|  | /* | 
|  | * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC | 
|  | * | 
|  | * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> | 
|  | * | 
|  | * This file add support for AES cipher with 128,192,256 bits | 
|  | * keysize in CBC and ECB mode. | 
|  | * Add support also for DES and 3DES in CBC and ECB mode. | 
|  | * | 
|  | * You could find the datasheet in Documentation/arm/sunxi/README | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | */ | 
|  | #include "sun4i-ss.h" | 
|  |  | 
|  | static int sun4i_ss_opti_poll(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_ss_ctx *ss = op->ss; | 
|  | unsigned int ivsize = crypto_skcipher_ivsize(tfm); | 
|  | struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); | 
|  | u32 mode = ctx->mode; | 
|  | /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ | 
|  | u32 rx_cnt = SS_RX_DEFAULT; | 
|  | u32 tx_cnt = 0; | 
|  | u32 spaces; | 
|  | u32 v; | 
|  | int err = 0; | 
|  | unsigned int i; | 
|  | unsigned int ileft = areq->cryptlen; | 
|  | unsigned int oleft = areq->cryptlen; | 
|  | unsigned int todo; | 
|  | struct sg_mapping_iter mi, mo; | 
|  | unsigned int oi, oo; /* offset for in and out */ | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!areq->cryptlen) | 
|  | return 0; | 
|  |  | 
|  | if (!areq->iv) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!areq->src || !areq->dst) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&ss->slock, flags); | 
|  |  | 
|  | for (i = 0; i < op->keylen; i += 4) | 
|  | writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); | 
|  |  | 
|  | if (areq->iv) { | 
|  | for (i = 0; i < 4 && i < ivsize / 4; i++) { | 
|  | v = *(u32 *)(areq->iv + i * 4); | 
|  | writel(v, ss->base + SS_IV0 + i * 4); | 
|  | } | 
|  | } | 
|  | writel(mode, ss->base + SS_CTL); | 
|  |  | 
|  | sg_miter_start(&mi, areq->src, sg_nents(areq->src), | 
|  | SG_MITER_FROM_SG | SG_MITER_ATOMIC); | 
|  | sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), | 
|  | SG_MITER_TO_SG | SG_MITER_ATOMIC); | 
|  | sg_miter_next(&mi); | 
|  | sg_miter_next(&mo); | 
|  | if (!mi.addr || !mo.addr) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); | 
|  | err = -EINVAL; | 
|  | goto release_ss; | 
|  | } | 
|  |  | 
|  | ileft = areq->cryptlen / 4; | 
|  | oleft = areq->cryptlen / 4; | 
|  | oi = 0; | 
|  | oo = 0; | 
|  | do { | 
|  | todo = min(rx_cnt, ileft); | 
|  | todo = min_t(size_t, todo, (mi.length - oi) / 4); | 
|  | if (todo) { | 
|  | ileft -= todo; | 
|  | writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); | 
|  | oi += todo * 4; | 
|  | } | 
|  | if (oi == mi.length) { | 
|  | sg_miter_next(&mi); | 
|  | oi = 0; | 
|  | } | 
|  |  | 
|  | spaces = readl(ss->base + SS_FCSR); | 
|  | rx_cnt = SS_RXFIFO_SPACES(spaces); | 
|  | tx_cnt = SS_TXFIFO_SPACES(spaces); | 
|  |  | 
|  | todo = min(tx_cnt, oleft); | 
|  | todo = min_t(size_t, todo, (mo.length - oo) / 4); | 
|  | if (todo) { | 
|  | oleft -= todo; | 
|  | readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); | 
|  | oo += todo * 4; | 
|  | } | 
|  | if (oo == mo.length) { | 
|  | sg_miter_next(&mo); | 
|  | oo = 0; | 
|  | } | 
|  | } while (oleft); | 
|  |  | 
|  | if (areq->iv) { | 
|  | for (i = 0; i < 4 && i < ivsize / 4; i++) { | 
|  | v = readl(ss->base + SS_IV0 + i * 4); | 
|  | *(u32 *)(areq->iv + i * 4) = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | release_ss: | 
|  | sg_miter_stop(&mi); | 
|  | sg_miter_stop(&mo); | 
|  | writel(0, ss->base + SS_CTL); | 
|  | spin_unlock_irqrestore(&ss->slock, flags); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Generic function that support SG with size not multiple of 4 */ | 
|  | static int sun4i_ss_cipher_poll(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_ss_ctx *ss = op->ss; | 
|  | int no_chunk = 1; | 
|  | struct scatterlist *in_sg = areq->src; | 
|  | struct scatterlist *out_sg = areq->dst; | 
|  | unsigned int ivsize = crypto_skcipher_ivsize(tfm); | 
|  | struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); | 
|  | u32 mode = ctx->mode; | 
|  | /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ | 
|  | u32 rx_cnt = SS_RX_DEFAULT; | 
|  | u32 tx_cnt = 0; | 
