|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * background writeback - scan btree for dirty data and write it to the backing | 
|  | * device | 
|  | * | 
|  | * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> | 
|  | * Copyright 2012 Google, Inc. | 
|  | */ | 
|  |  | 
|  | #include "bcache.h" | 
|  | #include "btree.h" | 
|  | #include "debug.h" | 
|  | #include "writeback.h" | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <trace/events/bcache.h> | 
|  |  | 
|  | /* Rate limiting */ | 
|  | static uint64_t __calc_target_rate(struct cached_dev *dc) | 
|  | { | 
|  | struct cache_set *c = dc->disk.c; | 
|  |  | 
|  | /* | 
|  | * This is the size of the cache, minus the amount used for | 
|  | * flash-only devices | 
|  | */ | 
|  | uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - | 
|  | atomic_long_read(&c->flash_dev_dirty_sectors); | 
|  |  | 
|  | /* | 
|  | * Unfortunately there is no control of global dirty data.  If the | 
|  | * user states that they want 10% dirty data in the cache, and has, | 
|  | * e.g., 5 backing volumes of equal size, we try and ensure each | 
|  | * backing volume uses about 2% of the cache for dirty data. | 
|  | */ | 
|  | uint32_t bdev_share = | 
|  | div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, | 
|  | c->cached_dev_sectors); | 
|  |  | 
|  | uint64_t cache_dirty_target = | 
|  | div_u64(cache_sectors * dc->writeback_percent, 100); | 
|  |  | 
|  | /* Ensure each backing dev gets at least one dirty share */ | 
|  | if (bdev_share < 1) | 
|  | bdev_share = 1; | 
|  |  | 
|  | return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; | 
|  | } | 
|  |  | 
|  | static void __update_writeback_rate(struct cached_dev *dc) | 
|  | { | 
|  | /* | 
|  | * PI controller: | 
|  | * Figures out the amount that should be written per second. | 
|  | * | 
|  | * First, the error (number of sectors that are dirty beyond our | 
|  | * target) is calculated.  The error is accumulated (numerically | 
|  | * integrated). | 
|  | * | 
|  | * Then, the proportional value and integral value are scaled | 
|  | * based on configured values.  These are stored as inverses to | 
|  | * avoid fixed point math and to make configuration easy-- e.g. | 
|  | * the default value of 40 for writeback_rate_p_term_inverse | 
|  | * attempts to write at a rate that would retire all the dirty | 
|  | * blocks in 40 seconds. | 
|  | * | 
|  | * The writeback_rate_i_inverse value of 10000 means that 1/10000th | 
|  | * of the error is accumulated in the integral term per second. | 
|  | * This acts as a slow, long-term average that is not subject to | 
|  | * variations in usage like the p term. | 
|  | */ | 
|  | int64_t target = __calc_target_rate(dc); | 
|  | int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); | 
|  | int64_t error = dirty - target; | 
|  | int64_t proportional_scaled = | 
|  | div_s64(error, dc->writeback_rate_p_term_inverse); | 
|  | int64_t integral_scaled; | 
|  | uint32_t new_rate; | 
|  |  | 
|  | if ((error < 0 && dc->writeback_rate_integral > 0) || | 
|  | (error > 0 && time_before64(local_clock(), | 
|  | dc->writeback_rate.next + NSEC_PER_MSEC))) { | 
|  | /* | 
|  | * Only decrease the integral term if it's more than | 
|  | * zero.  Only increase the integral term if the device | 
|  | * is keeping up.  (Don't wind up the integral | 
|  | * ineffectively in either case). | 
|  | * | 
|  | * It's necessary to scale this by | 
|  | * writeback_rate_update_seconds to keep the integral | 
|  | * term dimensioned properly. | 
|  | */ | 
|  | dc->writeback_rate_integral += error * | 
|  | dc->writeback_rate_update_seconds; | 
|  | } | 
|  |  | 
|  | integral_scaled = div_s64(dc->writeback_rate_integral, | 
|  | dc->writeback_rate_i_term_inverse); | 
|  |  | 
