| // SPDX-License-Identifier: GPL-2.0 | 
 | // rc-main.c - Remote Controller core module | 
 | // | 
 | // Copyright (C) 2009-2010 by Mauro Carvalho Chehab | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <media/rc-core.h> | 
 | #include <linux/bsearch.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/input.h> | 
 | #include <linux/leds.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/device.h> | 
 | #include <linux/module.h> | 
 | #include "rc-core-priv.h" | 
 |  | 
 | /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ | 
 | #define IR_TAB_MIN_SIZE	256 | 
 | #define IR_TAB_MAX_SIZE	8192 | 
 |  | 
 | static const struct { | 
 | 	const char *name; | 
 | 	unsigned int repeat_period; | 
 | 	unsigned int scancode_bits; | 
 | } protocols[] = { | 
 | 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, | 
 | 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, | 
 | 	[RC_PROTO_RC5] = { .name = "rc-5", | 
 | 		.scancode_bits = 0x1f7f, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20", | 
 | 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", | 
 | 		.scancode_bits = 0x2fff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_JVC] = { .name = "jvc", | 
 | 		.scancode_bits = 0xffff, .repeat_period = 125 }, | 
 | 	[RC_PROTO_SONY12] = { .name = "sony-12", | 
 | 		.scancode_bits = 0x1f007f, .repeat_period = 100 }, | 
 | 	[RC_PROTO_SONY15] = { .name = "sony-15", | 
 | 		.scancode_bits = 0xff007f, .repeat_period = 100 }, | 
 | 	[RC_PROTO_SONY20] = { .name = "sony-20", | 
 | 		.scancode_bits = 0x1fff7f, .repeat_period = 100 }, | 
 | 	[RC_PROTO_NEC] = { .name = "nec", | 
 | 		.scancode_bits = 0xffff, .repeat_period = 110 }, | 
 | 	[RC_PROTO_NECX] = { .name = "nec-x", | 
 | 		.scancode_bits = 0xffffff, .repeat_period = 110 }, | 
 | 	[RC_PROTO_NEC32] = { .name = "nec-32", | 
 | 		.scancode_bits = 0xffffffff, .repeat_period = 110 }, | 
 | 	[RC_PROTO_SANYO] = { .name = "sanyo", | 
 | 		.scancode_bits = 0x1fffff, .repeat_period = 125 }, | 
 | 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", | 
 | 		.scancode_bits = 0xffffff, .repeat_period = 100 }, | 
 | 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", | 
 | 		.scancode_bits = 0x1fffff, .repeat_period = 100 }, | 
 | 	[RC_PROTO_RC6_0] = { .name = "rc-6-0", | 
 | 		.scancode_bits = 0xffff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", | 
 | 		.scancode_bits = 0xfffff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", | 
 | 		.scancode_bits = 0xffffff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", | 
 | 		.scancode_bits = 0xffffffff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", | 
 | 		.scancode_bits = 0xffff7fff, .repeat_period = 114 }, | 
 | 	[RC_PROTO_SHARP] = { .name = "sharp", | 
 | 		.scancode_bits = 0x1fff, .repeat_period = 125 }, | 
 | 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, | 
 | 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, | 
 | 	[RC_PROTO_IMON] = { .name = "imon", | 
 | 		.scancode_bits = 0x7fffffff, .repeat_period = 114 }, | 
 | }; | 
 |  | 
 | /* Used to keep track of known keymaps */ | 
 | static LIST_HEAD(rc_map_list); | 
 | static DEFINE_SPINLOCK(rc_map_lock); | 
 | static struct led_trigger *led_feedback; | 
 |  | 
 | /* Used to keep track of rc devices */ | 
 | static DEFINE_IDA(rc_ida); | 
 |  | 
 | static struct rc_map_list *seek_rc_map(const char *name) | 
 | { | 
 | 	struct rc_map_list *map = NULL; | 
 |  | 
 | 	spin_lock(&rc_map_lock); | 
 | 	list_for_each_entry(map, &rc_map_list, list) { | 
 | 		if (!strcmp(name, map->map.name)) { | 
 | 			spin_unlock(&rc_map_lock); | 
 | 			return map; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&rc_map_lock); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct rc_map *rc_map_get(const char *name) | 
 | { | 
 |  | 
 | 	struct rc_map_list *map; | 
 |  | 
 | 	map = seek_rc_map(name); | 
 | #ifdef CONFIG_MODULES | 
 | 	if (!map) { | 
 | 		int rc = request_module("%s", name); | 
 | 		if (rc < 0) { | 
 | 			pr_err("Couldn't load IR keymap %s\n", name); | 
 | 			return NULL; | 
 | 		} | 
 | 		msleep(20);	/* Give some time for IR to register */ | 
 |  | 
 | 		map = seek_rc_map(name); | 
 | 	} | 
 | #endif | 
 | 	if (!map) { | 
 | 		pr_err("IR keymap %s not found\n", name); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); | 
 |  | 
 | 	return &map->map; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_map_get); | 
 |  | 
 | int rc_map_register(struct rc_map_list *map) | 
 | { | 
 | 	spin_lock(&rc_map_lock); | 
 | 	list_add_tail(&map->list, &rc_map_list); | 
 | 	spin_unlock(&rc_map_lock); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_map_register); | 
 |  | 
 | void rc_map_unregister(struct rc_map_list *map) | 
 | { | 
 | 	spin_lock(&rc_map_lock); | 
 | 	list_del(&map->list); | 
 | 	spin_unlock(&rc_map_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_map_unregister); | 
 |  | 
 |  | 
 | static struct rc_map_table empty[] = { | 
 | 	{ 0x2a, KEY_COFFEE }, | 
 | }; | 
 |  | 
 | static struct rc_map_list empty_map = { | 
 | 	.map = { | 
 | 		.scan     = empty, | 
 | 		.size     = ARRAY_SIZE(empty), | 
 | 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */ | 
 | 		.name     = RC_MAP_EMPTY, | 
 | 	} | 
 | }; | 
 |  | 
 | /** | 
 |  * ir_create_table() - initializes a scancode table | 
 |  * @dev:	the rc_dev device | 
 |  * @rc_map:	the rc_map to initialize | 
 |  * @name:	name to assign to the table | 
 |  * @rc_proto:	ir type to assign to the new table | 
 |  * @size:	initial size of the table | 
 |  * | 
 |  * This routine will initialize the rc_map and will allocate | 
 |  * memory to hold at least the specified number of elements. | 
 |  * | 
 |  * return:	zero on success or a negative error code | 
 |  */ | 
 | static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, | 
 | 			   const char *name, u64 rc_proto, size_t size) | 
 | { | 
 | 	rc_map->name = kstrdup(name, GFP_KERNEL); | 
 | 	if (!rc_map->name) | 
 | 		return -ENOMEM; | 
 | 	rc_map->rc_proto = rc_proto; | 
 | 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); | 
 | 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); | 
 | 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); | 
 | 	if (!rc_map->scan) { | 
 | 		kfree(rc_map->name); | 
 | 		rc_map->name = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", | 
 | 		rc_map->size, rc_map->alloc); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_free_table() - frees memory allocated by a scancode table | 
 |  * @rc_map:	the table whose mappings need to be freed | 
 |  * | 
 |  * This routine will free memory alloctaed for key mappings used by given | 
 |  * scancode table. | 
 |  */ | 
 | static void ir_free_table(struct rc_map *rc_map) | 
 | { | 
 | 	rc_map->size = 0; | 
 | 	kfree(rc_map->name); | 
 | 	rc_map->name = NULL; | 
 | 	kfree(rc_map->scan); | 
 | 	rc_map->scan = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_resize_table() - resizes a scancode table if necessary | 
 |  * @dev:	the rc_dev device | 
 |  * @rc_map:	the rc_map to resize | 
 |  * @gfp_flags:	gfp flags to use when allocating memory | 
 |  * | 
 |  * This routine will shrink the rc_map if it has lots of | 
 |  * unused entries and grow it if it is full. | 
 |  * | 
 |  * return:	zero on success or a negative error code | 
 |  */ | 
 | static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, | 
 | 			   gfp_t gfp_flags) | 
 | { | 
 | 	unsigned int oldalloc = rc_map->alloc; | 
 | 	unsigned int newalloc = oldalloc; | 
 | 	struct rc_map_table *oldscan = rc_map->scan; | 
 | 	struct rc_map_table *newscan; | 
 |  | 
 | 	if (rc_map->size == rc_map->len) { | 
 | 		/* All entries in use -> grow keytable */ | 
 | 		if (rc_map->alloc >= IR_TAB_MAX_SIZE) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		newalloc *= 2; | 
 | 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); | 
 | 	} | 
