|  | /* | 
|  | * AMD Cryptographic Coprocessor (CCP) driver | 
|  | * | 
|  | * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Author: Tom Lendacky <thomas.lendacky@amd.com> | 
|  | * Author: Gary R Hook <gary.hook@amd.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <crypto/des.h> | 
|  | #include <linux/ccp.h> | 
|  |  | 
|  | #include "ccp-dev.h" | 
|  |  | 
|  | /* SHA initial context values */ | 
|  | static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { | 
|  | cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), | 
|  | cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), | 
|  | cpu_to_be32(SHA1_H4), | 
|  | }; | 
|  |  | 
|  | static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { | 
|  | cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), | 
|  | cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), | 
|  | cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), | 
|  | cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), | 
|  | }; | 
|  |  | 
|  | static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { | 
|  | cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), | 
|  | cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), | 
|  | cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), | 
|  | cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), | 
|  | }; | 
|  |  | 
|  | static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { | 
|  | cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), | 
|  | cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), | 
|  | cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), | 
|  | cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), | 
|  | }; | 
|  |  | 
|  | static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { | 
|  | cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), | 
|  | cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), | 
|  | cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), | 
|  | cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), | 
|  | }; | 
|  |  | 
|  | #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ | 
|  | ccp_gen_jobid(ccp) : 0) | 
|  |  | 
|  | static u32 ccp_gen_jobid(struct ccp_device *ccp) | 
|  | { | 
|  | return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; | 
|  | } | 
|  |  | 
|  | static void ccp_sg_free(struct ccp_sg_workarea *wa) | 
|  | { | 
|  | if (wa->dma_count) | 
|  | dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir); | 
|  |  | 
|  | wa->dma_count = 0; | 
|  | } | 
|  |  | 
|  | static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, | 
|  | struct scatterlist *sg, u64 len, | 
|  | enum dma_data_direction dma_dir) | 
|  | { | 
|  | memset(wa, 0, sizeof(*wa)); | 
|  |  | 
|  | wa->sg = sg; | 
|  | if (!sg) | 
|  | return 0; | 
|  |  | 
|  | wa->nents = sg_nents_for_len(sg, len); | 
|  | if (wa->nents < 0) | 
|  | return wa->nents; | 
|  |  | 
|  | wa->bytes_left = len; | 
|  | wa->sg_used = 0; | 
|  |  | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | if (dma_dir == DMA_NONE) | 
|  | return 0; | 
|  |  | 
|  | wa->dma_sg = sg; | 
|  | wa->dma_dev = dev; | 
|  | wa->dma_dir = dma_dir; | 
|  | wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); | 
|  | if (!wa->dma_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) | 
|  | { | 
|  | unsigned int nbytes = min_t(u64, len, wa->bytes_left); | 
|  |  | 
|  | if (!wa->sg) | 
|  | return; | 
|  |  | 
|  | wa->sg_used += nbytes; | 
|  | wa->bytes_left -= nbytes; | 
|  | if (wa->sg_used == wa->sg->length) { | 
|  | wa->sg = sg_next(wa->sg); | 
|  | wa->sg_used = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ccp_dm_free(struct ccp_dm_workarea *wa) | 
|  | { | 
|  | if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { | 
|  | if (wa->address) | 
|  | dma_pool_free(wa->dma_pool, wa->address, | 
|  | wa->dma.address); | 
|  | } else { | 
|  | if (wa->dma.address) | 
|  | dma_unmap_single(wa->dev, wa->dma.address, wa->length, | 
|  | wa->dma.dir); | 
|  | kfree(wa->address); | 
|  | } | 
|  |  | 
|  | wa->address = NULL; | 
|  | wa->dma.address = 0; | 
|  | } | 
|  |  | 
|  | static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, | 
|  | struct ccp_cmd_queue *cmd_q, | 
|  | unsigned int len, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | memset(wa, 0, sizeof(*wa)); | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | wa->dev = cmd_q->ccp->dev; | 
|  | wa->length = len; | 
|  |  | 
|  | if (len <= CCP_DMAPOOL_MAX_SIZE) { | 
|  | wa->dma_pool = cmd_q->dma_pool; | 
|  |  | 
|  | wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL, | 
|  | &wa->dma.address); | 
|  | if (!wa->address) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wa->dma.length = CCP_DMAPOOL_MAX_SIZE; | 
|  |  | 
|  | memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE); | 
|  | } else { | 
|  | wa->address = kzalloc(len, GFP_KERNEL); | 
|  | if (!wa->address) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wa->dma.address = dma_map_single(wa->dev, wa->address, len, | 
|  | dir); | 
|  | if (dma_mapping_error(wa->dev, wa->dma.address)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wa->dma.length = len; | 
|  | } | 
|  | wa->dma.dir = dir; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, | 
|  | struct scatterlist *sg, unsigned int sg_offset, | 
|  | unsigned int len) | 
|  | { | 
|  | WARN_ON(!wa->address); | 
|  |  | 
|  | if (len > (wa->length - wa_offset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, | 
|  | 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, | 
|  | struct scatterlist *sg, unsigned int sg_offset, | 
|  | unsigned int len) | 
|  | { | 
|  | WARN_ON(!wa->address); | 
|  |  | 
|  | scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, | 
|  | 1); | 
|  | } | 
|  |  | 
|  | static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, | 
|  | unsigned int wa_offset, | 
|  | struct scatterlist *sg, | 
|  | unsigned int sg_offset, | 
|  | unsigned int len) | 
|  | { | 
|  | u8 *p, *q; | 
|  | int	rc; | 
|  |  | 
|  | rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | p = wa->address + wa_offset; | 
|  | q = p + len - 1; | 
|  | while (p < q) { | 
|  | *p = *p ^ *q; | 
|  | *q = *p ^ *q; | 
|  | *p = *p ^ *q; | 
|  | p++; | 
|  | q--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, | 
|  | unsigned int wa_offset, | 
|  | struct scatterlist *sg, | 
|  | unsigned int sg_offset, | 
|  | unsigned int len) | 
|  | { | 
|  | u8 *p, *q; | 
|  |  | 
|  | p = wa->address + wa_offset; | 
|  | q = p + len - 1; | 
|  | while (p < q) { | 
|  | *p = *p ^ *q; | 
|  | *q = *p ^ *q; | 
|  | *p = *p ^ *q; | 
|  | p++; | 
|  | q--; | 
|  | } | 
|  |  | 
|  | ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); | 
|  | } | 
|  |  | 
|  | static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) | 
|  | { | 
|  | ccp_dm_free(&data->dm_wa); | 
|  | ccp_sg_free(&data->sg_wa); | 
|  | } | 
|  |  | 
|  | static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, | 
|  | struct scatterlist *sg, u64 sg_len, | 
|  | unsigned int dm_len, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | memset(data, 0, sizeof(*data)); | 
|  |  | 
|  | ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, | 
|  | dir); | 
|  | if (ret) | 
|  | goto e_err; | 
|  |  | 
|  | ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); | 
|  | if (ret) | 
|  | goto e_err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | e_err: | 
|  | ccp_free_data(data, cmd_q); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) | 
|  | { | 
|  | struct ccp_sg_workarea *sg_wa = &data->sg_wa; | 
|  | struct ccp_dm_workarea *dm_wa = &data->dm_wa; | 
|  | unsigned int buf_count, nbytes; | 
|  |  | 
|  | /* Clear the buffer if setting it */ | 
|  | if (!from) | 
|  | memset(dm_wa->address, 0, dm_wa->length); | 
|  |  | 
|  | if (!sg_wa->sg) | 
|  | return 0; | 
|  |  | 
|  | /* Perform the copy operation | 
|  | *   nbytes will always be <= UINT_MAX because dm_wa->length is | 
|  | *   an unsigned int | 
|  | */ | 
|  | nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); | 
