| /* | 
 |  *  linux/mm/swapfile.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/random.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/security.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/frontswap.h> | 
 | #include <linux/swapfile.h> | 
 | #include <linux/export.h> | 
 | #include <linux/swap_slots.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/swap_cgroup.h> | 
 |  | 
 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
 | 				 unsigned char); | 
 | static void free_swap_count_continuations(struct swap_info_struct *); | 
 | static sector_t map_swap_entry(swp_entry_t, struct block_device**); | 
 |  | 
 | DEFINE_SPINLOCK(swap_lock); | 
 | static unsigned int nr_swapfiles; | 
 | atomic_long_t nr_swap_pages; | 
 | /* | 
 |  * Some modules use swappable objects and may try to swap them out under | 
 |  * memory pressure (via the shrinker). Before doing so, they may wish to | 
 |  * check to see if any swap space is available. | 
 |  */ | 
 | EXPORT_SYMBOL_GPL(nr_swap_pages); | 
 | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ | 
 | long total_swap_pages; | 
 | static int least_priority = -1; | 
 |  | 
 | static const char Bad_file[] = "Bad swap file entry "; | 
 | static const char Unused_file[] = "Unused swap file entry "; | 
 | static const char Bad_offset[] = "Bad swap offset entry "; | 
 | static const char Unused_offset[] = "Unused swap offset entry "; | 
 |  | 
 | /* | 
 |  * all active swap_info_structs | 
 |  * protected with swap_lock, and ordered by priority. | 
 |  */ | 
 | PLIST_HEAD(swap_active_head); | 
 |  | 
 | /* | 
 |  * all available (active, not full) swap_info_structs | 
 |  * protected with swap_avail_lock, ordered by priority. | 
 |  * This is used by get_swap_page() instead of swap_active_head | 
 |  * because swap_active_head includes all swap_info_structs, | 
 |  * but get_swap_page() doesn't need to look at full ones. | 
 |  * This uses its own lock instead of swap_lock because when a | 
 |  * swap_info_struct changes between not-full/full, it needs to | 
 |  * add/remove itself to/from this list, but the swap_info_struct->lock | 
 |  * is held and the locking order requires swap_lock to be taken | 
 |  * before any swap_info_struct->lock. | 
 |  */ | 
 | static struct plist_head *swap_avail_heads; | 
 | static DEFINE_SPINLOCK(swap_avail_lock); | 
 |  | 
 | struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
 |  | 
 | static DEFINE_MUTEX(swapon_mutex); | 
 |  | 
 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | 
 | /* Activity counter to indicate that a swapon or swapoff has occurred */ | 
 | static atomic_t proc_poll_event = ATOMIC_INIT(0); | 
 |  | 
 | atomic_t nr_rotate_swap = ATOMIC_INIT(0); | 
 |  | 
 | static struct swap_info_struct *swap_type_to_swap_info(int type) | 
 | { | 
 | 	if (type >= READ_ONCE(nr_swapfiles)) | 
 | 		return NULL; | 
 |  | 
 | 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */ | 
 | 	return READ_ONCE(swap_info[type]); | 
 | } | 
 |  | 
 | static inline unsigned char swap_count(unsigned char ent) | 
 | { | 
 | 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */ | 
 | } | 
 |  | 
 | /* returns 1 if swap entry is freed */ | 
 | static int | 
 | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) | 
 | { | 
 | 	swp_entry_t entry = swp_entry(si->type, offset); | 
 | 	struct page *page; | 
 | 	int ret = 0; | 
 |  | 
 | 	page = find_get_page(swap_address_space(entry), swp_offset(entry)); | 
 | 	if (!page) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * This function is called from scan_swap_map() and it's called | 
 | 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. | 
 | 	 * We have to use trylock for avoiding deadlock. This is a special | 
 | 	 * case and you should use try_to_free_swap() with explicit lock_page() | 
 | 	 * in usual operations. | 
 | 	 */ | 
 | 	if (trylock_page(page)) { | 
 | 		ret = try_to_free_swap(page); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	put_page(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * swapon tell device that all the old swap contents can be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static int discard_swap(struct swap_info_struct *si) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	sector_t start_block; | 
 | 	sector_t nr_blocks; | 
 | 	int err = 0; | 
 |  | 
 | 	/* Do not discard the swap header page! */ | 
 | 	se = &si->first_swap_extent; | 
 | 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
 | 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
 | 	if (nr_blocks) { | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 		if (err) | 
 | 			return err; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(se, &si->first_swap_extent.list, list) { | 
 | 		start_block = se->start_block << (PAGE_SHIFT - 9); | 
 | 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
 |  | 
 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 		if (err) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return err;		/* That will often be -EOPNOTSUPP */ | 
 | } | 
 |  | 
 | /* | 
 |  * swap allocation tell device that a cluster of swap can now be discarded, | 
 |  * to allow the swap device to optimize its wear-levelling. | 
 |  */ | 
 | static void discard_swap_cluster(struct swap_info_struct *si, | 
 | 				 pgoff_t start_page, pgoff_t nr_pages) | 
 | { | 
 | 	struct swap_extent *se = si->curr_swap_extent; | 
 | 	int found_extent = 0; | 
 |  | 
 | 	while (nr_pages) { | 
 | 		if (se->start_page <= start_page && | 
 | 		    start_page < se->start_page + se->nr_pages) { | 
 | 			pgoff_t offset = start_page - se->start_page; | 
 | 			sector_t start_block = se->start_block + offset; | 
 | 			sector_t nr_blocks = se->nr_pages - offset; | 
 |  | 
 | 			if (nr_blocks > nr_pages) | 
 | 				nr_blocks = nr_pages; | 
 | 			start_page += nr_blocks; | 
 | 			nr_pages -= nr_blocks; | 
 |  | 
 | 			if (!found_extent++) | 
 | 				si->curr_swap_extent = se; | 
 |  | 
 | 			start_block <<= PAGE_SHIFT - 9; | 
 | 			nr_blocks <<= PAGE_SHIFT - 9; | 
 | 			if (blkdev_issue_discard(si->bdev, start_block, | 
 | 				    nr_blocks, GFP_NOIO, 0)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		se = list_next_entry(se, list); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_THP_SWAP | 
 | #define SWAPFILE_CLUSTER	HPAGE_PMD_NR | 
 |  | 
 | #define swap_entry_size(size)	(size) | 
 | #else | 
 | #define SWAPFILE_CLUSTER	256 | 
 |  | 
 | /* | 
 |  * Define swap_entry_size() as constant to let compiler to optimize | 
 |  * out some code if !CONFIG_THP_SWAP | 
 |  */ | 
 | #define swap_entry_size(size)	1 | 
 | #endif | 
 | #define LATENCY_LIMIT		256 | 
 |  | 
 | static inline void cluster_set_flag(struct swap_cluster_info *info, | 
 | 	unsigned int flag) | 
 | { | 
 | 	info->flags = flag; | 
 | } | 
 |  | 
 | static inline unsigned int cluster_count(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->data; | 
 | } | 
 |  | 
 | static inline void cluster_set_count(struct swap_cluster_info *info, | 
 | 				     unsigned int c) | 
 | { | 
 | 	info->data = c; | 
 | } | 
 |  | 
 | static inline void cluster_set_count_flag(struct swap_cluster_info *info, | 
 | 					 unsigned int c, unsigned int f) | 
 | { | 
 | 	info->flags = f; | 
 | 	info->data = c; | 
 | } | 
 |  | 
 | static inline unsigned int cluster_next(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->data; | 
 | } | 
 |  | 
 | static inline void cluster_set_next(struct swap_cluster_info *info, | 