 |  | 
 | 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { | 
 | 		/* Less than 1/3 of entries in use -> shrink keytable */ | 
 | 		newalloc /= 2; | 
 | 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); | 
 | 	} | 
 |  | 
 | 	if (newalloc == oldalloc) | 
 | 		return 0; | 
 |  | 
 | 	newscan = kmalloc(newalloc, gfp_flags); | 
 | 	if (!newscan) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); | 
 | 	rc_map->scan = newscan; | 
 | 	rc_map->alloc = newalloc; | 
 | 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); | 
 | 	kfree(oldscan); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_update_mapping() - set a keycode in the scancode->keycode table | 
 |  * @dev:	the struct rc_dev device descriptor | 
 |  * @rc_map:	scancode table to be adjusted | 
 |  * @index:	index of the mapping that needs to be updated | 
 |  * @new_keycode: the desired keycode | 
 |  * | 
 |  * This routine is used to update scancode->keycode mapping at given | 
 |  * position. | 
 |  * | 
 |  * return:	previous keycode assigned to the mapping | 
 |  * | 
 |  */ | 
 | static unsigned int ir_update_mapping(struct rc_dev *dev, | 
 | 				      struct rc_map *rc_map, | 
 | 				      unsigned int index, | 
 | 				      unsigned int new_keycode) | 
 | { | 
 | 	int old_keycode = rc_map->scan[index].keycode; | 
 | 	int i; | 
 |  | 
 | 	/* Did the user wish to remove the mapping? */ | 
 | 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { | 
 | 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", | 
 | 			index, rc_map->scan[index].scancode); | 
 | 		rc_map->len--; | 
 | 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], | 
 | 			(rc_map->len - index) * sizeof(struct rc_map_table)); | 
 | 	} else { | 
 | 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", | 
 | 			index, | 
 | 			old_keycode == KEY_RESERVED ? "New" : "Replacing", | 
 | 			rc_map->scan[index].scancode, new_keycode); | 
 | 		rc_map->scan[index].keycode = new_keycode; | 
 | 		__set_bit(new_keycode, dev->input_dev->keybit); | 
 | 	} | 
 |  | 
 | 	if (old_keycode != KEY_RESERVED) { | 
 | 		/* A previous mapping was updated... */ | 
 | 		__clear_bit(old_keycode, dev->input_dev->keybit); | 
 | 		/* ... but another scancode might use the same keycode */ | 
 | 		for (i = 0; i < rc_map->len; i++) { | 
 | 			if (rc_map->scan[i].keycode == old_keycode) { | 
 | 				__set_bit(old_keycode, dev->input_dev->keybit); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Possibly shrink the keytable, failure is not a problem */ | 
 | 		ir_resize_table(dev, rc_map, GFP_ATOMIC); | 
 | 	} | 
 |  | 
 | 	return old_keycode; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_establish_scancode() - set a keycode in the scancode->keycode table | 
 |  * @dev:	the struct rc_dev device descriptor | 
 |  * @rc_map:	scancode table to be searched | 
 |  * @scancode:	the desired scancode | 
 |  * @resize:	controls whether we allowed to resize the table to | 
 |  *		accommodate not yet present scancodes | 
 |  * | 
 |  * This routine is used to locate given scancode in rc_map. | 
 |  * If scancode is not yet present the routine will allocate a new slot | 
 |  * for it. | 
 |  * | 
 |  * return:	index of the mapping containing scancode in question | 
 |  *		or -1U in case of failure. | 
 |  */ | 
 | static unsigned int ir_establish_scancode(struct rc_dev *dev, | 
 | 					  struct rc_map *rc_map, | 
 | 					  unsigned int scancode, | 
 | 					  bool resize) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Unfortunately, some hardware-based IR decoders don't provide | 
 | 	 * all bits for the complete IR code. In general, they provide only | 
 | 	 * the command part of the IR code. Yet, as it is possible to replace | 
 | 	 * the provided IR with another one, it is needed to allow loading | 
 | 	 * IR tables from other remotes. So, we support specifying a mask to | 
 | 	 * indicate the valid bits of the scancodes. | 
 | 	 */ | 
 | 	if (dev->scancode_mask) | 
 | 		scancode &= dev->scancode_mask; | 
 |  | 
 | 	/* First check if we already have a mapping for this ir command */ | 
 | 	for (i = 0; i < rc_map->len; i++) { | 
 | 		if (rc_map->scan[i].scancode == scancode) | 
 | 			return i; | 
 |  | 
 | 		/* Keytable is sorted from lowest to highest scancode */ | 
 | 		if (rc_map->scan[i].scancode >= scancode) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* No previous mapping found, we might need to grow the table */ | 
 | 	if (rc_map->size == rc_map->len) { | 
 | 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) | 
 | 			return -1U; | 
 | 	} | 
 |  | 
 | 	/* i is the proper index to insert our new keycode */ | 
 | 	if (i < rc_map->len) | 
 | 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i], | 
 | 			(rc_map->len - i) * sizeof(struct rc_map_table)); | 
 | 	rc_map->scan[i].scancode = scancode; | 
 | 	rc_map->scan[i].keycode = KEY_RESERVED; | 
 | 	rc_map->len++; | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_setkeycode() - set a keycode in the scancode->keycode table | 
 |  * @idev:	the struct input_dev device descriptor | 
 |  * @ke:		Input keymap entry | 
 |  * @old_keycode: result | 
 |  * | 
 |  * This routine is used to handle evdev EVIOCSKEY ioctl. | 
 |  * | 
 |  * return:	-EINVAL if the keycode could not be inserted, otherwise zero. | 
 |  */ | 
 | static int ir_setkeycode(struct input_dev *idev, | 
 | 			 const struct input_keymap_entry *ke, | 
 | 			 unsigned int *old_keycode) | 
 | { | 
 | 	struct rc_dev *rdev = input_get_drvdata(idev); | 
 | 	struct rc_map *rc_map = &rdev->rc_map; | 
 | 	unsigned int index; | 
 | 	unsigned int scancode; | 
 | 	int retval = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rc_map->lock, flags); | 
 |  | 
 | 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) { | 
 | 		index = ke->index; | 
 | 		if (index >= rc_map->len) { | 
 | 			retval = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		retval = input_scancode_to_scalar(ke, &scancode); | 
 | 		if (retval) | 
 | 			goto out; | 
 |  | 
 | 		index = ir_establish_scancode(rdev, rc_map, scancode, true); | 
 | 		if (index >= rc_map->len) { | 
 | 			retval = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&rc_map->lock, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_setkeytable() - sets several entries in the scancode->keycode table | 
 |  * @dev:	the struct rc_dev device descriptor | 
 |  * @from:	the struct rc_map to copy entries from | 
 |  * | 
 |  * This routine is used to handle table initialization. | 
 |  * | 
 |  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero. | 
 |  */ | 
 | static int ir_setkeytable(struct rc_dev *dev, | 
 | 			  const struct rc_map *from) | 
 | { | 
 | 	struct rc_map *rc_map = &dev->rc_map; | 
 | 	unsigned int i, index; | 
 | 	int rc; | 
 |  | 
 | 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, | 
 | 			     from->size); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for (i = 0; i < from->size; i++) { | 
 | 		index = ir_establish_scancode(dev, rc_map, | 
 | 					      from->scan[i].scancode, false); | 
 | 		if (index >= rc_map->len) { | 
 | 			rc = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ir_update_mapping(dev, rc_map, index, | 
 | 				  from->scan[i].keycode); | 
 | 	} | 
 |  | 
 | 	if (rc) | 
 | 		ir_free_table(rc_map); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int rc_map_cmp(const void *key, const void *elt) | 
 | { | 
 | 	const unsigned int *scancode = key; | 
 | 	const struct rc_map_table *e = elt; | 
 |  | 
 | 	if (*scancode < e->scancode) | 
 | 		return -1; | 
 | 	else if (*scancode > e->scancode) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_lookup_by_scancode() - locate mapping by scancode | 
 |  * @rc_map:	the struct rc_map to search | 
 |  * @scancode:	scancode to look for in the table | 
 |  * | 
 |  * This routine performs binary search in RC keykeymap table for | 