|  | scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, | 
|  | nbytes, from); | 
|  |  | 
|  | /* Update the structures and generate the count */ | 
|  | buf_count = 0; | 
|  | while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { | 
|  | nbytes = min(sg_wa->sg->length - sg_wa->sg_used, | 
|  | dm_wa->length - buf_count); | 
|  | nbytes = min_t(u64, sg_wa->bytes_left, nbytes); | 
|  |  | 
|  | buf_count += nbytes; | 
|  | ccp_update_sg_workarea(sg_wa, nbytes); | 
|  | } | 
|  |  | 
|  | return buf_count; | 
|  | } | 
|  |  | 
|  | static unsigned int ccp_fill_queue_buf(struct ccp_data *data) | 
|  | { | 
|  | return ccp_queue_buf(data, 0); | 
|  | } | 
|  |  | 
|  | static unsigned int ccp_empty_queue_buf(struct ccp_data *data) | 
|  | { | 
|  | return ccp_queue_buf(data, 1); | 
|  | } | 
|  |  | 
|  | static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, | 
|  | struct ccp_op *op, unsigned int block_size, | 
|  | bool blocksize_op) | 
|  | { | 
|  | unsigned int sg_src_len, sg_dst_len, op_len; | 
|  |  | 
|  | /* The CCP can only DMA from/to one address each per operation. This | 
|  | * requires that we find the smallest DMA area between the source | 
|  | * and destination. The resulting len values will always be <= UINT_MAX | 
|  | * because the dma length is an unsigned int. | 
|  | */ | 
|  | sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used; | 
|  | sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); | 
|  |  | 
|  | if (dst) { | 
|  | sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used; | 
|  | sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); | 
|  | op_len = min(sg_src_len, sg_dst_len); | 
|  | } else { | 
|  | op_len = sg_src_len; | 
|  | } | 
|  |  | 
|  | /* The data operation length will be at least block_size in length | 
|  | * or the smaller of available sg room remaining for the source or | 
|  | * the destination | 
|  | */ | 
|  | op_len = max(op_len, block_size); | 
|  |  | 
|  | /* Unless we have to buffer data, there's no reason to wait */ | 
|  | op->soc = 0; | 
|  |  | 
|  | if (sg_src_len < block_size) { | 
|  | /* Not enough data in the sg element, so it | 
|  | * needs to be buffered into a blocksize chunk | 
|  | */ | 
|  | int cp_len = ccp_fill_queue_buf(src); | 
|  |  | 
|  | op->soc = 1; | 
|  | op->src.u.dma.address = src->dm_wa.dma.address; | 
|  | op->src.u.dma.offset = 0; | 
|  | op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; | 
|  | } else { | 
|  | /* Enough data in the sg element, but we need to | 
|  | * adjust for any previously copied data | 
|  | */ | 
|  | op->src.u.dma.address = sg_dma_address(src->sg_wa.sg); | 
|  | op->src.u.dma.offset = src->sg_wa.sg_used; | 
|  | op->src.u.dma.length = op_len & ~(block_size - 1); | 
|  |  | 
|  | ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); | 
|  | } | 
|  |  | 
|  | if (dst) { | 
|  | if (sg_dst_len < block_size) { | 
|  | /* Not enough room in the sg element or we're on the | 
|  | * last piece of data (when using padding), so the | 
|  | * output needs to be buffered into a blocksize chunk | 
|  | */ | 
|  | op->soc = 1; | 
|  | op->dst.u.dma.address = dst->dm_wa.dma.address; | 
|  | op->dst.u.dma.offset = 0; | 
|  | op->dst.u.dma.length = op->src.u.dma.length; | 
|  | } else { | 
|  | /* Enough room in the sg element, but we need to | 
|  | * adjust for any previously used area | 
|  | */ | 
|  | op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg); | 
|  | op->dst.u.dma.offset = dst->sg_wa.sg_used; | 
|  | op->dst.u.dma.length = op->src.u.dma.length; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, | 
|  | struct ccp_op *op) | 
|  | { | 
|  | op->init = 0; | 
|  |  | 
|  | if (dst) { | 
|  | if (op->dst.u.dma.address == dst->dm_wa.dma.address) | 
|  | ccp_empty_queue_buf(dst); | 
|  | else | 
|  | ccp_update_sg_workarea(&dst->sg_wa, | 
|  | op->dst.u.dma.length); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, | 
|  | u32 byte_swap, bool from) | 
|  | { | 
|  | struct ccp_op op; | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  |  | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = jobid; | 
|  | op.eom = 1; | 
|  |  | 
|  | if (from) { | 
|  | op.soc = 1; | 
|  | op.src.type = CCP_MEMTYPE_SB; | 
|  | op.src.u.sb = sb; | 
|  | op.dst.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.dst.u.dma.address = wa->dma.address; | 
|  | op.dst.u.dma.length = wa->length; | 
|  | } else { | 
|  | op.src.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.src.u.dma.address = wa->dma.address; | 
|  | op.src.u.dma.length = wa->length; | 
|  | op.dst.type = CCP_MEMTYPE_SB; | 
|  | op.dst.u.sb = sb; | 
|  | } | 
|  |  | 
|  | op.u.passthru.byte_swap = byte_swap; | 
|  |  | 
|  | return cmd_q->ccp->vdata->perform->passthru(&op); | 
|  | } | 
|  |  | 
|  | static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, | 
|  | u32 byte_swap) | 
|  | { | 
|  | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); | 
|  | } | 
|  |  | 
|  | static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_dm_workarea *wa, u32 jobid, u32 sb, | 
|  | u32 byte_swap) | 
|  | { | 
|  | return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); | 
|  | } | 
|  |  | 
|  | static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_aes_engine *aes = &cmd->u.aes; | 
|  | struct ccp_dm_workarea key, ctx; | 
|  | struct ccp_data src; | 
|  | struct ccp_op op; | 
|  | unsigned int dm_offset; | 
|  | int ret; | 
|  |  | 
|  | if (!((aes->key_len == AES_KEYSIZE_128) || | 
|  | (aes->key_len == AES_KEYSIZE_192) || | 
|  | (aes->key_len == AES_KEYSIZE_256))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (aes->src_len & (AES_BLOCK_SIZE - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (aes->iv_len != AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!aes->key || !aes->iv || !aes->src) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (aes->cmac_final) { | 
|  | if (aes->cmac_key_len != AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!aes->cmac_key) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); | 
|  | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); | 
|  |  | 
|  | ret = -EIO; | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  | op.sb_key = cmd_q->sb_key; | 
|  | op.sb_ctx = cmd_q->sb_ctx; | 
|  | op.init = 1; | 
|  | op.u.aes.type = aes->type; | 
|  | op.u.aes.mode = aes->mode; | 
|  | op.u.aes.action = aes->action; | 
|  |  | 
|  | /* All supported key sizes fit in a single (32-byte) SB entry | 
|  | * and must be in little endian format. Use the 256-bit byte | 
|  | * swap passthru option to convert from big endian to little | 
|  | * endian. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&key, cmd_q, | 
|  | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | dm_offset = CCP_SB_BYTES - aes->key_len; | 
|  | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_key; | 
|  | } | 
|  |  | 
|  | /* The AES context fits in a single (32-byte) SB entry and | 
|  | * must be in little endian format. Use the 256-bit byte swap | 
|  | * passthru option to convert from big endian to little endian. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, | 
|  | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; | 
|  | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP AES engine */ | 
|  | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, | 
|  | AES_BLOCK_SIZE, DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); | 
|  | if (aes->cmac_final && !src.sg_wa.bytes_left) { | 
|  | op.eom = 1; | 
|  |  | 
|  | /* Push the K1/K2 key to the CCP now */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, | 
|  | op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, | 
|  | aes->cmac_key_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_src; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->aes(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, NULL, &op); | 
|  | } | 
|  |  | 
|  | /* Retrieve the AES context - convert from LE to BE using | 
|  | * 32-byte (256-bit) byteswapping | 