 | 				    unsigned int n) | 
 | { | 
 | 	info->data = n; | 
 | } | 
 |  | 
 | static inline void cluster_set_next_flag(struct swap_cluster_info *info, | 
 | 					 unsigned int n, unsigned int f) | 
 | { | 
 | 	info->flags = f; | 
 | 	info->data = n; | 
 | } | 
 |  | 
 | static inline bool cluster_is_free(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->flags & CLUSTER_FLAG_FREE; | 
 | } | 
 |  | 
 | static inline bool cluster_is_null(struct swap_cluster_info *info) | 
 | { | 
 | 	return info->flags & CLUSTER_FLAG_NEXT_NULL; | 
 | } | 
 |  | 
 | static inline void cluster_set_null(struct swap_cluster_info *info) | 
 | { | 
 | 	info->flags = CLUSTER_FLAG_NEXT_NULL; | 
 | 	info->data = 0; | 
 | } | 
 |  | 
 | static inline bool cluster_is_huge(struct swap_cluster_info *info) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_THP_SWAP)) | 
 | 		return info->flags & CLUSTER_FLAG_HUGE; | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void cluster_clear_huge(struct swap_cluster_info *info) | 
 | { | 
 | 	info->flags &= ~CLUSTER_FLAG_HUGE; | 
 | } | 
 |  | 
 | static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, | 
 | 						     unsigned long offset) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	ci = si->cluster_info; | 
 | 	if (ci) { | 
 | 		ci += offset / SWAPFILE_CLUSTER; | 
 | 		spin_lock(&ci->lock); | 
 | 	} | 
 | 	return ci; | 
 | } | 
 |  | 
 | static inline void unlock_cluster(struct swap_cluster_info *ci) | 
 | { | 
 | 	if (ci) | 
 | 		spin_unlock(&ci->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the locking method in use for this device.  Return | 
 |  * swap_cluster_info if SSD-style cluster-based locking is in place. | 
 |  */ | 
 | static inline struct swap_cluster_info *lock_cluster_or_swap_info( | 
 | 		struct swap_info_struct *si, unsigned long offset) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	/* Try to use fine-grained SSD-style locking if available: */ | 
 | 	ci = lock_cluster(si, offset); | 
 | 	/* Otherwise, fall back to traditional, coarse locking: */ | 
 | 	if (!ci) | 
 | 		spin_lock(&si->lock); | 
 |  | 
 | 	return ci; | 
 | } | 
 |  | 
 | static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, | 
 | 					       struct swap_cluster_info *ci) | 
 | { | 
 | 	if (ci) | 
 | 		unlock_cluster(ci); | 
 | 	else | 
 | 		spin_unlock(&si->lock); | 
 | } | 
 |  | 
 | static inline bool cluster_list_empty(struct swap_cluster_list *list) | 
 | { | 
 | 	return cluster_is_null(&list->head); | 
 | } | 
 |  | 
 | static inline unsigned int cluster_list_first(struct swap_cluster_list *list) | 
 | { | 
 | 	return cluster_next(&list->head); | 
 | } | 
 |  | 
 | static void cluster_list_init(struct swap_cluster_list *list) | 
 | { | 
 | 	cluster_set_null(&list->head); | 
 | 	cluster_set_null(&list->tail); | 
 | } | 
 |  | 
 | static void cluster_list_add_tail(struct swap_cluster_list *list, | 
 | 				  struct swap_cluster_info *ci, | 
 | 				  unsigned int idx) | 
 | { | 
 | 	if (cluster_list_empty(list)) { | 
 | 		cluster_set_next_flag(&list->head, idx, 0); | 
 | 		cluster_set_next_flag(&list->tail, idx, 0); | 
 | 	} else { | 
 | 		struct swap_cluster_info *ci_tail; | 
 | 		unsigned int tail = cluster_next(&list->tail); | 
 |  | 
 | 		/* | 
 | 		 * Nested cluster lock, but both cluster locks are | 
 | 		 * only acquired when we held swap_info_struct->lock | 
 | 		 */ | 
 | 		ci_tail = ci + tail; | 
 | 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); | 
 | 		cluster_set_next(ci_tail, idx); | 
 | 		spin_unlock(&ci_tail->lock); | 
 | 		cluster_set_next_flag(&list->tail, idx, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int cluster_list_del_first(struct swap_cluster_list *list, | 
 | 					   struct swap_cluster_info *ci) | 
 | { | 
 | 	unsigned int idx; | 
 |  | 
 | 	idx = cluster_next(&list->head); | 
 | 	if (cluster_next(&list->tail) == idx) { | 
 | 		cluster_set_null(&list->head); | 
 | 		cluster_set_null(&list->tail); | 
 | 	} else | 
 | 		cluster_set_next_flag(&list->head, | 
 | 				      cluster_next(&ci[idx]), 0); | 
 |  | 
 | 	return idx; | 
 | } | 
 |  | 
 | /* Add a cluster to discard list and schedule it to do discard */ | 
 | static void swap_cluster_schedule_discard(struct swap_info_struct *si, | 
 | 		unsigned int idx) | 
 | { | 
 | 	/* | 
 | 	 * If scan_swap_map() can't find a free cluster, it will check | 
 | 	 * si->swap_map directly. To make sure the discarding cluster isn't | 
 | 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It | 
 | 	 * will be cleared after discard | 
 | 	 */ | 
 | 	memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
 | 			SWAP_MAP_BAD, SWAPFILE_CLUSTER); | 
 |  | 
 | 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); | 
 |  | 
 | 	schedule_work(&si->discard_work); | 
 | } | 
 |  | 
 | static void __free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | { | 
 | 	struct swap_cluster_info *ci = si->cluster_info; | 
 |  | 
 | 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); | 
 | 	cluster_list_add_tail(&si->free_clusters, ci, idx); | 
 | } | 
 |  | 
 | /* | 
 |  * Doing discard actually. After a cluster discard is finished, the cluster | 
 |  * will be added to free cluster list. caller should hold si->lock. | 
 | */ | 
 | static void swap_do_scheduled_discard(struct swap_info_struct *si) | 
 | { | 
 | 	struct swap_cluster_info *info, *ci; | 
 | 	unsigned int idx; | 
 |  | 
 | 	info = si->cluster_info; | 
 |  | 
 | 	while (!cluster_list_empty(&si->discard_clusters)) { | 
 | 		idx = cluster_list_del_first(&si->discard_clusters, info); | 
 | 		spin_unlock(&si->lock); | 
 |  | 
 | 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, | 
 | 				SWAPFILE_CLUSTER); | 
 |  | 
 | 		spin_lock(&si->lock); | 
 | 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); | 
 | 		__free_cluster(si, idx); | 
 | 		memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
 | 				0, SWAPFILE_CLUSTER); | 
 | 		unlock_cluster(ci); | 
 | 	} | 
 | } | 
 |  | 
 | static void swap_discard_work(struct work_struct *work) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = container_of(work, struct swap_info_struct, discard_work); | 
 |  | 
 | 	spin_lock(&si->lock); | 
 | 	swap_do_scheduled_discard(si); | 
 | 	spin_unlock(&si->lock); | 
 | } | 
 |  | 
 | static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | { | 
 | 	struct swap_cluster_info *ci = si->cluster_info; | 
 |  | 
 | 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); | 
 | 	cluster_list_del_first(&si->free_clusters, ci); | 
 | 	cluster_set_count_flag(ci + idx, 0, 0); | 
 | } | 
 |  | 
 | static void free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | { | 
 | 	struct swap_cluster_info *ci = si->cluster_info + idx; | 
 |  | 
 | 	VM_BUG_ON(cluster_count(ci) != 0); | 
 | 	/* | 
 | 	 * If the swap is discardable, prepare discard the cluster | 
 | 	 * instead of free it immediately. The cluster will be freed | 
 | 	 * after discard. | 
 | 	 */ | 
 | 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == | 
 | 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) { | 
 | 		swap_cluster_schedule_discard(si, idx); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__free_cluster(si, idx); | 
 | } | 
 |  | 
 | /* | 
 |  * The cluster corresponding to page_nr will be used. The cluster will be | 
 |  * removed from free cluster list and its usage counter will be increased. | 
 |  */ | 
 | static void inc_cluster_info_page(struct swap_info_struct *p, | 
