| /* | 
 |  * Copyright (c) 2007-2017 Nicira, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of version 2 of the GNU General Public | 
 |  * License as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
 |  * 02110-1301, USA | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/skbuff.h> | 
 | #include <linux/in.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/openvswitch.h> | 
 | #include <linux/netfilter_ipv6.h> | 
 | #include <linux/sctp.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/in6.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/if_vlan.h> | 
 |  | 
 | #include <net/dst.h> | 
 | #include <net/ip.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/ip6_fib.h> | 
 | #include <net/checksum.h> | 
 | #include <net/dsfield.h> | 
 | #include <net/mpls.h> | 
 | #include <net/sctp/checksum.h> | 
 |  | 
 | #include "datapath.h" | 
 | #include "flow.h" | 
 | #include "conntrack.h" | 
 | #include "vport.h" | 
 | #include "flow_netlink.h" | 
 |  | 
 | struct deferred_action { | 
 | 	struct sk_buff *skb; | 
 | 	const struct nlattr *actions; | 
 | 	int actions_len; | 
 |  | 
 | 	/* Store pkt_key clone when creating deferred action. */ | 
 | 	struct sw_flow_key pkt_key; | 
 | }; | 
 |  | 
 | #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN) | 
 | struct ovs_frag_data { | 
 | 	unsigned long dst; | 
 | 	struct vport *vport; | 
 | 	struct ovs_skb_cb cb; | 
 | 	__be16 inner_protocol; | 
 | 	u16 network_offset;	/* valid only for MPLS */ | 
 | 	u16 vlan_tci; | 
 | 	__be16 vlan_proto; | 
 | 	unsigned int l2_len; | 
 | 	u8 mac_proto; | 
 | 	u8 l2_data[MAX_L2_LEN]; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); | 
 |  | 
 | #define DEFERRED_ACTION_FIFO_SIZE 10 | 
 | #define OVS_RECURSION_LIMIT 5 | 
 | #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) | 
 | struct action_fifo { | 
 | 	int head; | 
 | 	int tail; | 
 | 	/* Deferred action fifo queue storage. */ | 
 | 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; | 
 | }; | 
 |  | 
 | struct action_flow_keys { | 
 | 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; | 
 | }; | 
 |  | 
 | static struct action_fifo __percpu *action_fifos; | 
 | static struct action_flow_keys __percpu *flow_keys; | 
 | static DEFINE_PER_CPU(int, exec_actions_level); | 
 |  | 
 | /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' | 
 |  * space. Return NULL if out of key spaces. | 
 |  */ | 
 | static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) | 
 | { | 
 | 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys); | 
 | 	int level = this_cpu_read(exec_actions_level); | 
 | 	struct sw_flow_key *key = NULL; | 
 |  | 
 | 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { | 
 | 		key = &keys->key[level - 1]; | 
 | 		*key = *key_; | 
 | 	} | 
 |  | 
 | 	return key; | 
 | } | 
 |  | 
 | static void action_fifo_init(struct action_fifo *fifo) | 
 | { | 
 | 	fifo->head = 0; | 
 | 	fifo->tail = 0; | 
 | } | 
 |  | 
 | static bool action_fifo_is_empty(const struct action_fifo *fifo) | 
 | { | 
 | 	return (fifo->head == fifo->tail); | 
 | } | 
 |  | 
 | static struct deferred_action *action_fifo_get(struct action_fifo *fifo) | 
 | { | 
 | 	if (action_fifo_is_empty(fifo)) | 
 | 		return NULL; | 
 |  | 
 | 	return &fifo->fifo[fifo->tail++]; | 
 | } | 
 |  | 
 | static struct deferred_action *action_fifo_put(struct action_fifo *fifo) | 
 | { | 
 | 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) | 
 | 		return NULL; | 
 |  | 
 | 	return &fifo->fifo[fifo->head++]; | 
 | } | 
 |  | 
 | /* Return true if fifo is not full */ | 
 | static struct deferred_action *add_deferred_actions(struct sk_buff *skb, | 
 | 				    const struct sw_flow_key *key, | 
 | 				    const struct nlattr *actions, | 
 | 				    const int actions_len) | 
 | { | 
 | 	struct action_fifo *fifo; | 
 | 	struct deferred_action *da; | 
 |  | 
 | 	fifo = this_cpu_ptr(action_fifos); | 
 | 	da = action_fifo_put(fifo); | 
 | 	if (da) { | 
 | 		da->skb = skb; | 
 | 		da->actions = actions; | 
 | 		da->actions_len = actions_len; | 
 | 		da->pkt_key = *key; | 
 | 	} | 
 |  | 
 | 	return da; | 
 | } | 
 |  | 
 | static void invalidate_flow_key(struct sw_flow_key *key) | 
 | { | 
 | 	key->mac_proto |= SW_FLOW_KEY_INVALID; | 
 | } | 
 |  | 
 | static bool is_flow_key_valid(const struct sw_flow_key *key) | 
 | { | 
 | 	return !(key->mac_proto & SW_FLOW_KEY_INVALID); | 
 | } | 
 |  | 
 | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
 | 			 struct sw_flow_key *key, | 
 | 			 u32 recirc_id, | 
 | 			 const struct nlattr *actions, int len, | 
 | 			 bool last, bool clone_flow_key); | 
 |  | 
 | static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr, | 
 | 			     __be16 ethertype) | 
 | { | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
 | 		__be16 diff[] = { ~(hdr->h_proto), ethertype }; | 
 |  | 
 | 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
 | 	} | 
 |  | 
 | 	hdr->h_proto = ethertype; | 
 | } | 
 |  | 
 | static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 		     const struct ovs_action_push_mpls *mpls) | 
 | { | 
 | 	struct mpls_shim_hdr *new_mpls_lse; | 
 |  | 
 | 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ | 
 | 	if (skb->encapsulation) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	if (skb_cow_head(skb, MPLS_HLEN) < 0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!skb->inner_protocol) { | 
 | 		skb_set_inner_network_header(skb, skb->mac_len); | 
 | 		skb_set_inner_protocol(skb, skb->protocol); | 
 | 	} | 
 |  | 
 | 	skb_push(skb, MPLS_HLEN); | 