|  | u32 v; | 
|  | u32 spaces; | 
|  | int err = 0; | 
|  | unsigned int i; | 
|  | unsigned int ileft = areq->cryptlen; | 
|  | unsigned int oleft = areq->cryptlen; | 
|  | unsigned int todo; | 
|  | struct sg_mapping_iter mi, mo; | 
|  | unsigned int oi, oo;	/* offset for in and out */ | 
|  | char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */ | 
|  | char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */ | 
|  | unsigned int ob = 0;	/* offset in buf */ | 
|  | unsigned int obo = 0;	/* offset in bufo*/ | 
|  | unsigned int obl = 0;	/* length of data in bufo */ | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!areq->cryptlen) | 
|  | return 0; | 
|  |  | 
|  | if (!areq->iv) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!areq->src || !areq->dst) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if we have only SGs with size multiple of 4, | 
|  | * we can use the SS optimized function | 
|  | */ | 
|  | while (in_sg && no_chunk == 1) { | 
|  | if (in_sg->length % 4) | 
|  | no_chunk = 0; | 
|  | in_sg = sg_next(in_sg); | 
|  | } | 
|  | while (out_sg && no_chunk == 1) { | 
|  | if (out_sg->length % 4) | 
|  | no_chunk = 0; | 
|  | out_sg = sg_next(out_sg); | 
|  | } | 
|  |  | 
|  | if (no_chunk == 1) | 
|  | return sun4i_ss_opti_poll(areq); | 
|  |  | 
|  | spin_lock_irqsave(&ss->slock, flags); | 
|  |  | 
|  | for (i = 0; i < op->keylen; i += 4) | 
|  | writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); | 
|  |  | 
|  | if (areq->iv) { | 
|  | for (i = 0; i < 4 && i < ivsize / 4; i++) { | 
|  | v = *(u32 *)(areq->iv + i * 4); | 
|  | writel(v, ss->base + SS_IV0 + i * 4); | 
|  | } | 
|  | } | 
|  | writel(mode, ss->base + SS_CTL); | 
|  |  | 
|  | sg_miter_start(&mi, areq->src, sg_nents(areq->src), | 
|  | SG_MITER_FROM_SG | SG_MITER_ATOMIC); | 
|  | sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), | 
|  | SG_MITER_TO_SG | SG_MITER_ATOMIC); | 
|  | sg_miter_next(&mi); | 
|  | sg_miter_next(&mo); | 
|  | if (!mi.addr || !mo.addr) { | 
|  | dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); | 
|  | err = -EINVAL; | 
|  | goto release_ss; | 
|  | } | 
|  | ileft = areq->cryptlen; | 
|  | oleft = areq->cryptlen; | 
|  | oi = 0; | 
|  | oo = 0; | 
|  |  | 
|  | while (oleft) { | 
|  | if (ileft) { | 
|  | /* | 
|  | * todo is the number of consecutive 4byte word that we | 
|  | * can read from current SG | 
|  | */ | 
|  | todo = min(rx_cnt, ileft / 4); | 
|  | todo = min_t(size_t, todo, (mi.length - oi) / 4); | 
|  | if (todo && !ob) { | 
|  | writesl(ss->base + SS_RXFIFO, mi.addr + oi, | 
|  | todo); | 
|  | ileft -= todo * 4; | 
|  | oi += todo * 4; | 
|  | } else { | 
|  | /* | 
|  | * not enough consecutive bytes, so we need to | 
|  | * linearize in buf. todo is in bytes | 
|  | * After that copy, if we have a multiple of 4 | 
|  | * we need to be able to write all buf in one | 
|  | * pass, so it is why we min() with rx_cnt | 
|  | */ | 
|  | todo = min(rx_cnt * 4 - ob, ileft); | 
|  | todo = min_t(size_t, todo, mi.length - oi); | 
|  | memcpy(buf + ob, mi.addr + oi, todo); | 
|  | ileft -= todo; | 
|  | oi += todo; | 
|  | ob += todo; | 
|  | if (!(ob % 4)) { | 
|  | writesl(ss->base + SS_RXFIFO, buf, | 
|  | ob / 4); | 
|  | ob = 0; | 
|  | } | 
|  | } | 
|  | if (oi == mi.length) { | 
|  | sg_miter_next(&mi); | 
|  | oi = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | spaces = readl(ss->base + SS_FCSR); | 
|  | rx_cnt = SS_RXFIFO_SPACES(spaces); | 
|  | tx_cnt = SS_TXFIFO_SPACES(spaces); | 
|  | dev_dbg(ss->dev, | 
|  | "%x %u/%zu %u/%u cnt=%u %u/%zu %u/%u cnt=%u %u\n", | 
|  | mode, | 
|  | oi, mi.length, ileft, areq->cryptlen, rx_cnt, | 
|  | oo, mo.length, oleft, areq->cryptlen, tx_cnt, ob); | 
|  |  | 
|  | if (!tx_cnt) | 
|  | continue; | 
|  | /* todo in 4bytes word */ | 
|  | todo = min(tx_cnt, oleft / 4); | 
|  | todo = min_t(size_t, todo, (mo.length - oo) / 4); | 
|  | if (todo) { | 
|  | readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); | 
|  | oleft -= todo * 4; | 
|  | oo += todo * 4; | 
|  | if (oo == mo.length) { | 
|  | sg_miter_next(&mo); | 
|  | oo = 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * read obl bytes in bufo, we read at maximum for | 
|  | * emptying the device | 
|  | */ | 
|  | readsl(ss->base + SS_TXFIFO, bufo, tx_cnt); | 
|  | obl = tx_cnt * 4; | 
|  | obo = 0; | 
|  | do { | 
|  | /* | 
|  | * how many bytes we can copy ? | 
|  | * no more than remaining SG size | 
|  | * no more than remaining buffer | 
|  | * no need to test against oleft | 
|  | */ | 
|  | todo = min_t(size_t, | 
|  | mo.length - oo, obl - obo); | 
|  | memcpy(mo.addr + oo, bufo + obo, todo); | 
|  | oleft -= todo; | 
|  | obo += todo; | 
|  | oo += todo; | 
|  | if (oo == mo.length) { | 
|  | sg_miter_next(&mo); | 
|  | oo = 0; | 
|  | } | 
|  | } while (obo < obl); | 
|  | /* bufo must be fully used here */ | 
|  | } | 
|  | } | 
|  | if (areq->iv) { | 
|  | for (i = 0; i < 4 && i < ivsize / 4; i++) { | 
|  | v = readl(ss->base + SS_IV0 + i * 4); | 
|  | *(u32 *)(areq->iv + i * 4) = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | release_ss: | 
|  | sg_miter_stop(&mi); | 
|  | sg_miter_stop(&mo); | 
|  | writel(0, ss->base + SS_CTL); | 
|  | spin_unlock_irqrestore(&ss->slock, flags); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* CBC AES */ | 
|  | int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | /* ECB AES */ | 
|  | int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | /* CBC DES */ | 
|  | int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | /* ECB DES */ | 
|  | int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | /* CBC 3DES */ | 
|  | int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | /* ECB 3DES */ | 
|  | int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); | 
|  |  | 
|  | rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | | 
|  | op->keymode; | 
|  | return sun4i_ss_cipher_poll(areq); | 
|  | } | 
|  |  | 
|  | int sun4i_ss_cipher_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); | 
|  | struct sun4i_ss_alg_template *algt; | 
|  |  | 
|  | memset(op, 0, sizeof(struct sun4i_tfm_ctx)); | 
|  |  | 
|  | algt = container_of(tfm->__crt_alg, struct sun4i_ss_alg_template, | 
|  | alg.crypto.base); | 
|  | op->ss = algt->ss; | 
|  |  | 
|  | crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), | 
|  | sizeof(struct sun4i_cipher_req_ctx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check and set the AES key, prepare the mode to be used */ | 
|  | int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_ss_ctx *ss = op->ss; | 
|  |  | 
|  | switch (keylen) { | 
|  | case 128 / 8: | 
|  | op->keymode = SS_AES_128BITS; | 
|  | break; | 
|  | case 192 / 8: | 
|  | op->keymode = SS_AES_192BITS; | 
|  | break; | 
|  | case 256 / 8: | 
|  | op->keymode = SS_AES_256BITS; | 
|  | break; | 
|  | default: | 
|  | dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); | 
|  | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  | op->keylen = keylen; | 
|  | memcpy(op->key, key, keylen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check and set the DES key, prepare the mode to be used */ | 
|  | int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_ss_ctx *ss = op->ss; | 
|  | u32 flags; | 
|  | u32 tmp[DES_EXPKEY_WORDS]; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(keylen != DES_KEY_SIZE)) { | 
|  | dev_err(ss->dev, "Invalid keylen %u\n", keylen); | 
|  | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | flags = crypto_skcipher_get_flags(tfm); | 
|  |  | 
|  | ret = des_ekey(tmp, key); | 
|  | if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) { | 
|  | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); | 
|  | dev_dbg(ss->dev, "Weak key %u\n", keylen); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | op->keylen = keylen; | 
|  | memcpy(op->key, key, keylen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check and set the 3DES key, prepare the mode to be used */ | 
|  | int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); | 
|  | struct sun4i_ss_ctx *ss = op->ss; | 
|  |  | 
|  | if (unlikely(keylen != 3 * DES_KEY_SIZE)) { | 
|  | dev_err(ss->dev, "Invalid keylen %u\n", keylen); | 
|  | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  | op->keylen = keylen; | 
|  | memcpy(op->key, key, keylen); | 
|  | return 0; | 
|  | } |