 | 	struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
 | { | 
 | 	unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
 |  | 
 | 	if (!cluster_info) | 
 | 		return; | 
 | 	if (cluster_is_free(&cluster_info[idx])) | 
 | 		alloc_cluster(p, idx); | 
 |  | 
 | 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); | 
 | 	cluster_set_count(&cluster_info[idx], | 
 | 		cluster_count(&cluster_info[idx]) + 1); | 
 | } | 
 |  | 
 | /* | 
 |  * The cluster corresponding to page_nr decreases one usage. If the usage | 
 |  * counter becomes 0, which means no page in the cluster is in using, we can | 
 |  * optionally discard the cluster and add it to free cluster list. | 
 |  */ | 
 | static void dec_cluster_info_page(struct swap_info_struct *p, | 
 | 	struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
 | { | 
 | 	unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
 |  | 
 | 	if (!cluster_info) | 
 | 		return; | 
 |  | 
 | 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); | 
 | 	cluster_set_count(&cluster_info[idx], | 
 | 		cluster_count(&cluster_info[idx]) - 1); | 
 |  | 
 | 	if (cluster_count(&cluster_info[idx]) == 0) | 
 | 		free_cluster(p, idx); | 
 | } | 
 |  | 
 | /* | 
 |  * It's possible scan_swap_map() uses a free cluster in the middle of free | 
 |  * cluster list. Avoiding such abuse to avoid list corruption. | 
 |  */ | 
 | static bool | 
 | scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, | 
 | 	unsigned long offset) | 
 | { | 
 | 	struct percpu_cluster *percpu_cluster; | 
 | 	bool conflict; | 
 |  | 
 | 	offset /= SWAPFILE_CLUSTER; | 
 | 	conflict = !cluster_list_empty(&si->free_clusters) && | 
 | 		offset != cluster_list_first(&si->free_clusters) && | 
 | 		cluster_is_free(&si->cluster_info[offset]); | 
 |  | 
 | 	if (!conflict) | 
 | 		return false; | 
 |  | 
 | 	percpu_cluster = this_cpu_ptr(si->percpu_cluster); | 
 | 	cluster_set_null(&percpu_cluster->index); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This | 
 |  * might involve allocating a new cluster for current CPU too. | 
 |  */ | 
 | static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, | 
 | 	unsigned long *offset, unsigned long *scan_base) | 
 | { | 
 | 	struct percpu_cluster *cluster; | 
 | 	struct swap_cluster_info *ci; | 
 | 	bool found_free; | 
 | 	unsigned long tmp, max; | 
 |  | 
 | new_cluster: | 
 | 	cluster = this_cpu_ptr(si->percpu_cluster); | 
 | 	if (cluster_is_null(&cluster->index)) { | 
 | 		if (!cluster_list_empty(&si->free_clusters)) { | 
 | 			cluster->index = si->free_clusters.head; | 
 | 			cluster->next = cluster_next(&cluster->index) * | 
 | 					SWAPFILE_CLUSTER; | 
 | 		} else if (!cluster_list_empty(&si->discard_clusters)) { | 
 | 			/* | 
 | 			 * we don't have free cluster but have some clusters in | 
 | 			 * discarding, do discard now and reclaim them | 
 | 			 */ | 
 | 			swap_do_scheduled_discard(si); | 
 | 			*scan_base = *offset = si->cluster_next; | 
 | 			goto new_cluster; | 
 | 		} else | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	found_free = false; | 
 |  | 
 | 	/* | 
 | 	 * Other CPUs can use our cluster if they can't find a free cluster, | 
 | 	 * check if there is still free entry in the cluster | 
 | 	 */ | 
 | 	tmp = cluster->next; | 
 | 	max = min_t(unsigned long, si->max, | 
 | 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); | 
 | 	if (tmp >= max) { | 
 | 		cluster_set_null(&cluster->index); | 
 | 		goto new_cluster; | 
 | 	} | 
 | 	ci = lock_cluster(si, tmp); | 
 | 	while (tmp < max) { | 
 | 		if (!si->swap_map[tmp]) { | 
 | 			found_free = true; | 
 | 			break; | 
 | 		} | 
 | 		tmp++; | 
 | 	} | 
 | 	unlock_cluster(ci); | 
 | 	if (!found_free) { | 
 | 		cluster_set_null(&cluster->index); | 
 | 		goto new_cluster; | 
 | 	} | 
 | 	cluster->next = tmp + 1; | 
 | 	*offset = tmp; | 
 | 	*scan_base = tmp; | 
 | 	return found_free; | 
 | } | 
 |  | 
 | static void __del_from_avail_list(struct swap_info_struct *p) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	for_each_node(nid) | 
 | 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); | 
 | } | 
 |  | 
 | static void del_from_avail_list(struct swap_info_struct *p) | 
 | { | 
 | 	spin_lock(&swap_avail_lock); | 
 | 	__del_from_avail_list(p); | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 |  | 
 | static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, | 
 | 			     unsigned int nr_entries) | 
 | { | 
 | 	unsigned int end = offset + nr_entries - 1; | 
 |  | 
 | 	if (offset == si->lowest_bit) | 
 | 		si->lowest_bit += nr_entries; | 
 | 	if (end == si->highest_bit) | 
 | 		si->highest_bit -= nr_entries; | 
 | 	si->inuse_pages += nr_entries; | 
 | 	if (si->inuse_pages == si->pages) { | 
 | 		si->lowest_bit = si->max; | 
 | 		si->highest_bit = 0; | 
 | 		del_from_avail_list(si); | 
 | 	} | 
 | } | 
 |  | 
 | static void add_to_avail_list(struct swap_info_struct *p) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 | 	for_each_node(nid) { | 
 | 		WARN_ON(!plist_node_empty(&p->avail_lists[nid])); | 
 | 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); | 
 | 	} | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 |  | 
 | static void swap_range_free(struct swap_info_struct *si, unsigned long offset, | 
 | 			    unsigned int nr_entries) | 
 | { | 
 | 	unsigned long end = offset + nr_entries - 1; | 
 | 	void (*swap_slot_free_notify)(struct block_device *, unsigned long); | 
 |  | 
 | 	if (offset < si->lowest_bit) | 
 | 		si->lowest_bit = offset; | 
 | 	if (end > si->highest_bit) { | 
 | 		bool was_full = !si->highest_bit; | 
 |  | 
 | 		si->highest_bit = end; | 
 | 		if (was_full && (si->flags & SWP_WRITEOK)) | 
 | 			add_to_avail_list(si); | 
 | 	} | 
 | 	atomic_long_add(nr_entries, &nr_swap_pages); | 
 | 	si->inuse_pages -= nr_entries; | 
 | 	if (si->flags & SWP_BLKDEV) | 
 | 		swap_slot_free_notify = | 
 | 			si->bdev->bd_disk->fops->swap_slot_free_notify; | 
 | 	else | 
 | 		swap_slot_free_notify = NULL; | 
 | 	while (offset <= end) { | 
 | 		frontswap_invalidate_page(si->type, offset); | 
 | 		if (swap_slot_free_notify) | 
 | 			swap_slot_free_notify(si->bdev, offset); | 
 | 		offset++; | 
 | 	} | 
 | } | 
 |  | 
 | static int scan_swap_map_slots(struct swap_info_struct *si, | 
 | 			       unsigned char usage, int nr, | 
 | 			       swp_entry_t slots[]) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset; | 
 | 	unsigned long scan_base; | 
 | 	unsigned long last_in_cluster = 0; | 
 | 	int latency_ration = LATENCY_LIMIT; | 
 | 	int n_ret = 0; | 
 |  | 
 | 	if (nr > SWAP_BATCH) | 
 | 		nr = SWAP_BATCH; | 
 |  | 
 | 	/* | 
 | 	 * We try to cluster swap pages by allocating them sequentially | 
 | 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
 | 	 * way, however, we resort to first-free allocation, starting | 
 | 	 * a new cluster.  This prevents us from scattering swap pages | 
 | 	 * all over the entire swap partition, so that we reduce | 
 | 	 * overall disk seek times between swap pages.  -- sct | 
 | 	 * But we do now try to find an empty cluster.  -Andrea | 
 | 	 * And we let swap pages go all over an SSD partition.  Hugh | 
 | 	 */ | 
 |  | 
 | 	si->flags += SWP_SCANNING; | 
 | 	scan_base = offset = si->cluster_next; | 
 |  | 
 | 	/* SSD algorithm */ | 
 | 	if (si->cluster_info) { | 
 | 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) | 
 | 			goto checks; | 
 | 		else | 
