|  | /* | 
|  | * Suspend support specific for i386/x86-64. | 
|  | * | 
|  | * Distribute under GPLv2 | 
|  | * | 
|  | * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> | 
|  | * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> | 
|  | * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/tboot.h> | 
|  | #include <linux/dmi.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/mtrr.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/mce.h> | 
|  | #include <asm/suspend.h> | 
|  | #include <asm/fpu/internal.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | __visible unsigned long saved_context_ebx; | 
|  | __visible unsigned long saved_context_esp, saved_context_ebp; | 
|  | __visible unsigned long saved_context_esi, saved_context_edi; | 
|  | __visible unsigned long saved_context_eflags; | 
|  | #endif | 
|  | struct saved_context saved_context; | 
|  |  | 
|  | static void msr_save_context(struct saved_context *ctxt) | 
|  | { | 
|  | struct saved_msr *msr = ctxt->saved_msrs.array; | 
|  | struct saved_msr *end = msr + ctxt->saved_msrs.num; | 
|  |  | 
|  | while (msr < end) { | 
|  | msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); | 
|  | msr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void msr_restore_context(struct saved_context *ctxt) | 
|  | { | 
|  | struct saved_msr *msr = ctxt->saved_msrs.array; | 
|  | struct saved_msr *end = msr + ctxt->saved_msrs.num; | 
|  |  | 
|  | while (msr < end) { | 
|  | if (msr->valid) | 
|  | wrmsrl(msr->info.msr_no, msr->info.reg.q); | 
|  | msr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__save_processor_state - save CPU registers before creating a | 
|  | *		hibernation image and before restoring the memory state from it | 
|  | *	@ctxt - structure to store the registers contents in | 
|  | * | 
|  | *	NOTE: If there is a CPU register the modification of which by the | 
|  | *	boot kernel (ie. the kernel used for loading the hibernation image) | 
|  | *	might affect the operations of the restored target kernel (ie. the one | 
|  | *	saved in the hibernation image), then its contents must be saved by this | 
|  | *	function.  In other words, if kernel A is hibernated and different | 
|  | *	kernel B is used for loading the hibernation image into memory, the | 
|  | *	kernel A's __save_processor_state() function must save all registers | 
|  | *	needed by kernel A, so that it can operate correctly after the resume | 
|  | *	regardless of what kernel B does in the meantime. | 
|  | */ | 
|  | static void __save_processor_state(struct saved_context *ctxt) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | mtrr_save_fixed_ranges(NULL); | 
|  | #endif | 
|  | kernel_fpu_begin(); | 
|  |  | 
|  | /* | 
|  | * descriptor tables | 
|  | */ | 
|  | store_idt(&ctxt->idt); | 
|  |  | 
|  | /* | 
|  | * We save it here, but restore it only in the hibernate case. | 
|  | * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit | 
|  | * mode in "secondary_startup_64". In 32-bit mode it is done via | 
|  | * 'pmode_gdt' in wakeup_start. | 
|  | */ | 
|  | ctxt->gdt_desc.size = GDT_SIZE - 1; | 
|  | ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); | 
|  |  | 
|  | store_tr(ctxt->tr); | 
|  |  | 
|  | /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ | 
|  | /* | 
|  | * segment registers | 
|  | */ | 
|  | #ifdef CONFIG_X86_32_LAZY_GS | 
|  | savesegment(gs, ctxt->gs); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_64 | 
|  | savesegment(gs, ctxt->gs); | 
|  | savesegment(fs, ctxt->fs); | 
|  | savesegment(ds, ctxt->ds); | 
|  | savesegment(es, ctxt->es); | 
|  |  | 
|  | rdmsrl(MSR_FS_BASE, ctxt->fs_base); | 
|  | rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); | 
|  | rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); | 
|  | mtrr_save_fixed_ranges(NULL); | 
|  |  | 
|  | rdmsrl(MSR_EFER, ctxt->efer); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * control registers | 
|  | */ | 
|  | ctxt->cr0 = read_cr0(); | 
|  | ctxt->cr2 = read_cr2(); | 
|  | ctxt->cr3 = __read_cr3(); | 
|  | ctxt->cr4 = __read_cr4(); | 
|  | #ifdef CONFIG_X86_64 | 
|  | ctxt->cr8 = read_cr8(); | 
|  | #endif | 
|  | ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, | 
|  | &ctxt->misc_enable); | 
|  | msr_save_context(ctxt); | 
|  | } | 
|  |  | 
|  | /* Needed by apm.c */ | 
|  | void save_processor_state(void) | 
|  | { | 
|  | __save_processor_state(&saved_context); | 
|  | x86_platform.save_sched_clock_state(); | 
|  | } | 
|  | #ifdef CONFIG_X86_32 | 
|  | EXPORT_SYMBOL(save_processor_state); | 
|  | #endif | 
|  |  | 
|  | static void do_fpu_end(void) | 
|  | { | 
|  | /* | 
|  | * Restore FPU regs if necessary. | 
|  | */ | 
|  | kernel_fpu_end(); | 
|  | } | 
|  |  | 
|  | static void fix_processor_context(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | #ifdef CONFIG_X86_64 | 
|  | struct desc_struct *desc = get_cpu_gdt_rw(cpu); | 
|  | tss_desc tss; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We need to reload TR, which requires that we change the | 
|  | * GDT entry to indicate "available" first. | 
|  | * | 
|  | * XXX: This could probably all be replaced by a call to | 
|  | * force_reload_TR(). | 
|  | */ | 
|  | set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); | 
|  | tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ | 
|  | write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); | 
|  |  | 
|  | syscall_init();				/* This sets MSR_*STAR and related */ | 
|  | #else | 
|  | if (boot_cpu_has(X86_FEATURE_SEP)) | 
|  | enable_sep_cpu(); | 
|  | #endif | 
|  | load_TR_desc();				/* This does ltr */ | 
|  | load_mm_ldt(current->active_mm);	/* This does lldt */ | 
|  | initialize_tlbstate_and_flush(); | 
|  |  | 
|  | fpu__resume_cpu(); | 
|  |  | 
|  | /* The processor is back on the direct GDT, load back the fixmap */ | 
|  | load_fixmap_gdt(cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __restore_processor_state - restore the contents of CPU registers saved | 
|  | *                             by __save_processor_state() | 
|  | * @ctxt - structure to load the registers contents from | 
|  | * | 
|  | * The asm code that gets us here will have restored a usable GDT, although | 
|  | * it will be pointing to the wrong alias. | 
|  | */ | 
|  | static void notrace __restore_processor_state(struct saved_context *ctxt) | 
|  | { | 
|  | if (ctxt->misc_enable_saved) | 
|  | wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); | 
|  | /* | 
|  | * control registers | 
|  | */ | 
|  | /* cr4 was introduced in the Pentium CPU */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (ctxt->cr4) | 
|  | __write_cr4(ctxt->cr4); | 
|  | #else | 
|  | /* CONFIG X86_64 */ | 
|  | wrmsrl(MSR_EFER, ctxt->efer); | 
|  | write_cr8(ctxt->cr8); | 
|  | __write_cr4(ctxt->cr4); | 
|  | #endif | 
|  | write_cr3(ctxt->cr3); | 
|  | write_cr2(ctxt->cr2); | 
|  | write_cr0(ctxt->cr0); | 
|  |  | 
|  | /* Restore the IDT. */ | 
|  | load_idt(&ctxt->idt); | 
|  |  | 
|  | /* | 
|  | * Just in case the asm code got us here with the SS, DS, or ES | 
|  | * out of sync with the GDT, update them. | 
|  | */ | 
|  | loadsegment(ss, __KERNEL_DS); | 
|  | loadsegment(ds, __USER_DS); | 
|  | loadsegment(es, __USER_DS); | 
|  |  | 
|  | /* | 
|  | * Restore percpu access.  Percpu access can happen in exception | 
|  | * handlers or in complicated helpers like load_gs_index(). | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); | 
|  | #else | 
|  | loadsegment(fs, __KERNEL_PERCPU); | 
|  | loadsegment(gs, __KERNEL_STACK_CANARY); | 
|  | #endif | 
|  |  | 
|  | /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ | 
|  | fix_processor_context(); | 
|  |  | 
|  | /* | 
|  | * Now that we have descriptor tables fully restored and working | 
|  | * exception handling, restore the usermode segments. | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | loadsegment(ds, ctxt->es); | 
|  | loadsegment(es, ctxt->es); | 
|  | loadsegment(fs, ctxt->fs); | 
|  | load_gs_index(ctxt->gs); | 
|  |  | 
|  | /* | 
|  | * Restore FSBASE and GSBASE after restoring the selectors, since | 
|  | * restoring the selectors clobbers the bases.  Keep in mind | 
|  | * that MSR_KERNEL_GS_BASE is horribly misnamed. | 
|  | */ | 
|  | wrmsrl(MSR_FS_BASE, ctxt->fs_base); | 
|  | wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); | 
|  | #elif defined(CONFIG_X86_32_LAZY_GS) | 
|  | loadsegment(gs, ctxt->gs); | 
|  | #endif | 
|  |  | 
|  | do_fpu_end(); | 
|  | tsc_verify_tsc_adjust(true); | 
|  | x86_platform.restore_sched_clock_state(); | 
|  | mtrr_bp_restore(); | 
|  | perf_restore_debug_store(); | 
|  | msr_restore_context(ctxt); | 
|  | } | 
|  |  | 
|  | /* Needed by apm.c */ | 
|  | void notrace restore_processor_state(void) | 
|  | { | 
|  | __restore_processor_state(&saved_context); | 
|  | } | 
|  | #ifdef CONFIG_X86_32 | 
|  | EXPORT_SYMBOL(restore_processor_state); | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) | 
|  | static void resume_play_dead(void) | 
|  | { | 
|  | play_dead_common(); | 
|  | tboot_shutdown(TB_SHUTDOWN_WFS); | 
|  | hlt_play_dead(); | 
|  | } | 
|  |  | 
|  | int hibernate_resume_nonboot_cpu_disable(void) | 
|  | { | 
|  | void (*play_dead)(void) = smp_ops.play_dead; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop | 
|  | * during hibernate image restoration, because it is likely that the | 
|  | * monitored address will be actually written to at that time and then | 
|  | * the "dead" CPU will attempt to execute instructions again, but the | 
|  | * address in its instruction pointer may not be possible to resolve | 
|  | * any more at that point (the page tables used by it previously may | 
|  | * have been overwritten by hibernate image data). | 
|  | * | 
|  | * First, make sure that we wake up all the potentially disabled SMT | 
|  | * threads which have been initially brought up and then put into | 
|  | * mwait/cpuidle sleep. | 
|  | * Those will be put to proper (not interfering with hibernation | 
|  | * resume) sleep afterwards, and the resumed kernel will decide itself | 
|  | * what to do with them. | 
|  | */ | 
|  | ret = cpuhp_smt_enable(); | 
|  | if (ret) | 
|  | return ret; | 
|  | smp_ops.play_dead = resume_play_dead; | 
|  | ret = disable_nonboot_cpus(); | 
|  | smp_ops.play_dead = play_dead; | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When bsp_check() is called in hibernate and suspend, cpu hotplug | 
|  | * is disabled already. So it's unnessary to handle race condition between | 
|  | * cpumask query and cpu hotplug. | 
|  | */ | 
|  | static int bsp_check(void) | 
|  | { | 
|  | if (cpumask_first(cpu_online_mask) != 0) { | 
|  | pr_warn("CPU0 is offline.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, | 
|  | void *ptr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case PM_SUSPEND_PREPARE: | 
|  | case PM_HIBERNATION_PREPARE: | 
|  | ret = bsp_check(); | 
|  | break; | 
|  | #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 | 
|  | case PM_RESTORE_PREPARE: | 
|  | /* | 
|  | * When system resumes from hibernation, online CPU0 because | 
|  | * 1. it's required for resume and | 
|  | * 2. the CPU was online before hibernation | 
|  | */ | 
|  | if (!cpu_online(0)) | 
|  | _debug_hotplug_cpu(0, 1); | 
|  | break; | 
|  | case PM_POST_RESTORE: | 
|  | /* | 
|  | * When a resume really happens, this code won't be called. | 
|  | * | 
|  | * This code is called only when user space hibernation software | 
|  | * prepares for snapshot device during boot time. So we just | 
|  | * call _debug_hotplug_cpu() to restore to CPU0's state prior to | 
|  | * preparing the snapshot device. | 
|  | * | 
|  | * This works for normal boot case in our CPU0 hotplug debug | 
|  | * mode, i.e. CPU0 is offline and user mode hibernation | 
|  | * software initializes during boot time. | 
|  | * | 
|  | * If CPU0 is online and user application accesses snapshot | 
|  | * device after boot time, this will offline CPU0 and user may | 
|  | * see different CPU0 state before and after accessing | 
|  | * the snapshot device. But hopefully this is not a case when | 
|  | * user debugging CPU0 hotplug. Even if users hit this case, | 
|  | * they can easily online CPU0 back. | 
|  | * | 
|  | * To simplify this debug code, we only consider normal boot | 
|  | * case. Otherwise we need to remember CPU0's state and restore | 
|  | * to that state and resolve racy conditions etc. | 
|  | */ | 
|  | _debug_hotplug_cpu(0, 0); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return notifier_from_errno(ret); | 