|  | new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), | 
|  | dc->writeback_rate_minimum, NSEC_PER_SEC); | 
|  |  | 
|  | dc->writeback_rate_proportional = proportional_scaled; | 
|  | dc->writeback_rate_integral_scaled = integral_scaled; | 
|  | dc->writeback_rate_change = new_rate - | 
|  | atomic_long_read(&dc->writeback_rate.rate); | 
|  | atomic_long_set(&dc->writeback_rate.rate, new_rate); | 
|  | dc->writeback_rate_target = target; | 
|  | } | 
|  |  | 
|  | static bool set_at_max_writeback_rate(struct cache_set *c, | 
|  | struct cached_dev *dc) | 
|  | { | 
|  | /* | 
|  | * Idle_counter is increased everytime when update_writeback_rate() is | 
|  | * called. If all backing devices attached to the same cache set have | 
|  | * identical dc->writeback_rate_update_seconds values, it is about 6 | 
|  | * rounds of update_writeback_rate() on each backing device before | 
|  | * c->at_max_writeback_rate is set to 1, and then max wrteback rate set | 
|  | * to each dc->writeback_rate.rate. | 
|  | * In order to avoid extra locking cost for counting exact dirty cached | 
|  | * devices number, c->attached_dev_nr is used to calculate the idle | 
|  | * throushold. It might be bigger if not all cached device are in write- | 
|  | * back mode, but it still works well with limited extra rounds of | 
|  | * update_writeback_rate(). | 
|  | */ | 
|  | if (atomic_inc_return(&c->idle_counter) < | 
|  | atomic_read(&c->attached_dev_nr) * 6) | 
|  | return false; | 
|  |  | 
|  | if (atomic_read(&c->at_max_writeback_rate) != 1) | 
|  | atomic_set(&c->at_max_writeback_rate, 1); | 
|  |  | 
|  | atomic_long_set(&dc->writeback_rate.rate, INT_MAX); | 
|  |  | 
|  | /* keep writeback_rate_target as existing value */ | 
|  | dc->writeback_rate_proportional = 0; | 
|  | dc->writeback_rate_integral_scaled = 0; | 
|  | dc->writeback_rate_change = 0; | 
|  |  | 
|  | /* | 
|  | * Check c->idle_counter and c->at_max_writeback_rate agagain in case | 
|  | * new I/O arrives during before set_at_max_writeback_rate() returns. | 
|  | * Then the writeback rate is set to 1, and its new value should be | 
|  | * decided via __update_writeback_rate(). | 
|  | */ | 
|  | if ((atomic_read(&c->idle_counter) < | 
|  | atomic_read(&c->attached_dev_nr) * 6) || | 
|  | !atomic_read(&c->at_max_writeback_rate)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void update_writeback_rate(struct work_struct *work) | 
|  | { | 
|  | struct cached_dev *dc = container_of(to_delayed_work(work), | 
|  | struct cached_dev, | 
|  | writeback_rate_update); | 
|  | struct cache_set *c = dc->disk.c; | 
|  |  | 
|  | /* | 
|  | * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
|  | * cancel_delayed_work_sync(). | 
|  | */ | 
|  | set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
|  | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
|  | * check it here too. | 
|  | */ | 
|  | if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || | 
|  | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
|  | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
|  | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
|  | smp_mb(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (atomic_read(&dc->has_dirty) && dc->writeback_percent) { | 
|  | /* | 
|  | * If the whole cache set is idle, set_at_max_writeback_rate() | 
|  | * will set writeback rate to a max number. Then it is | 
|  | * unncessary to update writeback rate for an idle cache set | 
|  | * in maximum writeback rate number(s). | 
|  | */ | 
|  | if (!set_at_max_writeback_rate(c, dc)) { | 
|  | down_read(&dc->writeback_lock); | 
|  | __update_writeback_rate(dc); | 
|  | up_read(&dc->writeback_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
|  | * check it here too. | 
|  | */ | 
|  | if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && | 