 | 			goto scan; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!si->cluster_nr--)) { | 
 | 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { | 
 | 			si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 			goto checks; | 
 | 		} | 
 |  | 
 | 		spin_unlock(&si->lock); | 
 |  | 
 | 		/* | 
 | 		 * If seek is expensive, start searching for new cluster from | 
 | 		 * start of partition, to minimize the span of allocated swap. | 
 | 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info | 
 | 		 * case, just handled by scan_swap_map_try_ssd_cluster() above. | 
 | 		 */ | 
 | 		scan_base = offset = si->lowest_bit; | 
 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 |  | 
 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 		for (; last_in_cluster <= si->highest_bit; offset++) { | 
 | 			if (si->swap_map[offset]) | 
 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 			else if (offset == last_in_cluster) { | 
 | 				spin_lock(&si->lock); | 
 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 				si->cluster_next = offset; | 
 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 				goto checks; | 
 | 			} | 
 | 			if (unlikely(--latency_ration < 0)) { | 
 | 				cond_resched(); | 
 | 				latency_ration = LATENCY_LIMIT; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		offset = scan_base; | 
 | 		spin_lock(&si->lock); | 
 | 		si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 	} | 
 |  | 
 | checks: | 
 | 	if (si->cluster_info) { | 
 | 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) { | 
 | 		/* take a break if we already got some slots */ | 
 | 			if (n_ret) | 
 | 				goto done; | 
 | 			if (!scan_swap_map_try_ssd_cluster(si, &offset, | 
 | 							&scan_base)) | 
 | 				goto scan; | 
 | 		} | 
 | 	} | 
 | 	if (!(si->flags & SWP_WRITEOK)) | 
 | 		goto no_page; | 
 | 	if (!si->highest_bit) | 
 | 		goto no_page; | 
 | 	if (offset > si->highest_bit) | 
 | 		scan_base = offset = si->lowest_bit; | 
 |  | 
 | 	ci = lock_cluster(si, offset); | 
 | 	/* reuse swap entry of cache-only swap if not busy. */ | 
 | 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 		int swap_was_freed; | 
 | 		unlock_cluster(ci); | 
 | 		spin_unlock(&si->lock); | 
 | 		swap_was_freed = __try_to_reclaim_swap(si, offset); | 
 | 		spin_lock(&si->lock); | 
 | 		/* entry was freed successfully, try to use this again */ | 
 | 		if (swap_was_freed) | 
 | 			goto checks; | 
 | 		goto scan; /* check next one */ | 
 | 	} | 
 |  | 
 | 	if (si->swap_map[offset]) { | 
 | 		unlock_cluster(ci); | 
 | 		if (!n_ret) | 
 | 			goto scan; | 
 | 		else | 
 | 			goto done; | 
 | 	} | 
 | 	si->swap_map[offset] = usage; | 
 | 	inc_cluster_info_page(si, si->cluster_info, offset); | 
 | 	unlock_cluster(ci); | 
 |  | 
 | 	swap_range_alloc(si, offset, 1); | 
 | 	si->cluster_next = offset + 1; | 
 | 	slots[n_ret++] = swp_entry(si->type, offset); | 
 |  | 
 | 	/* got enough slots or reach max slots? */ | 
 | 	if ((n_ret == nr) || (offset >= si->highest_bit)) | 
 | 		goto done; | 
 |  | 
 | 	/* search for next available slot */ | 
 |  | 
 | 	/* time to take a break? */ | 
 | 	if (unlikely(--latency_ration < 0)) { | 
 | 		if (n_ret) | 
 | 			goto done; | 
 | 		spin_unlock(&si->lock); | 
 | 		cond_resched(); | 
 | 		spin_lock(&si->lock); | 
 | 		latency_ration = LATENCY_LIMIT; | 
 | 	} | 
 |  | 
 | 	/* try to get more slots in cluster */ | 
 | 	if (si->cluster_info) { | 
 | 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) | 
 | 			goto checks; | 
 | 		else | 
 | 			goto done; | 
 | 	} | 
 | 	/* non-ssd case */ | 
 | 	++offset; | 
 |  | 
 | 	/* non-ssd case, still more slots in cluster? */ | 
 | 	if (si->cluster_nr && !si->swap_map[offset]) { | 
 | 		--si->cluster_nr; | 
 | 		goto checks; | 
 | 	} | 
 |  | 
 | done: | 
 | 	si->flags -= SWP_SCANNING; | 
 | 	return n_ret; | 
 |  | 
 | scan: | 
 | 	spin_unlock(&si->lock); | 
 | 	while (++offset <= si->highest_bit) { | 
 | 		if (!si->swap_map[offset]) { | 
 | 			spin_lock(&si->lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 			spin_lock(&si->lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (unlikely(--latency_ration < 0)) { | 
 | 			cond_resched(); | 
 | 			latency_ration = LATENCY_LIMIT; | 
 | 		} | 
 | 	} | 
 | 	offset = si->lowest_bit; | 
 | 	while (offset < scan_base) { | 
 | 		if (!si->swap_map[offset]) { | 
 | 			spin_lock(&si->lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 			spin_lock(&si->lock); | 
 | 			goto checks; | 
 | 		} | 
 | 		if (unlikely(--latency_ration < 0)) { | 
 | 			cond_resched(); | 
 | 			latency_ration = LATENCY_LIMIT; | 
 | 		} | 
 | 		offset++; | 
 | 	} | 
 | 	spin_lock(&si->lock); | 
 |  | 
 | no_page: | 
 | 	si->flags -= SWP_SCANNING; | 
 | 	return n_ret; | 
 | } | 
 |  | 
 | static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) | 
 | { | 
 | 	unsigned long idx; | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset, i; | 
 | 	unsigned char *map; | 
 |  | 
 | 	/* | 
 | 	 * Should not even be attempting cluster allocations when huge | 
 | 	 * page swap is disabled.  Warn and fail the allocation. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_THP_SWAP)) { | 
 | 		VM_WARN_ON_ONCE(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (cluster_list_empty(&si->free_clusters)) | 
 | 		return 0; | 
 |  | 
 | 	idx = cluster_list_first(&si->free_clusters); | 
 | 	offset = idx * SWAPFILE_CLUSTER; | 
 | 	ci = lock_cluster(si, offset); | 
 | 	alloc_cluster(si, idx); | 
 | 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); | 
 |  | 
 | 	map = si->swap_map + offset; | 
 | 	for (i = 0; i < SWAPFILE_CLUSTER; i++) | 
 | 		map[i] = SWAP_HAS_CACHE; | 
 | 	unlock_cluster(ci); | 
 | 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER); | 
 | 	*slot = swp_entry(si->type, offset); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | { | 
 | 	unsigned long offset = idx * SWAPFILE_CLUSTER; | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	ci = lock_cluster(si, offset); | 
 | 	cluster_set_count_flag(ci, 0, 0); | 
 | 	free_cluster(si, idx); | 
 | 	unlock_cluster(ci); | 
 | 	swap_range_free(si, offset, SWAPFILE_CLUSTER); | 
 | } | 
 |  | 
 | static unsigned long scan_swap_map(struct swap_info_struct *si, | 
 | 				   unsigned char usage) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	int n_ret; | 
 |  | 
 | 	n_ret = scan_swap_map_slots(si, usage, 1, &entry); | 
 |  | 
 | 	if (n_ret) | 
 | 		return swp_offset(entry); | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | } | 
 |  | 
 | int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) | 
 | { | 
 | 	unsigned long size = swap_entry_size(entry_size); | 
 | 	struct swap_info_struct *si, *next; | 
 | 	long avail_pgs; | 
 | 	int n_ret = 0; | 
 | 	int node; | 
 |  | 
 | 	/* Only single cluster request supported */ | 
 | 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); | 
 |  | 
 | 	avail_pgs = atomic_long_read(&nr_swap_pages) / size; | 
 | 	if (avail_pgs <= 0) | 
 | 		goto noswap; | 
 |  | 
 | 	if (n_goal > SWAP_BATCH) | 
 | 		n_goal = SWAP_BATCH; | 
 |  | 
 | 	if (n_goal > avail_pgs) | 
 | 		n_goal = avail_pgs; | 
 |  | 
 | 	atomic_long_sub(n_goal * size, &nr_swap_pages); | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 |  | 
 | start_over: | 
 | 	node = numa_node_id(); | 
 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { | 
 | 		/* requeue si to after same-priority siblings */ | 
 | 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); | 
 | 		spin_unlock(&swap_avail_lock); | 
