|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * cpuid support routines | 
|  | * | 
|  | * derived from arch/x86/kvm/x86.c | 
|  | * | 
|  | * Copyright 2011 Red Hat, Inc. and/or its affiliates. | 
|  | * Copyright IBM Corporation, 2008 | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/sched/stat.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/user.h> | 
|  | #include <asm/fpu/xstate.h> | 
|  | #include "cpuid.h" | 
|  | #include "lapic.h" | 
|  | #include "mmu.h" | 
|  | #include "trace.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | static u32 xstate_required_size(u64 xstate_bv, bool compacted) | 
|  | { | 
|  | int feature_bit = 0; | 
|  | u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; | 
|  |  | 
|  | xstate_bv &= XFEATURE_MASK_EXTEND; | 
|  | while (xstate_bv) { | 
|  | if (xstate_bv & 0x1) { | 
|  | u32 eax, ebx, ecx, edx, offset; | 
|  | cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); | 
|  | offset = compacted ? ret : ebx; | 
|  | ret = max(ret, offset + eax); | 
|  | } | 
|  |  | 
|  | xstate_bv >>= 1; | 
|  | feature_bit++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_mpx_supported(void) | 
|  | { | 
|  | return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) | 
|  | && kvm_x86_ops->mpx_supported()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mpx_supported); | 
|  |  | 
|  | u64 kvm_supported_xcr0(void) | 
|  | { | 
|  | u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; | 
|  |  | 
|  | if (!kvm_mpx_supported()) | 
|  | xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); | 
|  |  | 
|  | return xcr0; | 
|  | } | 
|  |  | 
|  | #define F(x) bit(X86_FEATURE_##x) | 
|  |  | 
|  | /* For scattered features from cpufeatures.h; we currently expose none */ | 
|  | #define KF(x) bit(KVM_CPUID_BIT_##x) | 
|  |  | 
|  | int kvm_update_cpuid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *best; | 
|  | struct kvm_lapic *apic = vcpu->arch.apic; | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, 1, 0); | 
|  | if (!best) | 
|  | return 0; | 
|  |  | 
|  | /* Update OSXSAVE bit */ | 
|  | if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) { | 
|  | best->ecx &= ~F(OSXSAVE); | 
|  | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) | 
|  | best->ecx |= F(OSXSAVE); | 
|  | } | 
|  |  | 
|  | best->edx &= ~F(APIC); | 
|  | if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE) | 
|  | best->edx |= F(APIC); | 
|  |  | 
|  | if (apic) { | 
|  | if (best->ecx & F(TSC_DEADLINE_TIMER)) | 
|  | apic->lapic_timer.timer_mode_mask = 3 << 17; | 
|  | else | 
|  | apic->lapic_timer.timer_mode_mask = 1 << 17; | 
|  | } | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, 7, 0); | 
|  | if (best) { | 
|  | /* Update OSPKE bit */ | 
|  | if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) { | 
|  | best->ecx &= ~F(OSPKE); | 
|  | if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) | 
|  | best->ecx |= F(OSPKE); | 
|  | } | 
|  | } | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, 0xD, 0); | 
|  | if (!best) { | 
|  | vcpu->arch.guest_supported_xcr0 = 0; | 
|  | vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; | 
|  | } else { | 
|  | vcpu->arch.guest_supported_xcr0 = | 
|  | (best->eax | ((u64)best->edx << 32)) & | 
|  | kvm_supported_xcr0(); | 
|  | vcpu->arch.guest_xstate_size = best->ebx = | 
|  | xstate_required_size(vcpu->arch.xcr0, false); | 
|  | } | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, 0xD, 1); | 
|  | if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) | 
|  | best->ebx = xstate_required_size(vcpu->arch.xcr0, true); | 
|  |  | 
|  | /* | 
|  | * The existing code assumes virtual address is 48-bit or 57-bit in the | 
|  | * canonical address checks; exit if it is ever changed. | 
|  | */ | 