|  | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
|  | schedule_delayed_work(&dc->writeback_rate_update, | 
|  | dc->writeback_rate_update_seconds * HZ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
|  | * cancel_delayed_work_sync(). | 
|  | */ | 
|  | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
|  | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | static unsigned int writeback_delay(struct cached_dev *dc, | 
|  | unsigned int sectors) | 
|  | { | 
|  | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || | 
|  | !dc->writeback_percent) | 
|  | return 0; | 
|  |  | 
|  | return bch_next_delay(&dc->writeback_rate, sectors); | 
|  | } | 
|  |  | 
|  | struct dirty_io { | 
|  | struct closure		cl; | 
|  | struct cached_dev	*dc; | 
|  | uint16_t		sequence; | 
|  | struct bio		bio; | 
|  | }; | 
|  |  | 
|  | static void dirty_init(struct keybuf_key *w) | 
|  | { | 
|  | struct dirty_io *io = w->private; | 
|  | struct bio *bio = &io->bio; | 
|  |  | 
|  | bio_init(bio, bio->bi_inline_vecs, | 
|  | DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); | 
|  | if (!io->dc->writeback_percent) | 
|  | bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); | 
|  |  | 
|  | bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9; | 
|  | bio->bi_private		= w; | 
|  | bch_bio_map(bio, NULL); | 
|  | } | 
|  |  | 
|  | static void dirty_io_destructor(struct closure *cl) | 
|  | { | 
|  | struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
|  |  | 
|  | kfree(io); | 
|  | } | 
|  |  | 
|  | static void write_dirty_finish(struct closure *cl) | 
|  | { | 
|  | struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
|  | struct keybuf_key *w = io->bio.bi_private; | 
|  | struct cached_dev *dc = io->dc; | 
|  |  | 
|  | bio_free_pages(&io->bio); | 
|  |  | 
|  | /* This is kind of a dumb way of signalling errors. */ | 
|  | if (KEY_DIRTY(&w->key)) { | 
|  | int ret; | 
|  | unsigned int i; | 
|  | struct keylist keys; | 
|  |  | 
|  | bch_keylist_init(&keys); | 
|  |  | 
|  | bkey_copy(keys.top, &w->key); | 
|  | SET_KEY_DIRTY(keys.top, false); | 
|  | bch_keylist_push(&keys); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(&w->key); i++) | 
|  | atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); | 
|  |  | 
|  | ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); | 
|  |  | 
|  | if (ret) | 
|  | trace_bcache_writeback_collision(&w->key); | 
|  |  | 
|  | atomic_long_inc(ret | 
|  | ? &dc->disk.c->writeback_keys_failed | 
|  | : &dc->disk.c->writeback_keys_done); | 
|  | } | 
|  |  | 
|  | bch_keybuf_del(&dc->writeback_keys, w); | 
|  | up(&dc->in_flight); | 
|  |  | 
|  | closure_return_with_destructor(cl, dirty_io_destructor); | 
|  | } | 
|  |  | 
|  | static void dirty_endio(struct bio *bio) | 
|  | { | 
|  | struct keybuf_key *w = bio->bi_private; | 
|  | struct dirty_io *io = w->private; | 
|  |  | 
|  | if (bio->bi_status) { | 
|  | SET_KEY_DIRTY(&w->key, false); | 
|  | bch_count_backing_io_errors(io->dc, bio); | 
|  | } | 
|  |  | 
|  | closure_put(&io->cl); | 
|  | } | 
|  |  | 
|  | static void write_dirty(struct closure *cl) | 
|  | { | 
|  | struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
|  | struct keybuf_key *w = io->bio.bi_private; | 
|  | struct cached_dev *dc = io->dc; | 
|  |  | 
|  | uint16_t next_sequence; | 
|  |  | 
|  | if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { | 
|  | /* Not our turn to write; wait for a write to complete */ | 
|  | closure_wait(&dc->writeback_ordering_wait, cl); | 
|  |  | 
|  | if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { | 
|  | /* | 
|  | * Edge case-- it happened in indeterminate order | 
|  | * relative to when we were added to wait list.. | 
|  | */ | 
|  | closure_wake_up(&dc->writeback_ordering_wait); | 
|  | } | 
|  |  | 