 | 		spin_lock(&si->lock); | 
 | 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { | 
 | 			spin_lock(&swap_avail_lock); | 
 | 			if (plist_node_empty(&si->avail_lists[node])) { | 
 | 				spin_unlock(&si->lock); | 
 | 				goto nextsi; | 
 | 			} | 
 | 			WARN(!si->highest_bit, | 
 | 			     "swap_info %d in list but !highest_bit\n", | 
 | 			     si->type); | 
 | 			WARN(!(si->flags & SWP_WRITEOK), | 
 | 			     "swap_info %d in list but !SWP_WRITEOK\n", | 
 | 			     si->type); | 
 | 			__del_from_avail_list(si); | 
 | 			spin_unlock(&si->lock); | 
 | 			goto nextsi; | 
 | 		} | 
 | 		if (size == SWAPFILE_CLUSTER) { | 
 | 			if (!(si->flags & SWP_FILE)) | 
 | 				n_ret = swap_alloc_cluster(si, swp_entries); | 
 | 		} else | 
 | 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, | 
 | 						    n_goal, swp_entries); | 
 | 		spin_unlock(&si->lock); | 
 | 		if (n_ret || size == SWAPFILE_CLUSTER) | 
 | 			goto check_out; | 
 | 		pr_debug("scan_swap_map of si %d failed to find offset\n", | 
 | 			si->type); | 
 |  | 
 | 		spin_lock(&swap_avail_lock); | 
 | nextsi: | 
 | 		/* | 
 | 		 * if we got here, it's likely that si was almost full before, | 
 | 		 * and since scan_swap_map() can drop the si->lock, multiple | 
 | 		 * callers probably all tried to get a page from the same si | 
 | 		 * and it filled up before we could get one; or, the si filled | 
 | 		 * up between us dropping swap_avail_lock and taking si->lock. | 
 | 		 * Since we dropped the swap_avail_lock, the swap_avail_head | 
 | 		 * list may have been modified; so if next is still in the | 
 | 		 * swap_avail_head list then try it, otherwise start over | 
 | 		 * if we have not gotten any slots. | 
 | 		 */ | 
 | 		if (plist_node_empty(&next->avail_lists[node])) | 
 | 			goto start_over; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&swap_avail_lock); | 
 |  | 
 | check_out: | 
 | 	if (n_ret < n_goal) | 
 | 		atomic_long_add((long)(n_goal - n_ret) * size, | 
 | 				&nr_swap_pages); | 
 | noswap: | 
 | 	return n_ret; | 
 | } | 
 |  | 
 | /* The only caller of this function is now suspend routine */ | 
 | swp_entry_t get_swap_page_of_type(int type) | 
 | { | 
 | 	struct swap_info_struct *si = swap_type_to_swap_info(type); | 
 | 	pgoff_t offset; | 
 |  | 
 | 	if (!si) | 
 | 		goto fail; | 
 |  | 
 | 	spin_lock(&si->lock); | 
 | 	if (si->flags & SWP_WRITEOK) { | 
 | 		atomic_long_dec(&nr_swap_pages); | 
 | 		/* This is called for allocating swap entry, not cache */ | 
 | 		offset = scan_swap_map(si, 1); | 
 | 		if (offset) { | 
 | 			spin_unlock(&si->lock); | 
 | 			return swp_entry(type, offset); | 
 | 		} | 
 | 		atomic_long_inc(&nr_swap_pages); | 
 | 	} | 
 | 	spin_unlock(&si->lock); | 
 | fail: | 
 | 	return (swp_entry_t) {0}; | 
 | } | 
 |  | 
 | static struct swap_info_struct *__swap_info_get(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	unsigned long offset, type; | 
 |  | 
 | 	if (!entry.val) | 
 | 		goto out; | 
 | 	type = swp_type(entry); | 
 | 	p = swap_type_to_swap_info(type); | 
 | 	if (!p) | 
 | 		goto bad_nofile; | 
 | 	if (!(p->flags & SWP_USED)) | 
 | 		goto bad_device; | 
 | 	offset = swp_offset(entry); | 
 | 	if (offset >= p->max) | 
 | 		goto bad_offset; | 
 | 	return p; | 
 |  | 
 | bad_offset: | 
 | 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); | 
 | 	goto out; | 
 | bad_device: | 
 | 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); | 
 | 	goto out; | 
 | bad_nofile: | 
 | 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct swap_info_struct *_swap_info_get(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 |  | 
 | 	p = __swap_info_get(entry); | 
 | 	if (!p) | 
 | 		goto out; | 
 | 	if (!p->swap_map[swp_offset(entry)]) | 
 | 		goto bad_free; | 
 | 	return p; | 
 |  | 
 | bad_free: | 
 | 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); | 
 | 	goto out; | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 |  | 
 | 	p = _swap_info_get(entry); | 
 | 	if (p) | 
 | 		spin_lock(&p->lock); | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, | 
 | 					struct swap_info_struct *q) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 |  | 
 | 	p = _swap_info_get(entry); | 
 |  | 
 | 	if (p != q) { | 
 | 		if (q != NULL) | 
 | 			spin_unlock(&q->lock); | 
 | 		if (p != NULL) | 
 | 			spin_lock(&p->lock); | 
 | 	} | 
 | 	return p; | 
 | } | 
 |  | 
 | static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, | 
 | 					      unsigned long offset, | 
 | 					      unsigned char usage) | 
 | { | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 |  | 
 | 	count = p->swap_map[offset]; | 
 |  | 
 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 	count &= ~SWAP_HAS_CACHE; | 
 |  | 
 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 		VM_BUG_ON(!has_cache); | 
 | 		has_cache = 0; | 
 | 	} else if (count == SWAP_MAP_SHMEM) { | 
 | 		/* | 
 | 		 * Or we could insist on shmem.c using a special | 
 | 		 * swap_shmem_free() and free_shmem_swap_and_cache()... | 
 | 		 */ | 
 | 		count = 0; | 
 | 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
 | 		if (count == COUNT_CONTINUED) { | 
 | 			if (swap_count_continued(p, offset, count)) | 
 | 				count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
 | 			else | 
 | 				count = SWAP_MAP_MAX; | 
 | 		} else | 
 | 			count--; | 
 | 	} | 
 |  | 
 | 	usage = count | has_cache; | 
 | 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; | 
 |  | 
 | 	return usage; | 
 | } | 
 |  | 
 | static unsigned char __swap_entry_free(struct swap_info_struct *p, | 
 | 				       swp_entry_t entry, unsigned char usage) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset = swp_offset(entry); | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 | 	usage = __swap_entry_free_locked(p, offset, usage); | 
 | 	unlock_cluster_or_swap_info(p, ci); | 
 |  | 
 | 	return usage; | 
 | } | 
 |  | 
 | static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	unsigned char count; | 
 |  | 
 | 	ci = lock_cluster(p, offset); | 
 | 	count = p->swap_map[offset]; | 
 | 	VM_BUG_ON(count != SWAP_HAS_CACHE); | 
 | 	p->swap_map[offset] = 0; | 
 | 	dec_cluster_info_page(p, p->cluster_info, offset); | 
 | 	unlock_cluster(ci); | 
 |  | 
 | 	mem_cgroup_uncharge_swap(entry, 1); | 
 | 	swap_range_free(p, offset, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Caller has made sure that the swap device corresponding to entry | 
 |  * is still around or has not been recycled. | 
 |  */ | 
 | void swap_free(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 |  | 
 | 	p = _swap_info_get(entry); | 
 | 	if (p) { | 
 | 		if (!__swap_entry_free(p, entry, 1)) | 
 | 			free_swap_slot(entry); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called after dropping swapcache to decrease refcnt to swap entries. | 
 |  */ | 
 | void put_swap_page(struct page *page, swp_entry_t entry) | 
 | { | 
 | 	unsigned long offset = swp_offset(entry); | 
 | 	unsigned long idx = offset / SWAPFILE_CLUSTER; | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct swap_info_struct *si; | 
 | 	unsigned char *map; | 
 | 	unsigned int i, free_entries = 0; | 
 | 	unsigned char val; | 
 | 	int size = swap_entry_size(hpage_nr_pages(page)); | 
 |  | 
 | 	si = _swap_info_get(entry); | 
 | 	if (!si) | 
 | 		return; | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 	if (size == SWAPFILE_CLUSTER) { | 
 | 		VM_BUG_ON(!cluster_is_huge(ci)); | 
 | 		map = si->swap_map + offset; | 