 |  * given scancode. | 
 |  * | 
 |  * return:	index in the table, -1U if not found | 
 |  */ | 
 | static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, | 
 | 					  unsigned int scancode) | 
 | { | 
 | 	struct rc_map_table *res; | 
 |  | 
 | 	res = bsearch(&scancode, rc_map->scan, rc_map->len, | 
 | 		      sizeof(struct rc_map_table), rc_map_cmp); | 
 | 	if (!res) | 
 | 		return -1U; | 
 | 	else | 
 | 		return res - rc_map->scan; | 
 | } | 
 |  | 
 | /** | 
 |  * ir_getkeycode() - get a keycode from the scancode->keycode table | 
 |  * @idev:	the struct input_dev device descriptor | 
 |  * @ke:		Input keymap entry | 
 |  * | 
 |  * This routine is used to handle evdev EVIOCGKEY ioctl. | 
 |  * | 
 |  * return:	always returns zero. | 
 |  */ | 
 | static int ir_getkeycode(struct input_dev *idev, | 
 | 			 struct input_keymap_entry *ke) | 
 | { | 
 | 	struct rc_dev *rdev = input_get_drvdata(idev); | 
 | 	struct rc_map *rc_map = &rdev->rc_map; | 
 | 	struct rc_map_table *entry; | 
 | 	unsigned long flags; | 
 | 	unsigned int index; | 
 | 	unsigned int scancode; | 
 | 	int retval; | 
 |  | 
 | 	spin_lock_irqsave(&rc_map->lock, flags); | 
 |  | 
 | 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) { | 
 | 		index = ke->index; | 
 | 	} else { | 
 | 		retval = input_scancode_to_scalar(ke, &scancode); | 
 | 		if (retval) | 
 | 			goto out; | 
 |  | 
 | 		index = ir_lookup_by_scancode(rc_map, scancode); | 
 | 	} | 
 |  | 
 | 	if (index < rc_map->len) { | 
 | 		entry = &rc_map->scan[index]; | 
 |  | 
 | 		ke->index = index; | 
 | 		ke->keycode = entry->keycode; | 
 | 		ke->len = sizeof(entry->scancode); | 
 | 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); | 
 |  | 
 | 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { | 
 | 		/* | 
 | 		 * We do not really know the valid range of scancodes | 
 | 		 * so let's respond with KEY_RESERVED to anything we | 
 | 		 * do not have mapping for [yet]. | 
 | 		 */ | 
 | 		ke->index = index; | 
 | 		ke->keycode = KEY_RESERVED; | 
 | 	} else { | 
 | 		retval = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	retval = 0; | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&rc_map->lock, flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @scancode:	the scancode to look for | 
 |  * | 
 |  * This routine is used by drivers which need to convert a scancode to a | 
 |  * keycode. Normally it should not be used since drivers should have no | 
 |  * interest in keycodes. | 
 |  * | 
 |  * return:	the corresponding keycode, or KEY_RESERVED | 
 |  */ | 
 | u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) | 
 | { | 
 | 	struct rc_map *rc_map = &dev->rc_map; | 
 | 	unsigned int keycode; | 
 | 	unsigned int index; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rc_map->lock, flags); | 
 |  | 
 | 	index = ir_lookup_by_scancode(rc_map, scancode); | 
 | 	keycode = index < rc_map->len ? | 
 | 			rc_map->scan[index].keycode : KEY_RESERVED; | 
 |  | 
 | 	spin_unlock_irqrestore(&rc_map->lock, flags); | 
 |  | 
 | 	if (keycode != KEY_RESERVED) | 
 | 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", | 
 | 			dev->device_name, scancode, keycode); | 
 |  | 
 | 	return keycode; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); | 
 |  | 
 | /** | 
 |  * ir_do_keyup() - internal function to signal the release of a keypress | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @sync:	whether or not to call input_sync | 
 |  * | 
 |  * This function is used internally to release a keypress, it must be | 
 |  * called with keylock held. | 
 |  */ | 
 | static void ir_do_keyup(struct rc_dev *dev, bool sync) | 
 | { | 
 | 	if (!dev->keypressed) | 
 | 		return; | 
 |  | 
 | 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); | 
 | 	del_timer(&dev->timer_repeat); | 
 | 	input_report_key(dev->input_dev, dev->last_keycode, 0); | 
 | 	led_trigger_event(led_feedback, LED_OFF); | 
 | 	if (sync) | 
 | 		input_sync(dev->input_dev); | 
 | 	dev->keypressed = false; | 
 | } | 
 |  | 
 | /** | 
 |  * rc_keyup() - signals the release of a keypress | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * | 
 |  * This routine is used to signal that a key has been released on the | 
 |  * remote control. | 
 |  */ | 
 | void rc_keyup(struct rc_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 | 	ir_do_keyup(dev, true); | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_keyup); | 
 |  | 
 | /** | 
 |  * ir_timer_keyup() - generates a keyup event after a timeout | 
 |  * | 
 |  * @t:		a pointer to the struct timer_list | 
 |  * | 
 |  * This routine will generate a keyup event some time after a keydown event | 
 |  * is generated when no further activity has been detected. | 
 |  */ | 
 | static void ir_timer_keyup(struct timer_list *t) | 
 | { | 
 | 	struct rc_dev *dev = from_timer(dev, t, timer_keyup); | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * ir->keyup_jiffies is used to prevent a race condition if a | 
 | 	 * hardware interrupt occurs at this point and the keyup timer | 
 | 	 * event is moved further into the future as a result. | 
 | 	 * | 
 | 	 * The timer will then be reactivated and this function called | 
 | 	 * again in the future. We need to exit gracefully in that case | 
 | 	 * to allow the input subsystem to do its auto-repeat magic or | 
 | 	 * a keyup event might follow immediately after the keydown. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 | 	if (time_is_before_eq_jiffies(dev->keyup_jiffies)) | 
 | 		ir_do_keyup(dev, true); | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * ir_timer_repeat() - generates a repeat event after a timeout | 
 |  * | 
 |  * @t:		a pointer to the struct timer_list | 
 |  * | 
 |  * This routine will generate a soft repeat event every REP_PERIOD | 
 |  * milliseconds. | 
 |  */ | 
 | static void ir_timer_repeat(struct timer_list *t) | 
 | { | 
 | 	struct rc_dev *dev = from_timer(dev, t, timer_repeat); | 
 | 	struct input_dev *input = dev->input_dev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 | 	if (dev->keypressed) { | 
 | 		input_event(input, EV_KEY, dev->last_keycode, 2); | 
 | 		input_sync(input); | 
 | 		if (input->rep[REP_PERIOD]) | 
 | 			mod_timer(&dev->timer_repeat, jiffies + | 
 | 				  msecs_to_jiffies(input->rep[REP_PERIOD])); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 |  | 
 | static unsigned int repeat_period(int protocol) | 
 | { | 
 | 	if (protocol >= ARRAY_SIZE(protocols)) | 
 | 		return 100; | 
 |  | 
 | 	return protocols[protocol].repeat_period; | 
 | } | 
 |  | 
 | /** | 
 |  * rc_repeat() - signals that a key is still pressed | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * | 
 |  * This routine is used by IR decoders when a repeat message which does | 
 |  * not include the necessary bits to reproduce the scancode has been | 
 |  * received. | 
 |  */ | 
 | void rc_repeat(struct rc_dev *dev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned int timeout = nsecs_to_jiffies(dev->timeout) + | 
 | 		msecs_to_jiffies(repeat_period(dev->last_protocol)); | 
 | 	struct lirc_scancode sc = { | 
 | 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol, | 
 | 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, | 
 | 		.flags = LIRC_SCANCODE_FLAG_REPEAT | | 
 | 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) | 
 | 	}; | 
 |  | 
 | 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) | 
 | 		ir_lirc_scancode_event(dev, &sc); | 
 |  | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 |  | 
 | 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); | 
 | 	input_sync(dev->input_dev); | 
 |  | 
 | 	if (dev->keypressed) { | 
 | 		dev->keyup_jiffies = jiffies + timeout; | 
 | 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_repeat); | 
 |  | 
 | /** | 