|  | continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | next_sequence = io->sequence + 1; | 
|  |  | 
|  | /* | 
|  | * IO errors are signalled using the dirty bit on the key. | 
|  | * If we failed to read, we should not attempt to write to the | 
|  | * backing device.  Instead, immediately go to write_dirty_finish | 
|  | * to clean up. | 
|  | */ | 
|  | if (KEY_DIRTY(&w->key)) { | 
|  | dirty_init(w); | 
|  | bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); | 
|  | io->bio.bi_iter.bi_sector = KEY_START(&w->key); | 
|  | bio_set_dev(&io->bio, io->dc->bdev); | 
|  | io->bio.bi_end_io	= dirty_endio; | 
|  |  | 
|  | /* I/O request sent to backing device */ | 
|  | closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
|  | } | 
|  |  | 
|  | atomic_set(&dc->writeback_sequence_next, next_sequence); | 
|  | closure_wake_up(&dc->writeback_ordering_wait); | 
|  |  | 
|  | continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); | 
|  | } | 
|  |  | 
|  | static void read_dirty_endio(struct bio *bio) | 
|  | { | 
|  | struct keybuf_key *w = bio->bi_private; | 
|  | struct dirty_io *io = w->private; | 
|  |  | 
|  | /* is_read = 1 */ | 
|  | bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), | 
|  | bio->bi_status, 1, | 
|  | "reading dirty data from cache"); | 
|  |  | 
|  | dirty_endio(bio); | 
|  | } | 
|  |  | 
|  | static void read_dirty_submit(struct closure *cl) | 
|  | { | 
|  | struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
|  |  | 
|  | closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
|  |  | 
|  | continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
|  | } | 
|  |  | 
|  | static void read_dirty(struct cached_dev *dc) | 
|  | { | 
|  | unsigned int delay = 0; | 
|  | struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; | 
|  | size_t size; | 
|  | int nk, i; | 
|  | struct dirty_io *io; | 
|  | struct closure cl; | 
|  | uint16_t sequence = 0; | 
|  |  | 
|  | BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); | 
|  | atomic_set(&dc->writeback_sequence_next, sequence); | 
|  | closure_init_stack(&cl); | 
|  |  | 
|  | /* | 
|  | * XXX: if we error, background writeback just spins. Should use some | 
|  | * mempools. | 
|  | */ | 
|  |  | 
|  | next = bch_keybuf_next(&dc->writeback_keys); | 
|  |  | 
|  | while (!kthread_should_stop() && | 
|  | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
|  | next) { | 
|  | size = 0; | 
|  | nk = 0; | 
|  |  | 
|  | do { | 
|  | BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); | 
|  |  | 
|  | /* | 
|  | * Don't combine too many operations, even if they | 
|  | * are all small. | 
|  | */ | 
|  | if (nk >= MAX_WRITEBACKS_IN_PASS) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If the current operation is very large, don't | 
|  | * further combine operations. | 
|  | */ | 
|  | if (size >= MAX_WRITESIZE_IN_PASS) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Operations are only eligible to be combined | 
|  | * if they are contiguous. | 
|  | * | 
|  | * TODO: add a heuristic willing to fire a | 
|  | * certain amount of non-contiguous IO per pass, | 
|  | * so that we can benefit from backing device | 
|  | * command queueing. | 
|  | */ | 
|  | if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, | 
|  | &START_KEY(&next->key))) | 
|  | break; | 
|  |  | 
|  | size += KEY_SIZE(&next->key); | 
|  | keys[nk++] = next; | 
|  | } while ((next = bch_keybuf_next(&dc->writeback_keys))); | 
|  |  | 
|  | /* Now we have gathered a set of 1..5 keys to write back. */ | 
|  | for (i = 0; i < nk; i++) { | 
|  | w = keys[i]; | 
|  |  | 
|  | io = kzalloc(sizeof(struct dirty_io) + | 
|  | sizeof(struct bio_vec) * | 
|  | DIV_ROUND_UP(KEY_SIZE(&w->key), | 
|  | PAGE_SECTORS), | 
|  | GFP_KERNEL); | 
|  | if (!io) | 
|  | goto err; | 