 | 		for (i = 0; i < SWAPFILE_CLUSTER; i++) { | 
 | 			val = map[i]; | 
 | 			VM_BUG_ON(!(val & SWAP_HAS_CACHE)); | 
 | 			if (val == SWAP_HAS_CACHE) | 
 | 				free_entries++; | 
 | 		} | 
 | 		cluster_clear_huge(ci); | 
 | 		if (free_entries == SWAPFILE_CLUSTER) { | 
 | 			unlock_cluster_or_swap_info(si, ci); | 
 | 			spin_lock(&si->lock); | 
 | 			ci = lock_cluster(si, offset); | 
 | 			memset(map, 0, SWAPFILE_CLUSTER); | 
 | 			unlock_cluster(ci); | 
 | 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); | 
 | 			swap_free_cluster(si, idx); | 
 | 			spin_unlock(&si->lock); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < size; i++, entry.val++) { | 
 | 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { | 
 | 			unlock_cluster_or_swap_info(si, ci); | 
 | 			free_swap_slot(entry); | 
 | 			if (i == size - 1) | 
 | 				return; | 
 | 			lock_cluster_or_swap_info(si, offset); | 
 | 		} | 
 | 	} | 
 | 	unlock_cluster_or_swap_info(si, ci); | 
 | } | 
 |  | 
 | #ifdef CONFIG_THP_SWAP | 
 | int split_swap_cluster(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset = swp_offset(entry); | 
 |  | 
 | 	si = _swap_info_get(entry); | 
 | 	if (!si) | 
 | 		return -EBUSY; | 
 | 	ci = lock_cluster(si, offset); | 
 | 	cluster_clear_huge(ci); | 
 | 	unlock_cluster(ci); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int swp_entry_cmp(const void *ent1, const void *ent2) | 
 | { | 
 | 	const swp_entry_t *e1 = ent1, *e2 = ent2; | 
 |  | 
 | 	return (int)swp_type(*e1) - (int)swp_type(*e2); | 
 | } | 
 |  | 
 | void swapcache_free_entries(swp_entry_t *entries, int n) | 
 | { | 
 | 	struct swap_info_struct *p, *prev; | 
 | 	int i; | 
 |  | 
 | 	if (n <= 0) | 
 | 		return; | 
 |  | 
 | 	prev = NULL; | 
 | 	p = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Sort swap entries by swap device, so each lock is only taken once. | 
 | 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is | 
 | 	 * so low that it isn't necessary to optimize further. | 
 | 	 */ | 
 | 	if (nr_swapfiles > 1) | 
 | 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); | 
 | 	for (i = 0; i < n; ++i) { | 
 | 		p = swap_info_get_cont(entries[i], prev); | 
 | 		if (p) | 
 | 			swap_entry_free(p, entries[i]); | 
 | 		prev = p; | 
 | 	} | 
 | 	if (p) | 
 | 		spin_unlock(&p->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to page are currently swapped out? | 
 |  * This does not give an exact answer when swap count is continued, | 
 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 |  */ | 
 | int page_swapcount(struct page *page) | 
 | { | 
 | 	int count = 0; | 
 | 	struct swap_info_struct *p; | 
 | 	struct swap_cluster_info *ci; | 
 | 	swp_entry_t entry; | 
 | 	unsigned long offset; | 
 |  | 
 | 	entry.val = page_private(page); | 
 | 	p = _swap_info_get(entry); | 
 | 	if (p) { | 
 | 		offset = swp_offset(entry); | 
 | 		ci = lock_cluster_or_swap_info(p, offset); | 
 | 		count = swap_count(p->swap_map[offset]); | 
 | 		unlock_cluster_or_swap_info(p, ci); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  | 
 | int __swap_count(struct swap_info_struct *si, swp_entry_t entry) | 
 | { | 
 | 	pgoff_t offset = swp_offset(entry); | 
 |  | 
 | 	return swap_count(si->swap_map[offset]); | 
 | } | 
 |  | 
 | static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) | 
 | { | 
 | 	int count = 0; | 
 | 	pgoff_t offset = swp_offset(entry); | 
 | 	struct swap_cluster_info *ci; | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 	count = swap_count(si->swap_map[offset]); | 
 | 	unlock_cluster_or_swap_info(si, ci); | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to @entry are currently swapped out? | 
 |  * This does not give an exact answer when swap count is continued, | 
 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 |  */ | 
 | int __swp_swapcount(swp_entry_t entry) | 
 | { | 
 | 	int count = 0; | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	si = __swap_info_get(entry); | 
 | 	if (si) | 
 | 		count = swap_swapcount(si, entry); | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * How many references to @entry are currently swapped out? | 
 |  * This considers COUNT_CONTINUED so it returns exact answer. | 
 |  */ | 
 | int swp_swapcount(swp_entry_t entry) | 
 | { | 
 | 	int count, tmp_count, n; | 
 | 	struct swap_info_struct *p; | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct page *page; | 
 | 	pgoff_t offset; | 
 | 	unsigned char *map; | 
 |  | 
 | 	p = _swap_info_get(entry); | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	offset = swp_offset(entry); | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 |  | 
 | 	count = swap_count(p->swap_map[offset]); | 
 | 	if (!(count & COUNT_CONTINUED)) | 
 | 		goto out; | 
 |  | 
 | 	count &= ~COUNT_CONTINUED; | 
 | 	n = SWAP_MAP_MAX + 1; | 
 |  | 
 | 	page = vmalloc_to_page(p->swap_map + offset); | 
 | 	offset &= ~PAGE_MASK; | 
 | 	VM_BUG_ON(page_private(page) != SWP_CONTINUED); | 
 |  | 
 | 	do { | 
 | 		page = list_next_entry(page, lru); | 
 | 		map = kmap_atomic(page); | 
 | 		tmp_count = map[offset]; | 
 | 		kunmap_atomic(map); | 
 |  | 
 | 		count += (tmp_count & ~COUNT_CONTINUED) * n; | 
 | 		n *= (SWAP_CONT_MAX + 1); | 
 | 	} while (tmp_count & COUNT_CONTINUED); | 
 | out: | 
 | 	unlock_cluster_or_swap_info(p, ci); | 
 | 	return count; | 
 | } | 
 |  | 
 | static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, | 
 | 					 swp_entry_t entry) | 
 | { | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned char *map = si->swap_map; | 
 | 	unsigned long roffset = swp_offset(entry); | 
 | 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); | 
 | 	int i; | 
 | 	bool ret = false; | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 	if (!ci || !cluster_is_huge(ci)) { | 
 | 		if (swap_count(map[roffset])) | 
 | 			ret = true; | 
 | 		goto unlock_out; | 
 | 	} | 
 | 	for (i = 0; i < SWAPFILE_CLUSTER; i++) { | 
 | 		if (swap_count(map[offset + i])) { | 
 | 			ret = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | unlock_out: | 
 | 	unlock_cluster_or_swap_info(si, ci); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool page_swapped(struct page *page) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	struct swap_info_struct *si; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) | 
 | 		return page_swapcount(page) != 0; | 
 |  | 
 | 	page = compound_head(page); | 
 | 	entry.val = page_private(page); | 
 | 	si = _swap_info_get(entry); | 
 | 	if (si) | 
 | 		return swap_page_trans_huge_swapped(si, entry); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, | 
 | 					 int *total_swapcount) | 
 | { | 
 | 	int i, map_swapcount, _total_mapcount, _total_swapcount; | 
 | 	unsigned long offset = 0; | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci = NULL; | 
 | 	unsigned char *map = NULL; | 
 | 	int mapcount, swapcount = 0; | 
 |  | 
 | 	/* hugetlbfs shouldn't call it */ | 
 | 	VM_BUG_ON_PAGE(PageHuge(page), page); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { | 
 | 		mapcount = page_trans_huge_mapcount(page, total_mapcount); | 
 | 		if (PageSwapCache(page)) | 
 | 			swapcount = page_swapcount(page); | 
 | 		if (total_swapcount) | 
 | 			*total_swapcount = swapcount; | 
 | 		return mapcount + swapcount; | 
 | 	} | 
 |  | 
 | 	page = compound_head(page); | 
 |  | 
 | 	_total_mapcount = _total_swapcount = map_swapcount = 0; | 
 | 	if (PageSwapCache(page)) { | 
 | 		swp_entry_t entry; | 
 |  | 