 |  * ir_do_keydown() - internal function to process a keypress | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @protocol:	the protocol of the keypress | 
 |  * @scancode:   the scancode of the keypress | 
 |  * @keycode:    the keycode of the keypress | 
 |  * @toggle:     the toggle value of the keypress | 
 |  * | 
 |  * This function is used internally to register a keypress, it must be | 
 |  * called with keylock held. | 
 |  */ | 
 | static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, | 
 | 			  u32 scancode, u32 keycode, u8 toggle) | 
 | { | 
 | 	bool new_event = (!dev->keypressed		 || | 
 | 			  dev->last_protocol != protocol || | 
 | 			  dev->last_scancode != scancode || | 
 | 			  dev->last_toggle   != toggle); | 
 | 	struct lirc_scancode sc = { | 
 | 		.scancode = scancode, .rc_proto = protocol, | 
 | 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, | 
 | 		.keycode = keycode | 
 | 	}; | 
 |  | 
 | 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) | 
 | 		ir_lirc_scancode_event(dev, &sc); | 
 |  | 
 | 	if (new_event && dev->keypressed) | 
 | 		ir_do_keyup(dev, false); | 
 |  | 
 | 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); | 
 |  | 
 | 	dev->last_protocol = protocol; | 
 | 	dev->last_scancode = scancode; | 
 | 	dev->last_toggle = toggle; | 
 | 	dev->last_keycode = keycode; | 
 |  | 
 | 	if (new_event && keycode != KEY_RESERVED) { | 
 | 		/* Register a keypress */ | 
 | 		dev->keypressed = true; | 
 |  | 
 | 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", | 
 | 			dev->device_name, keycode, protocol, scancode); | 
 | 		input_report_key(dev->input_dev, keycode, 1); | 
 |  | 
 | 		led_trigger_event(led_feedback, LED_FULL); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For CEC, start sending repeat messages as soon as the first | 
 | 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD | 
 | 	 * is non-zero. Otherwise, the input layer will generate repeat | 
 | 	 * messages. | 
 | 	 */ | 
 | 	if (!new_event && keycode != KEY_RESERVED && | 
 | 	    dev->allowed_protocols == RC_PROTO_BIT_CEC && | 
 | 	    !timer_pending(&dev->timer_repeat) && | 
 | 	    dev->input_dev->rep[REP_PERIOD] && | 
 | 	    !dev->input_dev->rep[REP_DELAY]) { | 
 | 		input_event(dev->input_dev, EV_KEY, keycode, 2); | 
 | 		mod_timer(&dev->timer_repeat, jiffies + | 
 | 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); | 
 | 	} | 
 |  | 
 | 	input_sync(dev->input_dev); | 
 | } | 
 |  | 
 | /** | 
 |  * rc_keydown() - generates input event for a key press | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @protocol:	the protocol for the keypress | 
 |  * @scancode:	the scancode for the keypress | 
 |  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't | 
 |  *              support toggle values, this should be set to zero) | 
 |  * | 
 |  * This routine is used to signal that a key has been pressed on the | 
 |  * remote control. | 
 |  */ | 
 | void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, | 
 | 		u8 toggle) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 keycode = rc_g_keycode_from_table(dev, scancode); | 
 |  | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 | 	ir_do_keydown(dev, protocol, scancode, keycode, toggle); | 
 |  | 
 | 	if (dev->keypressed) { | 
 | 		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) + | 
 | 			msecs_to_jiffies(repeat_period(protocol)); | 
 | 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_keydown); | 
 |  | 
 | /** | 
 |  * rc_keydown_notimeout() - generates input event for a key press without | 
 |  *                          an automatic keyup event at a later time | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @protocol:	the protocol for the keypress | 
 |  * @scancode:	the scancode for the keypress | 
 |  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't | 
 |  *              support toggle values, this should be set to zero) | 
 |  * | 
 |  * This routine is used to signal that a key has been pressed on the | 
 |  * remote control. The driver must manually call rc_keyup() at a later stage. | 
 |  */ | 
 | void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, | 
 | 			  u32 scancode, u8 toggle) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u32 keycode = rc_g_keycode_from_table(dev, scancode); | 
 |  | 
 | 	spin_lock_irqsave(&dev->keylock, flags); | 
 | 	ir_do_keydown(dev, protocol, scancode, keycode, toggle); | 
 | 	spin_unlock_irqrestore(&dev->keylock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_keydown_notimeout); | 
 |  | 
 | /** | 
 |  * rc_validate_scancode() - checks that a scancode is valid for a protocol. | 
 |  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode() | 
 |  * @proto:	protocol | 
 |  * @scancode:	scancode | 
 |  */ | 
 | bool rc_validate_scancode(enum rc_proto proto, u32 scancode) | 
 | { | 
 | 	switch (proto) { | 
 | 	/* | 
 | 	 * NECX has a 16-bit address; if the lower 8 bits match the upper | 
 | 	 * 8 bits inverted, then the address would match regular nec. | 
 | 	 */ | 
 | 	case RC_PROTO_NECX: | 
 | 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) | 
 | 			return false; | 
 | 		break; | 
 | 	/* | 
 | 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits | 
 | 	 * of the command match the upper 8 bits inverted, then it would | 
 | 	 * be either NEC or NECX. | 
 | 	 */ | 
 | 	case RC_PROTO_NEC32: | 
 | 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) | 
 | 			return false; | 
 | 		break; | 
 | 	/* | 
 | 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it | 
 | 	 * is regular mode-6a 32 bit | 
 | 	 */ | 
 | 	case RC_PROTO_RC6_MCE: | 
 | 		if ((scancode & 0xffff0000) != 0x800f0000) | 
 | 			return false; | 
 | 		break; | 
 | 	case RC_PROTO_RC6_6A_32: | 
 | 		if ((scancode & 0xffff0000) == 0x800f0000) | 
 | 			return false; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * rc_validate_filter() - checks that the scancode and mask are valid and | 
 |  *			  provides sensible defaults | 
 |  * @dev:	the struct rc_dev descriptor of the device | 
 |  * @filter:	the scancode and mask | 
 |  * | 
 |  * return:	0 or -EINVAL if the filter is not valid | 
 |  */ | 
 | static int rc_validate_filter(struct rc_dev *dev, | 
 | 			      struct rc_scancode_filter *filter) | 
 | { | 
 | 	u32 mask, s = filter->data; | 
 | 	enum rc_proto protocol = dev->wakeup_protocol; | 
 |  | 
 | 	if (protocol >= ARRAY_SIZE(protocols)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mask = protocols[protocol].scancode_bits; | 
 |  | 
 | 	if (!rc_validate_scancode(protocol, s)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	filter->data &= mask; | 
 | 	filter->mask &= mask; | 
 |  | 
 | 	/* | 
 | 	 * If we have to raw encode the IR for wakeup, we cannot have a mask | 
 | 	 */ | 
 | 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int rc_open(struct rc_dev *rdev) | 
 | { | 
 | 	int rval = 0; | 
 |  | 
 | 	if (!rdev) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&rdev->lock); | 
 |  | 
 | 	if (!rdev->registered) { | 
 | 		rval = -ENODEV; | 
 | 	} else { | 
 | 		if (!rdev->users++ && rdev->open) | 
 | 			rval = rdev->open(rdev); | 
 |  | 
 | 		if (rval) | 
 | 			rdev->users--; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&rdev->lock); | 
 |  | 
 | 	return rval; | 
 | } | 
 |  | 
 | static int ir_open(struct input_dev *idev) | 
 | { | 
 | 	struct rc_dev *rdev = input_get_drvdata(idev); | 
 |  | 
 | 	return rc_open(rdev); | 
 | } | 
 |  | 
 | void rc_close(struct rc_dev *rdev) | 
 | { | 
 | 	if (rdev) { | 
 | 		mutex_lock(&rdev->lock); | 
 |  | 
 | 		if (!--rdev->users && rdev->close && rdev->registered) | 
 | 			rdev->close(rdev); | 
 |  | 
 | 		mutex_unlock(&rdev->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void ir_close(struct input_dev *idev) | 
 | { | 
 | 	struct rc_dev *rdev = input_get_drvdata(idev); | 
 | 	rc_close(rdev); | 
 | } | 
 |  | 