|  |  | 
|  | w->private	= io; | 
|  | io->dc		= dc; | 
|  | io->sequence    = sequence++; | 
|  |  | 
|  | dirty_init(w); | 
|  | bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); | 
|  | io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); | 
|  | bio_set_dev(&io->bio, | 
|  | PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); | 
|  | io->bio.bi_end_io	= read_dirty_endio; | 
|  |  | 
|  | if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) | 
|  | goto err_free; | 
|  |  | 
|  | trace_bcache_writeback(&w->key); | 
|  |  | 
|  | down(&dc->in_flight); | 
|  |  | 
|  | /* | 
|  | * We've acquired a semaphore for the maximum | 
|  | * simultaneous number of writebacks; from here | 
|  | * everything happens asynchronously. | 
|  | */ | 
|  | closure_call(&io->cl, read_dirty_submit, NULL, &cl); | 
|  | } | 
|  |  | 
|  | delay = writeback_delay(dc, size); | 
|  |  | 
|  | while (!kthread_should_stop() && | 
|  | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
|  | delay) { | 
|  | schedule_timeout_interruptible(delay); | 
|  | delay = writeback_delay(dc, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (0) { | 
|  | err_free: | 
|  | kfree(w->private); | 
|  | err: | 
|  | bch_keybuf_del(&dc->writeback_keys, w); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for outstanding writeback IOs to finish (and keybuf slots to be | 
|  | * freed) before refilling again | 
|  | */ | 
|  | closure_sync(&cl); | 
|  | } | 
|  |  | 
|  | /* Scan for dirty data */ | 
|  |  | 
|  | void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, | 
|  | uint64_t offset, int nr_sectors) | 
|  | { | 
|  | struct bcache_device *d = c->devices[inode]; | 
|  | unsigned int stripe_offset, stripe, sectors_dirty; | 
|  |  | 
|  | if (!d) | 
|  | return; | 
|  |  | 
|  | if (UUID_FLASH_ONLY(&c->uuids[inode])) | 
|  | atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); | 
|  |  | 
|  | stripe = offset_to_stripe(d, offset); | 
|  | stripe_offset = offset & (d->stripe_size - 1); | 
|  |  | 
|  | while (nr_sectors) { | 
|  | int s = min_t(unsigned int, abs(nr_sectors), | 
|  | d->stripe_size - stripe_offset); | 
|  |  | 
|  | if (nr_sectors < 0) | 
|  | s = -s; | 
|  |  | 
|  | if (stripe >= d->nr_stripes) | 
|  | return; | 
|  |  | 
|  | sectors_dirty = atomic_add_return(s, | 
|  | d->stripe_sectors_dirty + stripe); | 
|  | if (sectors_dirty == d->stripe_size) | 
|  | set_bit(stripe, d->full_dirty_stripes); | 
|  | else | 
|  | clear_bit(stripe, d->full_dirty_stripes); | 
|  |  | 
|  | nr_sectors -= s; | 
|  | stripe_offset = 0; | 
|  | stripe++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool dirty_pred(struct keybuf *buf, struct bkey *k) | 
|  | { | 
|  | struct cached_dev *dc = container_of(buf, | 
|  | struct cached_dev, | 
|  | writeback_keys); | 
|  |  | 
|  | BUG_ON(KEY_INODE(k) != dc->disk.id); | 
|  |  | 
|  | return KEY_DIRTY(k); | 
|  | } | 
|  |  | 
|  | static void refill_full_stripes(struct cached_dev *dc) | 
|  | { | 
|  | struct keybuf *buf = &dc->writeback_keys; | 
|  | unsigned int start_stripe, stripe, next_stripe; | 
|  | bool wrapped = false; | 
|  |  | 
|  | stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); | 
|  |  | 
|  | if (stripe >= dc->disk.nr_stripes) | 
|  | stripe = 0; | 
|  |  | 
|  | start_stripe = stripe; | 
|  |  | 
|  | while (1) { | 
|  | stripe = find_next_bit(dc->disk.full_dirty_stripes, | 
|  | dc->disk.nr_stripes, stripe); | 
|  |  | 
|  | if (stripe == dc->disk.nr_stripes) | 
|  | goto next; | 
|  |  | 
|  | next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, | 
|  | dc->disk.nr_stripes, stripe); | 
|  |  | 
|  | buf->last_scanned = KEY(dc->disk.id, | 
|  | stripe * dc->disk.stripe_size, 0); | 
|  |  | 
|  | bch_refill_keybuf(dc->disk.c, buf, | 
|  | &KEY(dc->disk.id, | 