 | 		entry.val = page_private(page); | 
 | 		si = _swap_info_get(entry); | 
 | 		if (si) { | 
 | 			map = si->swap_map; | 
 | 			offset = swp_offset(entry); | 
 | 		} | 
 | 	} | 
 | 	if (map) | 
 | 		ci = lock_cluster(si, offset); | 
 | 	for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 		mapcount = atomic_read(&page[i]._mapcount) + 1; | 
 | 		_total_mapcount += mapcount; | 
 | 		if (map) { | 
 | 			swapcount = swap_count(map[offset + i]); | 
 | 			_total_swapcount += swapcount; | 
 | 		} | 
 | 		map_swapcount = max(map_swapcount, mapcount + swapcount); | 
 | 	} | 
 | 	unlock_cluster(ci); | 
 | 	if (PageDoubleMap(page)) { | 
 | 		map_swapcount -= 1; | 
 | 		_total_mapcount -= HPAGE_PMD_NR; | 
 | 	} | 
 | 	mapcount = compound_mapcount(page); | 
 | 	map_swapcount += mapcount; | 
 | 	_total_mapcount += mapcount; | 
 | 	if (total_mapcount) | 
 | 		*total_mapcount = _total_mapcount; | 
 | 	if (total_swapcount) | 
 | 		*total_swapcount = _total_swapcount; | 
 |  | 
 | 	return map_swapcount; | 
 | } | 
 |  | 
 | /* | 
 |  * We can write to an anon page without COW if there are no other references | 
 |  * to it.  And as a side-effect, free up its swap: because the old content | 
 |  * on disk will never be read, and seeking back there to write new content | 
 |  * later would only waste time away from clustering. | 
 |  * | 
 |  * NOTE: total_map_swapcount should not be relied upon by the caller if | 
 |  * reuse_swap_page() returns false, but it may be always overwritten | 
 |  * (see the other implementation for CONFIG_SWAP=n). | 
 |  */ | 
 | bool reuse_swap_page(struct page *page, int *total_map_swapcount) | 
 | { | 
 | 	int count, total_mapcount, total_swapcount; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	if (unlikely(PageKsm(page))) | 
 | 		return false; | 
 | 	count = page_trans_huge_map_swapcount(page, &total_mapcount, | 
 | 					      &total_swapcount); | 
 | 	if (total_map_swapcount) | 
 | 		*total_map_swapcount = total_mapcount + total_swapcount; | 
 | 	if (count == 1 && PageSwapCache(page) && | 
 | 	    (likely(!PageTransCompound(page)) || | 
 | 	     /* The remaining swap count will be freed soon */ | 
 | 	     total_swapcount == page_swapcount(page))) { | 
 | 		if (!PageWriteback(page)) { | 
 | 			page = compound_head(page); | 
 | 			delete_from_swap_cache(page); | 
 | 			SetPageDirty(page); | 
 | 		} else { | 
 | 			swp_entry_t entry; | 
 | 			struct swap_info_struct *p; | 
 |  | 
 | 			entry.val = page_private(page); | 
 | 			p = swap_info_get(entry); | 
 | 			if (p->flags & SWP_STABLE_WRITES) { | 
 | 				spin_unlock(&p->lock); | 
 | 				return false; | 
 | 			} | 
 | 			spin_unlock(&p->lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count <= 1; | 
 | } | 
 |  | 
 | /* | 
 |  * If swap is getting full, or if there are no more mappings of this page, | 
 |  * then try_to_free_swap is called to free its swap space. | 
 |  */ | 
 | int try_to_free_swap(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 |  | 
 | 	if (!PageSwapCache(page)) | 
 | 		return 0; | 
 | 	if (PageWriteback(page)) | 
 | 		return 0; | 
 | 	if (page_swapped(page)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Once hibernation has begun to create its image of memory, | 
 | 	 * there's a danger that one of the calls to try_to_free_swap() | 
 | 	 * - most probably a call from __try_to_reclaim_swap() while | 
 | 	 * hibernation is allocating its own swap pages for the image, | 
 | 	 * but conceivably even a call from memory reclaim - will free | 
 | 	 * the swap from a page which has already been recorded in the | 
 | 	 * image as a clean swapcache page, and then reuse its swap for | 
 | 	 * another page of the image.  On waking from hibernation, the | 
 | 	 * original page might be freed under memory pressure, then | 
 | 	 * later read back in from swap, now with the wrong data. | 
 | 	 * | 
 | 	 * Hibernation suspends storage while it is writing the image | 
 | 	 * to disk so check that here. | 
 | 	 */ | 
 | 	if (pm_suspended_storage()) | 
 | 		return 0; | 
 |  | 
 | 	page = compound_head(page); | 
 | 	delete_from_swap_cache(page); | 
 | 	SetPageDirty(page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Free the swap entry like above, but also try to | 
 |  * free the page cache entry if it is the last user. | 
 |  */ | 
 | int free_swap_and_cache(swp_entry_t entry) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	struct page *page = NULL; | 
 | 	unsigned char count; | 
 |  | 
 | 	if (non_swap_entry(entry)) | 
 | 		return 1; | 
 |  | 
 | 	p = _swap_info_get(entry); | 
 | 	if (p) { | 
 | 		count = __swap_entry_free(p, entry, 1); | 
 | 		if (count == SWAP_HAS_CACHE && | 
 | 		    !swap_page_trans_huge_swapped(p, entry)) { | 
 | 			page = find_get_page(swap_address_space(entry), | 
 | 					     swp_offset(entry)); | 
 | 			if (page && !trylock_page(page)) { | 
 | 				put_page(page); | 
 | 				page = NULL; | 
 | 			} | 
 | 		} else if (!count) | 
 | 			free_swap_slot(entry); | 
 | 	} | 
 | 	if (page) { | 
 | 		/* | 
 | 		 * Not mapped elsewhere, or swap space full? Free it! | 
 | 		 * Also recheck PageSwapCache now page is locked (above). | 
 | 		 */ | 
 | 		if (PageSwapCache(page) && !PageWriteback(page) && | 
 | 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) && | 
 | 		    !swap_page_trans_huge_swapped(p, entry)) { | 
 | 			page = compound_head(page); | 
 | 			delete_from_swap_cache(page); | 
 | 			SetPageDirty(page); | 
 | 		} | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 	} | 
 | 	return p != NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 | /* | 
 |  * Find the swap type that corresponds to given device (if any). | 
 |  * | 
 |  * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
 |  * from 0, in which the swap header is expected to be located. | 
 |  * | 
 |  * This is needed for the suspend to disk (aka swsusp). | 
 |  */ | 
 | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) | 
 | { | 
 | 	struct block_device *bdev = NULL; | 
 | 	int type; | 
 |  | 
 | 	if (device) | 
 | 		bdev = bdget(device); | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 			continue; | 
 |  | 
 | 		if (!bdev) { | 
 | 			if (bdev_p) | 
 | 				*bdev_p = bdgrab(sis->bdev); | 
 |  | 
 | 			spin_unlock(&swap_lock); | 
 | 			return type; | 
 | 		} | 
 | 		if (bdev == sis->bdev) { | 
 | 			struct swap_extent *se = &sis->first_swap_extent; | 
 |  | 
 | 			if (se->start_block == offset) { | 
 | 				if (bdev_p) | 
 | 					*bdev_p = bdgrab(sis->bdev); | 
 |  | 
 | 				spin_unlock(&swap_lock); | 
 | 				bdput(bdev); | 
 | 				return type; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	if (bdev) | 
 | 		bdput(bdev); | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
 |  * corresponding to given index in swap_info (swap type). | 
 |  */ | 
 | sector_t swapdev_block(int type, pgoff_t offset) | 
 | { | 
 | 	struct block_device *bdev; | 
 | 	struct swap_info_struct *si = swap_type_to_swap_info(type); | 
 |  | 
 | 	if (!si || !(si->flags & SWP_WRITEOK)) | 
 | 		return 0; | 
 | 	return map_swap_entry(swp_entry(type, offset), &bdev); | 
 | } | 
 |  | 
 | /* | 
 |  * Return either the total number of swap pages of given type, or the number | 
 |  * of free pages of that type (depending on @free) | 
 |  * | 
 |  * This is needed for software suspend | 
 |  */ | 
 | unsigned int count_swap_pages(int type, int free) | 
 | { | 
 | 	unsigned int n = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if ((unsigned int)type < nr_swapfiles) { | 