|  | */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | /* ...but we only need AES_BLOCK_SIZE bytes */ | 
|  | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; | 
|  | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  |  | 
|  | e_src: | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | e_key: | 
|  | ccp_dm_free(&key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_aes_engine *aes = &cmd->u.aes; | 
|  | struct ccp_dm_workarea key, ctx, final_wa, tag; | 
|  | struct ccp_data src, dst; | 
|  | struct ccp_data aad; | 
|  | struct ccp_op op; | 
|  |  | 
|  | unsigned long long *final; | 
|  | unsigned int dm_offset; | 
|  | unsigned int authsize; | 
|  | unsigned int jobid; | 
|  | unsigned int ilen; | 
|  | bool in_place = true; /* Default value */ | 
|  | int ret; | 
|  |  | 
|  | struct scatterlist *p_inp, sg_inp[2]; | 
|  | struct scatterlist *p_tag, sg_tag[2]; | 
|  | struct scatterlist *p_outp, sg_outp[2]; | 
|  | struct scatterlist *p_aad; | 
|  |  | 
|  | if (!aes->iv) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!((aes->key_len == AES_KEYSIZE_128) || | 
|  | (aes->key_len == AES_KEYSIZE_192) || | 
|  | (aes->key_len == AES_KEYSIZE_256))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!aes->key) /* Gotta have a key SGL */ | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Zero defaults to 16 bytes, the maximum size */ | 
|  | authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; | 
|  | switch (authsize) { | 
|  | case 16: | 
|  | case 15: | 
|  | case 14: | 
|  | case 13: | 
|  | case 12: | 
|  | case 8: | 
|  | case 4: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* First, decompose the source buffer into AAD & PT, | 
|  | * and the destination buffer into AAD, CT & tag, or | 
|  | * the input into CT & tag. | 
|  | * It is expected that the input and output SGs will | 
|  | * be valid, even if the AAD and input lengths are 0. | 
|  | */ | 
|  | p_aad = aes->src; | 
|  | p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); | 
|  | p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); | 
|  | if (aes->action == CCP_AES_ACTION_ENCRYPT) { | 
|  | ilen = aes->src_len; | 
|  | p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); | 
|  | } else { | 
|  | /* Input length for decryption includes tag */ | 
|  | ilen = aes->src_len - authsize; | 
|  | p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); | 
|  | } | 
|  |  | 
|  | jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = jobid; | 
|  | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ | 
|  | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ | 
|  | op.init = 1; | 
|  | op.u.aes.type = aes->type; | 
|  |  | 
|  | /* Copy the key to the LSB */ | 
|  | ret = ccp_init_dm_workarea(&key, cmd_q, | 
|  | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | dm_offset = CCP_SB_BYTES - aes->key_len; | 
|  | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_key; | 
|  | } | 
|  |  | 
|  | /* Copy the context (IV) to the LSB. | 
|  | * There is an assumption here that the IV is 96 bits in length, plus | 
|  | * a nonce of 32 bits. If no IV is present, use a zeroed buffer. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, | 
|  | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; | 
|  | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | op.init = 1; | 
|  | if (aes->aad_len > 0) { | 
|  | /* Step 1: Run a GHASH over the Additional Authenticated Data */ | 
|  | ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, | 
|  | AES_BLOCK_SIZE, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | op.u.aes.mode = CCP_AES_MODE_GHASH; | 
|  | op.u.aes.action = CCP_AES_GHASHAAD; | 
|  |  | 
|  | while (aad.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->aes(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_aad; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&aad, NULL, &op); | 
|  | op.init = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | op.u.aes.mode = CCP_AES_MODE_GCTR; | 
|  | op.u.aes.action = aes->action; | 
|  |  | 
|  | if (ilen > 0) { | 
|  | /* Step 2: Run a GCTR over the plaintext */ | 
|  | in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; | 
|  |  | 
|  | ret = ccp_init_data(&src, cmd_q, p_inp, ilen, | 
|  | AES_BLOCK_SIZE, | 
|  | in_place ? DMA_BIDIRECTIONAL | 
|  | : DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | if (in_place) { | 
|  | dst = src; | 
|  | } else { | 
|  | ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, | 
|  | AES_BLOCK_SIZE, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | op.soc = 0; | 
|  | op.eom = 0; | 
|  | op.init = 1; | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); | 
|  | if (!src.sg_wa.bytes_left) { | 
|  | unsigned int nbytes = ilen % AES_BLOCK_SIZE; | 
|  |  | 
|  | if (nbytes) { | 
|  | op.eom = 1; | 
|  | op.u.aes.size = (nbytes * 8) - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->aes(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, &dst, &op); | 
|  | op.init = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Step 3: Update the IV portion of the context with the original IV */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  | if (ret) | 
|  | goto e_dst; | 
|  |  | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* Step 4: Concatenate the lengths of the AAD and source, and | 
|  | * hash that 16 byte buffer. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_dst; | 
|  | final = (unsigned long long *) final_wa.address; | 
|  | final[0] = cpu_to_be64(aes->aad_len * 8); | 
|  | final[1] = cpu_to_be64(ilen * 8); | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = jobid; | 
|  | op.sb_key = cmd_q->sb_key; /* Pre-allocated */ | 
|  | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ | 
|  | op.init = 1; | 
|  | op.u.aes.type = aes->type; | 
|  | op.u.aes.mode = CCP_AES_MODE_GHASH; | 
|  | op.u.aes.action = CCP_AES_GHASHFINAL; | 
|  | op.src.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.src.u.dma.address = final_wa.dma.address; | 
|  | op.src.u.dma.length = AES_BLOCK_SIZE; | 
|  | op.dst.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.dst.u.dma.address = final_wa.dma.address; | 
|  | op.dst.u.dma.length = AES_BLOCK_SIZE; | 
|  | op.eom = 1; | 
|  | op.u.aes.size = 0; | 
|  | ret = cmd_q->ccp->vdata->perform->aes(&op); | 
|  | if (ret) | 
|  | goto e_dst; | 
|  |  | 
|  | if (aes->action == CCP_AES_ACTION_ENCRYPT) { | 
|  | /* Put the ciphered tag after the ciphertext. */ | 
|  | ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); | 
|  | } else { | 
|  | /* Does this ciphered tag match the input? */ | 
|  | ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_tag; | 
|  | ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); | 
|  | if (ret) | 
|  | goto e_tag; | 
|  |  | 
|  | ret = crypto_memneq(tag.address, final_wa.address, | 
|  | authsize) ? -EBADMSG : 0; | 
|  | ccp_dm_free(&tag); | 
|  | } | 
|  |  | 
|  | e_tag: | 
|  | ccp_dm_free(&final_wa); | 
|  |  | 
|  | e_dst: | 
|  | if (ilen > 0 && !in_place) | 
|  | ccp_free_data(&dst, cmd_q); | 
|  |  | 
|  | e_src: | 
|  | if (ilen > 0) | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_aad: | 
|  | if (aes->aad_len) | 
|  | ccp_free_data(&aad, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | e_key: | 
|  | ccp_dm_free(&key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_aes_engine *aes = &cmd->u.aes; | 
|  | struct ccp_dm_workarea key, ctx; | 
|  | struct ccp_data src, dst; | 
|  | struct ccp_op op; | 
|  | unsigned int dm_offset; | 
|  | bool in_place = false; | 
|  | int ret; | 
|  |  | 
|  | if (aes->mode == CCP_AES_MODE_CMAC) | 
|  | return ccp_run_aes_cmac_cmd(cmd_q, cmd); | 
|  |  | 
|  | if (aes->mode == CCP_AES_MODE_GCM) | 
|  | return ccp_run_aes_gcm_cmd(cmd_q, cmd); | 
|  |  | 
|  | if (!((aes->key_len == AES_KEYSIZE_128) || | 
|  | (aes->key_len == AES_KEYSIZE_192) || | 
|  | (aes->key_len == AES_KEYSIZE_256))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (((aes->mode == CCP_AES_MODE_ECB) || | 
|  | (aes->mode == CCP_AES_MODE_CBC) || | 
|  | (aes->mode == CCP_AES_MODE_CFB)) && | 