|  | next_stripe * dc->disk.stripe_size, 0), | 
|  | dirty_pred); | 
|  |  | 
|  | if (array_freelist_empty(&buf->freelist)) | 
|  | return; | 
|  |  | 
|  | stripe = next_stripe; | 
|  | next: | 
|  | if (wrapped && stripe > start_stripe) | 
|  | return; | 
|  |  | 
|  | if (stripe == dc->disk.nr_stripes) { | 
|  | stripe = 0; | 
|  | wrapped = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if we scanned the entire disk | 
|  | */ | 
|  | static bool refill_dirty(struct cached_dev *dc) | 
|  | { | 
|  | struct keybuf *buf = &dc->writeback_keys; | 
|  | struct bkey start = KEY(dc->disk.id, 0, 0); | 
|  | struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); | 
|  | struct bkey start_pos; | 
|  |  | 
|  | /* | 
|  | * make sure keybuf pos is inside the range for this disk - at bringup | 
|  | * we might not be attached yet so this disk's inode nr isn't | 
|  | * initialized then | 
|  | */ | 
|  | if (bkey_cmp(&buf->last_scanned, &start) < 0 || | 
|  | bkey_cmp(&buf->last_scanned, &end) > 0) | 
|  | buf->last_scanned = start; | 
|  |  | 
|  | if (dc->partial_stripes_expensive) { | 
|  | refill_full_stripes(dc); | 
|  | if (array_freelist_empty(&buf->freelist)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | start_pos = buf->last_scanned; | 
|  | bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); | 
|  |  | 
|  | if (bkey_cmp(&buf->last_scanned, &end) < 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * If we get to the end start scanning again from the beginning, and | 
|  | * only scan up to where we initially started scanning from: | 
|  | */ | 
|  | buf->last_scanned = start; | 
|  | bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); | 
|  |  | 
|  | return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; | 
|  | } | 
|  |  | 
|  | static int bch_writeback_thread(void *arg) | 
|  | { | 
|  | struct cached_dev *dc = arg; | 
|  | struct cache_set *c = dc->disk.c; | 
|  | bool searched_full_index; | 
|  |  | 
|  | bch_ratelimit_reset(&dc->writeback_rate); | 
|  |  | 
|  | while (!kthread_should_stop() && | 
|  | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
|  | down_write(&dc->writeback_lock); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | /* | 
|  | * If the bache device is detaching, skip here and continue | 
|  | * to perform writeback. Otherwise, if no dirty data on cache, | 
|  | * or there is dirty data on cache but writeback is disabled, | 
|  | * the writeback thread should sleep here and wait for others | 
|  | * to wake up it. | 
|  | */ | 
|  | if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && | 
|  | (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { | 
|  | up_write(&dc->writeback_lock); | 
|  |  | 
|  | if (kthread_should_stop() || | 
|  | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
|  | set_current_state(TASK_RUNNING); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule(); | 
|  | continue; | 
|  | } | 
|  | set_current_state(TASK_RUNNING); | 
|  |  | 
|  | searched_full_index = refill_dirty(dc); | 
|  |  | 
|  | if (searched_full_index && | 
|  | RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { | 
|  | atomic_set(&dc->has_dirty, 0); | 
|  | SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); | 
|  | bch_write_bdev_super(dc, NULL); | 
|  | /* | 
|  | * If bcache device is detaching via sysfs interface, | 
|  | * writeback thread should stop after there is no dirty | 
|  | * data on cache. BCACHE_DEV_DETACHING flag is set in | 
|  | * bch_cached_dev_detach(). | 
|  | */ | 
|  | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { | 
|  | up_write(&dc->writeback_lock); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_write(&dc->writeback_lock); | 
|  |  | 
|  | read_dirty(dc); | 
|  |  | 
|  | if (searched_full_index) { | 
|  | unsigned int delay = dc->writeback_delay * HZ; | 