 | 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), | 
 | 		skb->mac_len); | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb_set_network_header(skb, skb->mac_len); | 
 |  | 
 | 	new_mpls_lse = mpls_hdr(skb); | 
 | 	new_mpls_lse->label_stack_entry = mpls->mpls_lse; | 
 |  | 
 | 	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); | 
 |  | 
 | 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) | 
 | 		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype); | 
 | 	skb->protocol = mpls->mpls_ethertype; | 
 |  | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 		    const __be16 ethertype) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); | 
 |  | 
 | 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), | 
 | 		skb->mac_len); | 
 |  | 
 | 	__skb_pull(skb, MPLS_HLEN); | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb_set_network_header(skb, skb->mac_len); | 
 |  | 
 | 	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) { | 
 | 		struct ethhdr *hdr; | 
 |  | 
 | 		/* mpls_hdr() is used to locate the ethertype field correctly in the | 
 | 		 * presence of VLAN tags. | 
 | 		 */ | 
 | 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); | 
 | 		update_ethertype(skb, hdr, ethertype); | 
 | 	} | 
 | 	if (eth_p_mpls(skb->protocol)) | 
 | 		skb->protocol = ethertype; | 
 |  | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		    const __be32 *mpls_lse, const __be32 *mask) | 
 | { | 
 | 	struct mpls_shim_hdr *stack; | 
 | 	__be32 lse; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	stack = mpls_hdr(skb); | 
 | 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
 | 		__be32 diff[] = { ~(stack->label_stack_entry), lse }; | 
 |  | 
 | 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); | 
 | 	} | 
 |  | 
 | 	stack->label_stack_entry = lse; | 
 | 	flow_key->mpls.top_lse = lse; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = skb_vlan_pop(skb); | 
 | 	if (skb_vlan_tag_present(skb)) { | 
 | 		invalidate_flow_key(key); | 
 | 	} else { | 
 | 		key->eth.vlan.tci = 0; | 
 | 		key->eth.vlan.tpid = 0; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 		     const struct ovs_action_push_vlan *vlan) | 
 | { | 
 | 	if (skb_vlan_tag_present(skb)) { | 
 | 		invalidate_flow_key(key); | 
 | 	} else { | 
 | 		key->eth.vlan.tci = vlan->vlan_tci; | 
 | 		key->eth.vlan.tpid = vlan->vlan_tpid; | 
 | 	} | 
 | 	return skb_vlan_push(skb, vlan->vlan_tpid, | 
 | 			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); | 
 | } | 
 |  | 
 | /* 'src' is already properly masked. */ | 
 | static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) | 
 | { | 
 | 	u16 *dst = (u16 *)dst_; | 
 | 	const u16 *src = (const u16 *)src_; | 
 | 	const u16 *mask = (const u16 *)mask_; | 
 |  | 
 | 	OVS_SET_MASKED(dst[0], src[0], mask[0]); | 
 | 	OVS_SET_MASKED(dst[1], src[1], mask[1]); | 
 | 	OVS_SET_MASKED(dst[2], src[2], mask[2]); | 
 | } | 
 |  | 
 | static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 			const struct ovs_key_ethernet *key, | 
 | 			const struct ovs_key_ethernet *mask) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, ETH_HLEN); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
 |  | 
 | 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, | 
 | 			       mask->eth_src); | 
 | 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, | 
 | 			       mask->eth_dst); | 
 |  | 
 | 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
 |  | 
 | 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); | 
 | 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* pop_eth does not support VLAN packets as this action is never called | 
 |  * for them. | 
 |  */ | 
 | static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	skb_pull_rcsum(skb, ETH_HLEN); | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb_reset_mac_len(skb); | 
 |  | 
 | 	/* safe right before invalidate_flow_key */ | 
 | 	key->mac_proto = MAC_PROTO_NONE; | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 		    const struct ovs_action_push_eth *ethh) | 
 | { | 
 | 	struct ethhdr *hdr; | 
 |  | 
 | 	/* Add the new Ethernet header */ | 
 | 	if (skb_cow_head(skb, ETH_HLEN) < 0) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	skb_push(skb, ETH_HLEN); | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb_reset_mac_len(skb); | 
 |  | 
 | 	hdr = eth_hdr(skb); | 
 | 	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src); | 
 | 	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst); | 
 | 	hdr->h_proto = skb->protocol; | 
 |  | 
 | 	skb_postpush_rcsum(skb, hdr, ETH_HLEN); | 
 |  | 
 | 	/* safe right before invalidate_flow_key */ | 
 | 	key->mac_proto = MAC_PROTO_ETHERNET; | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 		    const struct nshhdr *nh) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = nsh_push(skb, nh); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* safe right before invalidate_flow_key */ | 
 | 	key->mac_proto = MAC_PROTO_NONE; | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = nsh_pop(skb); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* safe right before invalidate_flow_key */ | 
 | 	if (skb->protocol == htons(ETH_P_TEB)) | 
 | 		key->mac_proto = MAC_PROTO_ETHERNET; | 
 | 	else | 
 | 		key->mac_proto = MAC_PROTO_NONE; | 
 | 	invalidate_flow_key(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, | 
 | 				  __be32 addr, __be32 new_addr) | 
 | { | 
 | 	int transport_len = skb->len - skb_transport_offset(skb); | 
 |  | 
 | 	if (nh->frag_off & htons(IP_OFFSET)) | 
 | 		return; | 
 |  | 
 | 	if (nh->protocol == IPPROTO_TCP) { | 