|  | (aes->src_len & (AES_BLOCK_SIZE - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!aes->key || !aes->src || !aes->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (aes->mode != CCP_AES_MODE_ECB) { | 
|  | if (aes->iv_len != AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!aes->iv) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); | 
|  | BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); | 
|  |  | 
|  | ret = -EIO; | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  | op.sb_key = cmd_q->sb_key; | 
|  | op.sb_ctx = cmd_q->sb_ctx; | 
|  | op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; | 
|  | op.u.aes.type = aes->type; | 
|  | op.u.aes.mode = aes->mode; | 
|  | op.u.aes.action = aes->action; | 
|  |  | 
|  | /* All supported key sizes fit in a single (32-byte) SB entry | 
|  | * and must be in little endian format. Use the 256-bit byte | 
|  | * swap passthru option to convert from big endian to little | 
|  | * endian. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&key, cmd_q, | 
|  | CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | dm_offset = CCP_SB_BYTES - aes->key_len; | 
|  | ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_key; | 
|  | } | 
|  |  | 
|  | /* The AES context fits in a single (32-byte) SB entry and | 
|  | * must be in little endian format. Use the 256-bit byte swap | 
|  | * passthru option to convert from big endian to little endian. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, | 
|  | CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | if (aes->mode != CCP_AES_MODE_ECB) { | 
|  | /* Load the AES context - convert to LE */ | 
|  | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; | 
|  | ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  | } | 
|  | switch (aes->mode) { | 
|  | case CCP_AES_MODE_CFB: /* CFB128 only */ | 
|  | case CCP_AES_MODE_CTR: | 
|  | op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; | 
|  | break; | 
|  | default: | 
|  | op.u.aes.size = 0; | 
|  | } | 
|  |  | 
|  | /* Prepare the input and output data workareas. For in-place | 
|  | * operations we need to set the dma direction to BIDIRECTIONAL | 
|  | * and copy the src workarea to the dst workarea. | 
|  | */ | 
|  | if (sg_virt(aes->src) == sg_virt(aes->dst)) | 
|  | in_place = true; | 
|  |  | 
|  | ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, | 
|  | AES_BLOCK_SIZE, | 
|  | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | if (in_place) { | 
|  | dst = src; | 
|  | } else { | 
|  | ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, | 
|  | AES_BLOCK_SIZE, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP AES engine */ | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); | 
|  | if (!src.sg_wa.bytes_left) { | 
|  | op.eom = 1; | 
|  |  | 
|  | /* Since we don't retrieve the AES context in ECB | 
|  | * mode we have to wait for the operation to complete | 
|  | * on the last piece of data | 
|  | */ | 
|  | if (aes->mode == CCP_AES_MODE_ECB) | 
|  | op.soc = 1; | 
|  | } | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->aes(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, &dst, &op); | 
|  | } | 
|  |  | 
|  | if (aes->mode != CCP_AES_MODE_ECB) { | 
|  | /* Retrieve the AES context - convert from LE to BE using | 
|  | * 32-byte (256-bit) byteswapping | 
|  | */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* ...but we only need AES_BLOCK_SIZE bytes */ | 
|  | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; | 
|  | ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); | 
|  | } | 
|  |  | 
|  | e_dst: | 
|  | if (!in_place) | 
|  | ccp_free_data(&dst, cmd_q); | 
|  |  | 
|  | e_src: | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | e_key: | 
|  | ccp_dm_free(&key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_xts_aes_engine *xts = &cmd->u.xts; | 
|  | struct ccp_dm_workarea key, ctx; | 
|  | struct ccp_data src, dst; | 
|  | struct ccp_op op; | 
|  | unsigned int unit_size, dm_offset; | 
|  | bool in_place = false; | 
|  | unsigned int sb_count; | 
|  | enum ccp_aes_type aestype; | 
|  | int ret; | 
|  |  | 
|  | switch (xts->unit_size) { | 
|  | case CCP_XTS_AES_UNIT_SIZE_16: | 
|  | unit_size = 16; | 
|  | break; | 
|  | case CCP_XTS_AES_UNIT_SIZE_512: | 
|  | unit_size = 512; | 
|  | break; | 
|  | case CCP_XTS_AES_UNIT_SIZE_1024: | 
|  | unit_size = 1024; | 
|  | break; | 
|  | case CCP_XTS_AES_UNIT_SIZE_2048: | 
|  | unit_size = 2048; | 
|  | break; | 
|  | case CCP_XTS_AES_UNIT_SIZE_4096: | 
|  | unit_size = 4096; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (xts->key_len == AES_KEYSIZE_128) | 
|  | aestype = CCP_AES_TYPE_128; | 
|  | else if (xts->key_len == AES_KEYSIZE_256) | 
|  | aestype = CCP_AES_TYPE_256; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (xts->iv_len != AES_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!xts->key || !xts->iv || !xts->src || !xts->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); | 
|  | BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); | 
|  |  | 
|  | ret = -EIO; | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  | op.sb_key = cmd_q->sb_key; | 
|  | op.sb_ctx = cmd_q->sb_ctx; | 
|  | op.init = 1; | 
|  | op.u.xts.type = aestype; | 
|  | op.u.xts.action = xts->action; | 
|  | op.u.xts.unit_size = xts->unit_size; | 
|  |  | 
|  | /* A version 3 device only supports 128-bit keys, which fits into a | 
|  | * single SB entry. A version 5 device uses a 512-bit vector, so two | 
|  | * SB entries. | 
|  | */ | 
|  | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) | 
|  | sb_count = CCP_XTS_AES_KEY_SB_COUNT; | 
|  | else | 
|  | sb_count = CCP5_XTS_AES_KEY_SB_COUNT; | 
|  | ret = ccp_init_dm_workarea(&key, cmd_q, | 
|  | sb_count * CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { | 
|  | /* All supported key sizes must be in little endian format. | 
|  | * Use the 256-bit byte swap passthru option to convert from | 
|  | * big endian to little endian. | 
|  | */ | 
|  | dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; | 
|  | ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | } else { | 
|  | /* Version 5 CCPs use a 512-bit space for the key: each portion | 
|  | * occupies 256 bits, or one entire slot, and is zero-padded. | 
|  | */ | 
|  | unsigned int pad; | 
|  |  | 
|  | dm_offset = CCP_SB_BYTES; | 
|  | pad = dm_offset - xts->key_len; | 
|  | ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, | 
|  | xts->key_len, xts->key_len); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | } | 
|  | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_key; | 
|  | } | 
|  |  | 
|  | /* The AES context fits in a single (32-byte) SB entry and | 
|  | * for XTS is already in little endian format so no byte swapping | 
|  | * is needed. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, | 
|  | CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_NOOP); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | /* Prepare the input and output data workareas. For in-place | 
|  | * operations we need to set the dma direction to BIDIRECTIONAL | 
|  | * and copy the src workarea to the dst workarea. | 
|  | */ | 
|  | if (sg_virt(xts->src) == sg_virt(xts->dst)) | 
|  | in_place = true; | 
|  |  | 
|  | ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, | 
|  | unit_size, | 
|  | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | if (in_place) { | 
|  | dst = src; | 
|  | } else { | 
|  | ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, | 
|  | unit_size, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP AES engine */ | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, &dst, &op, unit_size, true); | 
|  | if (!src.sg_wa.bytes_left) | 
|  | op.eom = 1; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->xts_aes(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, &dst, &op); | 
|  | } | 
|  |  | 
|  | /* Retrieve the AES context - convert from LE to BE using | 
|  | * 32-byte (256-bit) byteswapping | 
|  | */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* ...but we only need AES_BLOCK_SIZE bytes */ | 