 | /* class for /sys/class/rc */ | 
 | static char *rc_devnode(struct device *dev, umode_t *mode) | 
 | { | 
 | 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); | 
 | } | 
 |  | 
 | static struct class rc_class = { | 
 | 	.name		= "rc", | 
 | 	.devnode	= rc_devnode, | 
 | }; | 
 |  | 
 | /* | 
 |  * These are the protocol textual descriptions that are | 
 |  * used by the sysfs protocols file. Note that the order | 
 |  * of the entries is relevant. | 
 |  */ | 
 | static const struct { | 
 | 	u64	type; | 
 | 	const char	*name; | 
 | 	const char	*module_name; | 
 | } proto_names[] = { | 
 | 	{ RC_PROTO_BIT_NONE,	"none",		NULL			}, | 
 | 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			}, | 
 | 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			}, | 
 | 	{ RC_PROTO_BIT_RC5 | | 
 | 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	}, | 
 | 	{ RC_PROTO_BIT_NEC | | 
 | 	  RC_PROTO_BIT_NECX | | 
 | 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	}, | 
 | 	{ RC_PROTO_BIT_RC6_0 | | 
 | 	  RC_PROTO_BIT_RC6_6A_20 | | 
 | 	  RC_PROTO_BIT_RC6_6A_24 | | 
 | 	  RC_PROTO_BIT_RC6_6A_32 | | 
 | 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	}, | 
 | 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	}, | 
 | 	{ RC_PROTO_BIT_SONY12 | | 
 | 	  RC_PROTO_BIT_SONY15 | | 
 | 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	}, | 
 | 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	}, | 
 | 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	}, | 
 | 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	}, | 
 | 	{ RC_PROTO_BIT_MCIR2_KBD | | 
 | 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	}, | 
 | 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	}, | 
 | 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			}, | 
 | 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	}, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rc_filter_attribute - Device attribute relating to a filter type. | 
 |  * @attr:	Device attribute. | 
 |  * @type:	Filter type. | 
 |  * @mask:	false for filter value, true for filter mask. | 
 |  */ | 
 | struct rc_filter_attribute { | 
 | 	struct device_attribute		attr; | 
 | 	enum rc_filter_type		type; | 
 | 	bool				mask; | 
 | }; | 
 | #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) | 
 |  | 
 | #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\ | 
 | 	struct rc_filter_attribute dev_attr_##_name = {			\ | 
 | 		.attr = __ATTR(_name, _mode, _show, _store),		\ | 
 | 		.type = (_type),					\ | 
 | 		.mask = (_mask),					\ | 
 | 	} | 
 |  | 
 | /** | 
 |  * show_protocols() - shows the current IR protocol(s) | 
 |  * @device:	the device descriptor | 
 |  * @mattr:	the device attribute struct | 
 |  * @buf:	a pointer to the output buffer | 
 |  * | 
 |  * This routine is a callback routine for input read the IR protocol type(s). | 
 |  * it is trigged by reading /sys/class/rc/rc?/protocols. | 
 |  * It returns the protocol names of supported protocols. | 
 |  * Enabled protocols are printed in brackets. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_protocols and show_protocols. | 
 |  */ | 
 | static ssize_t show_protocols(struct device *device, | 
 | 			      struct device_attribute *mattr, char *buf) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	u64 allowed, enabled; | 
 | 	char *tmp = buf; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	enabled = dev->enabled_protocols; | 
 | 	allowed = dev->allowed_protocols; | 
 | 	if (dev->raw && !allowed) | 
 | 		allowed = ir_raw_get_allowed_protocols(); | 
 |  | 
 | 	mutex_unlock(&dev->lock); | 
 |  | 
 | 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", | 
 | 		__func__, (long long)allowed, (long long)enabled); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) { | 
 | 		if (allowed & enabled & proto_names[i].type) | 
 | 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name); | 
 | 		else if (allowed & proto_names[i].type) | 
 | 			tmp += sprintf(tmp, "%s ", proto_names[i].name); | 
 |  | 
 | 		if (allowed & proto_names[i].type) | 
 | 			allowed &= ~proto_names[i].type; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_LIRC | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) | 
 | 		tmp += sprintf(tmp, "[lirc] "); | 
 | #endif | 
 |  | 
 | 	if (tmp != buf) | 
 | 		tmp--; | 
 | 	*tmp = '\n'; | 
 |  | 
 | 	return tmp + 1 - buf; | 
 | } | 
 |  | 
 | /** | 
 |  * parse_protocol_change() - parses a protocol change request | 
 |  * @dev:	rc_dev device | 
 |  * @protocols:	pointer to the bitmask of current protocols | 
 |  * @buf:	pointer to the buffer with a list of changes | 
 |  * | 
 |  * Writing "+proto" will add a protocol to the protocol mask. | 
 |  * Writing "-proto" will remove a protocol from protocol mask. | 
 |  * Writing "proto" will enable only "proto". | 
 |  * Writing "none" will disable all protocols. | 
 |  * Returns the number of changes performed or a negative error code. | 
 |  */ | 
 | static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, | 
 | 				 const char *buf) | 
 | { | 
 | 	const char *tmp; | 
 | 	unsigned count = 0; | 
 | 	bool enable, disable; | 
 | 	u64 mask; | 
 | 	int i; | 
 |  | 
 | 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) { | 
 | 		if (!*tmp) | 
 | 			break; | 
 |  | 
 | 		if (*tmp == '+') { | 
 | 			enable = true; | 
 | 			disable = false; | 
 | 			tmp++; | 
 | 		} else if (*tmp == '-') { | 
 | 			enable = false; | 
 | 			disable = true; | 
 | 			tmp++; | 
 | 		} else { | 
 | 			enable = false; | 
 | 			disable = false; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) { | 
 | 			if (!strcasecmp(tmp, proto_names[i].name)) { | 
 | 				mask = proto_names[i].type; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (i == ARRAY_SIZE(proto_names)) { | 
 | 			if (!strcasecmp(tmp, "lirc")) | 
 | 				mask = 0; | 
 | 			else { | 
 | 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", | 
 | 					tmp); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		count++; | 
 |  | 
 | 		if (enable) | 
 | 			*protocols |= mask; | 
 | 		else if (disable) | 
 | 			*protocols &= ~mask; | 
 | 		else | 
 | 			*protocols = mask; | 
 | 	} | 
 |  | 
 | 	if (!count) { | 
 | 		dev_dbg(&dev->dev, "Protocol not specified\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | void ir_raw_load_modules(u64 *protocols) | 
 | { | 
 | 	u64 available; | 
 | 	int i, ret; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) { | 
 | 		if (proto_names[i].type == RC_PROTO_BIT_NONE || | 
 | 		    proto_names[i].type & (RC_PROTO_BIT_OTHER | | 
 | 					   RC_PROTO_BIT_UNKNOWN)) | 
 | 			continue; | 
 |  | 
 | 		available = ir_raw_get_allowed_protocols(); | 
 | 		if (!(*protocols & proto_names[i].type & ~available)) | 
 | 			continue; | 
 |  | 
 | 		if (!proto_names[i].module_name) { | 
 | 			pr_err("Can't enable IR protocol %s\n", | 
 | 			       proto_names[i].name); | 
 | 			*protocols &= ~proto_names[i].type; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ret = request_module("%s", proto_names[i].module_name); | 
 | 		if (ret < 0) { | 
 | 			pr_err("Couldn't load IR protocol module %s\n", | 
 | 			       proto_names[i].module_name); | 
 | 			*protocols &= ~proto_names[i].type; | 
 | 			continue; | 
 | 		} | 
 | 		msleep(20); | 
 | 		available = ir_raw_get_allowed_protocols(); | 
 | 		if (!(*protocols & proto_names[i].type & ~available)) | 
 | 			continue; | 
 |  | 
 | 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", | 
 | 		       proto_names[i].module_name, | 
 | 		       proto_names[i].name); | 
 | 		*protocols &= ~proto_names[i].type; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * store_protocols() - changes the current/wakeup IR protocol(s) | 
 |  * @device:	the device descriptor | 
 |  * @mattr:	the device attribute struct | 
 |  * @buf:	a pointer to the input buffer | 
 |  * @len:	length of the input buffer | 