|  |  | 
|  | while (delay && | 
|  | !kthread_should_stop() && | 
|  | !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && | 
|  | !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) | 
|  | delay = schedule_timeout_interruptible(delay); | 
|  |  | 
|  | bch_ratelimit_reset(&dc->writeback_rate); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dc->writeback_write_wq) { | 
|  | flush_workqueue(dc->writeback_write_wq); | 
|  | destroy_workqueue(dc->writeback_write_wq); | 
|  | } | 
|  | cached_dev_put(dc); | 
|  | wait_for_kthread_stop(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Init */ | 
|  | #define INIT_KEYS_EACH_TIME	500000 | 
|  | #define INIT_KEYS_SLEEP_MS	100 | 
|  |  | 
|  | struct sectors_dirty_init { | 
|  | struct btree_op	op; | 
|  | unsigned int	inode; | 
|  | size_t		count; | 
|  | struct bkey	start; | 
|  | }; | 
|  |  | 
|  | static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, | 
|  | struct bkey *k) | 
|  | { | 
|  | struct sectors_dirty_init *op = container_of(_op, | 
|  | struct sectors_dirty_init, op); | 
|  | if (KEY_INODE(k) > op->inode) | 
|  | return MAP_DONE; | 
|  |  | 
|  | if (KEY_DIRTY(k)) | 
|  | bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), | 
|  | KEY_START(k), KEY_SIZE(k)); | 
|  |  | 
|  | op->count++; | 
|  | if (atomic_read(&b->c->search_inflight) && | 
|  | !(op->count % INIT_KEYS_EACH_TIME)) { | 
|  | bkey_copy_key(&op->start, k); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return MAP_CONTINUE; | 
|  | } | 
|  |  | 
|  | void bch_sectors_dirty_init(struct bcache_device *d) | 
|  | { | 
|  | struct sectors_dirty_init op; | 
|  | int ret; | 
|  |  | 
|  | bch_btree_op_init(&op.op, -1); | 
|  | op.inode = d->id; | 
|  | op.count = 0; | 
|  | op.start = KEY(op.inode, 0, 0); | 
|  |  | 
|  | do { | 
|  | ret = bch_btree_map_keys(&op.op, d->c, &op.start, | 
|  | sectors_dirty_init_fn, 0); | 
|  | if (ret == -EAGAIN) | 
|  | schedule_timeout_interruptible( | 
|  | msecs_to_jiffies(INIT_KEYS_SLEEP_MS)); | 
|  | else if (ret < 0) { | 
|  | pr_warn("sectors dirty init failed, ret=%d!", ret); | 
|  | break; | 
|  | } | 
|  | } while (ret == -EAGAIN); | 
|  | } | 
|  |  | 
|  | void bch_cached_dev_writeback_init(struct cached_dev *dc) | 
|  | { | 
|  | sema_init(&dc->in_flight, 64); | 
|  | init_rwsem(&dc->writeback_lock); | 
|  | bch_keybuf_init(&dc->writeback_keys); | 
|  |  | 
|  | dc->writeback_metadata		= true; | 
|  | dc->writeback_running		= false; | 
|  | dc->writeback_percent		= 10; | 
|  | dc->writeback_delay		= 30; | 
|  | atomic_long_set(&dc->writeback_rate.rate, 1024); | 
|  | dc->writeback_rate_minimum	= 8; | 
|  |  | 
|  | dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; | 
|  | dc->writeback_rate_p_term_inverse = 40; | 
|  | dc->writeback_rate_i_term_inverse = 10000; | 
|  |  | 
|  | WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
|  | INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); | 
|  | } | 
|  |  | 
|  | int bch_cached_dev_writeback_start(struct cached_dev *dc) | 
|  | { | 
|  | dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", | 
|  | WQ_MEM_RECLAIM, 0); | 
|  | if (!dc->writeback_write_wq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cached_dev_get(dc); | 
|  | dc->writeback_thread = kthread_create(bch_writeback_thread, dc, | 
|  | "bcache_writeback"); | 
|  | if (IS_ERR(dc->writeback_thread)) { | 
|  | cached_dev_put(dc); | 
|  | destroy_workqueue(dc->writeback_write_wq); | 
|  | return PTR_ERR(dc->writeback_thread); | 
|  | } | 
|  | dc->writeback_running = true; | 
|  |  | 
|  | WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
|  | schedule_delayed_work(&dc->writeback_rate_update, | 
|  | dc->writeback_rate_update_seconds * HZ); | 
|  |  | 
|  | bch_writeback_queue(dc); | 
|  |  | 
|  | return 0; | 
|  | } |