 | 		if (likely(transport_len >= sizeof(struct tcphdr))) | 
 | 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, | 
 | 						 addr, new_addr, true); | 
 | 	} else if (nh->protocol == IPPROTO_UDP) { | 
 | 		if (likely(transport_len >= sizeof(struct udphdr))) { | 
 | 			struct udphdr *uh = udp_hdr(skb); | 
 |  | 
 | 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 				inet_proto_csum_replace4(&uh->check, skb, | 
 | 							 addr, new_addr, true); | 
 | 				if (!uh->check) | 
 | 					uh->check = CSUM_MANGLED_0; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, | 
 | 			__be32 *addr, __be32 new_addr) | 
 | { | 
 | 	update_ip_l4_checksum(skb, nh, *addr, new_addr); | 
 | 	csum_replace4(&nh->check, *addr, new_addr); | 
 | 	skb_clear_hash(skb); | 
 | 	*addr = new_addr; | 
 | } | 
 |  | 
 | static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, | 
 | 				 __be32 addr[4], const __be32 new_addr[4]) | 
 | { | 
 | 	int transport_len = skb->len - skb_transport_offset(skb); | 
 |  | 
 | 	if (l4_proto == NEXTHDR_TCP) { | 
 | 		if (likely(transport_len >= sizeof(struct tcphdr))) | 
 | 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, | 
 | 						  addr, new_addr, true); | 
 | 	} else if (l4_proto == NEXTHDR_UDP) { | 
 | 		if (likely(transport_len >= sizeof(struct udphdr))) { | 
 | 			struct udphdr *uh = udp_hdr(skb); | 
 |  | 
 | 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 				inet_proto_csum_replace16(&uh->check, skb, | 
 | 							  addr, new_addr, true); | 
 | 				if (!uh->check) | 
 | 					uh->check = CSUM_MANGLED_0; | 
 | 			} | 
 | 		} | 
 | 	} else if (l4_proto == NEXTHDR_ICMP) { | 
 | 		if (likely(transport_len >= sizeof(struct icmp6hdr))) | 
 | 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, | 
 | 						  skb, addr, new_addr, true); | 
 | 	} | 
 | } | 
 |  | 
 | static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], | 
 | 			   const __be32 mask[4], __be32 masked[4]) | 
 | { | 
 | 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); | 
 | 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); | 
 | 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); | 
 | 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); | 
 | } | 
 |  | 
 | static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, | 
 | 			  __be32 addr[4], const __be32 new_addr[4], | 
 | 			  bool recalculate_csum) | 
 | { | 
 | 	if (recalculate_csum) | 
 | 		update_ipv6_checksum(skb, l4_proto, addr, new_addr); | 
 |  | 
 | 	skb_clear_hash(skb); | 
 | 	memcpy(addr, new_addr, sizeof(__be32[4])); | 
 | } | 
 |  | 
 | static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) | 
 | { | 
 | 	/* Bits 21-24 are always unmasked, so this retains their values. */ | 
 | 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); | 
 | 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); | 
 | 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); | 
 | } | 
 |  | 
 | static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, | 
 | 		       u8 mask) | 
 | { | 
 | 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); | 
 |  | 
 | 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); | 
 | 	nh->ttl = new_ttl; | 
 | } | 
 |  | 
 | static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		    const struct ovs_key_ipv4 *key, | 
 | 		    const struct ovs_key_ipv4 *mask) | 
 | { | 
 | 	struct iphdr *nh; | 
 | 	__be32 new_addr; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
 | 				  sizeof(struct iphdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	nh = ip_hdr(skb); | 
 |  | 
 | 	/* Setting an IP addresses is typically only a side effect of | 
 | 	 * matching on them in the current userspace implementation, so it | 
 | 	 * makes sense to check if the value actually changed. | 
 | 	 */ | 
 | 	if (mask->ipv4_src) { | 
 | 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); | 
 |  | 
 | 		if (unlikely(new_addr != nh->saddr)) { | 
 | 			set_ip_addr(skb, nh, &nh->saddr, new_addr); | 
 | 			flow_key->ipv4.addr.src = new_addr; | 
 | 		} | 
 | 	} | 
 | 	if (mask->ipv4_dst) { | 
 | 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); | 
 |  | 
 | 		if (unlikely(new_addr != nh->daddr)) { | 
 | 			set_ip_addr(skb, nh, &nh->daddr, new_addr); | 
 | 			flow_key->ipv4.addr.dst = new_addr; | 
 | 		} | 
 | 	} | 
 | 	if (mask->ipv4_tos) { | 
 | 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); | 
 | 		flow_key->ip.tos = nh->tos; | 
 | 	} | 
 | 	if (mask->ipv4_ttl) { | 
 | 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); | 
 | 		flow_key->ip.ttl = nh->ttl; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool is_ipv6_mask_nonzero(const __be32 addr[4]) | 
 | { | 
 | 	return !!(addr[0] | addr[1] | addr[2] | addr[3]); | 
 | } | 
 |  | 
 | static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		    const struct ovs_key_ipv6 *key, | 
 | 		    const struct ovs_key_ipv6 *mask) | 
 | { | 
 | 	struct ipv6hdr *nh; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
 | 				  sizeof(struct ipv6hdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	nh = ipv6_hdr(skb); | 
 |  | 
 | 	/* Setting an IP addresses is typically only a side effect of | 
 | 	 * matching on them in the current userspace implementation, so it | 
 | 	 * makes sense to check if the value actually changed. | 
 | 	 */ | 
 | 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) { | 
 | 		__be32 *saddr = (__be32 *)&nh->saddr; | 
 | 		__be32 masked[4]; | 
 |  | 
 | 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); | 
 |  | 
 | 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { | 
 | 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, | 
 | 				      true); | 
 | 			memcpy(&flow_key->ipv6.addr.src, masked, | 
 | 			       sizeof(flow_key->ipv6.addr.src)); | 
 | 		} | 
 | 	} | 
 | 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { | 
 | 		unsigned int offset = 0; | 
 | 		int flags = IP6_FH_F_SKIP_RH; | 
 | 		bool recalc_csum = true; | 
 | 		__be32 *daddr = (__be32 *)&nh->daddr; | 
 | 		__be32 masked[4]; | 
 |  | 
 | 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); | 
 |  | 
 | 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { | 
 | 			if (ipv6_ext_hdr(nh->nexthdr)) | 
 | 				recalc_csum = (ipv6_find_hdr(skb, &offset, | 
 | 							     NEXTHDR_ROUTING, | 
 | 							     NULL, &flags) | 
 | 					       != NEXTHDR_ROUTING); | 
 |  | 
 | 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, | 
 | 				      recalc_csum); | 
 | 			memcpy(&flow_key->ipv6.addr.dst, masked, | 
 | 			       sizeof(flow_key->ipv6.addr.dst)); | 
 | 		} | 
 | 	} | 
 | 	if (mask->ipv6_tclass) { | 
 | 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); | 
 | 		flow_key->ip.tos = ipv6_get_dsfield(nh); | 
 | 	} | 
 | 	if (mask->ipv6_label) { | 
 | 		set_ipv6_fl(nh, ntohl(key->ipv6_label), | 
 | 			    ntohl(mask->ipv6_label)); | 
 | 		flow_key->ipv6.label = | 
 | 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
 | 	} | 
 | 	if (mask->ipv6_hlimit) { | 
 | 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, | 
 | 			       mask->ipv6_hlimit); | 
 | 		flow_key->ip.ttl = nh->hop_limit; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		   const struct nlattr *a) | 
 | { | 
 | 	struct nshhdr *nh; | 
 | 	size_t length; | 
 | 	int err; | 
 | 	u8 flags; | 
 | 	u8 ttl; | 
 | 	int i; | 
 |  | 
 | 	struct ovs_key_nsh key; | 
 | 	struct ovs_key_nsh mask; | 
 |  | 
 | 	err = nsh_key_from_nlattr(a, &key, &mask); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Make sure the NSH base header is there */ | 
 | 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nh = nsh_hdr(skb); | 
 | 	length = nsh_hdr_len(nh); | 
 |  | 
 | 	/* Make sure the whole NSH header is there */ | 
 | 	err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
 | 				       length); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	nh = nsh_hdr(skb); | 
 | 	skb_postpull_rcsum(skb, nh, length); | 
 | 	flags = nsh_get_flags(nh); | 
 | 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); | 
 | 	flow_key->nsh.base.flags = flags; | 
 | 	ttl = nsh_get_ttl(nh); | 
 | 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); | 
 | 	flow_key->nsh.base.ttl = ttl; | 
 | 	nsh_set_flags_and_ttl(nh, flags, ttl); | 
 | 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, | 
 | 				  mask.base.path_hdr); | 
 | 	flow_key->nsh.base.path_hdr = nh->path_hdr; | 
 | 	switch (nh->mdtype) { | 
 | 	case NSH_M_TYPE1: | 
 | 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { | 
 | 			nh->md1.context[i] = | 
 | 			    OVS_MASKED(nh->md1.context[i], key.context[i], | 
 | 				       mask.context[i]); | 
 | 		} | 
 | 		memcpy(flow_key->nsh.context, nh->md1.context, | 
 | 		       sizeof(nh->md1.context)); | 
 | 		break; | 
 | 	case NSH_M_TYPE2: | 
 | 		memset(flow_key->nsh.context, 0, | 
 | 		       sizeof(flow_key->nsh.context)); | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	skb_postpush_rcsum(skb, nh, length); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Must follow skb_ensure_writable() since that can move the skb data. */ | 
 | static void set_tp_port(struct sk_buff *skb, __be16 *port, | 
 | 			__be16 new_port, __sum16 *check) | 
 | { | 
 | 	inet_proto_csum_replace2(check, skb, *port, new_port, false); | 
 | 	*port = new_port; | 
 | } | 
 |  | 
 | static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		   const struct ovs_key_udp *key, | 
 | 		   const struct ovs_key_udp *mask) | 
 | { | 
 | 	struct udphdr *uh; | 
 | 	__be16 src, dst; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct udphdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	uh = udp_hdr(skb); | 
 | 	/* Either of the masks is non-zero, so do not bother checking them. */ | 
 | 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); | 
 | 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); | 
 |  | 
 | 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { | 
 | 		if (likely(src != uh->source)) { | 
 | 			set_tp_port(skb, &uh->source, src, &uh->check); | 
 | 			flow_key->tp.src = src; | 
 | 		} | 
 | 		if (likely(dst != uh->dest)) { | 
 | 			set_tp_port(skb, &uh->dest, dst, &uh->check); | 
 | 			flow_key->tp.dst = dst; | 
 | 		} | 
 |  | 
 | 		if (unlikely(!uh->check)) | 
 | 			uh->check = CSUM_MANGLED_0; | 
 | 	} else { | 
 | 		uh->source = src; | 
 | 		uh->dest = dst; | 
 | 		flow_key->tp.src = src; | 
 | 		flow_key->tp.dst = dst; | 
 | 	} | 
 |  | 
 | 	skb_clear_hash(skb); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		   const struct ovs_key_tcp *key, | 
 | 		   const struct ovs_key_tcp *mask) | 
 | { | 
 | 	struct tcphdr *th; | 
 | 	__be16 src, dst; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct tcphdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	th = tcp_hdr(skb); | 
 | 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); | 
 | 	if (likely(src != th->source)) { | 
 | 		set_tp_port(skb, &th->source, src, &th->check); | 
 | 		flow_key->tp.src = src; | 
 | 	} | 
 | 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); | 
 | 	if (likely(dst != th->dest)) { | 
 | 		set_tp_port(skb, &th->dest, dst, &th->check); | 
 | 		flow_key->tp.dst = dst; | 
 | 	} | 
 | 	skb_clear_hash(skb); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
 | 		    const struct ovs_key_sctp *key, | 
 | 		    const struct ovs_key_sctp *mask) | 
 | { | 
 | 	unsigned int sctphoff = skb_transport_offset(skb); | 
 | 	struct sctphdr *sh; | 
 | 	__le32 old_correct_csum, new_csum, old_csum; | 
 | 	int err; | 
 |  | 
 | 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	sh = sctp_hdr(skb); | 
 | 	old_csum = sh->checksum; | 
 | 	old_correct_csum = sctp_compute_cksum(skb, sctphoff); | 
 |  | 
 | 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); | 
 | 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); | 
 |  | 
 | 	new_csum = sctp_compute_cksum(skb, sctphoff); | 
 |  | 
 | 	/* Carry any checksum errors through. */ | 
 | 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum; | 
 |  | 
 | 	skb_clear_hash(skb); | 
 | 	flow_key->tp.src = sh->source; | 
 | 	flow_key->tp.dst = sh->dest; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); | 
 | 	struct vport *vport = data->vport; | 
 |  | 
 | 	if (skb_cow_head(skb, data->l2_len) < 0) { | 
 | 		kfree_skb(skb); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	__skb_dst_copy(skb, data->dst); | 
 | 	*OVS_CB(skb) = data->cb; | 
 | 	skb->inner_protocol = data->inner_protocol; | 
 | 	skb->vlan_tci = data->vlan_tci; | 
 | 	skb->vlan_proto = data->vlan_proto; | 
 |  | 
 | 	/* Reconstruct the MAC header.  */ | 
 | 	skb_push(skb, data->l2_len); | 
 | 	memcpy(skb->data, &data->l2_data, data->l2_len); | 
 | 	skb_postpush_rcsum(skb, skb->data, data->l2_len); | 
 | 	skb_reset_mac_header(skb); | 
 |  | 
 | 	if (eth_p_mpls(skb->protocol)) { | 
 | 		skb->inner_network_header = skb->network_header; | 
 | 		skb_set_network_header(skb, data->network_offset); | 
 | 		skb_reset_mac_len(skb); | 
 | 	} | 
 |  | 
 | 	ovs_vport_send(vport, skb, data->mac_proto); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned int | 
 | ovs_dst_get_mtu(const struct dst_entry *dst) | 
 | { | 
 | 	return dst->dev->mtu; | 
 | } | 
 |  | 
 | static struct dst_ops ovs_dst_ops = { | 
 | 	.family = AF_UNSPEC, | 
 | 	.mtu = ovs_dst_get_mtu, | 
 | }; | 
 |  | 
 | /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is | 
 |  * ovs_vport_output(), which is called once per fragmented packet. | 
 |  */ | 
 | static void prepare_frag(struct vport *vport, struct sk_buff *skb, | 
 | 			 u16 orig_network_offset, u8 mac_proto) | 
 | { | 
 | 	unsigned int hlen = skb_network_offset(skb); | 
 | 	struct ovs_frag_data *data; | 
 |  | 
 | 	data = this_cpu_ptr(&ovs_frag_data_storage); | 
 | 	data->dst = skb->_skb_refdst; | 
 | 	data->vport = vport; | 
 | 	data->cb = *OVS_CB(skb); | 
 | 	data->inner_protocol = skb->inner_protocol; | 
 | 	data->network_offset = orig_network_offset; | 
 | 	data->vlan_tci = skb->vlan_tci; | 
 | 	data->vlan_proto = skb->vlan_proto; | 
 | 	data->mac_proto = mac_proto; | 
 | 	data->l2_len = hlen; | 
 | 	memcpy(&data->l2_data, skb->data, hlen); | 
 |  | 
 | 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); | 
 | 	skb_pull(skb, hlen); | 
 | } | 
 |  | 
 | static void ovs_fragment(struct net *net, struct vport *vport, | 
 | 			 struct sk_buff *skb, u16 mru, | 
 | 			 struct sw_flow_key *key) | 
 | { | 
 | 	u16 orig_network_offset = 0; | 
 |  | 
 | 	if (eth_p_mpls(skb->protocol)) { | 
 | 		orig_network_offset = skb_network_offset(skb); | 
 | 		skb->network_header = skb->inner_network_header; | 
 | 	} | 
 |  | 
 | 	if (skb_network_offset(skb) > MAX_L2_LEN) { | 
 | 		OVS_NLERR(1, "L2 header too long to fragment"); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if (key->eth.type == htons(ETH_P_IP)) { | 
 | 		struct dst_entry ovs_dst; | 
 | 		unsigned long orig_dst; | 
 |  | 
 | 		prepare_frag(vport, skb, orig_network_offset, | 
 | 			     ovs_key_mac_proto(key)); | 
 | 		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, | 
 | 			 DST_OBSOLETE_NONE, DST_NOCOUNT); | 
 | 		ovs_dst.dev = vport->dev; | 
 |  | 
 | 		orig_dst = skb->_skb_refdst; | 
 | 		skb_dst_set_noref(skb, &ovs_dst); | 
 | 		IPCB(skb)->frag_max_size = mru; | 
 |  | 
 | 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output); | 
 | 		refdst_drop(orig_dst); | 
 | 	} else if (key->eth.type == htons(ETH_P_IPV6)) { | 
 | 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); | 
 | 		unsigned long orig_dst; | 
 | 		struct rt6_info ovs_rt; | 
 |  | 
 | 		if (!v6ops) | 
 | 			goto err; | 
 |  | 
 | 		prepare_frag(vport, skb, orig_network_offset, | 
 | 			     ovs_key_mac_proto(key)); | 
 | 		memset(&ovs_rt, 0, sizeof(ovs_rt)); | 
 | 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, | 
 | 			 DST_OBSOLETE_NONE, DST_NOCOUNT); | 
 | 		ovs_rt.dst.dev = vport->dev; | 
 |  | 
 | 		orig_dst = skb->_skb_refdst; | 
 | 		skb_dst_set_noref(skb, &ovs_rt.dst); | 
 | 		IP6CB(skb)->frag_max_size = mru; | 
 |  | 
 | 		v6ops->fragment(net, skb->sk, skb, ovs_vport_output); | 
 | 		refdst_drop(orig_dst); | 
 | 	} else { | 
 | 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", | 
 | 			  ovs_vport_name(vport), ntohs(key->eth.type), mru, | 
 | 			  vport->dev->mtu); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	return; | 
 | err: | 
 | 	kfree_skb(skb); | 
 | } | 
 |  | 
 | static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, | 
 | 		      struct sw_flow_key *key) | 
 | { | 
 | 	struct vport *vport = ovs_vport_rcu(dp, out_port); | 
 |  | 
 | 	if (likely(vport)) { | 
 | 		u16 mru = OVS_CB(skb)->mru; | 
 | 		u32 cutlen = OVS_CB(skb)->cutlen; | 
 |  | 
 | 		if (unlikely(cutlen > 0)) { | 
 | 			if (skb->len - cutlen > ovs_mac_header_len(key)) | 
 | 				pskb_trim(skb, skb->len - cutlen); | 
 | 			else | 
 | 				pskb_trim(skb, ovs_mac_header_len(key)); | 
 | 		} | 
 |  | 
 | 		if (likely(!mru || | 
 | 		           (skb->len <= mru + vport->dev->hard_header_len))) { | 
 | 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); | 
 | 		} else if (mru <= vport->dev->mtu) { | 
 | 			struct net *net = read_pnet(&dp->net); | 
 |  | 
 | 			ovs_fragment(net, vport, skb, mru, key); | 
 | 		} else { | 
 | 			kfree_skb(skb); | 
 | 		} | 
 | 	} else { | 
 | 		kfree_skb(skb); | 
 | 	} | 
 | } | 
 |  | 
 | static int output_userspace(struct datapath *dp, struct sk_buff *skb, | 
 | 			    struct sw_flow_key *key, const struct nlattr *attr, | 
 | 			    const struct nlattr *actions, int actions_len, | 
 | 			    uint32_t cutlen) | 
 | { | 
 | 	struct dp_upcall_info upcall; | 
 | 	const struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	memset(&upcall, 0, sizeof(upcall)); | 
 | 	upcall.cmd = OVS_PACKET_CMD_ACTION; | 
 | 	upcall.mru = OVS_CB(skb)->mru; | 
 |  | 
 | 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0; | 
 | 		 a = nla_next(a, &rem)) { | 
 | 		switch (nla_type(a)) { | 
 | 		case OVS_USERSPACE_ATTR_USERDATA: | 
 | 			upcall.userdata = a; | 
 | 			break; | 
 |  | 
 | 		case OVS_USERSPACE_ATTR_PID: | 
 | 			upcall.portid = nla_get_u32(a); | 
 | 			break; | 
 |  | 
 | 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { | 
 | 			/* Get out tunnel info. */ | 
 | 			struct vport *vport; | 
 |  | 
 | 			vport = ovs_vport_rcu(dp, nla_get_u32(a)); | 
 | 			if (vport) { | 
 | 				int err; | 
 |  | 
 | 				err = dev_fill_metadata_dst(vport->dev, skb); | 
 | 				if (!err) | 
 | 					upcall.egress_tun_info = skb_tunnel_info(skb); | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_USERSPACE_ATTR_ACTIONS: { | 
 | 			/* Include actions. */ | 
 | 			upcall.actions = actions; | 
 | 			upcall.actions_len = actions_len; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		} /* End of switch. */ | 
 | 	} | 
 |  | 
 | 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); | 
 | } | 
 |  | 
 | /* When 'last' is true, sample() should always consume the 'skb'. | 
 |  * Otherwise, sample() should keep 'skb' intact regardless what | 
 |  * actions are executed within sample(). | 
 |  */ | 
 | static int sample(struct datapath *dp, struct sk_buff *skb, | 
 | 		  struct sw_flow_key *key, const struct nlattr *attr, | 
 | 		  bool last) | 
 | { | 
 | 	struct nlattr *actions; | 
 | 	struct nlattr *sample_arg; | 
 | 	int rem = nla_len(attr); | 
 | 	const struct sample_arg *arg; | 
 | 	bool clone_flow_key; | 
 |  | 
 | 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ | 
 | 	sample_arg = nla_data(attr); | 
 | 	arg = nla_data(sample_arg); | 
 | 	actions = nla_next(sample_arg, &rem); | 
 |  | 
 | 	if ((arg->probability != U32_MAX) && | 
 | 	    (!arg->probability || prandom_u32() > arg->probability)) { | 
 | 		if (last) | 
 | 			consume_skb(skb); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	clone_flow_key = !arg->exec; | 
 | 	return clone_execute(dp, skb, key, 0, actions, rem, last, | 
 | 			     clone_flow_key); | 
 | } | 
 |  | 
 | /* When 'last' is true, clone() should always consume the 'skb'. | 
 |  * Otherwise, clone() should keep 'skb' intact regardless what | 
 |  * actions are executed within clone(). | 
 |  */ | 
 | static int clone(struct datapath *dp, struct sk_buff *skb, | 
 | 		 struct sw_flow_key *key, const struct nlattr *attr, | 
 | 		 bool last) | 
 | { | 
 | 	struct nlattr *actions; | 
 | 	struct nlattr *clone_arg; | 
 | 	int rem = nla_len(attr); | 
 | 	bool dont_clone_flow_key; | 
 |  | 
 | 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */ | 
 | 	clone_arg = nla_data(attr); | 
 | 	dont_clone_flow_key = nla_get_u32(clone_arg); | 
 | 	actions = nla_next(clone_arg, &rem); | 
 |  | 
 | 	return clone_execute(dp, skb, key, 0, actions, rem, last, | 
 | 			     !dont_clone_flow_key); | 
 | } | 
 |  | 
 | static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 			 const struct nlattr *attr) | 
 | { | 
 | 	struct ovs_action_hash *hash_act = nla_data(attr); | 
 | 	u32 hash = 0; | 
 |  | 
 | 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */ | 
 | 	hash = skb_get_hash(skb); | 
 | 	hash = jhash_1word(hash, hash_act->hash_basis); | 
 | 	if (!hash) | 
 | 		hash = 0x1; | 
 |  | 
 | 	key->ovs_flow_hash = hash; | 
 | } | 
 |  | 
 | static int execute_set_action(struct sk_buff *skb, | 
 | 			      struct sw_flow_key *flow_key, | 
 | 			      const struct nlattr *a) | 
 | { | 
 | 	/* Only tunnel set execution is supported without a mask. */ | 
 | 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { | 
 | 		struct ovs_tunnel_info *tun = nla_data(a); | 
 |  | 
 | 		skb_dst_drop(skb); | 
 | 		dst_hold((struct dst_entry *)tun->tun_dst); | 
 | 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /* Mask is at the midpoint of the data. */ | 
 | #define get_mask(a, type) ((const type)nla_data(a) + 1) | 
 |  | 
 | static int execute_masked_set_action(struct sk_buff *skb, | 
 | 				     struct sw_flow_key *flow_key, | 
 | 				     const struct nlattr *a) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	switch (nla_type(a)) { | 
 | 	case OVS_KEY_ATTR_PRIORITY: | 
 | 		OVS_SET_MASKED(skb->priority, nla_get_u32(a), | 
 | 			       *get_mask(a, u32 *)); | 
 | 		flow_key->phy.priority = skb->priority; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_SKB_MARK: | 
 | 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); | 
 | 		flow_key->phy.skb_mark = skb->mark; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_TUNNEL_INFO: | 