|  | } | 
|  |  | 
|  | static int __init bsp_pm_check_init(void) | 
|  | { | 
|  | /* | 
|  | * Set this bsp_pm_callback as lower priority than | 
|  | * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called | 
|  | * earlier to disable cpu hotplug before bsp online check. | 
|  | */ | 
|  | pm_notifier(bsp_pm_callback, -INT_MAX); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(bsp_pm_check_init); | 
|  |  | 
|  | static int msr_build_context(const u32 *msr_id, const int num) | 
|  | { | 
|  | struct saved_msrs *saved_msrs = &saved_context.saved_msrs; | 
|  | struct saved_msr *msr_array; | 
|  | int total_num; | 
|  | int i, j; | 
|  |  | 
|  | total_num = saved_msrs->num + num; | 
|  |  | 
|  | msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); | 
|  | if (!msr_array) { | 
|  | pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (saved_msrs->array) { | 
|  | /* | 
|  | * Multiple callbacks can invoke this function, so copy any | 
|  | * MSR save requests from previous invocations. | 
|  | */ | 
|  | memcpy(msr_array, saved_msrs->array, | 
|  | sizeof(struct saved_msr) * saved_msrs->num); | 
|  |  | 
|  | kfree(saved_msrs->array); | 
|  | } | 
|  |  | 
|  | for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { | 
|  | msr_array[i].info.msr_no	= msr_id[j]; | 
|  | msr_array[i].valid		= false; | 
|  | msr_array[i].info.reg.q		= 0; | 
|  | } | 
|  | saved_msrs->num   = total_num; | 
|  | saved_msrs->array = msr_array; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following sections are a quirk framework for problematic BIOSen: | 
|  | * Sometimes MSRs are modified by the BIOSen after suspended to | 
|  | * RAM, this might cause unexpected behavior after wakeup. | 
|  | * Thus we save/restore these specified MSRs across suspend/resume | 
|  | * in order to work around it. | 
|  | * | 
|  | * For any further problematic BIOSen/platforms, | 
|  | * please add your own function similar to msr_initialize_bdw. | 
|  | */ | 
|  | static int msr_initialize_bdw(const struct dmi_system_id *d) | 
|  | { | 
|  | /* Add any extra MSR ids into this array. */ | 
|  | u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; | 
|  |  | 
|  | pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); | 
|  | return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); | 
|  | } | 
|  |  | 
|  | static const struct dmi_system_id msr_save_dmi_table[] = { | 
|  | { | 
|  | .callback = msr_initialize_bdw, | 
|  | .ident = "BROADWELL BDX_EP", | 
|  | .matches = { | 
|  | DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), | 
|  | DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), | 
|  | }, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int msr_save_cpuid_features(const struct x86_cpu_id *c) | 
|  | { | 
|  | u32 cpuid_msr_id[] = { | 
|  | MSR_AMD64_CPUID_FN_1, | 
|  | }; | 
|  |  | 
|  | pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", | 
|  | c->family); | 
|  |  | 
|  | return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); | 
|  | } | 
|  |  | 
|  | static const struct x86_cpu_id msr_save_cpu_table[] = { | 
|  | { | 
|  | .vendor = X86_VENDOR_AMD, | 
|  | .family = 0x15, | 
|  | .model = X86_MODEL_ANY, | 
|  | .feature = X86_FEATURE_ANY, | 
|  | .driver_data = (kernel_ulong_t)msr_save_cpuid_features, | 
|  | }, | 
|  | { | 
|  | .vendor = X86_VENDOR_AMD, | 
|  | .family = 0x16, | 
|  | .model = X86_MODEL_ANY, | 
|  | .feature = X86_FEATURE_ANY, | 
|  | .driver_data = (kernel_ulong_t)msr_save_cpuid_features, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  |  | 
|  | typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); | 
|  | static int pm_cpu_check(const struct x86_cpu_id *c) | 
|  | { | 
|  | const struct x86_cpu_id *m; | 
|  | int ret = 0; | 
|  |  | 
|  | m = x86_match_cpu(msr_save_cpu_table); | 
|  | if (m) { | 
|  | pm_cpu_match_t fn; | 
|  |  | 
|  | fn = (pm_cpu_match_t)m->driver_data; | 
|  | ret = fn(m); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pm_check_save_msr(void) | 
|  | { | 
|  | dmi_check_system(msr_save_dmi_table); | 
|  | pm_cpu_check(msr_save_cpu_table); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | device_initcall(pm_check_save_msr); |