|  | best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); | 
|  | if (best) { | 
|  | int vaddr_bits = (best->eax & 0xff00) >> 8; | 
|  |  | 
|  | if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0); | 
|  | if (kvm_hlt_in_guest(vcpu->kvm) && best && | 
|  | (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) | 
|  | best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); | 
|  |  | 
|  | /* Update physical-address width */ | 
|  | vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); | 
|  | kvm_mmu_reset_context(vcpu); | 
|  |  | 
|  | kvm_pmu_refresh(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int is_efer_nx(void) | 
|  | { | 
|  | unsigned long long efer = 0; | 
|  |  | 
|  | rdmsrl_safe(MSR_EFER, &efer); | 
|  | return efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_cpuid_entry2 *e, *entry; | 
|  |  | 
|  | entry = NULL; | 
|  | for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
|  | e = &vcpu->arch.cpuid_entries[i]; | 
|  | if (e->function == 0x80000001) { | 
|  | entry = e; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { | 
|  | entry->edx &= ~F(NX); | 
|  | printk(KERN_INFO "kvm: guest NX capability removed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *best; | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); | 
|  | if (!best || best->eax < 0x80000008) | 
|  | goto not_found; | 
|  | best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); | 
|  | if (best) | 
|  | return best->eax & 0xff; | 
|  | not_found: | 
|  | return 36; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); | 
|  |  | 
|  | /* when an old userspace process fills a new kernel module */ | 
|  | int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid *cpuid, | 
|  | struct kvm_cpuid_entry __user *entries) | 
|  | { | 
|  | int r, i; | 
|  | struct kvm_cpuid_entry *cpuid_entries = NULL; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
|  | goto out; | 
|  | r = -ENOMEM; | 
|  | if (cpuid->nent) { | 
|  | cpuid_entries = | 
|  | vmalloc(array_size(sizeof(struct kvm_cpuid_entry), | 
|  | cpuid->nent)); | 
|  | if (!cpuid_entries) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(cpuid_entries, entries, | 
|  | cpuid->nent * sizeof(struct kvm_cpuid_entry))) | 
|  | goto out; | 
|  | } | 
|  | for (i = 0; i < cpuid->nent; i++) { | 
|  | vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; | 
|  | vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; | 
|  | vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; | 
|  | vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; | 
|  | vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; | 
|  | vcpu->arch.cpuid_entries[i].index = 0; | 
|  | vcpu->arch.cpuid_entries[i].flags = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[0] = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[1] = 0; | 
|  | vcpu->arch.cpuid_entries[i].padding[2] = 0; | 
|  | } | 
|  | vcpu->arch.cpuid_nent = cpuid->nent; | 
|  | cpuid_fix_nx_cap(vcpu); | 
|  | kvm_apic_set_version(vcpu); | 
|  | kvm_x86_ops->cpuid_update(vcpu); | 
|  | r = kvm_update_cpuid(vcpu); | 
|  |  | 
|  | out: | 
|  | vfree(cpuid_entries); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&vcpu->arch.cpuid_entries, entries, | 
|  | cpuid->nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out; | 
|  | vcpu->arch.cpuid_nent = cpuid->nent; | 
|  | kvm_apic_set_version(vcpu); | 
|  | kvm_x86_ops->cpuid_update(vcpu); | 
|  | r = kvm_update_cpuid(vcpu); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, | 
|  | struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = -E2BIG; | 
|  | if (cpuid->nent < vcpu->arch.cpuid_nent) | 
|  | goto out; | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(entries, &vcpu->arch.cpuid_entries, | 