|  | dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; | 
|  | ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); | 
|  |  | 
|  | e_dst: | 
|  | if (!in_place) | 
|  | ccp_free_data(&dst, cmd_q); | 
|  |  | 
|  | e_src: | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | e_key: | 
|  | ccp_dm_free(&key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_des3_engine *des3 = &cmd->u.des3; | 
|  |  | 
|  | struct ccp_dm_workarea key, ctx; | 
|  | struct ccp_data src, dst; | 
|  | struct ccp_op op; | 
|  | unsigned int dm_offset; | 
|  | unsigned int len_singlekey; | 
|  | bool in_place = false; | 
|  | int ret; | 
|  |  | 
|  | /* Error checks */ | 
|  | if (!cmd_q->ccp->vdata->perform->des3) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (des3->key_len != DES3_EDE_KEY_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (((des3->mode == CCP_DES3_MODE_ECB) || | 
|  | (des3->mode == CCP_DES3_MODE_CBC)) && | 
|  | (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!des3->key || !des3->src || !des3->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (des3->mode != CCP_DES3_MODE_ECB) { | 
|  | if (des3->iv_len != DES3_EDE_BLOCK_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!des3->iv) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = -EIO; | 
|  | /* Zero out all the fields of the command desc */ | 
|  | memset(&op, 0, sizeof(op)); | 
|  |  | 
|  | /* Set up the Function field */ | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  | op.sb_key = cmd_q->sb_key; | 
|  |  | 
|  | op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; | 
|  | op.u.des3.type = des3->type; | 
|  | op.u.des3.mode = des3->mode; | 
|  | op.u.des3.action = des3->action; | 
|  |  | 
|  | /* | 
|  | * All supported key sizes fit in a single (32-byte) KSB entry and | 
|  | * (like AES) must be in little endian format. Use the 256-bit byte | 
|  | * swap passthru option to convert from big endian to little endian. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&key, cmd_q, | 
|  | CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * The contents of the key triplet are in the reverse order of what | 
|  | * is required by the engine. Copy the 3 pieces individually to put | 
|  | * them where they belong. | 
|  | */ | 
|  | dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ | 
|  |  | 
|  | len_singlekey = des3->key_len / 3; | 
|  | ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, | 
|  | des3->key, 0, len_singlekey); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, | 
|  | des3->key, len_singlekey, len_singlekey); | 
|  | if (ret) | 
|  | goto e_key; | 
|  | ret = ccp_set_dm_area(&key, dm_offset, | 
|  | des3->key, 2 * len_singlekey, len_singlekey); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | /* Copy the key to the SB */ | 
|  | ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_key; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DES3 context fits in a single (32-byte) KSB entry and | 
|  | * must be in little endian format. Use the 256-bit byte swap | 
|  | * passthru option to convert from big endian to little endian. | 
|  | */ | 
|  | if (des3->mode != CCP_DES3_MODE_ECB) { | 
|  | u32 load_mode; | 
|  |  | 
|  | op.sb_ctx = cmd_q->sb_ctx; | 
|  |  | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, | 
|  | CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | goto e_key; | 
|  |  | 
|  | /* Load the context into the LSB */ | 
|  | dm_offset = CCP_SB_BYTES - des3->iv_len; | 
|  | ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, | 
|  | des3->iv_len); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) | 
|  | load_mode = CCP_PASSTHRU_BYTESWAP_NOOP; | 
|  | else | 
|  | load_mode = CCP_PASSTHRU_BYTESWAP_256BIT; | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | load_mode); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare the input and output data workareas. For in-place | 
|  | * operations we need to set the dma direction to BIDIRECTIONAL | 
|  | * and copy the src workarea to the dst workarea. | 
|  | */ | 
|  | if (sg_virt(des3->src) == sg_virt(des3->dst)) | 
|  | in_place = true; | 
|  |  | 
|  | ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, | 
|  | DES3_EDE_BLOCK_SIZE, | 
|  | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | if (in_place) | 
|  | dst = src; | 
|  | else { | 
|  | ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, | 
|  | DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP DES3 engine */ | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); | 
|  | if (!src.sg_wa.bytes_left) { | 
|  | op.eom = 1; | 
|  |  | 
|  | /* Since we don't retrieve the context in ECB mode | 
|  | * we have to wait for the operation to complete | 
|  | * on the last piece of data | 
|  | */ | 
|  | op.soc = 0; | 
|  | } | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->des3(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, &dst, &op); | 
|  | } | 
|  |  | 
|  | if (des3->mode != CCP_DES3_MODE_ECB) { | 
|  | /* Retrieve the context and make BE */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ | 
|  | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) | 
|  | dm_offset = CCP_SB_BYTES - des3->iv_len; | 
|  | else | 
|  | dm_offset = 0; | 
|  | ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, | 
|  | DES3_EDE_BLOCK_SIZE); | 
|  | } | 
|  | e_dst: | 
|  | if (!in_place) | 
|  | ccp_free_data(&dst, cmd_q); | 
|  |  | 
|  | e_src: | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | if (des3->mode != CCP_DES3_MODE_ECB) | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | e_key: | 
|  | ccp_dm_free(&key); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_sha_engine *sha = &cmd->u.sha; | 
|  | struct ccp_dm_workarea ctx; | 
|  | struct ccp_data src; | 
|  | struct ccp_op op; | 
|  | unsigned int ioffset, ooffset; | 
|  | unsigned int digest_size; | 
|  | int sb_count; | 
|  | const void *init; | 
|  | u64 block_size; | 
|  | int ctx_size; | 
|  | int ret; | 
|  |  | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | if (sha->ctx_len < SHA1_DIGEST_SIZE) | 
|  | return -EINVAL; | 
|  | block_size = SHA1_BLOCK_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_224: | 
|  | if (sha->ctx_len < SHA224_DIGEST_SIZE) | 
|  | return -EINVAL; | 
|  | block_size = SHA224_BLOCK_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_256: | 
|  | if (sha->ctx_len < SHA256_DIGEST_SIZE) | 
|  | return -EINVAL; | 
|  | block_size = SHA256_BLOCK_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_384: | 
|  | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) | 
|  | || sha->ctx_len < SHA384_DIGEST_SIZE) | 
|  | return -EINVAL; | 
|  | block_size = SHA384_BLOCK_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_512: | 
|  | if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) | 
|  | || sha->ctx_len < SHA512_DIGEST_SIZE) | 
|  | return -EINVAL; | 
|  | block_size = SHA512_BLOCK_SIZE; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!sha->ctx) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!sha->final && (sha->src_len & (block_size - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* The version 3 device can't handle zero-length input */ | 
|  | if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { | 
|  |  | 
|  | if (!sha->src_len) { | 
|  | unsigned int digest_len; | 
|  | const u8 *sha_zero; | 
|  |  | 
|  | /* Not final, just return */ | 
|  | if (!sha->final) | 
|  | return 0; | 
|  |  | 
|  | /* CCP can't do a zero length sha operation so the | 
|  | * caller must buffer the data. | 
|  | */ | 
|  | if (sha->msg_bits) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* The CCP cannot perform zero-length sha operations | 
|  | * so the caller is required to buffer data for the | 
|  | * final operation. However, a sha operation for a | 
|  | * message with a total length of zero is valid so | 
|  | * known values are required to supply the result. | 
|  | */ | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | sha_zero = sha1_zero_message_hash; | 