 |  * | 
 |  * This routine is for changing the IR protocol type. | 
 |  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. | 
 |  * See parse_protocol_change() for the valid commands. | 
 |  * Returns @len on success or a negative error code. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_protocols and show_protocols. | 
 |  */ | 
 | static ssize_t store_protocols(struct device *device, | 
 | 			       struct device_attribute *mattr, | 
 | 			       const char *buf, size_t len) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	u64 *current_protocols; | 
 | 	struct rc_scancode_filter *filter; | 
 | 	u64 old_protocols, new_protocols; | 
 | 	ssize_t rc; | 
 |  | 
 | 	dev_dbg(&dev->dev, "Normal protocol change requested\n"); | 
 | 	current_protocols = &dev->enabled_protocols; | 
 | 	filter = &dev->scancode_filter; | 
 |  | 
 | 	if (!dev->change_protocol) { | 
 | 		dev_dbg(&dev->dev, "Protocol switching not supported\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	old_protocols = *current_protocols; | 
 | 	new_protocols = old_protocols; | 
 | 	rc = parse_protocol_change(dev, &new_protocols, buf); | 
 | 	if (rc < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) | 
 | 		ir_raw_load_modules(&new_protocols); | 
 |  | 
 | 	rc = dev->change_protocol(dev, &new_protocols); | 
 | 	if (rc < 0) { | 
 | 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", | 
 | 			(long long)new_protocols); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (new_protocols != old_protocols) { | 
 | 		*current_protocols = new_protocols; | 
 | 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", | 
 | 			(long long)new_protocols); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If a protocol change was attempted the filter may need updating, even | 
 | 	 * if the actual protocol mask hasn't changed (since the driver may have | 
 | 	 * cleared the filter). | 
 | 	 * Try setting the same filter with the new protocol (if any). | 
 | 	 * Fall back to clearing the filter. | 
 | 	 */ | 
 | 	if (dev->s_filter && filter->mask) { | 
 | 		if (new_protocols) | 
 | 			rc = dev->s_filter(dev, filter); | 
 | 		else | 
 | 			rc = -1; | 
 |  | 
 | 		if (rc < 0) { | 
 | 			filter->data = 0; | 
 | 			filter->mask = 0; | 
 | 			dev->s_filter(dev, filter); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = len; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&dev->lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * show_filter() - shows the current scancode filter value or mask | 
 |  * @device:	the device descriptor | 
 |  * @attr:	the device attribute struct | 
 |  * @buf:	a pointer to the output buffer | 
 |  * | 
 |  * This routine is a callback routine to read a scancode filter value or mask. | 
 |  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. | 
 |  * It prints the current scancode filter value or mask of the appropriate filter | 
 |  * type in hexadecimal into @buf and returns the size of the buffer. | 
 |  * | 
 |  * Bits of the filter value corresponding to set bits in the filter mask are | 
 |  * compared against input scancodes and non-matching scancodes are discarded. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_filter and show_filter. | 
 |  */ | 
 | static ssize_t show_filter(struct device *device, | 
 | 			   struct device_attribute *attr, | 
 | 			   char *buf) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); | 
 | 	struct rc_scancode_filter *filter; | 
 | 	u32 val; | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	if (fattr->type == RC_FILTER_NORMAL) | 
 | 		filter = &dev->scancode_filter; | 
 | 	else | 
 | 		filter = &dev->scancode_wakeup_filter; | 
 |  | 
 | 	if (fattr->mask) | 
 | 		val = filter->mask; | 
 | 	else | 
 | 		val = filter->data; | 
 | 	mutex_unlock(&dev->lock); | 
 |  | 
 | 	return sprintf(buf, "%#x\n", val); | 
 | } | 
 |  | 
 | /** | 
 |  * store_filter() - changes the scancode filter value | 
 |  * @device:	the device descriptor | 
 |  * @attr:	the device attribute struct | 
 |  * @buf:	a pointer to the input buffer | 
 |  * @len:	length of the input buffer | 
 |  * | 
 |  * This routine is for changing a scancode filter value or mask. | 
 |  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. | 
 |  * Returns -EINVAL if an invalid filter value for the current protocol was | 
 |  * specified or if scancode filtering is not supported by the driver, otherwise | 
 |  * returns @len. | 
 |  * | 
 |  * Bits of the filter value corresponding to set bits in the filter mask are | 
 |  * compared against input scancodes and non-matching scancodes are discarded. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_filter and show_filter. | 
 |  */ | 
 | static ssize_t store_filter(struct device *device, | 
 | 			    struct device_attribute *attr, | 
 | 			    const char *buf, size_t len) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); | 
 | 	struct rc_scancode_filter new_filter, *filter; | 
 | 	int ret; | 
 | 	unsigned long val; | 
 | 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); | 
 |  | 
 | 	ret = kstrtoul(buf, 0, &val); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (fattr->type == RC_FILTER_NORMAL) { | 
 | 		set_filter = dev->s_filter; | 
 | 		filter = &dev->scancode_filter; | 
 | 	} else { | 
 | 		set_filter = dev->s_wakeup_filter; | 
 | 		filter = &dev->scancode_wakeup_filter; | 
 | 	} | 
 |  | 
 | 	if (!set_filter) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	new_filter = *filter; | 
 | 	if (fattr->mask) | 
 | 		new_filter.mask = val; | 
 | 	else | 
 | 		new_filter.data = val; | 
 |  | 
 | 	if (fattr->type == RC_FILTER_WAKEUP) { | 
 | 		/* | 
 | 		 * Refuse to set a filter unless a protocol is enabled | 
 | 		 * and the filter is valid for that protocol | 
 | 		 */ | 
 | 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) | 
 | 			ret = rc_validate_filter(dev, &new_filter); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 |  | 
 | 		if (ret != 0) | 
 | 			goto unlock; | 
 | 	} | 
 |  | 
 | 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && | 
 | 	    val) { | 
 | 		/* refuse to set a filter unless a protocol is enabled */ | 
 | 		ret = -EINVAL; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | 	ret = set_filter(dev, &new_filter); | 
 | 	if (ret < 0) | 
 | 		goto unlock; | 
 |  | 
 | 	*filter = new_filter; | 
 |  | 
 | unlock: | 
 | 	mutex_unlock(&dev->lock); | 
 | 	return (ret < 0) ? ret : len; | 
 | } | 
 |  | 
 | /** | 
 |  * show_wakeup_protocols() - shows the wakeup IR protocol | 
 |  * @device:	the device descriptor | 
 |  * @mattr:	the device attribute struct | 
 |  * @buf:	a pointer to the output buffer | 
 |  * | 
 |  * This routine is a callback routine for input read the IR protocol type(s). | 
 |  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. | 
 |  * It returns the protocol names of supported protocols. | 
 |  * The enabled protocols are printed in brackets. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_wakeup_protocols and show_wakeup_protocols. | 
 |  */ | 
 | static ssize_t show_wakeup_protocols(struct device *device, | 
 | 				     struct device_attribute *mattr, | 
 | 				     char *buf) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	u64 allowed; | 
 | 	enum rc_proto enabled; | 
 | 	char *tmp = buf; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	allowed = dev->allowed_wakeup_protocols; | 
 | 	enabled = dev->wakeup_protocol; | 
 |  | 
 | 	mutex_unlock(&dev->lock); | 
 |  | 
 | 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", | 
 | 		__func__, (long long)allowed, enabled); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(protocols); i++) { | 
 | 		if (allowed & (1ULL << i)) { | 
 | 			if (i == enabled) | 
 | 				tmp += sprintf(tmp, "[%s] ", protocols[i].name); | 
 | 			else | 
 | 				tmp += sprintf(tmp, "%s ", protocols[i].name); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tmp != buf) | 
 | 		tmp--; | 
 | 	*tmp = '\n'; | 
 |  | 
 | 	return tmp + 1 - buf; | 
 | } | 
 |  | 
 | /** | 
 |  * store_wakeup_protocols() - changes the wakeup IR protocol(s) | 
 |  * @device:	the device descriptor | 
 |  * @mattr:	the device attribute struct | 
 |  * @buf:	a pointer to the input buffer | 
 |  * @len:	length of the input buffer | 
 |  * | 
 |  * This routine is for changing the IR protocol type. | 
 |  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. | 
 |  * Returns @len on success or a negative error code. | 
 |  * | 
 |  * dev->lock is taken to guard against races between | 
 |  * store_wakeup_protocols and show_wakeup_protocols. | 
 |  */ | 
 | static ssize_t store_wakeup_protocols(struct device *device, | 
 | 				      struct device_attribute *mattr, | 
 | 				      const char *buf, size_t len) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 | 	enum rc_proto protocol; | 
 | 	ssize_t rc; | 
 | 	u64 allowed; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 |  | 
 | 	allowed = dev->allowed_wakeup_protocols; | 
 |  | 
 | 	if (sysfs_streq(buf, "none")) { | 
 | 		protocol = RC_PROTO_UNKNOWN; | 
 | 	} else { | 
 | 		for (i = 0; i < ARRAY_SIZE(protocols); i++) { | 
 | 			if ((allowed & (1ULL << i)) && | 
 | 			    sysfs_streq(buf, protocols[i].name)) { | 
 | 				protocol = i; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (i == ARRAY_SIZE(protocols)) { | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (dev->encode_wakeup) { | 
 | 			u64 mask = 1ULL << protocol; | 
 |  | 
 | 			ir_raw_load_modules(&mask); | 
 | 			if (!mask) { | 
 | 				rc = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dev->wakeup_protocol != protocol) { | 
 | 		dev->wakeup_protocol = protocol; | 
 | 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); | 
 |  | 
 | 		if (protocol == RC_PROTO_RC6_MCE) | 
 | 			dev->scancode_wakeup_filter.data = 0x800f0000; | 
 | 		else | 
 | 			dev->scancode_wakeup_filter.data = 0; | 
 | 		dev->scancode_wakeup_filter.mask = 0; | 
 |  | 
 | 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); | 
 | 		if (rc == 0) | 
 | 			rc = len; | 
 | 	} else { | 
 | 		rc = len; | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&dev->lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void rc_dev_release(struct device *device) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 |  | 
 | 	kfree(dev); | 
 | } | 
 |  | 
 | #define ADD_HOTPLUG_VAR(fmt, val...)					\ | 
 | 	do {								\ | 
 | 		int err = add_uevent_var(env, fmt, val);		\ | 
 | 		if (err)						\ | 
 | 			return err;					\ | 
 | 	} while (0) | 
 |  | 
 | static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) | 
 | { | 
 | 	struct rc_dev *dev = to_rc_dev(device); | 
 |  | 
 | 	if (dev->rc_map.name) | 
 | 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); | 
 | 	if (dev->driver_name) | 
 | 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); | 
 | 	if (dev->device_name) | 
 | 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Static device attribute struct with the sysfs attributes for IR's | 
 |  */ | 
 | static struct device_attribute dev_attr_ro_protocols = | 
 | __ATTR(protocols, 0444, show_protocols, NULL); | 
 | static struct device_attribute dev_attr_rw_protocols = | 
 | __ATTR(protocols, 0644, show_protocols, store_protocols); | 
 | static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, | 
 | 		   store_wakeup_protocols); | 
 | static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, | 
 | 		      show_filter, store_filter, RC_FILTER_NORMAL, false); | 
 | static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, | 
 | 		      show_filter, store_filter, RC_FILTER_NORMAL, true); | 
 | static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, | 
 | 		      show_filter, store_filter, RC_FILTER_WAKEUP, false); | 
 | static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, | 
 | 		      show_filter, store_filter, RC_FILTER_WAKEUP, true); | 
 |  | 
 | static struct attribute *rc_dev_rw_protocol_attrs[] = { | 
 | 	&dev_attr_rw_protocols.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group rc_dev_rw_protocol_attr_grp = { | 
 | 	.attrs	= rc_dev_rw_protocol_attrs, | 
 | }; | 
 |  | 
 | static struct attribute *rc_dev_ro_protocol_attrs[] = { | 
 | 	&dev_attr_ro_protocols.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group rc_dev_ro_protocol_attr_grp = { | 
 | 	.attrs	= rc_dev_ro_protocol_attrs, | 
 | }; | 
 |  | 
 | static struct attribute *rc_dev_filter_attrs[] = { | 
 | 	&dev_attr_filter.attr.attr, | 
 | 	&dev_attr_filter_mask.attr.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group rc_dev_filter_attr_grp = { | 
 | 	.attrs	= rc_dev_filter_attrs, | 
 | }; | 
 |  | 
 | static struct attribute *rc_dev_wakeup_filter_attrs[] = { | 
 | 	&dev_attr_wakeup_filter.attr.attr, | 
 | 	&dev_attr_wakeup_filter_mask.attr.attr, | 
 | 	&dev_attr_wakeup_protocols.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { | 
 | 	.attrs	= rc_dev_wakeup_filter_attrs, | 
 | }; | 
 |  | 
 | static const struct device_type rc_dev_type = { | 
 | 	.release	= rc_dev_release, | 
 | 	.uevent		= rc_dev_uevent, | 
 | }; | 
 |  | 
 | struct rc_dev *rc_allocate_device(enum rc_driver_type type) | 
 | { | 
 | 	struct rc_dev *dev; | 
 |  | 
 | 	dev = kzalloc(sizeof(*dev), GFP_KERNEL); | 
 | 	if (!dev) | 
 | 		return NULL; | 
 |  | 
 | 	if (type != RC_DRIVER_IR_RAW_TX) { | 
 | 		dev->input_dev = input_allocate_device(); | 
 | 		if (!dev->input_dev) { | 
 | 			kfree(dev); | 
 | 			return NULL; | 
 | 		} | 
 |  | 
 | 		dev->input_dev->getkeycode = ir_getkeycode; | 
 | 		dev->input_dev->setkeycode = ir_setkeycode; | 
 | 		input_set_drvdata(dev->input_dev, dev); | 
 |  | 
 | 		dev->timeout = IR_DEFAULT_TIMEOUT; | 
 | 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); | 
 | 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); | 
 |  | 
 | 		spin_lock_init(&dev->rc_map.lock); | 
 | 		spin_lock_init(&dev->keylock); | 
 | 	} | 
 | 	mutex_init(&dev->lock); | 
 |  | 
 | 	dev->dev.type = &rc_dev_type; | 
 | 	dev->dev.class = &rc_class; | 
 | 	device_initialize(&dev->dev); | 
 |  | 
 | 	dev->driver_type = type; | 
 |  | 
 | 	__module_get(THIS_MODULE); | 
 | 	return dev; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_allocate_device); | 
 |  | 
 | void rc_free_device(struct rc_dev *dev) | 
 | { | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	input_free_device(dev->input_dev); | 
 |  | 
 | 	put_device(&dev->dev); | 
 |  | 
 | 	/* kfree(dev) will be called by the callback function | 
 | 	   rc_dev_release() */ | 
 |  | 
 | 	module_put(THIS_MODULE); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_free_device); | 
 |  | 
 | static void devm_rc_alloc_release(struct device *dev, void *res) | 
 | { | 
 | 	rc_free_device(*(struct rc_dev **)res); | 
 | } | 
 |  | 
 | struct rc_dev *devm_rc_allocate_device(struct device *dev, | 
 | 				       enum rc_driver_type type) | 
 | { | 
 | 	struct rc_dev **dr, *rc; | 
 |  | 
 | 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); | 
 | 	if (!dr) | 
 | 		return NULL; | 
 |  | 
 | 	rc = rc_allocate_device(type); | 
 | 	if (!rc) { | 
 | 		devres_free(dr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	rc->dev.parent = dev; | 
 | 	rc->managed_alloc = true; | 
 | 	*dr = rc; | 
 | 	devres_add(dev, dr); | 
 |  | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(devm_rc_allocate_device); | 
 |  | 
 | static int rc_prepare_rx_device(struct rc_dev *dev) | 
 | { | 
 | 	int rc; | 
 | 	struct rc_map *rc_map; | 
 | 	u64 rc_proto; | 
 |  | 
 | 	if (!dev->map_name) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rc_map = rc_map_get(dev->map_name); | 
 | 	if (!rc_map) | 
 | 		rc_map = rc_map_get(RC_MAP_EMPTY); | 
 | 	if (!rc_map || !rc_map->scan || rc_map->size == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rc = ir_setkeytable(dev, rc_map); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	rc_proto = BIT_ULL(rc_map->rc_proto); | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) | 
 | 		dev->enabled_protocols = dev->allowed_protocols; | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) | 
 | 		ir_raw_load_modules(&rc_proto); | 
 |  | 
 | 	if (dev->change_protocol) { | 
 | 		rc = dev->change_protocol(dev, &rc_proto); | 
 | 		if (rc < 0) | 
 | 			goto out_table; | 
 | 		dev->enabled_protocols = rc_proto; | 
 | 	} | 
 |  | 
 | 	set_bit(EV_KEY, dev->input_dev->evbit); | 
 | 	set_bit(EV_REP, dev->input_dev->evbit); | 
 | 	set_bit(EV_MSC, dev->input_dev->evbit); | 
 | 	set_bit(MSC_SCAN, dev->input_dev->mscbit); | 
 | 	if (dev->open) | 
 | 		dev->input_dev->open = ir_open; | 
 | 	if (dev->close) | 
 | 		dev->input_dev->close = ir_close; | 
 |  | 
 | 	dev->input_dev->dev.parent = &dev->dev; | 
 | 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); | 
 | 	dev->input_dev->phys = dev->input_phys; | 
 | 	dev->input_dev->name = dev->device_name; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_table: | 
 | 	ir_free_table(&dev->rc_map); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int rc_setup_rx_device(struct rc_dev *dev) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	/* rc_open will be called here */ | 
 | 	rc = input_register_device(dev->input_dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* | 
 | 	 * Default delay of 250ms is too short for some protocols, especially | 
 | 	 * since the timeout is currently set to 250ms. Increase it to 500ms, | 
 | 	 * to avoid wrong repetition of the keycodes. Note that this must be | 
 | 	 * set after the call to input_register_device(). | 
 | 	 */ | 
 | 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC) | 
 | 		dev->input_dev->rep[REP_DELAY] = 0; | 
 | 	else | 
 | 		dev->input_dev->rep[REP_DELAY] = 500; | 
 |  | 
 | 	/* | 
 | 	 * As a repeat event on protocols like RC-5 and NEC take as long as | 
 | 	 * 110/114ms, using 33ms as a repeat period is not the right thing | 
 | 	 * to do. | 
 | 	 */ | 
 | 	dev->input_dev->rep[REP_PERIOD] = 125; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rc_free_rx_device(struct rc_dev *dev) | 
 | { | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	if (dev->input_dev) { | 
 | 		input_unregister_device(dev->input_dev); | 
 | 		dev->input_dev = NULL; | 
 | 	} | 
 |  | 
 | 	ir_free_table(&dev->rc_map); | 
 | } | 
 |  | 
 | int rc_register_device(struct rc_dev *dev) | 
 | { | 
 | 	const char *path; | 
 | 	int attr = 0; | 
 | 	int minor; | 
 | 	int rc; | 
 |  | 
 | 	if (!dev) | 
 | 		return -EINVAL; | 
 |  | 
 | 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); | 
 | 	if (minor < 0) | 
 | 		return minor; | 
 |  | 
 | 	dev->minor = minor; | 
 | 	dev_set_name(&dev->dev, "rc%u", dev->minor); | 
 | 	dev_set_drvdata(&dev->dev, dev); | 
 |  | 
 | 	dev->dev.groups = dev->sysfs_groups; | 
 | 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) | 
 | 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; | 
 | 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) | 
 | 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; | 
 | 	if (dev->s_filter) | 
 | 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; | 
 | 	if (dev->s_wakeup_filter) | 
 | 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; | 
 | 	dev->sysfs_groups[attr++] = NULL; | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) { | 
 | 		rc = ir_raw_event_prepare(dev); | 
 | 		if (rc < 0) | 
 | 			goto out_minor; | 
 | 	} | 
 |  | 
 | 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { | 
 | 		rc = rc_prepare_rx_device(dev); | 
 | 		if (rc) | 
 | 			goto out_raw; | 
 | 	} | 
 |  | 
 | 	rc = device_add(&dev->dev); | 
 | 	if (rc) | 
 | 		goto out_rx_free; | 
 |  | 
 | 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); | 
 | 	dev_info(&dev->dev, "%s as %s\n", | 
 | 		 dev->device_name ?: "Unspecified device", path ?: "N/A"); | 
 | 	kfree(path); | 
 |  | 
 | 	dev->registered = true; | 
 |  | 
 | 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { | 
 | 		rc = rc_setup_rx_device(dev); | 
 | 		if (rc) | 
 | 			goto out_dev; | 
 | 	} | 
 |  | 
 | 	/* Ensure that the lirc kfifo is setup before we start the thread */ | 
 | 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { | 
 | 		rc = ir_lirc_register(dev); | 
 | 		if (rc < 0) | 
 | 			goto out_rx; | 
 | 	} | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) { | 
 | 		rc = ir_raw_event_register(dev); | 
 | 		if (rc < 0) | 
 | 			goto out_lirc; | 
 | 	} | 
 |  | 
 | 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, | 
 | 		dev->driver_name ? dev->driver_name : "unknown"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_lirc: | 
 | 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) | 
 | 		ir_lirc_unregister(dev); | 
 | out_rx: | 
 | 	rc_free_rx_device(dev); | 
 | out_dev: | 
 | 	device_del(&dev->dev); | 
 | out_rx_free: | 
 | 	ir_free_table(&dev->rc_map); | 
 | out_raw: | 
 | 	ir_raw_event_free(dev); | 
 | out_minor: | 
 | 	ida_simple_remove(&rc_ida, minor); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rc_register_device); | 
 |  | 
 | static void devm_rc_release(struct device *dev, void *res) | 
 | { | 
 | 	rc_unregister_device(*(struct rc_dev **)res); | 
 | } | 
 |  | 
 | int devm_rc_register_device(struct device *parent, struct rc_dev *dev) | 
 | { | 
 | 	struct rc_dev **dr; | 
 | 	int ret; | 
 |  | 
 | 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); | 
 | 	if (!dr) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = rc_register_device(dev); | 
 | 	if (ret) { | 
 | 		devres_free(dr); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*dr = dev; | 
 | 	devres_add(parent, dr); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(devm_rc_register_device); | 
 |  | 
 | void rc_unregister_device(struct rc_dev *dev) | 
 | { | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	if (dev->driver_type == RC_DRIVER_IR_RAW) | 
 | 		ir_raw_event_unregister(dev); | 
 |  | 
 | 	del_timer_sync(&dev->timer_keyup); | 
 | 	del_timer_sync(&dev->timer_repeat); | 
 |  | 
 | 	rc_free_rx_device(dev); | 
 |  | 
 | 	mutex_lock(&dev->lock); | 
 | 	if (dev->users && dev->close) | 
 | 		dev->close(dev); | 
 | 	dev->registered = false; | 
 | 	mutex_unlock(&dev->lock); | 
 |  | 
 | 	/* | 
 | 	 * lirc device should be freed with dev->registered = false, so | 
 | 	 * that userspace polling will get notified. | 
 | 	 */ | 
 | 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) | 
 | 		ir_lirc_unregister(dev); | 
 |  | 
 | 	device_del(&dev->dev); | 
 |  | 
 | 	ida_simple_remove(&rc_ida, dev->minor); | 
 |  | 
 | 	if (!dev->managed_alloc) | 
 | 		rc_free_device(dev); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(rc_unregister_device); | 
 |  | 
 | /* | 
 |  * Init/exit code for the module. Basically, creates/removes /sys/class/rc | 
 |  */ | 
 |  | 
 | static int __init rc_core_init(void) | 
 | { | 
 | 	int rc = class_register(&rc_class); | 
 | 	if (rc) { | 
 | 		pr_err("rc_core: unable to register rc class\n"); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	rc = lirc_dev_init(); | 
 | 	if (rc) { | 
 | 		pr_err("rc_core: unable to init lirc\n"); | 
 | 		class_unregister(&rc_class); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	led_trigger_register_simple("rc-feedback", &led_feedback); | 
 | 	rc_map_register(&empty_map); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit rc_core_exit(void) | 
 | { | 
 | 	lirc_dev_exit(); | 
 | 	class_unregister(&rc_class); | 
 | 	led_trigger_unregister_simple(led_feedback); | 
 | 	rc_map_unregister(&empty_map); | 
 | } | 
 |  | 
 | subsys_initcall(rc_core_init); | 
 | module_exit(rc_core_exit); | 
 |  | 
 | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
 | MODULE_LICENSE("GPL v2"); |