 | 		/* Masked data not supported for tunnel. */ | 
 | 		err = -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_ETHERNET: | 
 | 		err = set_eth_addr(skb, flow_key, nla_data(a), | 
 | 				   get_mask(a, struct ovs_key_ethernet *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_NSH: | 
 | 		err = set_nsh(skb, flow_key, a); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_IPV4: | 
 | 		err = set_ipv4(skb, flow_key, nla_data(a), | 
 | 			       get_mask(a, struct ovs_key_ipv4 *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_IPV6: | 
 | 		err = set_ipv6(skb, flow_key, nla_data(a), | 
 | 			       get_mask(a, struct ovs_key_ipv6 *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_TCP: | 
 | 		err = set_tcp(skb, flow_key, nla_data(a), | 
 | 			      get_mask(a, struct ovs_key_tcp *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_UDP: | 
 | 		err = set_udp(skb, flow_key, nla_data(a), | 
 | 			      get_mask(a, struct ovs_key_udp *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_SCTP: | 
 | 		err = set_sctp(skb, flow_key, nla_data(a), | 
 | 			       get_mask(a, struct ovs_key_sctp *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_MPLS: | 
 | 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, | 
 | 								    __be32 *)); | 
 | 		break; | 
 |  | 
 | 	case OVS_KEY_ATTR_CT_STATE: | 
 | 	case OVS_KEY_ATTR_CT_ZONE: | 
 | 	case OVS_KEY_ATTR_CT_MARK: | 
 | 	case OVS_KEY_ATTR_CT_LABELS: | 
 | 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: | 
 | 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: | 
 | 		err = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int execute_recirc(struct datapath *dp, struct sk_buff *skb, | 
 | 			  struct sw_flow_key *key, | 
 | 			  const struct nlattr *a, bool last) | 
 | { | 
 | 	u32 recirc_id; | 
 |  | 
 | 	if (!is_flow_key_valid(key)) { | 
 | 		int err; | 
 |  | 
 | 		err = ovs_flow_key_update(skb, key); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	BUG_ON(!is_flow_key_valid(key)); | 
 |  | 
 | 	recirc_id = nla_get_u32(a); | 
 | 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); | 
 | } | 
 |  | 
 | /* Execute a list of actions against 'skb'. */ | 
 | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
 | 			      struct sw_flow_key *key, | 
 | 			      const struct nlattr *attr, int len) | 
 | { | 
 | 	const struct nlattr *a; | 
 | 	int rem; | 
 |  | 
 | 	for (a = attr, rem = len; rem > 0; | 
 | 	     a = nla_next(a, &rem)) { | 
 | 		int err = 0; | 
 |  | 
 | 		switch (nla_type(a)) { | 
 | 		case OVS_ACTION_ATTR_OUTPUT: { | 
 | 			int port = nla_get_u32(a); | 
 | 			struct sk_buff *clone; | 
 |  | 
 | 			/* Every output action needs a separate clone | 
 | 			 * of 'skb', In case the output action is the | 
 | 			 * last action, cloning can be avoided. | 
 | 			 */ | 
 | 			if (nla_is_last(a, rem)) { | 
 | 				do_output(dp, skb, port, key); | 
 | 				/* 'skb' has been used for output. | 
 | 				 */ | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 			clone = skb_clone(skb, GFP_ATOMIC); | 
 | 			if (clone) | 
 | 				do_output(dp, clone, port, key); | 
 | 			OVS_CB(skb)->cutlen = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_TRUNC: { | 
 | 			struct ovs_action_trunc *trunc = nla_data(a); | 
 |  | 
 | 			if (skb->len > trunc->max_len) | 
 | 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_USERSPACE: | 
 | 			output_userspace(dp, skb, key, a, attr, | 
 | 						     len, OVS_CB(skb)->cutlen); | 
 | 			OVS_CB(skb)->cutlen = 0; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_HASH: | 
 | 			execute_hash(skb, key, a); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_MPLS: | 
 | 			err = push_mpls(skb, key, nla_data(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_MPLS: | 
 | 			err = pop_mpls(skb, key, nla_get_be16(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_VLAN: | 
 | 			err = push_vlan(skb, key, nla_data(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_VLAN: | 
 | 			err = pop_vlan(skb, key); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_RECIRC: { | 
 | 			bool last = nla_is_last(a, rem); | 
 |  | 
 | 			err = execute_recirc(dp, skb, key, a, last); | 
 | 			if (last) { | 
 | 				/* If this is the last action, the skb has | 
 | 				 * been consumed or freed. | 
 | 				 * Return immediately. | 
 | 				 */ | 
 | 				return err; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_SET: | 
 | 			err = execute_set_action(skb, key, nla_data(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SET_MASKED: | 
 | 		case OVS_ACTION_ATTR_SET_TO_MASKED: | 
 | 			err = execute_masked_set_action(skb, key, nla_data(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_SAMPLE: { | 
 | 			bool last = nla_is_last(a, rem); | 
 |  | 
 | 			err = sample(dp, skb, key, a, last); | 
 | 			if (last) | 
 | 				return err; | 
 |  | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT: | 
 | 			if (!is_flow_key_valid(key)) { | 
 | 				err = ovs_flow_key_update(skb, key); | 
 | 				if (err) | 
 | 					return err; | 
 | 			} | 
 |  | 
 | 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, | 
 | 					     nla_data(a)); | 
 |  | 
 | 			/* Hide stolen IP fragments from user space. */ | 
 | 			if (err) | 
 | 				return err == -EINPROGRESS ? 0 : err; | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CT_CLEAR: | 
 | 			err = ovs_ct_clear(skb, key); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_ETH: | 
 | 			err = push_eth(skb, key, nla_data(a)); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_ETH: | 
 | 			err = pop_eth(skb, key); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_PUSH_NSH: { | 
 | 			u8 buffer[NSH_HDR_MAX_LEN]; | 
 | 			struct nshhdr *nh = (struct nshhdr *)buffer; | 
 |  | 
 | 			err = nsh_hdr_from_nlattr(nla_data(a), nh, | 
 | 						  NSH_HDR_MAX_LEN); | 
 | 			if (unlikely(err)) | 
 | 				break; | 
 | 			err = push_nsh(skb, key, nh); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case OVS_ACTION_ATTR_POP_NSH: | 
 | 			err = pop_nsh(skb, key); | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_METER: | 
 | 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { | 
 | 				consume_skb(skb); | 
 | 				return 0; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case OVS_ACTION_ATTR_CLONE: { | 
 | 			bool last = nla_is_last(a, rem); | 
 |  | 
 | 			err = clone(dp, skb, key, a, last); | 
 | 			if (last) | 
 | 				return err; | 
 |  | 
 | 			break; | 
 | 		} | 
 | 		} | 
 |  | 
 | 		if (unlikely(err)) { | 
 | 			kfree_skb(skb); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	consume_skb(skb); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Execute the actions on the clone of the packet. The effect of the | 
 |  * execution does not affect the original 'skb' nor the original 'key'. | 
 |  * | 
 |  * The execution may be deferred in case the actions can not be executed | 
 |  * immediately. | 
 |  */ | 
 | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
 | 			 struct sw_flow_key *key, u32 recirc_id, | 
 | 			 const struct nlattr *actions, int len, | 
 | 			 bool last, bool clone_flow_key) | 
 | { | 
 | 	struct deferred_action *da; | 
 | 	struct sw_flow_key *clone; | 
 |  | 
 | 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC); | 
 | 	if (!skb) { | 
 | 		/* Out of memory, skip this action. | 
 | 		 */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* When clone_flow_key is false, the 'key' will not be change | 
 | 	 * by the actions, then the 'key' can be used directly. | 
 | 	 * Otherwise, try to clone key from the next recursion level of | 
 | 	 * 'flow_keys'. If clone is successful, execute the actions | 
 | 	 * without deferring. | 
 | 	 */ | 
 | 	clone = clone_flow_key ? clone_key(key) : key; | 
 | 	if (clone) { | 
 | 		int err = 0; | 
 |  | 
 | 		if (actions) { /* Sample action */ | 
 | 			if (clone_flow_key) | 
 | 				__this_cpu_inc(exec_actions_level); | 
 |  | 
 | 			err = do_execute_actions(dp, skb, clone, | 
 | 						 actions, len); | 
 |  | 
 | 			if (clone_flow_key) | 
 | 				__this_cpu_dec(exec_actions_level); | 
 | 		} else { /* Recirc action */ | 
 | 			clone->recirc_id = recirc_id; | 
 | 			ovs_dp_process_packet(skb, clone); | 
 | 		} | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Out of 'flow_keys' space. Defer actions */ | 
 | 	da = add_deferred_actions(skb, key, actions, len); | 
 | 	if (da) { | 
 | 		if (!actions) { /* Recirc action */ | 
 | 			key = &da->pkt_key; | 
 | 			key->recirc_id = recirc_id; | 
 | 		} | 
 | 	} else { | 
 | 		/* Out of per CPU action FIFO space. Drop the 'skb' and | 
 | 		 * log an error. | 
 | 		 */ | 
 | 		kfree_skb(skb); | 
 |  | 
 | 		if (net_ratelimit()) { | 
 | 			if (actions) { /* Sample action */ | 
 | 				pr_warn("%s: deferred action limit reached, drop sample action\n", | 
 | 					ovs_dp_name(dp)); | 
 | 			} else {  /* Recirc action */ | 
 | 				pr_warn("%s: deferred action limit reached, drop recirc action\n", | 
 | 					ovs_dp_name(dp)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void process_deferred_actions(struct datapath *dp) | 
 | { | 
 | 	struct action_fifo *fifo = this_cpu_ptr(action_fifos); | 
 |  | 
 | 	/* Do not touch the FIFO in case there is no deferred actions. */ | 
 | 	if (action_fifo_is_empty(fifo)) | 
 | 		return; | 
 |  | 
 | 	/* Finishing executing all deferred actions. */ | 
 | 	do { | 
 | 		struct deferred_action *da = action_fifo_get(fifo); | 
 | 		struct sk_buff *skb = da->skb; | 
 | 		struct sw_flow_key *key = &da->pkt_key; | 
 | 		const struct nlattr *actions = da->actions; | 
 | 		int actions_len = da->actions_len; | 
 |  | 
 | 		if (actions) | 
 | 			do_execute_actions(dp, skb, key, actions, actions_len); | 
 | 		else | 
 | 			ovs_dp_process_packet(skb, key); | 
 | 	} while (!action_fifo_is_empty(fifo)); | 
 |  | 
 | 	/* Reset FIFO for the next packet.  */ | 
 | 	action_fifo_init(fifo); | 
 | } | 
 |  | 
 | /* Execute a list of actions against 'skb'. */ | 
 | int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
 | 			const struct sw_flow_actions *acts, | 
 | 			struct sw_flow_key *key) | 
 | { | 
 | 	int err, level; | 
 |  | 
 | 	level = __this_cpu_inc_return(exec_actions_level); | 
 | 	if (unlikely(level > OVS_RECURSION_LIMIT)) { | 
 | 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", | 
 | 				     ovs_dp_name(dp)); | 
 | 		kfree_skb(skb); | 
 | 		err = -ENETDOWN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	OVS_CB(skb)->acts_origlen = acts->orig_len; | 
 | 	err = do_execute_actions(dp, skb, key, | 
 | 				 acts->actions, acts->actions_len); | 
 |  | 
 | 	if (level == 1) | 
 | 		process_deferred_actions(dp); | 
 |  | 
 | out: | 
 | 	__this_cpu_dec(exec_actions_level); | 
 | 	return err; | 
 | } | 
 |  | 
 | int action_fifos_init(void) | 
 | { | 
 | 	action_fifos = alloc_percpu(struct action_fifo); | 
 | 	if (!action_fifos) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	flow_keys = alloc_percpu(struct action_flow_keys); | 
 | 	if (!flow_keys) { | 
 | 		free_percpu(action_fifos); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void action_fifos_exit(void) | 
 | { | 
 | 	free_percpu(action_fifos); | 
 | 	free_percpu(flow_keys); | 
 | } |