|  | digest_len = SHA1_DIGEST_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_224: | 
|  | sha_zero = sha224_zero_message_hash; | 
|  | digest_len = SHA224_DIGEST_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_256: | 
|  | sha_zero = sha256_zero_message_hash; | 
|  | digest_len = SHA256_DIGEST_SIZE; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, | 
|  | digest_len, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set variables used throughout */ | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | digest_size = SHA1_DIGEST_SIZE; | 
|  | init = (void *) ccp_sha1_init; | 
|  | ctx_size = SHA1_DIGEST_SIZE; | 
|  | sb_count = 1; | 
|  | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) | 
|  | ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; | 
|  | else | 
|  | ooffset = ioffset = 0; | 
|  | break; | 
|  | case CCP_SHA_TYPE_224: | 
|  | digest_size = SHA224_DIGEST_SIZE; | 
|  | init = (void *) ccp_sha224_init; | 
|  | ctx_size = SHA256_DIGEST_SIZE; | 
|  | sb_count = 1; | 
|  | ioffset = 0; | 
|  | if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) | 
|  | ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; | 
|  | else | 
|  | ooffset = 0; | 
|  | break; | 
|  | case CCP_SHA_TYPE_256: | 
|  | digest_size = SHA256_DIGEST_SIZE; | 
|  | init = (void *) ccp_sha256_init; | 
|  | ctx_size = SHA256_DIGEST_SIZE; | 
|  | sb_count = 1; | 
|  | ooffset = ioffset = 0; | 
|  | break; | 
|  | case CCP_SHA_TYPE_384: | 
|  | digest_size = SHA384_DIGEST_SIZE; | 
|  | init = (void *) ccp_sha384_init; | 
|  | ctx_size = SHA512_DIGEST_SIZE; | 
|  | sb_count = 2; | 
|  | ioffset = 0; | 
|  | ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; | 
|  | break; | 
|  | case CCP_SHA_TYPE_512: | 
|  | digest_size = SHA512_DIGEST_SIZE; | 
|  | init = (void *) ccp_sha512_init; | 
|  | ctx_size = SHA512_DIGEST_SIZE; | 
|  | sb_count = 2; | 
|  | ooffset = ioffset = 0; | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto e_data; | 
|  | } | 
|  |  | 
|  | /* For zero-length plaintext the src pointer is ignored; | 
|  | * otherwise both parts must be valid | 
|  | */ | 
|  | if (sha->src_len && !sha->src) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  | op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ | 
|  | op.u.sha.type = sha->type; | 
|  | op.u.sha.msg_bits = sha->msg_bits; | 
|  |  | 
|  | /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; | 
|  | * SHA384/512 require 2 adjacent SB slots, with the right half in the | 
|  | * first slot, and the left half in the second. Each portion must then | 
|  | * be in little endian format: use the 256-bit byte swap option. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (sha->first) { | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | case CCP_SHA_TYPE_224: | 
|  | case CCP_SHA_TYPE_256: | 
|  | memcpy(ctx.address + ioffset, init, ctx_size); | 
|  | break; | 
|  | case CCP_SHA_TYPE_384: | 
|  | case CCP_SHA_TYPE_512: | 
|  | memcpy(ctx.address + ctx_size / 2, init, | 
|  | ctx_size / 2); | 
|  | memcpy(ctx.address, init + ctx_size / 2, | 
|  | ctx_size / 2); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto e_ctx; | 
|  | } | 
|  | } else { | 
|  | /* Restore the context */ | 
|  | ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, | 
|  | sb_count * CCP_SB_BYTES); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | if (sha->src) { | 
|  | /* Send data to the CCP SHA engine; block_size is set above */ | 
|  | ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, | 
|  | block_size, DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_ctx; | 
|  |  | 
|  | while (src.sg_wa.bytes_left) { | 
|  | ccp_prepare_data(&src, NULL, &op, block_size, false); | 
|  | if (sha->final && !src.sg_wa.bytes_left) | 
|  | op.eom = 1; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->sha(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_data; | 
|  | } | 
|  |  | 
|  | ccp_process_data(&src, NULL, &op); | 
|  | } | 
|  | } else { | 
|  | op.eom = 1; | 
|  | ret = cmd_q->ccp->vdata->perform->sha(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_data; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Retrieve the SHA context - convert from LE to BE using | 
|  | * 32-byte (256-bit) byteswapping to BE | 
|  | */ | 
|  | ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, | 
|  | CCP_PASSTHRU_BYTESWAP_256BIT); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_data; | 
|  | } | 
|  |  | 
|  | if (sha->final) { | 
|  | /* Finishing up, so get the digest */ | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | case CCP_SHA_TYPE_224: | 
|  | case CCP_SHA_TYPE_256: | 
|  | ccp_get_dm_area(&ctx, ooffset, | 
|  | sha->ctx, 0, | 
|  | digest_size); | 
|  | break; | 
|  | case CCP_SHA_TYPE_384: | 
|  | case CCP_SHA_TYPE_512: | 
|  | ccp_get_dm_area(&ctx, 0, | 
|  | sha->ctx, LSB_ITEM_SIZE - ooffset, | 
|  | LSB_ITEM_SIZE); | 
|  | ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, | 
|  | sha->ctx, 0, | 
|  | LSB_ITEM_SIZE - ooffset); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto e_ctx; | 
|  | } | 
|  | } else { | 
|  | /* Stash the context */ | 
|  | ccp_get_dm_area(&ctx, 0, sha->ctx, 0, | 
|  | sb_count * CCP_SB_BYTES); | 
|  | } | 
|  |  | 
|  | if (sha->final && sha->opad) { | 
|  | /* HMAC operation, recursively perform final SHA */ | 
|  | struct ccp_cmd hmac_cmd; | 
|  | struct scatterlist sg; | 
|  | u8 *hmac_buf; | 
|  |  | 
|  | if (sha->opad_len != block_size) { | 
|  | ret = -EINVAL; | 
|  | goto e_data; | 
|  | } | 
|  |  | 
|  | hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); | 
|  | if (!hmac_buf) { | 
|  | ret = -ENOMEM; | 
|  | goto e_data; | 
|  | } | 
|  | sg_init_one(&sg, hmac_buf, block_size + digest_size); | 
|  |  | 
|  | scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); | 
|  | switch (sha->type) { | 
|  | case CCP_SHA_TYPE_1: | 
|  | case CCP_SHA_TYPE_224: | 
|  | case CCP_SHA_TYPE_256: | 
|  | memcpy(hmac_buf + block_size, | 
|  | ctx.address + ooffset, | 
|  | digest_size); | 
|  | break; | 
|  | case CCP_SHA_TYPE_384: | 
|  | case CCP_SHA_TYPE_512: | 
|  | memcpy(hmac_buf + block_size, | 
|  | ctx.address + LSB_ITEM_SIZE + ooffset, | 
|  | LSB_ITEM_SIZE); | 
|  | memcpy(hmac_buf + block_size + | 
|  | (LSB_ITEM_SIZE - ooffset), | 
|  | ctx.address, | 
|  | LSB_ITEM_SIZE); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto e_ctx; | 
|  | } | 
|  |  | 
|  | memset(&hmac_cmd, 0, sizeof(hmac_cmd)); | 
|  | hmac_cmd.engine = CCP_ENGINE_SHA; | 
|  | hmac_cmd.u.sha.type = sha->type; | 
|  | hmac_cmd.u.sha.ctx = sha->ctx; | 
|  | hmac_cmd.u.sha.ctx_len = sha->ctx_len; | 
|  | hmac_cmd.u.sha.src = &sg; | 
|  | hmac_cmd.u.sha.src_len = block_size + digest_size; | 
|  | hmac_cmd.u.sha.opad = NULL; | 
|  | hmac_cmd.u.sha.opad_len = 0; | 
|  | hmac_cmd.u.sha.first = 1; | 
|  | hmac_cmd.u.sha.final = 1; | 
|  | hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; | 
|  |  | 
|  | ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); | 
|  | if (ret) | 
|  | cmd->engine_error = hmac_cmd.engine_error; | 
|  |  | 
|  | kfree(hmac_buf); | 
|  | } | 
|  |  | 
|  | e_data: | 
|  | if (sha->src) | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_ctx: | 
|  | ccp_dm_free(&ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_rsa_engine *rsa = &cmd->u.rsa; | 
|  | struct ccp_dm_workarea exp, src, dst; | 
|  | struct ccp_op op; | 
|  | unsigned int sb_count, i_len, o_len; | 
|  | int ret; | 
|  |  | 
|  | /* Check against the maximum allowable size, in bits */ | 
|  | if (rsa->key_size > cmd_q->ccp->vdata->rsamax) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | /* The RSA modulus must precede the message being acted upon, so | 
|  | * it must be copied to a DMA area where the message and the | 
|  | * modulus can be concatenated.  Therefore the input buffer | 
|  | * length required is twice the output buffer length (which | 
|  | * must be a multiple of 256-bits).  Compute o_len, i_len in bytes. | 
|  | * Buffer sizes must be a multiple of 32 bytes; rounding up may be | 
|  | * required. | 
|  | */ | 
|  | o_len = 32 * ((rsa->key_size + 255) / 256); | 
|  | i_len = o_len * 2; | 
|  |  | 
|  | sb_count = 0; | 
|  | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { | 
|  | /* sb_count is the number of storage block slots required | 
|  | * for the modulus. | 
|  | */ | 
|  | sb_count = o_len / CCP_SB_BYTES; | 
|  | op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, | 
|  | sb_count); | 
|  | if (!op.sb_key) | 
|  | return -EIO; | 
|  | } else { | 
|  | /* A version 5 device allows a modulus size that will not fit | 
|  | * in the LSB, so the command will transfer it from memory. | 
|  | * Set the sb key to the default, even though it's not used. | 
|  | */ | 
|  | op.sb_key = cmd_q->sb_key; | 
|  | } | 
|  |  | 
|  | /* The RSA exponent must be in little endian format. Reverse its | 
|  | * byte order. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_sb; | 
|  |  | 
|  | ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); | 
|  | if (ret) | 
|  | goto e_exp; | 
|  |  | 
|  | if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { | 
|  | /* Copy the exponent to the local storage block, using | 
|  | * as many 32-byte blocks as were allocated above. It's | 
|  | * already little endian, so no further change is required. | 
|  | */ | 
|  | ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_NOOP); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_exp; | 
|  | } | 
|  | } else { | 
|  | /* The exponent can be retrieved from memory via DMA. */ | 
|  | op.exp.u.dma.address = exp.dma.address; | 
|  | op.exp.u.dma.offset = 0; | 
|  | } | 
|  |  | 
|  | /* Concatenate the modulus and the message. Both the modulus and | 
|  | * the operands must be in little endian format.  Since the input | 
|  | * is in big endian format it must be converted. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_exp; | 
|  |  | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  |  | 
|  | /* Prepare the output area for the operation */ | 
|  | ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  |  | 
|  | op.soc = 1; | 
|  | op.src.u.dma.address = src.dma.address; | 
|  | op.src.u.dma.offset = 0; | 
|  | op.src.u.dma.length = i_len; | 
|  | op.dst.u.dma.address = dst.dma.address; | 
|  | op.dst.u.dma.offset = 0; | 
|  | op.dst.u.dma.length = o_len; | 
|  |  | 
|  | op.u.rsa.mod_size = rsa->key_size; | 
|  | op.u.rsa.input_len = i_len; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->rsa(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); | 
|  |  | 
|  | e_dst: | 
|  | ccp_dm_free(&dst); | 
|  |  | 
|  | e_src: | 
|  | ccp_dm_free(&src); | 
|  |  | 
|  | e_exp: | 
|  | ccp_dm_free(&exp); | 
|  |  | 
|  | e_sb: | 
|  | if (sb_count) | 
|  | cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_passthru_engine *pt = &cmd->u.passthru; | 
|  | struct ccp_dm_workarea mask; | 
|  | struct ccp_data src, dst; | 
|  | struct ccp_op op; | 
|  | bool in_place = false; | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pt->src || !pt->dst) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { | 
|  | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) | 
|  | return -EINVAL; | 
|  | if (!pt->mask) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { | 
|  | /* Load the mask */ | 
|  | op.sb_key = cmd_q->sb_key; | 
|  |  | 
|  | ret = ccp_init_dm_workarea(&mask, cmd_q, | 
|  | CCP_PASSTHRU_SB_COUNT * | 
|  | CCP_SB_BYTES, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); | 
|  | if (ret) | 
|  | goto e_mask; | 
|  | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_NOOP); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Prepare the input and output data workareas. For in-place | 
|  | * operations we need to set the dma direction to BIDIRECTIONAL | 
|  | * and copy the src workarea to the dst workarea. | 
|  | */ | 
|  | if (sg_virt(pt->src) == sg_virt(pt->dst)) | 
|  | in_place = true; | 
|  |  | 
|  | ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, | 
|  | CCP_PASSTHRU_MASKSIZE, | 
|  | in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | goto e_mask; | 
|  |  | 
|  | if (in_place) { | 
|  | dst = src; | 
|  | } else { | 
|  | ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, | 
|  | CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP Passthru engine | 
|  | *   Because the CCP engine works on a single source and destination | 
|  | *   dma address at a time, each entry in the source scatterlist | 
|  | *   (after the dma_map_sg call) must be less than or equal to the | 
|  | *   (remaining) length in the destination scatterlist entry and the | 
|  | *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE | 
|  | */ | 
|  | dst.sg_wa.sg_used = 0; | 
|  | for (i = 1; i <= src.sg_wa.dma_count; i++) { | 
|  | if (!dst.sg_wa.sg || | 
|  | (dst.sg_wa.sg->length < src.sg_wa.sg->length)) { | 
|  | ret = -EINVAL; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | if (i == src.sg_wa.dma_count) { | 
|  | op.eom = 1; | 
|  | op.soc = 1; | 
|  | } | 
|  |  | 
|  | op.src.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); | 
|  | op.src.u.dma.offset = 0; | 
|  | op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); | 
|  |  | 
|  | op.dst.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); | 
|  | op.dst.u.dma.offset = dst.sg_wa.sg_used; | 
|  | op.dst.u.dma.length = op.src.u.dma.length; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->passthru(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | dst.sg_wa.sg_used += src.sg_wa.sg->length; | 
|  | if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) { | 
|  | dst.sg_wa.sg = sg_next(dst.sg_wa.sg); | 
|  | dst.sg_wa.sg_used = 0; | 
|  | } | 
|  | src.sg_wa.sg = sg_next(src.sg_wa.sg); | 
|  | } | 
|  |  | 
|  | e_dst: | 
|  | if (!in_place) | 
|  | ccp_free_data(&dst, cmd_q); | 
|  |  | 
|  | e_src: | 
|  | ccp_free_data(&src, cmd_q); | 
|  |  | 
|  | e_mask: | 
|  | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) | 
|  | ccp_dm_free(&mask); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, | 
|  | struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; | 
|  | struct ccp_dm_workarea mask; | 
|  | struct ccp_op op; | 
|  | int ret; | 
|  |  | 
|  | if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pt->src_dma || !pt->dst_dma) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { | 
|  | if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) | 
|  | return -EINVAL; | 
|  | if (!pt->mask) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { | 
|  | /* Load the mask */ | 
|  | op.sb_key = cmd_q->sb_key; | 
|  |  | 
|  | mask.length = pt->mask_len; | 
|  | mask.dma.address = pt->mask; | 
|  | mask.dma.length = pt->mask_len; | 
|  |  | 
|  | ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, | 
|  | CCP_PASSTHRU_BYTESWAP_NOOP); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Send data to the CCP Passthru engine */ | 
|  | op.eom = 1; | 
|  | op.soc = 1; | 
|  |  | 
|  | op.src.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.src.u.dma.address = pt->src_dma; | 
|  | op.src.u.dma.offset = 0; | 
|  | op.src.u.dma.length = pt->src_len; | 
|  |  | 
|  | op.dst.type = CCP_MEMTYPE_SYSTEM; | 
|  | op.dst.u.dma.address = pt->dst_dma; | 
|  | op.dst.u.dma.offset = 0; | 
|  | op.dst.u.dma.length = pt->src_len; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->passthru(&op); | 
|  | if (ret) | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_ecc_engine *ecc = &cmd->u.ecc; | 
|  | struct ccp_dm_workarea src, dst; | 
|  | struct ccp_op op; | 
|  | int ret; | 
|  | u8 *save; | 
|  |  | 
|  | if (!ecc->u.mm.operand_1 || | 
|  | (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) | 
|  | if (!ecc->u.mm.operand_2 || | 
|  | (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!ecc->u.mm.result || | 
|  | (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | /* Concatenate the modulus and the operands. Both the modulus and | 
|  | * the operands must be in little endian format.  Since the input | 
|  | * is in big endian format it must be converted and placed in a | 