|  | vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out; | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | cpuid->nent = vcpu->arch.cpuid_nent; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void cpuid_mask(u32 *word, int wordnum) | 
|  | { | 
|  | *word &= boot_cpu_data.x86_capability[wordnum]; | 
|  | } | 
|  |  | 
|  | static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
|  | u32 index) | 
|  | { | 
|  | entry->function = function; | 
|  | entry->index = index; | 
|  | cpuid_count(entry->function, entry->index, | 
|  | &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); | 
|  | entry->flags = 0; | 
|  | } | 
|  |  | 
|  | static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry, | 
|  | u32 func, u32 index, int *nent, int maxnent) | 
|  | { | 
|  | switch (func) { | 
|  | case 0: | 
|  | entry->eax = 7; | 
|  | ++*nent; | 
|  | break; | 
|  | case 1: | 
|  | entry->ecx = F(MOVBE); | 
|  | ++*nent; | 
|  | break; | 
|  | case 7: | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | if (index == 0) | 
|  | entry->ecx = F(RDPID); | 
|  | ++*nent; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry->function = func; | 
|  | entry->index = index; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, | 
|  | u32 index, int *nent, int maxnent) | 
|  | { | 
|  | int r; | 
|  | unsigned f_nx = is_efer_nx() ? F(NX) : 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) | 
|  | ? F(GBPAGES) : 0; | 
|  | unsigned f_lm = F(LM); | 
|  | #else | 
|  | unsigned f_gbpages = 0; | 
|  | unsigned f_lm = 0; | 
|  | #endif | 
|  | unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; | 
|  | unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; | 
|  | unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; | 
|  | unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; | 
|  | unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0; | 
|  | unsigned f_la57 = 0; | 
|  |  | 
|  | /* cpuid 1.edx */ | 
|  | const u32 kvm_cpuid_1_edx_x86_features = | 
|  | F(FPU) | F(VME) | F(DE) | F(PSE) | | 
|  | F(TSC) | F(MSR) | F(PAE) | F(MCE) | | 
|  | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | | 
|  | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | | 
|  | F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | | 
|  | 0 /* Reserved, DS, ACPI */ | F(MMX) | | 
|  | F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | | 
|  | 0 /* HTT, TM, Reserved, PBE */; | 
|  | /* cpuid 0x80000001.edx */ | 
|  | const u32 kvm_cpuid_8000_0001_edx_x86_features = | 
|  | F(FPU) | F(VME) | F(DE) | F(PSE) | | 
|  | F(TSC) | F(MSR) | F(PAE) | F(MCE) | | 
|  | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | | 
|  | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | | 
|  | F(PAT) | F(PSE36) | 0 /* Reserved */ | | 
|  | f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | | 
|  | F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | | 
|  | 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); | 
|  | /* cpuid 1.ecx */ | 
|  | const u32 kvm_cpuid_1_ecx_x86_features = | 
|  | /* NOTE: MONITOR (and MWAIT) are emulated as NOP, | 
|  | * but *not* advertised to guests via CPUID ! */ | 
|  | F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | | 
|  | 0 /* DS-CPL, VMX, SMX, EST */ | | 
|  | 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | | 
|  | F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | | 
|  | F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | | 
|  | F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | | 
|  | 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | | 
|  | F(F16C) | F(RDRAND); | 
|  | /* cpuid 0x80000001.ecx */ | 
|  | const u32 kvm_cpuid_8000_0001_ecx_x86_features = | 
|  | F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | | 
|  | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | | 
|  | F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | | 
|  | 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | | 
|  | F(TOPOEXT) | F(PERFCTR_CORE); | 
|  |  | 
|  | /* cpuid 0x80000008.ebx */ | 
|  | const u32 kvm_cpuid_8000_0008_ebx_x86_features = | 
|  | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | | 
|  | F(AMD_SSB_NO) | F(AMD_STIBP); | 
|  |  | 
|  | /* cpuid 0xC0000001.edx */ | 
|  | const u32 kvm_cpuid_C000_0001_edx_x86_features = | 
|  | F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | | 
|  | F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | | 
|  | F(PMM) | F(PMM_EN); | 
|  |  | 
|  | /* cpuid 7.0.ebx */ | 
|  | const u32 kvm_cpuid_7_0_ebx_x86_features = | 
|  | F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | | 
|  | F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | | 
|  | F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | | 
|  | F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | | 
|  | F(SHA_NI) | F(AVX512BW) | F(AVX512VL); | 
|  |  | 
|  | /* cpuid 0xD.1.eax */ | 
|  | const u32 kvm_cpuid_D_1_eax_x86_features = | 
|  | F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; | 
|  |  | 
|  | /* cpuid 7.0.ecx*/ | 
|  | const u32 kvm_cpuid_7_0_ecx_x86_features = | 
|  | F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | | 
|  | F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | | 
|  | F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | | 
|  | F(CLDEMOTE); | 
|  |  | 
|  | /* cpuid 7.0.edx*/ | 
|  | const u32 kvm_cpuid_7_0_edx_x86_features = | 
|  | F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | | 
|  | F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | | 
|  | F(MD_CLEAR); | 
|  |  | 
|  | /* all calls to cpuid_count() should be made on the same cpu */ | 
|  | get_cpu(); | 
|  |  | 
|  | r = -E2BIG; | 
|  |  | 
|  | if (WARN_ON(*nent >= maxnent)) | 
|  | goto out; | 
|  |  | 
|  | do_cpuid_1_ent(entry, function, index); | 
|  | ++*nent; | 
|  |  | 
|  | switch (function) { | 
|  | case 0: | 
|  | entry->eax = min(entry->eax, (u32)0xd); | 
|  | break; | 
|  | case 1: | 
|  | entry->edx &= kvm_cpuid_1_edx_x86_features; | 
|  | cpuid_mask(&entry->edx, CPUID_1_EDX); | 
|  | entry->ecx &= kvm_cpuid_1_ecx_x86_features; | 
|  | cpuid_mask(&entry->ecx, CPUID_1_ECX); | 
|  | /* we support x2apic emulation even if host does not support | 
|  | * it since we emulate x2apic in software */ | 
|  | entry->ecx |= F(X2APIC); | 
|  | break; | 
|  | /* function 2 entries are STATEFUL. That is, repeated cpuid commands | 
|  | * may return different values. This forces us to get_cpu() before | 
|  | * issuing the first command, and also to emulate this annoying behavior | 
|  | * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ | 
|  | case 2: { | 
|  | int t, times = entry->eax & 0xff; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
|  | entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | for (t = 1; t < times; ++t) { | 
|  | if (*nent >= maxnent) | 
|  | goto out; | 
|  |  | 
|  | do_cpuid_1_ent(&entry[t], function, 0); | 
|  | entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* function 4 has additional index. */ | 
|  | case 4: { | 
|  | int i, cache_type; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | /* read more entries until cache_type is zero */ | 
|  | for (i = 1; ; ++i) { | 
|  | if (*nent >= maxnent) | 
|  | goto out; | 
|  |  | 
|  | cache_type = entry[i - 1].eax & 0x1f; | 
|  | if (!cache_type) | 
|  | break; | 
|  | do_cpuid_1_ent(&entry[i], function, i); | 
|  | entry[i].flags |= | 
|  | KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 6: /* Thermal management */ | 
|  | entry->eax = 0x4; /* allow ARAT */ | 
|  | entry->ebx = 0; | 
|  | entry->ecx = 0; | 
|  | entry->edx = 0; | 
|  | break; | 
|  | case 7: { | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | /* Mask ebx against host capability word 9 */ | 
|  | if (index == 0) { | 
|  | entry->ebx &= kvm_cpuid_7_0_ebx_x86_features; | 
|  | cpuid_mask(&entry->ebx, CPUID_7_0_EBX); | 
|  | // TSC_ADJUST is emulated | 
|  | entry->ebx |= F(TSC_ADJUST); | 
|  | entry->ecx &= kvm_cpuid_7_0_ecx_x86_features; | 
|  | f_la57 = entry->ecx & F(LA57); | 
|  | cpuid_mask(&entry->ecx, CPUID_7_ECX); | 
|  | /* Set LA57 based on hardware capability. */ | 
|  | entry->ecx |= f_la57; | 
|  | entry->ecx |= f_umip; | 
|  | /* PKU is not yet implemented for shadow paging. */ | 
|  | if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) | 
|  | entry->ecx &= ~F(PKU); | 
|  |  | 
|  | entry->edx &= kvm_cpuid_7_0_edx_x86_features; | 
|  | cpuid_mask(&entry->edx, CPUID_7_EDX); | 
|  | if (boot_cpu_has(X86_FEATURE_IBPB) && | 
|  | boot_cpu_has(X86_FEATURE_IBRS)) | 
|  | entry->edx |= F(SPEC_CTRL); | 
|  | if (boot_cpu_has(X86_FEATURE_STIBP)) | 
|  | entry->edx |= F(INTEL_STIBP); | 
|  | if (boot_cpu_has(X86_FEATURE_SSBD)) | 
|  | entry->edx |= F(SPEC_CTRL_SSBD); | 
|  | /* | 
|  | * We emulate ARCH_CAPABILITIES in software even | 
|  | * if the host doesn't support it. | 
|  | */ | 
|  | entry->edx |= F(ARCH_CAPABILITIES); | 
|  | } else { | 
|  | entry->ebx = 0; | 
|  | entry->ecx = 0; | 
|  | entry->edx = 0; | 
|  | } | 
|  | entry->eax = 0; | 
|  | break; | 
|  | } | 
|  | case 9: | 
|  | break; | 
|  | case 0xa: { /* Architectural Performance Monitoring */ | 
|  | struct x86_pmu_capability cap; | 
|  | union cpuid10_eax eax; | 
|  | union cpuid10_edx edx; | 
|  |  | 
|  | perf_get_x86_pmu_capability(&cap); | 
|  |  | 
|  | /* | 
|  | * Only support guest architectural pmu on a host | 
|  | * with architectural pmu. | 
|  | */ | 
|  | if (!cap.version) | 
|  | memset(&cap, 0, sizeof(cap)); | 
|  |  | 
|  | eax.split.version_id = min(cap.version, 2); | 
|  | eax.split.num_counters = cap.num_counters_gp; | 
|  | eax.split.bit_width = cap.bit_width_gp; | 
|  | eax.split.mask_length = cap.events_mask_len; | 
|  |  | 
|  | edx.split.num_counters_fixed = cap.num_counters_fixed; | 
|  | edx.split.bit_width_fixed = cap.bit_width_fixed; | 
|  | edx.split.reserved = 0; | 
|  |  | 
|  | entry->eax = eax.full; | 
|  | entry->ebx = cap.events_mask; | 
|  | entry->ecx = 0; | 
|  | entry->edx = edx.full; | 
|  | break; | 
|  | } | 
|  | /* function 0xb has additional index. */ | 
|  | case 0xb: { | 
|  | int i, level_type; | 
|  |  | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | /* read more entries until level_type is zero */ | 
|  | for (i = 1; ; ++i) { | 
|  | if (*nent >= maxnent) | 
|  | goto out; | 
|  |  | 
|  | level_type = entry[i - 1].ecx & 0xff00; | 
|  | if (!level_type) | 
|  | break; | 
|  | do_cpuid_1_ent(&entry[i], function, i); | 
|  | entry[i].flags |= | 
|  | KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | ++*nent; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 0xd: { | 
|  | int idx, i; | 
|  | u64 supported = kvm_supported_xcr0(); | 
|  |  | 
|  | entry->eax &= supported; | 
|  | entry->ebx = xstate_required_size(supported, false); | 
|  | entry->ecx = entry->ebx; | 
|  | entry->edx &= supported >> 32; | 
|  | entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | if (!supported) | 
|  | break; | 
|  |  | 
|  | for (idx = 1, i = 1; idx < 64; ++idx) { | 
|  | u64 mask = ((u64)1 << idx); | 
|  | if (*nent >= maxnent) | 
|  | goto out; | 
|  |  | 
|  | do_cpuid_1_ent(&entry[i], function, idx); | 
|  | if (idx == 1) { | 
|  | entry[i].eax &= kvm_cpuid_D_1_eax_x86_features; | 
|  | cpuid_mask(&entry[i].eax, CPUID_D_1_EAX); | 
|  | entry[i].ebx = 0; | 
|  | if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) | 
|  | entry[i].ebx = | 
|  | xstate_required_size(supported, | 
|  | true); | 
|  | } else { | 
|  | if (entry[i].eax == 0 || !(supported & mask)) | 
|  | continue; | 
|  | if (WARN_ON_ONCE(entry[i].ecx & 1)) | 
|  | continue; | 
|  | } | 
|  | entry[i].ecx = 0; | 
|  | entry[i].edx = 0; | 
|  | entry[i].flags |= | 
|  | KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | ++*nent; | 
|  | ++i; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case KVM_CPUID_SIGNATURE: { | 
|  | static const char signature[12] = "KVMKVMKVM\0\0"; | 
|  | const u32 *sigptr = (const u32 *)signature; | 
|  | entry->eax = KVM_CPUID_FEATURES; | 
|  | entry->ebx = sigptr[0]; | 
|  | entry->ecx = sigptr[1]; | 
|  | entry->edx = sigptr[2]; | 
|  | break; | 
|  | } | 
|  | case KVM_CPUID_FEATURES: | 
|  | entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | | 
|  | (1 << KVM_FEATURE_NOP_IO_DELAY) | | 
|  | (1 << KVM_FEATURE_CLOCKSOURCE2) | | 
|  | (1 << KVM_FEATURE_ASYNC_PF) | | 
|  | (1 << KVM_FEATURE_PV_EOI) | | 
|  | (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | | 
|  | (1 << KVM_FEATURE_PV_UNHALT) | | 
|  | (1 << KVM_FEATURE_PV_TLB_FLUSH) | | 
|  | (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | | 
|  | (1 << KVM_FEATURE_PV_SEND_IPI); | 
|  |  | 
|  | if (sched_info_on()) | 
|  | entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); | 
|  |  | 
|  | entry->ebx = 0; | 
|  | entry->ecx = 0; | 
|  | entry->edx = 0; | 
|  | break; | 
|  | case 0x80000000: | 
|  | entry->eax = min(entry->eax, 0x8000001f); | 
|  | break; | 
|  | case 0x80000001: | 
|  | entry->edx &= kvm_cpuid_8000_0001_edx_x86_features; | 
|  | cpuid_mask(&entry->edx, CPUID_8000_0001_EDX); | 
|  | entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features; | 
|  | cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX); | 
|  | break; | 
|  | case 0x80000007: /* Advanced power management */ | 
|  | /* invariant TSC is CPUID.80000007H:EDX[8] */ | 
|  | entry->edx &= (1 << 8); | 
|  | /* mask against host */ | 
|  | entry->edx &= boot_cpu_data.x86_power; | 
|  | entry->eax = entry->ebx = entry->ecx = 0; | 
|  | break; | 
|  | case 0x80000008: { | 
|  | unsigned g_phys_as = (entry->eax >> 16) & 0xff; | 
|  | unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); | 
|  | unsigned phys_as = entry->eax & 0xff; | 
|  |  | 
|  | if (!g_phys_as) | 
|  | g_phys_as = phys_as; | 
|  | entry->eax = g_phys_as | (virt_as << 8); | 
|  | entry->edx = 0; | 
|  | /* | 
|  | * IBRS, IBPB and VIRT_SSBD aren't necessarily present in | 
|  | * hardware cpuid | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_AMD_IBPB)) | 
|  | entry->ebx |= F(AMD_IBPB); | 
|  | if (boot_cpu_has(X86_FEATURE_AMD_IBRS)) | 
|  | entry->ebx |= F(AMD_IBRS); | 
|  | if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) | 
|  | entry->ebx |= F(VIRT_SSBD); | 
|  | entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features; | 
|  | cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX); | 
|  | /* | 
|  | * The preference is to use SPEC CTRL MSR instead of the | 
|  | * VIRT_SPEC MSR. | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && | 
|  | !boot_cpu_has(X86_FEATURE_AMD_SSBD)) | 
|  | entry->ebx |= F(VIRT_SSBD); | 
|  | break; | 
|  | } | 
|  | case 0x80000019: | 
|  | entry->ecx = entry->edx = 0; | 
|  | break; | 
|  | case 0x8000001a: | 
|  | break; | 
|  | case 0x8000001d: | 
|  | break; | 
|  | /*Add support for Centaur's CPUID instruction*/ | 
|  | case 0xC0000000: | 
|  | /*Just support up to 0xC0000004 now*/ | 
|  | entry->eax = min(entry->eax, 0xC0000004); | 
|  | break; | 
|  | case 0xC0000001: | 
|  | entry->edx &= kvm_cpuid_C000_0001_edx_x86_features; | 
|  | cpuid_mask(&entry->edx, CPUID_C000_0001_EDX); | 
|  | break; | 
|  | case 3: /* Processor serial number */ | 
|  | case 5: /* MONITOR/MWAIT */ | 
|  | case 0xC0000002: | 
|  | case 0xC0000003: | 
|  | case 0xC0000004: | 
|  | default: | 
|  | entry->eax = entry->ebx = entry->ecx = entry->edx = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_x86_ops->set_supported_cpuid(function, entry); | 
|  |  | 
|  | r = 0; | 
|  |  | 
|  | out: | 
|  | put_cpu(); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func, | 
|  | u32 idx, int *nent, int maxnent, unsigned int type) | 
|  | { | 
|  | if (*nent >= maxnent) | 
|  | return -E2BIG; | 
|  |  | 
|  | if (type == KVM_GET_EMULATED_CPUID) | 
|  | return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent); | 
|  |  | 
|  | return __do_cpuid_ent(entry, func, idx, nent, maxnent); | 
|  | } | 
|  |  | 
|  | #undef F | 
|  |  | 
|  | struct kvm_cpuid_param { | 
|  | u32 func; | 
|  | u32 idx; | 
|  | bool has_leaf_count; | 
|  | bool (*qualifier)(const struct kvm_cpuid_param *param); | 
|  | }; | 
|  |  | 
|  | static bool is_centaur_cpu(const struct kvm_cpuid_param *param) | 
|  | { | 
|  | return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; | 
|  | } | 
|  |  | 
|  | static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, | 
|  | __u32 num_entries, unsigned int ioctl_type) | 
|  | { | 
|  | int i; | 
|  | __u32 pad[3]; | 
|  |  | 
|  | if (ioctl_type != KVM_GET_EMULATED_CPUID) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We want to make sure that ->padding is being passed clean from | 
|  | * userspace in case we want to use it for something in the future. | 
|  | * | 
|  | * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we | 
|  | * have to give ourselves satisfied only with the emulated side. /me | 
|  | * sheds a tear. | 
|  | */ | 
|  | for (i = 0; i < num_entries; i++) { | 
|  | if (copy_from_user(pad, entries[i].padding, sizeof(pad))) | 
|  | return true; | 
|  |  | 
|  | if (pad[0] || pad[1] || pad[2]) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, | 
|  | struct kvm_cpuid_entry2 __user *entries, | 
|  | unsigned int type) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *cpuid_entries; | 
|  | int limit, nent = 0, r = -E2BIG, i; | 
|  | u32 func; | 
|  | static const struct kvm_cpuid_param param[] = { | 
|  | { .func = 0, .has_leaf_count = true }, | 
|  | { .func = 0x80000000, .has_leaf_count = true }, | 
|  | { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true }, | 
|  | { .func = KVM_CPUID_SIGNATURE }, | 
|  | { .func = KVM_CPUID_FEATURES }, | 
|  | }; | 
|  |  | 
|  | if (cpuid->nent < 1) | 
|  | goto out; | 
|  | if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) | 
|  | cpuid->nent = KVM_MAX_CPUID_ENTRIES; | 
|  |  | 
|  | if (sanity_check_entries(entries, cpuid->nent, type)) | 
|  | return -EINVAL; | 
|  |  | 
|  | r = -ENOMEM; | 
|  | cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2), | 
|  | cpuid->nent)); | 
|  | if (!cpuid_entries) | 
|  | goto out; | 
|  |  | 
|  | r = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(param); i++) { | 
|  | const struct kvm_cpuid_param *ent = ¶m[i]; | 
|  |  | 
|  | if (ent->qualifier && !ent->qualifier(ent)) | 
|  | continue; | 
|  |  | 
|  | r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx, | 
|  | &nent, cpuid->nent, type); | 
|  |  | 
|  | if (r) | 
|  | goto out_free; | 
|  |  | 
|  | if (!ent->has_leaf_count) | 
|  | continue; | 
|  |  | 
|  | limit = cpuid_entries[nent - 1].eax; | 
|  | for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) | 
|  | r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx, | 
|  | &nent, cpuid->nent, type); | 
|  |  | 
|  | if (r) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(entries, cpuid_entries, | 
|  | nent * sizeof(struct kvm_cpuid_entry2))) | 
|  | goto out_free; | 
|  | cpuid->nent = nent; | 
|  | r = 0; | 
|  |  | 
|  | out_free: | 
|  | vfree(cpuid_entries); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; | 
|  | struct kvm_cpuid_entry2 *ej; | 
|  | int j = i; | 
|  | int nent = vcpu->arch.cpuid_nent; | 
|  |  | 
|  | e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | /* when no next entry is found, the current entry[i] is reselected */ | 
|  | do { | 
|  | j = (j + 1) % nent; | 
|  | ej = &vcpu->arch.cpuid_entries[j]; | 
|  | } while (ej->function != e->function); | 
|  |  | 
|  | ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | /* find an entry with matching function, matching index (if needed), and that | 
|  | * should be read next (if it's stateful) */ | 
|  | static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, | 
|  | u32 function, u32 index) | 
|  | { | 
|  | if (e->function != function) | 
|  | return 0; | 
|  | if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) | 
|  | return 0; | 
|  | if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && | 
|  | !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, | 
|  | u32 function, u32 index) | 
|  | { | 
|  | int i; | 
|  | struct kvm_cpuid_entry2 *best = NULL; | 
|  |  | 
|  | for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { | 
|  | struct kvm_cpuid_entry2 *e; | 
|  |  | 
|  | e = &vcpu->arch.cpuid_entries[i]; | 
|  | if (is_matching_cpuid_entry(e, function, index)) { | 
|  | if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) | 
|  | move_to_next_stateful_cpuid_entry(vcpu, i); | 
|  | best = e; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return best; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); | 
|  |  | 
|  | /* | 
|  | * If no match is found, check whether we exceed the vCPU's limit | 
|  | * and return the content of the highest valid _standard_ leaf instead. | 
|  | * This is to satisfy the CPUID specification. | 
|  | */ | 
|  | static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu, | 
|  | u32 function, u32 index) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *maxlevel; | 
|  |  | 
|  | maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); | 
|  | if (!maxlevel || maxlevel->eax >= function) | 
|  | return NULL; | 
|  | if (function & 0x80000000) { | 
|  | maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0); | 
|  | if (!maxlevel) | 
|  | return NULL; | 
|  | } | 
|  | return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index); | 
|  | } | 
|  |  | 
|  | bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, | 
|  | u32 *ecx, u32 *edx, bool check_limit) | 
|  | { | 
|  | u32 function = *eax, index = *ecx; | 
|  | struct kvm_cpuid_entry2 *best; | 
|  | bool entry_found = true; | 
|  |  | 
|  | best = kvm_find_cpuid_entry(vcpu, function, index); | 
|  |  | 
|  | if (!best) { | 
|  | entry_found = false; | 
|  | if (!check_limit) | 
|  | goto out; | 
|  |  | 
|  | best = check_cpuid_limit(vcpu, function, index); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (best) { | 
|  | *eax = best->eax; | 
|  | *ebx = best->ebx; | 
|  | *ecx = best->ecx; | 
|  | *edx = best->edx; | 
|  | } else | 
|  | *eax = *ebx = *ecx = *edx = 0; | 
|  | trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found); | 
|  | return entry_found; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_cpuid); | 
|  |  | 
|  | int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 eax, ebx, ecx, edx; | 
|  |  | 
|  | if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) | 
|  | return 1; | 
|  |  | 
|  | eax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
|  | ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  | kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RAX, eax); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RBX, ebx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RCX, ecx); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, edx); | 
|  | return kvm_skip_emulated_instruction(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |