| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * This file contains common generic and tag-based KASAN code. | 
 |  * | 
 |  * Copyright (c) 2014 Samsung Electronics Co., Ltd. | 
 |  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> | 
 |  * | 
 |  * Some code borrowed from https://github.com/xairy/kasan-prototype by | 
 |  *        Andrey Konovalov <andreyknvl@gmail.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  */ | 
 |  | 
 | #define __KASAN_INTERNAL | 
 |  | 
 | #include <linux/export.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/linkage.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/stacktrace.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include "kasan.h" | 
 | #include "../slab.h" | 
 |  | 
 | static inline int in_irqentry_text(unsigned long ptr) | 
 | { | 
 | 	return (ptr >= (unsigned long)&__irqentry_text_start && | 
 | 		ptr < (unsigned long)&__irqentry_text_end) || | 
 | 		(ptr >= (unsigned long)&__softirqentry_text_start && | 
 | 		 ptr < (unsigned long)&__softirqentry_text_end); | 
 | } | 
 |  | 
 | static inline void filter_irq_stacks(struct stack_trace *trace) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!trace->nr_entries) | 
 | 		return; | 
 | 	for (i = 0; i < trace->nr_entries; i++) | 
 | 		if (in_irqentry_text(trace->entries[i])) { | 
 | 			/* Include the irqentry function into the stack. */ | 
 | 			trace->nr_entries = i + 1; | 
 | 			break; | 
 | 		} | 
 | } | 
 |  | 
 | static inline depot_stack_handle_t save_stack(gfp_t flags) | 
 | { | 
 | 	unsigned long entries[KASAN_STACK_DEPTH]; | 
 | 	struct stack_trace trace = { | 
 | 		.nr_entries = 0, | 
 | 		.entries = entries, | 
 | 		.max_entries = KASAN_STACK_DEPTH, | 
 | 		.skip = 0 | 
 | 	}; | 
 |  | 
 | 	save_stack_trace(&trace); | 
 | 	filter_irq_stacks(&trace); | 
 | 	if (trace.nr_entries != 0 && | 
 | 	    trace.entries[trace.nr_entries-1] == ULONG_MAX) | 
 | 		trace.nr_entries--; | 
 |  | 
 | 	return depot_save_stack(&trace, flags); | 
 | } | 
 |  | 
 | static inline void set_track(struct kasan_track *track, gfp_t flags) | 
 | { | 
 | 	track->pid = current->pid; | 
 | 	track->stack = save_stack(flags); | 
 | } | 
 |  | 
 | void kasan_enable_current(void) | 
 | { | 
 | 	current->kasan_depth++; | 
 | } | 
 |  | 
 | void kasan_disable_current(void) | 
 | { | 
 | 	current->kasan_depth--; | 
 | } | 
 |  | 
 | void kasan_check_read(const volatile void *p, unsigned int size) | 
 | { | 
 | 	check_memory_region((unsigned long)p, size, false, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kasan_check_read); | 
 |  | 
 | void kasan_check_write(const volatile void *p, unsigned int size) | 
 | { | 
 | 	check_memory_region((unsigned long)p, size, true, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(kasan_check_write); | 
 |  | 
 | #undef memset | 
 | void *memset(void *addr, int c, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)addr, len, true, _RET_IP_); | 
 |  | 
 | 	return __memset(addr, c, len); | 
 | } | 
 |  | 
 | #undef memmove | 
 | void *memmove(void *dest, const void *src, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)src, len, false, _RET_IP_); | 
 | 	check_memory_region((unsigned long)dest, len, true, _RET_IP_); | 
 |  | 
 | 	return __memmove(dest, src, len); | 
 | } | 
 |  | 
 | #undef memcpy | 
 | void *memcpy(void *dest, const void *src, size_t len) | 
 | { | 
 | 	check_memory_region((unsigned long)src, len, false, _RET_IP_); | 
 | 	check_memory_region((unsigned long)dest, len, true, _RET_IP_); | 
 |  | 
 | 	return __memcpy(dest, src, len); | 
 | } | 
 |  | 
 | /* | 
 |  * Poisons the shadow memory for 'size' bytes starting from 'addr'. | 
 |  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE. | 
 |  */ | 
 | void kasan_poison_shadow(const void *address, size_t size, u8 value) | 
 | { | 
 | 	void *shadow_start, *shadow_end; | 
 |  | 
 | 	/* | 
 | 	 * Perform shadow offset calculation based on untagged address, as | 
 | 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged | 
 | 	 * addresses to this function. | 
 | 	 */ | 
 | 	address = reset_tag(address); | 
 |  | 
 | 	shadow_start = kasan_mem_to_shadow(address); | 
 | 	shadow_end = kasan_mem_to_shadow(address + size); | 
 |  | 
 | 	__memset(shadow_start, value, shadow_end - shadow_start); | 
 | } | 
 |  | 
 | void kasan_unpoison_shadow(const void *address, size_t size) | 
 | { | 
 | 	u8 tag = get_tag(address); | 
 |  | 
 | 	/* | 
 | 	 * Perform shadow offset calculation based on untagged address, as | 
 | 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged | 
 | 	 * addresses to this function. | 
 | 	 */ | 
 | 	address = reset_tag(address); | 
 |  | 
 | 	kasan_poison_shadow(address, size, tag); | 
 |  | 
 | 	if (size & KASAN_SHADOW_MASK) { | 
 | 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | 
 | 			*shadow = tag; | 
 | 		else | 
 | 			*shadow = size & KASAN_SHADOW_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | static void __kasan_unpoison_stack(struct task_struct *task, const void *sp) | 
 | { | 
 | 	void *base = task_stack_page(task); | 
 | 	size_t size = sp - base; | 
 |  | 
 | 	kasan_unpoison_shadow(base, size); | 
 | } | 
 |  | 
 | /* Unpoison the entire stack for a task. */ | 
 | void kasan_unpoison_task_stack(struct task_struct *task) | 
 | { | 
 | 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE); | 
 | } | 
 |  | 
 | /* Unpoison the stack for the current task beyond a watermark sp value. */ | 
 | asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) | 
 | { | 
 | 	/* | 
 | 	 * Calculate the task stack base address.  Avoid using 'current' | 
 | 	 * because this function is called by early resume code which hasn't | 
 | 	 * yet set up the percpu register (%gs). | 
 | 	 */ | 
 | 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); | 
 |  | 
 | 	kasan_unpoison_shadow(base, watermark - base); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear all poison for the region between the current SP and a provided | 
 |  * watermark value, as is sometimes required prior to hand-crafted asm function | 
 |  * returns in the middle of functions. | 
 |  */ | 
 | void kasan_unpoison_stack_above_sp_to(const void *watermark) | 
 | { | 
 | 	const void *sp = __builtin_frame_address(0); | 
 | 	size_t size = watermark - sp; | 
 |  | 
 | 	if (WARN_ON(sp > watermark)) | 
 | 		return; | 
 | 	kasan_unpoison_shadow(sp, size); | 
 | } | 
 |  | 
 | void kasan_alloc_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	u8 tag; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (unlikely(PageHighMem(page))) | 
 | 		return; | 
 |  | 
 | 	tag = random_tag(); | 
 | 	for (i = 0; i < (1 << order); i++) | 
 | 		page_kasan_tag_set(page + i, tag); | 
 | 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order); | 
 | } | 
 |  | 
 | void kasan_free_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (likely(!PageHighMem(page))) | 
 | 		kasan_poison_shadow(page_address(page), | 
 | 				PAGE_SIZE << order, | 
 | 				KASAN_FREE_PAGE); | 
 | } | 
 |  | 
 | /* | 
 |  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. | 
 |  * For larger allocations larger redzones are used. | 
 |  */ | 
 | static inline unsigned int optimal_redzone(unsigned int object_size) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | 
 | 		return 0; | 
 |  | 
 | 	return | 
 | 		object_size <= 64        - 16   ? 16 : | 
 | 		object_size <= 128       - 32   ? 32 : | 
 | 		object_size <= 512       - 64   ? 64 : | 
 | 		object_size <= 4096      - 128  ? 128 : | 
 | 		object_size <= (1 << 14) - 256  ? 256 : | 
 | 		object_size <= (1 << 15) - 512  ? 512 : | 
 | 		object_size <= (1 << 16) - 1024 ? 1024 : 2048; | 
 | } | 
 |  | 
 | void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, | 
 | 			slab_flags_t *flags) | 
 | { | 
 | 	unsigned int orig_size = *size; | 
 | 	unsigned int redzone_size; | 
 | 	int redzone_adjust; | 
 |  | 
 | 	/* Add alloc meta. */ | 
 | 	cache->kasan_info.alloc_meta_offset = *size; | 
 | 	*size += sizeof(struct kasan_alloc_meta); | 
 |  | 
 | 	/* Add free meta. */ | 
 | 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) && | 
 | 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor || | 
 | 	     cache->object_size < sizeof(struct kasan_free_meta))) { | 
 | 		cache->kasan_info.free_meta_offset = *size; | 
 | 		*size += sizeof(struct kasan_free_meta); | 
 | 	} | 
 |  | 
 | 	redzone_size = optimal_redzone(cache->object_size); | 
 | 	redzone_adjust = redzone_size -	(*size - cache->object_size); | 
 | 	if (redzone_adjust > 0) | 
 | 		*size += redzone_adjust; | 
 |  | 
 | 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE, | 
 | 			max(*size, cache->object_size + redzone_size)); | 
 |  | 
 | 	/* | 
 | 	 * If the metadata doesn't fit, don't enable KASAN at all. | 
 | 	 */ | 
 | 	if (*size <= cache->kasan_info.alloc_meta_offset || | 
 | 			*size <= cache->kasan_info.free_meta_offset) { | 
 | 		cache->kasan_info.alloc_meta_offset = 0; | 
 | 		cache->kasan_info.free_meta_offset = 0; | 
 | 		*size = orig_size; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	*flags |= SLAB_KASAN; | 
 | } | 
 |  | 
 | size_t kasan_metadata_size(struct kmem_cache *cache) | 
 | { | 
 | 	return (cache->kasan_info.alloc_meta_offset ? | 
 | 		sizeof(struct kasan_alloc_meta) : 0) + | 
 | 		(cache->kasan_info.free_meta_offset ? | 
 | 		sizeof(struct kasan_free_meta) : 0); | 
 | } | 
 |  | 
 | struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache, | 
 | 					const void *object) | 
 | { | 
 | 	return (void *)object + cache->kasan_info.alloc_meta_offset; | 
 | } | 
 |  | 
 | struct kasan_free_meta *get_free_info(struct kmem_cache *cache, | 
 | 				      const void *object) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); | 
 | 	return (void *)object + cache->kasan_info.free_meta_offset; | 
 | } | 
 |  | 
 |  | 
 | static void kasan_set_free_info(struct kmem_cache *cache, | 
 | 		void *object, u8 tag) | 
 | { | 
 | 	struct kasan_alloc_meta *alloc_meta; | 
 | 	u8 idx = 0; | 
 |  | 
 | 	alloc_meta = get_alloc_info(cache, object); | 
 |  | 
 | #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY | 
 | 	idx = alloc_meta->free_track_idx; | 
 | 	alloc_meta->free_pointer_tag[idx] = tag; | 
 | 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS; | 
 | #endif | 
 |  | 
 | 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT); | 
 | } | 
 |  | 
 | void kasan_poison_slab(struct page *page) | 
 | { | 
 | 	unsigned long i; | 
 |  | 
 | 	for (i = 0; i < (1 << compound_order(page)); i++) | 
 | 		page_kasan_tag_reset(page + i); | 
 | 	kasan_poison_shadow(page_address(page), | 
 | 			PAGE_SIZE << compound_order(page), | 
 | 			KASAN_KMALLOC_REDZONE); | 
 | } | 
 |  | 
 | void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	kasan_unpoison_shadow(object, cache->object_size); | 
 | } | 
 |  | 
 | void kasan_poison_object_data(struct kmem_cache *cache, void *object) | 
 | { | 
 | 	kasan_poison_shadow(object, | 
 | 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE), | 
 | 			KASAN_KMALLOC_REDZONE); | 
 | } | 
 |  | 
 | /* | 
 |  * This function assigns a tag to an object considering the following: | 
 |  * 1. A cache might have a constructor, which might save a pointer to a slab | 
 |  *    object somewhere (e.g. in the object itself). We preassign a tag for | 
 |  *    each object in caches with constructors during slab creation and reuse | 
 |  *    the same tag each time a particular object is allocated. | 
 |  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be | 
 |  *    accessed after being freed. We preassign tags for objects in these | 
 |  *    caches as well. | 
 |  * 3. For SLAB allocator we can't preassign tags randomly since the freelist | 
 |  *    is stored as an array of indexes instead of a linked list. Assign tags | 
 |  *    based on objects indexes, so that objects that are next to each other | 
 |  *    get different tags. | 
 |  */ | 
 | static u8 assign_tag(struct kmem_cache *cache, const void *object, | 
 | 			bool init, bool keep_tag) | 
 | { | 
 | 	/* | 
 | 	 * 1. When an object is kmalloc()'ed, two hooks are called: | 
 | 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the | 
 | 	 *    tag only in the first one. | 
 | 	 * 2. We reuse the same tag for krealloc'ed objects. | 
 | 	 */ | 
 | 	if (keep_tag) | 
 | 		return get_tag(object); | 
 |  | 
 | 	/* | 
 | 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU | 
 | 	 * set, assign a tag when the object is being allocated (init == false). | 
 | 	 */ | 
 | 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) | 
 | 		return init ? KASAN_TAG_KERNEL : random_tag(); | 
 |  | 
 | 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ | 
 | #ifdef CONFIG_SLAB | 
 | 	/* For SLAB assign tags based on the object index in the freelist. */ | 
 | 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); | 
 | #else | 
 | 	/* | 
 | 	 * For SLUB assign a random tag during slab creation, otherwise reuse | 
 | 	 * the already assigned tag. | 
 | 	 */ | 
 | 	return init ? random_tag() : get_tag(object); | 
 | #endif | 
 | } | 
 |  | 
 | void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, | 
 | 						const void *object) | 
 | { | 
 | 	struct kasan_alloc_meta *alloc_info; | 
 |  | 
 | 	if (!(cache->flags & SLAB_KASAN)) | 
 | 		return (void *)object; | 
 |  | 
 | 	alloc_info = get_alloc_info(cache, object); | 
 | 	__memset(alloc_info, 0, sizeof(*alloc_info)); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | 
 | 		object = set_tag(object, | 
 | 				assign_tag(cache, object, true, false)); | 
 |  | 
 | 	return (void *)object; | 
 | } | 
 |  | 
 | static inline bool shadow_invalid(u8 tag, s8 shadow_byte) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_KASAN_GENERIC)) | 
 | 		return shadow_byte < 0 || | 
 | 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE; | 
 |  | 
 | 	/* else CONFIG_KASAN_SW_TAGS: */ | 
 | 	if ((u8)shadow_byte == KASAN_TAG_INVALID) | 
 | 		return true; | 
 | 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool __kasan_slab_free(struct kmem_cache *cache, void *object, | 
 | 			      unsigned long ip, bool quarantine) | 
 | { | 
 | 	s8 shadow_byte; | 
 | 	u8 tag; | 
 | 	void *tagged_object; | 
 | 	unsigned long rounded_up_size; | 
 |  | 
 | 	tag = get_tag(object); | 
 | 	tagged_object = object; | 
 | 	object = reset_tag(object); | 
 |  | 
 | 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != | 
 | 	    object)) { | 
 | 		kasan_report_invalid_free(tagged_object, ip); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* RCU slabs could be legally used after free within the RCU period */ | 
 | 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) | 
 | 		return false; | 
 |  | 
 | 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object)); | 
 | 	if (shadow_invalid(tag, shadow_byte)) { | 
 | 		kasan_report_invalid_free(tagged_object, ip); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE); | 
 | 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE); | 
 |  | 
 | 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) || | 
 | 			unlikely(!(cache->flags & SLAB_KASAN))) | 
 | 		return false; | 
 |  | 
 | 	kasan_set_free_info(cache, object, tag); | 
 |  | 
 | 	quarantine_put(get_free_info(cache, object), cache); | 
 |  | 
 | 	return IS_ENABLED(CONFIG_KASAN_GENERIC); | 
 | } | 
 |  | 
 | bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) | 
 | { | 
 | 	return __kasan_slab_free(cache, object, ip, true); | 
 | } | 
 |  | 
 | static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object, | 
 | 				size_t size, gfp_t flags, bool keep_tag) | 
 | { | 
 | 	unsigned long redzone_start; | 
 | 	unsigned long redzone_end; | 
 | 	u8 tag = 0xff; | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		quarantine_reduce(); | 
 |  | 
 | 	if (unlikely(object == NULL)) | 
 | 		return NULL; | 
 |  | 
 | 	redzone_start = round_up((unsigned long)(object + size), | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 | 	redzone_end = round_up((unsigned long)object + cache->object_size, | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) | 
 | 		tag = assign_tag(cache, object, false, keep_tag); | 
 |  | 
 | 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */ | 
 | 	kasan_unpoison_shadow(set_tag(object, tag), size); | 
 | 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, | 
 | 		KASAN_KMALLOC_REDZONE); | 
 |  | 
 | 	if (cache->flags & SLAB_KASAN) | 
 | 		set_track(&get_alloc_info(cache, object)->alloc_track, flags); | 
 |  | 
 | 	return set_tag(object, tag); | 
 | } | 
 |  | 
 | void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object, | 
 | 					gfp_t flags) | 
 | { | 
 | 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false); | 
 | } | 
 |  | 
 | void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object, | 
 | 				size_t size, gfp_t flags) | 
 | { | 
 | 	return __kasan_kmalloc(cache, object, size, flags, true); | 
 | } | 
 | EXPORT_SYMBOL(kasan_kmalloc); | 
 |  | 
 | void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, | 
 | 						gfp_t flags) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long redzone_start; | 
 | 	unsigned long redzone_end; | 
 |  | 
 | 	if (gfpflags_allow_blocking(flags)) | 
 | 		quarantine_reduce(); | 
 |  | 
 | 	if (unlikely(ptr == NULL)) | 
 | 		return NULL; | 
 |  | 
 | 	page = virt_to_page(ptr); | 
 | 	redzone_start = round_up((unsigned long)(ptr + size), | 
 | 				KASAN_SHADOW_SCALE_SIZE); | 
 | 	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page)); | 
 |  | 
 | 	kasan_unpoison_shadow(ptr, size); | 
 | 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start, | 
 | 		KASAN_PAGE_REDZONE); | 
 |  | 
 | 	return (void *)ptr; | 
 | } | 
 |  | 
 | void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 		return (void *)object; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) | 
 | 		return kasan_kmalloc_large(object, size, flags); | 
 | 	else | 
 | 		return __kasan_kmalloc(page->slab_cache, object, size, | 
 | 						flags, true); | 
 | } | 
 |  | 
 | void kasan_poison_kfree(void *ptr, unsigned long ip) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = virt_to_head_page(ptr); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		if (ptr != page_address(page)) { | 
 | 			kasan_report_invalid_free(ptr, ip); | 
 | 			return; | 
 | 		} | 
 | 		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page), | 
 | 				KASAN_FREE_PAGE); | 
 | 	} else { | 
 | 		__kasan_slab_free(page->slab_cache, ptr, ip, false); | 
 | 	} | 
 | } | 
 |  | 
 | void kasan_kfree_large(void *ptr, unsigned long ip) | 
 | { | 
 | 	if (ptr != page_address(virt_to_head_page(ptr))) | 
 | 		kasan_report_invalid_free(ptr, ip); | 
 | 	/* The object will be poisoned by page_alloc. */ | 
 | } | 
 |  | 
 | int kasan_module_alloc(void *addr, size_t size) | 
 | { | 
 | 	void *ret; | 
 | 	size_t scaled_size; | 
 | 	size_t shadow_size; | 
 | 	unsigned long shadow_start; | 
 |  | 
 | 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr); | 
 | 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT; | 
 | 	shadow_size = round_up(scaled_size, PAGE_SIZE); | 
 |  | 
 | 	if (WARN_ON(!PAGE_ALIGNED(shadow_start))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start, | 
 | 			shadow_start + shadow_size, | 
 | 			GFP_KERNEL, | 
 | 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, | 
 | 			__builtin_return_address(0)); | 
 |  | 
 | 	if (ret) { | 
 | 		__memset(ret, KASAN_SHADOW_INIT, shadow_size); | 
 | 		find_vm_area(addr)->flags |= VM_KASAN; | 
 | 		kmemleak_ignore(ret); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void kasan_free_shadow(const struct vm_struct *vm) | 
 | { | 
 | 	if (vm->flags & VM_KASAN) | 
 | 		vfree(kasan_mem_to_shadow(vm->addr)); | 
 | } | 
 |  | 
 | extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); | 
 |  | 
 | void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip) | 
 | { | 
 | 	unsigned long flags = user_access_save(); | 
 | 	__kasan_report(addr, size, is_write, ip); | 
 | 	user_access_restore(flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static bool shadow_mapped(unsigned long addr) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (pgd_none(*pgd)) | 
 | 		return false; | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return false; | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	if (pud_none(*pud)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We can't use pud_large() or pud_huge(), the first one is | 
 | 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse | 
 | 	 * pud_bad(), if pud is bad then it's bad because it's huge. | 
 | 	 */ | 
 | 	if (pud_bad(*pud)) | 
 | 		return true; | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (pmd_none(*pmd)) | 
 | 		return false; | 
 |  | 
 | 	if (pmd_bad(*pmd)) | 
 | 		return true; | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	return !pte_none(*pte); | 
 | } | 
 |  | 
 | static int __meminit kasan_mem_notifier(struct notifier_block *nb, | 
 | 			unsigned long action, void *data) | 
 | { | 
 | 	struct memory_notify *mem_data = data; | 
 | 	unsigned long nr_shadow_pages, start_kaddr, shadow_start; | 
 | 	unsigned long shadow_end, shadow_size; | 
 |  | 
 | 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; | 
 | 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); | 
 | 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); | 
 | 	shadow_size = nr_shadow_pages << PAGE_SHIFT; | 
 | 	shadow_end = shadow_start + shadow_size; | 
 |  | 
 | 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) || | 
 | 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT))) | 
 | 		return NOTIFY_BAD; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: { | 
 | 		void *ret; | 
 |  | 
 | 		/* | 
 | 		 * If shadow is mapped already than it must have been mapped | 
 | 		 * during the boot. This could happen if we onlining previously | 
 | 		 * offlined memory. | 
 | 		 */ | 
 | 		if (shadow_mapped(shadow_start)) | 
 | 			return NOTIFY_OK; | 
 |  | 
 | 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, | 
 | 					shadow_end, GFP_KERNEL, | 
 | 					PAGE_KERNEL, VM_NO_GUARD, | 
 | 					pfn_to_nid(mem_data->start_pfn), | 
 | 					__builtin_return_address(0)); | 
 | 		if (!ret) | 
 | 			return NOTIFY_BAD; | 
 |  | 
 | 		kmemleak_ignore(ret); | 
 | 		return NOTIFY_OK; | 
 | 	} | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 	case MEM_OFFLINE: { | 
 | 		struct vm_struct *vm; | 
 |  | 
 | 		/* | 
 | 		 * shadow_start was either mapped during boot by kasan_init() | 
 | 		 * or during memory online by __vmalloc_node_range(). | 
 | 		 * In the latter case we can use vfree() to free shadow. | 
 | 		 * Non-NULL result of the find_vm_area() will tell us if | 
 | 		 * that was the second case. | 
 | 		 * | 
 | 		 * Currently it's not possible to free shadow mapped | 
 | 		 * during boot by kasan_init(). It's because the code | 
 | 		 * to do that hasn't been written yet. So we'll just | 
 | 		 * leak the memory. | 
 | 		 */ | 
 | 		vm = find_vm_area((void *)shadow_start); | 
 | 		if (vm) | 
 | 			vfree((void *)shadow_start); | 
 | 	} | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static int __init kasan_memhotplug_init(void) | 
 | { | 
 | 	hotplug_memory_notifier(kasan_mem_notifier, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | core_initcall(kasan_memhotplug_init); | 
 | #endif |