|  | * fixed length buffer. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Save the workarea address since it is updated in order to perform | 
|  | * the concatenation | 
|  | */ | 
|  | save = src.address; | 
|  |  | 
|  | /* Copy the ECC modulus */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | /* Copy the first operand */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, | 
|  | ecc->u.mm.operand_1_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { | 
|  | /* Copy the second operand */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, | 
|  | ecc->u.mm.operand_2_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  | } | 
|  |  | 
|  | /* Restore the workarea address */ | 
|  | src.address = save; | 
|  |  | 
|  | /* Prepare the output area for the operation */ | 
|  | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  |  | 
|  | op.soc = 1; | 
|  | op.src.u.dma.address = src.dma.address; | 
|  | op.src.u.dma.offset = 0; | 
|  | op.src.u.dma.length = src.length; | 
|  | op.dst.u.dma.address = dst.dma.address; | 
|  | op.dst.u.dma.offset = 0; | 
|  | op.dst.u.dma.length = dst.length; | 
|  |  | 
|  | op.u.ecc.function = cmd->u.ecc.function; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->ecc(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ecc->ecc_result = le16_to_cpup( | 
|  | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); | 
|  | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { | 
|  | ret = -EIO; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* Save the ECC result */ | 
|  | ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, | 
|  | CCP_ECC_MODULUS_BYTES); | 
|  |  | 
|  | e_dst: | 
|  | ccp_dm_free(&dst); | 
|  |  | 
|  | e_src: | 
|  | ccp_dm_free(&src); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_ecc_engine *ecc = &cmd->u.ecc; | 
|  | struct ccp_dm_workarea src, dst; | 
|  | struct ccp_op op; | 
|  | int ret; | 
|  | u8 *save; | 
|  |  | 
|  | if (!ecc->u.pm.point_1.x || | 
|  | (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || | 
|  | !ecc->u.pm.point_1.y || | 
|  | (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { | 
|  | if (!ecc->u.pm.point_2.x || | 
|  | (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || | 
|  | !ecc->u.pm.point_2.y || | 
|  | (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | if (!ecc->u.pm.domain_a || | 
|  | (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) | 
|  | if (!ecc->u.pm.scalar || | 
|  | (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!ecc->u.pm.result.x || | 
|  | (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || | 
|  | !ecc->u.pm.result.y || | 
|  | (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | memset(&op, 0, sizeof(op)); | 
|  | op.cmd_q = cmd_q; | 
|  | op.jobid = CCP_NEW_JOBID(cmd_q->ccp); | 
|  |  | 
|  | /* Concatenate the modulus and the operands. Both the modulus and | 
|  | * the operands must be in little endian format.  Since the input | 
|  | * is in big endian format it must be converted and placed in a | 
|  | * fixed length buffer. | 
|  | */ | 
|  | ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, | 
|  | DMA_TO_DEVICE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Save the workarea address since it is updated in order to perform | 
|  | * the concatenation | 
|  | */ | 
|  | save = src.address; | 
|  |  | 
|  | /* Copy the ECC modulus */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | /* Copy the first point X and Y coordinate */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, | 
|  | ecc->u.pm.point_1.x_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, | 
|  | ecc->u.pm.point_1.y_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | /* Set the first point Z coordinate to 1 */ | 
|  | *src.address = 0x01; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { | 
|  | /* Copy the second point X and Y coordinate */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, | 
|  | ecc->u.pm.point_2.x_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, | 
|  | ecc->u.pm.point_2.y_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | /* Set the second point Z coordinate to 1 */ | 
|  | *src.address = 0x01; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  | } else { | 
|  | /* Copy the Domain "a" parameter */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, | 
|  | ecc->u.pm.domain_a_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  |  | 
|  | if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { | 
|  | /* Copy the scalar value */ | 
|  | ret = ccp_reverse_set_dm_area(&src, 0, | 
|  | ecc->u.pm.scalar, 0, | 
|  | ecc->u.pm.scalar_len); | 
|  | if (ret) | 
|  | goto e_src; | 
|  | src.address += CCP_ECC_OPERAND_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Restore the workarea address */ | 
|  | src.address = save; | 
|  |  | 
|  | /* Prepare the output area for the operation */ | 
|  | ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, | 
|  | DMA_FROM_DEVICE); | 
|  | if (ret) | 
|  | goto e_src; | 
|  |  | 
|  | op.soc = 1; | 
|  | op.src.u.dma.address = src.dma.address; | 
|  | op.src.u.dma.offset = 0; | 
|  | op.src.u.dma.length = src.length; | 
|  | op.dst.u.dma.address = dst.dma.address; | 
|  | op.dst.u.dma.offset = 0; | 
|  | op.dst.u.dma.length = dst.length; | 
|  |  | 
|  | op.u.ecc.function = cmd->u.ecc.function; | 
|  |  | 
|  | ret = cmd_q->ccp->vdata->perform->ecc(&op); | 
|  | if (ret) { | 
|  | cmd->engine_error = cmd_q->cmd_error; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | ecc->ecc_result = le16_to_cpup( | 
|  | (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); | 
|  | if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { | 
|  | ret = -EIO; | 
|  | goto e_dst; | 
|  | } | 
|  |  | 
|  | /* Save the workarea address since it is updated as we walk through | 
|  | * to copy the point math result | 
|  | */ | 
|  | save = dst.address; | 
|  |  | 
|  | /* Save the ECC result X and Y coordinates */ | 
|  | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, | 
|  | CCP_ECC_MODULUS_BYTES); | 
|  | dst.address += CCP_ECC_OUTPUT_SIZE; | 
|  | ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, | 
|  | CCP_ECC_MODULUS_BYTES); | 
|  | dst.address += CCP_ECC_OUTPUT_SIZE; | 
|  |  | 
|  | /* Restore the workarea address */ | 
|  | dst.address = save; | 
|  |  | 
|  | e_dst: | 
|  | ccp_dm_free(&dst); | 
|  |  | 
|  | e_src: | 
|  | ccp_dm_free(&src); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | struct ccp_ecc_engine *ecc = &cmd->u.ecc; | 
|  |  | 
|  | ecc->ecc_result = 0; | 
|  |  | 
|  | if (!ecc->mod || | 
|  | (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (ecc->function) { | 
|  | case CCP_ECC_FUNCTION_MMUL_384BIT: | 
|  | case CCP_ECC_FUNCTION_MADD_384BIT: | 
|  | case CCP_ECC_FUNCTION_MINV_384BIT: | 
|  | return ccp_run_ecc_mm_cmd(cmd_q, cmd); | 
|  |  | 
|  | case CCP_ECC_FUNCTION_PADD_384BIT: | 
|  | case CCP_ECC_FUNCTION_PMUL_384BIT: | 
|  | case CCP_ECC_FUNCTION_PDBL_384BIT: | 
|  | return ccp_run_ecc_pm_cmd(cmd_q, cmd); | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | cmd->engine_error = 0; | 
|  | cmd_q->cmd_error = 0; | 
|  | cmd_q->int_rcvd = 0; | 
|  | cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); | 
|  |  | 
|  | switch (cmd->engine) { | 
|  | case CCP_ENGINE_AES: | 
|  | ret = ccp_run_aes_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_XTS_AES_128: | 
|  | ret = ccp_run_xts_aes_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_DES3: | 
|  | ret = ccp_run_des3_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_SHA: | 
|  | ret = ccp_run_sha_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_RSA: | 
|  | ret = ccp_run_rsa_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_PASSTHRU: | 
|  | if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) | 
|  | ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); | 
|  | else | 
|  | ret = ccp_run_passthru_cmd(cmd_q, cmd); | 
|  | break; | 
|  | case CCP_ENGINE_ECC: | 
|  | ret = ccp_run_ecc_cmd(cmd_q, cmd); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } |