rc = read_pmem(page, off, pmem_addr, len); | 
 | 			flush_dcache_page(page); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Note that we write the data both before and after | 
 | 		 * clearing poison.  The write before clear poison | 
 | 		 * handles situations where the latest written data is | 
 | 		 * preserved and the clear poison operation simply marks | 
 | 		 * the address range as valid without changing the data. | 
 | 		 * In this case application software can assume that an | 
 | 		 * interrupted write will either return the new good | 
 | 		 * data or an error. | 
 | 		 * | 
 | 		 * However, if pmem_clear_poison() leaves the data in an | 
 | 		 * indeterminate state we need to perform the write | 
 | 		 * after clear poison. | 
 | 		 */ | 
 | 		flush_dcache_page(page); | 
 | 		write_pmem(pmem_addr, page, off, len); | 
 | 		if (unlikely(bad_pmem)) { | 
 | 			rc = pmem_clear_poison(pmem, pmem_off, len); | 
 | 			write_pmem(pmem_addr, page, off, len); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	blk_status_t rc = 0; | 
 | 	bool do_acct; | 
 | 	unsigned long start; | 
 | 	struct bio_vec bvec; | 
 | 	struct bvec_iter iter; | 
 | 	struct pmem_device *pmem = q->queuedata; | 
 | 	struct nd_region *nd_region = to_region(pmem); | 
 |  | 
 | 	if (bio->bi_opf & REQ_PREFLUSH) | 
 | 		nvdimm_flush(nd_region); | 
 |  | 
 | 	do_acct = nd_iostat_start(bio, &start); | 
 | 	bio_for_each_segment(bvec, bio, iter) { | 
 | 		rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len, | 
 | 				bvec.bv_offset, bio_op(bio), iter.bi_sector); | 
 | 		if (rc) { | 
 | 			bio->bi_status = rc; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (do_acct) | 
 | 		nd_iostat_end(bio, start); | 
 |  | 
 | 	if (bio->bi_opf & REQ_FUA) | 
 | 		nvdimm_flush(nd_region); | 
 |  | 
 | 	bio_endio(bio); | 
 | 	return BLK_QC_T_NONE; | 
 | } | 
 |  | 
 | static int pmem_rw_page(struct block_device *bdev, sector_t sector, | 
 | 		       struct page *page, unsigned int op) | 
 | { | 
 | 	struct pmem_device *pmem = bdev->bd_queue->queuedata; | 
 | 	blk_status_t rc; | 
 |  | 
 | 	rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE, | 
 | 			  0, op, sector); | 
 |  | 
 | 	/* | 
 | 	 * The ->rw_page interface is subtle and tricky.  The core | 
 | 	 * retries on any error, so we can only invoke page_endio() in | 
 | 	 * the successful completion case.  Otherwise, we'll see crashes | 
 | 	 * caused by double completion. | 
 | 	 */ | 
 | 	if (rc == 0) | 
 | 		page_endio(page, op_is_write(op), 0); | 
 |  | 
 | 	return blk_status_to_errno(rc); | 
 | } | 
 |  | 
 | /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */ | 
 | __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff, | 
 | 		long nr_pages, void **kaddr, pfn_t *pfn) | 
 | { | 
 | 	resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset; | 
 |  | 
 | 	if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512, | 
 | 					PFN_PHYS(nr_pages)))) | 
 | 		return -EIO; | 
 |  | 
 | 	if (kaddr) | 
 | 		*kaddr = pmem->virt_addr + offset; | 
 | 	if (pfn) | 
 | 		*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags); | 
 |  | 
 | 	/* | 
 | 	 * If badblocks are present, limit known good range to the | 
 | 	 * requested range. | 
 | 	 */ | 
 | 	if (unlikely(pmem->bb.count)) | 
 | 		return nr_pages; | 
 | 	return PHYS_PFN(pmem->size - pmem->pfn_pad - offset); | 
 | } | 
 |  | 
 | static const struct block_device_operations pmem_fops = { | 
 | 	.owner =		THIS_MODULE, | 
 | 	.rw_page =		pmem_rw_page, | 
 | 	.revalidate_disk =	nvdimm_revalidate_disk, | 
 | }; | 
 |  | 
 | static long pmem_dax_direct_access(struct dax_device *dax_dev, | 
 | 		pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) | 
 | { | 
 | 	struct pmem_device *pmem = dax_get_private(dax_dev); | 
 |  | 
 | 	return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn); | 
 | } | 
 |  | 
 | /* | 
 |  * Use the 'no check' versions of copy_from_iter_flushcache() and | 
 |  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds | 
 |  * checking, both file offset and device offset, is handled by | 
 |  * dax_iomap_actor() | 
 |  */ | 
 | static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, | 
 | 		void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	return _copy_from_iter_flushcache(addr, bytes, i); | 
 | } | 
 |  | 
 | static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, | 
 | 		void *addr, size_t bytes, struct iov_iter *i) | 
 | { | 
 | 	return _copy_to_iter_mcsafe(addr, bytes, i); | 
 | } | 
 |  | 
 | static const struct dax_operations pmem_dax_ops = { | 
 | 	.direct_access = pmem_dax_direct_access, | 
 | 	.copy_from_iter = pmem_copy_from_iter, | 
 | 	.copy_to_iter = pmem_copy_to_iter, | 
 | }; | 
 |  | 
 | static const struct attribute_group *pmem_attribute_groups[] = { | 
 | 	&dax_attribute_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static void pmem_release_queue(void *q) | 
 | { | 
 | 	blk_cleanup_queue(q); | 
 | } | 
 |  | 
 | static void pmem_freeze_queue(struct percpu_ref *ref) | 
 | { | 
 | 	struct request_queue *q; | 
 |  | 
 | 	q = container_of(ref, typeof(*q), q_usage_counter); | 
 | 	blk_freeze_queue_start(q); | 
 | } | 
 |  | 
 | static void pmem_release_disk(void *__pmem) | 
 | { | 
 | 	struct pmem_device *pmem = __pmem; | 
 |  | 
 | 	kill_dax(pmem->dax_dev); | 
 | 	put_dax(pmem->dax_dev); | 
 | 	del_gendisk(pmem->disk); | 
 | 	put_disk(pmem->disk); | 
 | } | 
 |  | 
 | static void pmem_release_pgmap_ops(void *__pgmap) | 
 | { | 
 | 	dev_pagemap_put_ops(); | 
 | } | 
 |  | 
 | static void fsdax_pagefree(struct page *page, void *data) | 
 | { | 
 | 	wake_up_var(&page->_refcount); | 
 | } | 
 |  | 
 | static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap) | 
 | { | 
 | 	dev_pagemap_get_ops(); | 
 | 	if (devm_add_action_or_reset(dev, pmem_release_pgmap_ops, pgmap)) | 
 | 		return -ENOMEM; | 
 | 	pgmap->type = MEMORY_DEVICE_FS_DAX; | 
 | 	pgmap->page_free = fsdax_pagefree; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pmem_attach_disk(struct device *dev, | 
 | 		struct nd_namespace_common *ndns) | 
 | { | 
 | 	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev); | 
 | 	struct nd_region *nd_region = to_nd_region(dev->parent); | 
 | 	int nid = dev_to_node(dev), fua; | 
 | 	struct resource *res = &nsio->res; | 
 | 	struct resource bb_res; | 
 | 	struct nd_pfn *nd_pfn = NULL; | 
 | 	struct dax_device *dax_dev; | 
 | 	struct nd_pfn_sb *pfn_sb; | 
 | 	struct pmem_device *pmem; | 
 | 	struct request_queue *q; | 
 | 	struct device *gendev; | 
 | 	struct gendisk *disk; | 
 | 	void *addr; | 
 | 	int rc; | 
 |  | 
 | 	pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL); | 
 | 	if (!pmem) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* while nsio_rw_bytes is active, parse a pfn info block if present */ | 
 | 	if (is_nd_pfn(dev)) { | 
 | 		nd_pfn = to_nd_pfn(dev); | 
 | 		rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	/* we're attaching a block device, disable raw namespace access */ | 
 | 	devm_nsio_disable(dev, nsio); | 
 |  | 
 | 	dev_set_drvdata(dev, pmem); | 
 | 	pmem->phys_addr = res->start; | 
 | 	pmem->size = resource_size(res); | 
 | 	fua = nvdimm_has_flush(nd_region); | 
 | 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) { | 
 | 		dev_warn(dev, "unable to guarantee persistence of writes\n"); | 
 | 		fua = 0; | 
 | 	} | 
 |  | 
 | 	if (!devm_request_mem_region(dev, res->start, resource_size(res), | 
 | 				dev_name(&ndns->dev))) { | 
 | 		dev_warn(dev, "could not reserve region %pR\n", res); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL); | 
 | 	if (!q) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (devm_add_action_or_reset(dev, pmem_release_queue, q)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pmem->pfn_flags = PFN_DEV; | 
 | 	pmem->pgmap.ref = &q->q_usage_counter; | 
 | 	pmem->pgmap.kill = pmem_freeze_queue; | 
 | 	if (is_nd_pfn(dev)) { | 
 | 		if (setup_pagemap_fsdax(dev, &pmem->pgmap)) | 
 | 			return -ENOMEM; | 
 | 		addr = devm_memremap_pages(dev, &pmem->pgmap); | 
 | 		pfn_sb = nd_pfn->pfn_sb; | 
 | 		pmem->data_offset = le64_to_cpu(pfn_sb->dataoff); | 
 | 		pmem->pfn_pad = resource_size(res) - | 
 | 			resource_size(&pmem->pgmap.res); | 
 | 		pmem->pfn_flags |= PFN_MAP; | 
 | 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); | 
 | 		bb_res.start += pmem->data_offset; | 
 | 	} else if (pmem_should_map_pages(dev)) { | 
 | 		memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res)); | 
 | 		pmem->pgmap.altmap_valid = false; | 
 | 		if (setup_pagemap_fsdax(dev, &pmem->pgmap)) | 
 | 			return -ENOMEM; | 
 | 		addr = devm_memremap_pages(dev, &pmem->pgmap); | 
 | 		pmem->pfn_flags |= PFN_MAP; | 
 | 		memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res)); | 
 | 	} else { | 
 | 		addr = devm_memremap(dev, pmem->phys_addr, | 
 | 				pmem->size, ARCH_MEMREMAP_PMEM); | 
 | 		memcpy(&bb_res, &nsio->res, sizeof(bb_res)); | 
 | 	} | 
 |  | 
 | 	if (IS_ERR(addr)) | 
 | 		return PTR_ERR(addr); | 
 | 	pmem->virt_addr = addr; | 
 |  | 
 | 	blk_queue_write_cache(q, true, fua); | 
 | 	blk_queue_make_request(q, pmem_make_request); | 
 | 	blk_queue_physical_block_size(q, PAGE_SIZE); | 
 | 	blk_queue_logical_block_size(q, pmem_sector_size(ndns)); | 
 | 	blk_queue_max_hw_sectors(q, UINT_MAX); | 
 | 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q); | 
 | 	if (pmem->pfn_flags & PFN_MAP) | 
 | 		blk_queue_flag_set(QUEUE_FLAG_DAX, q); | 
 | 	q->queuedata = pmem; | 
 |  | 
 | 	disk = alloc_disk_node(0, nid); | 
 | 	if (!disk) | 
 | 		return -ENOMEM; | 
 | 	pmem->disk = disk; | 
 |  | 
 | 	disk->fops		= &pmem_fops; | 
 | 	disk->queue		= q; | 
 | 	disk->flags		= GENHD_FL_EXT_DEVT; | 
 | 	disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO; | 
 | 	nvdimm_namespace_disk_name(ndns, disk->disk_name); | 
 | 	set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset) | 
 | 			/ 512); | 
 | 	if (devm_init_badblocks(dev, &pmem->bb)) | 
 | 		return -ENOMEM; | 
 | 	nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res); | 
 | 	disk->bb = &pmem->bb; | 
 |  | 
 | 	dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops); | 
 | 	if (!dax_dev) { | 
 | 		put_disk(disk); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	dax_write_cache(dax_dev, nvdimm_has_cache(nd_region)); | 
 | 	pmem->dax_dev = dax_dev; | 
 |  | 
 | 	gendev = disk_to_dev(disk); | 
 | 	gendev->groups = pmem_attribute_groups; | 
 |  | 
 | 	device_add_disk(dev, disk); | 
 | 	if (devm_add_action_or_reset(dev, pmem_release_disk, pmem)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	revalidate_disk(disk); | 
 |  | 
 | 	pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd, | 
 | 					  "badblocks"); | 
 | 	if (!pmem->bb_state) | 
 | 		dev_warn(dev, "'badblocks' notification disabled\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nd_pmem_probe(struct device *dev) | 
 | { | 
 | 	struct nd_namespace_common *ndns; | 
 |  | 
 | 	ndns = nvdimm_namespace_common_probe(dev); | 
 | 	if (IS_ERR(ndns)) | 
 | 		return PTR_ERR(ndns); | 
 |  | 
 | 	if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev))) | 
 | 		return -ENXIO; | 
 |  | 
 | 	if (is_nd_btt(dev)) | 
 | 		return nvdimm_namespace_attach_btt(ndns); | 
 |  | 
 | 	if (is_nd_pfn(dev)) | 
 | 		return pmem_attach_disk(dev, ndns); | 
 |  | 
 | 	/* if we find a valid info-block we'll come back as that personality */ | 
 | 	if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0 | 
 | 			|| nd_dax_probe(dev, ndns) == 0) | 
 | 		return -ENXIO; | 
 |  | 
 | 	/* ...otherwise we're just a raw pmem device */ | 
 | 	return pmem_attach_disk(dev, ndns); | 
 | } | 
 |  | 
 | static int nd_pmem_remove(struct device *dev) | 
 | { | 
 | 	struct pmem_device *pmem = dev_get_drvdata(dev); | 
 |  | 
 | 	if (is_nd_btt(dev)) | 
 | 		nvdimm_namespace_detach_btt(to_nd_btt(dev)); | 
 | 	else { | 
 | 		/* | 
 | 		 * Note, this assumes device_lock() context to not race | 
 | 		 * nd_pmem_notify() | 
 | 		 */ | 
 | 		sysfs_put(pmem->bb_state); | 
 | 		pmem->bb_state = NULL; | 
 | 	} | 
 | 	nvdimm_flush(to_nd_region(dev->parent)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nd_pmem_shutdown(struct device *dev) | 
 | { | 
 | 	nvdimm_flush(to_nd_region(dev->parent)); | 
 | } | 
 |  | 
 | static void nd_pmem_notify(struct device *dev, enum nvdimm_event event) | 
 | { | 
 | 	struct nd_region *nd_region; | 
 | 	resource_size_t offset = 0, end_trunc = 0; | 
 | 	struct nd_namespace_common *ndns; | 
 | 	struct nd_namespace_io *nsio; | 
 | 	struct resource res; | 
 | 	struct badblocks *bb; | 
 | 	struct kernfs_node *bb_state; | 
 |  | 
 | 	if (event != NVDIMM_REVALIDATE_POISON) | 
 | 		return; | 
 |  | 
 | 	if (is_nd_btt(dev)) { | 
 | 		struct nd_btt *nd_btt = to_nd_btt(dev); | 
 |  | 
 | 		ndns = nd_btt->ndns; | 
 | 		nd_region = to_nd_region(ndns->dev.parent); | 
 | 		nsio = to_nd_namespace_io(&ndns->dev); | 
 | 		bb = &nsio->bb; | 
 | 		bb_state = NULL; | 
 | 	} else { | 
 | 		struct pmem_device *pmem = dev_get_drvdata(dev); | 
 |  | 
 | 		nd_region = to_region(pmem); | 
 | 		bb = &pmem->bb; | 
 | 		bb_state = pmem->bb_state; | 
 |  | 
 | 		if (is_nd_pfn(dev)) { | 
 | 			struct nd_pfn *nd_pfn = to_nd_pfn(dev); | 
 | 			struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb; | 
 |  | 
 | 			ndns = nd_pfn->ndns; | 
 | 			offset = pmem->data_offset + | 
 | 					__le32_to_cpu(pfn_sb->start_pad); | 
 | 			end_trunc = __le32_to_cpu(pfn_sb->end_trunc); | 
 | 		} else { | 
 | 			ndns = to_ndns(dev); | 
 | 		} | 
 |  | 
 | 		nsio = to_nd_namespace_io(&ndns->dev); | 
 | 	} | 
 |  | 
 | 	res.start = nsio->res.start + offset; | 
 | 	res.end = nsio->res.end - end_trunc; | 
 | 	nvdimm_badblocks_populate(nd_region, bb, &res); | 
 | 	if (bb_state) | 
 | 		sysfs_notify_dirent(bb_state); | 
 | } | 
 |  | 
 | MODULE_ALIAS("pmem"); | 
 | MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO); | 
 | MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM); | 
 | static struct nd_device_driver nd_pmem_driver = { | 
 | 	.probe = nd_pmem_probe, | 
 | 	.remove = nd_pmem_remove, | 
 | 	.notify = nd_pmem_notify, | 
 | 	.shutdown = nd_pmem_shutdown, | 
 | 	.drv = { | 
 | 		.name = "nd_pmem", | 
 | 	}, | 
 | 	.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM, | 
 | }; | 
 |  | 
 | module_nd_driver(nd_pmem_driver); | 
 |  | 
 | MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>"); | 
 | MODULE_LICENSE("GPL v2"); |