 | 		struct swap_info_struct *sis = swap_info[type]; | 
 |  | 
 | 		spin_lock(&sis->lock); | 
 | 		if (sis->flags & SWP_WRITEOK) { | 
 | 			n = sis->pages; | 
 | 			if (free) | 
 | 				n -= sis->inuse_pages; | 
 | 		} | 
 | 		spin_unlock(&sis->lock); | 
 | 	} | 
 | 	spin_unlock(&swap_lock); | 
 | 	return n; | 
 | } | 
 | #endif /* CONFIG_HIBERNATION */ | 
 |  | 
 | static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) | 
 | { | 
 | 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); | 
 | } | 
 |  | 
 | /* | 
 |  * No need to decide whether this PTE shares the swap entry with others, | 
 |  * just let do_wp_page work it out if a write is requested later - to | 
 |  * force COW, vm_page_prot omits write permission from any private vma. | 
 |  */ | 
 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 		unsigned long addr, swp_entry_t entry, struct page *page) | 
 | { | 
 | 	struct page *swapcache; | 
 | 	struct mem_cgroup *memcg; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *pte; | 
 | 	int ret = 1; | 
 |  | 
 | 	swapcache = page; | 
 | 	page = ksm_might_need_to_copy(page, vma, addr); | 
 | 	if (unlikely(!page)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, | 
 | 				&memcg, false)) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_nolock; | 
 | 	} | 
 |  | 
 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { | 
 | 		mem_cgroup_cancel_charge(page, memcg, false); | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
 | 	get_page(page); | 
 | 	set_pte_at(vma->vm_mm, addr, pte, | 
 | 		   pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
 | 	if (page == swapcache) { | 
 | 		page_add_anon_rmap(page, vma, addr, false); | 
 | 		mem_cgroup_commit_charge(page, memcg, true, false); | 
 | 	} else { /* ksm created a completely new copy */ | 
 | 		page_add_new_anon_rmap(page, vma, addr, false); | 
 | 		mem_cgroup_commit_charge(page, memcg, false, false); | 
 | 		lru_cache_add_active_or_unevictable(page, vma); | 
 | 	} | 
 | 	swap_free(entry); | 
 | 	/* | 
 | 	 * Move the page to the active list so it is not | 
 | 	 * immediately swapped out again after swapon. | 
 | 	 */ | 
 | 	activate_page(page); | 
 | out: | 
 | 	pte_unmap_unlock(pte, ptl); | 
 | out_nolock: | 
 | 	if (page != swapcache) { | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pte_t swp_pte = swp_entry_to_pte(entry); | 
 | 	pte_t *pte; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't actually need pte lock while scanning for swp_pte: since | 
 | 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the | 
 | 	 * page table while we're scanning; though it could get zapped, and on | 
 | 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse | 
 | 	 * of unmatched parts which look like swp_pte, so unuse_pte must | 
 | 	 * recheck under pte lock.  Scanning without pte lock lets it be | 
 | 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. | 
 | 	 */ | 
 | 	pte = pte_offset_map(pmd, addr); | 
 | 	do { | 
 | 		/* | 
 | 		 * swapoff spends a _lot_ of time in this loop! | 
 | 		 * Test inline before going to call unuse_pte. | 
 | 		 */ | 
 | 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) { | 
 | 			pte_unmap(pte); | 
 | 			ret = unuse_pte(vma, pmd, addr, entry, page); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			pte = pte_offset_map(pmd, addr); | 
 | 		} | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	pte_unmap(pte - 1); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		cond_resched(); | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, | 
 | 				unsigned long addr, unsigned long end, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	unsigned long next; | 
 | 	int ret; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	do { | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (p4d_none_or_clear_bad(p4d)) | 
 | 			continue; | 
 | 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (p4d++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_vma(struct vm_area_struct *vma, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long addr, end, next; | 
 | 	int ret; | 
 |  | 
 | 	if (page_anon_vma(page)) { | 
 | 		addr = page_address_in_vma(page, vma); | 
 | 		if (addr == -EFAULT) | 
 | 			return 0; | 
 | 		else | 
 | 			end = addr + PAGE_SIZE; | 
 | 	} else { | 
 | 		addr = vma->vm_start; | 
 | 		end = vma->vm_end; | 
 | 	} | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int unuse_mm(struct mm_struct *mm, | 
 | 				swp_entry_t entry, struct page *page) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		/* | 
 | 		 * Activate page so shrink_inactive_list is unlikely to unmap | 
 | 		 * its ptes while lock is dropped, so swapoff can make progress. | 
 | 		 */ | 
 | 		activate_page(page); | 
 | 		unlock_page(page); | 
 | 		down_read(&mm->mmap_sem); | 
 | 		lock_page(page); | 
 | 	} | 
 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) | 
 | 			break; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return (ret < 0)? ret: 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan swap_map (or frontswap_map if frontswap parameter is true) | 
 |  * from current position to next entry still in use. | 
 |  * Recycle to start on reaching the end, returning 0 when empty. | 
 |  */ | 
 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
 | 					unsigned int prev, bool frontswap) | 
 | { | 
 | 	unsigned int max = si->max; | 
 | 	unsigned int i = prev; | 
 | 	unsigned char count; | 
 |  | 
 | 	/* | 
 | 	 * No need for swap_lock here: we're just looking | 
 | 	 * for whether an entry is in use, not modifying it; false | 
 | 	 * hits are okay, and sys_swapoff() has already prevented new | 
 | 	 * allocations from this area (while holding swap_lock). | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		if (++i >= max) { | 
 | 			if (!prev) { | 
 | 				i = 0; | 
 | 				break; | 
 | 			} | 
 | 			/* | 
 | 			 * No entries in use at top of swap_map, | 
 | 			 * loop back to start and recheck there. | 
 | 			 */ | 
 | 			max = prev + 1; | 
 | 			prev = 0; | 
 | 			i = 1; | 
 | 		} | 
 | 		count = READ_ONCE(si->swap_map[i]); | 
 | 		if (count && swap_count(count) != SWAP_MAP_BAD) | 
 | 			if (!frontswap || frontswap_test(si, i)) | 
 | 				break; | 
 | 		if ((i % LATENCY_LIMIT) == 0) | 
 | 			cond_resched(); | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * We completely avoid races by reading each swap page in advance, | 
 |  * and then search for the process using it.  All the necessary | 
 |  * page table adjustments can then be made atomically. | 
 |  * | 
 |  * if the boolean frontswap is true, only unuse pages_to_unuse pages; | 
 |  * pages_to_unuse==0 means all pages; ignored if frontswap is false | 
 |  */ | 
 | int try_to_unuse(unsigned int type, bool frontswap, | 
 | 		 unsigned long pages_to_unuse) | 
 | { | 
 | 	struct swap_info_struct *si = swap_info[type]; | 
 | 	struct mm_struct *start_mm; | 
 | 	volatile unsigned char *swap_map; /* swap_map is accessed without | 
 | 					   * locking. Mark it as volatile | 
 | 					   * to prevent compiler doing | 
 | 					   * something odd. | 
 | 					   */ | 
 | 	unsigned char swcount; | 
 | 	struct page *page; | 
 | 	swp_entry_t entry; | 
 | 	unsigned int i = 0; | 
 | 	int retval = 0; | 
 |  | 
 | 	/* | 
 | 	 * When searching mms for an entry, a good strategy is to | 
 | 	 * start at the first mm we freed the previous entry from | 
 | 	 * (though actually we don't notice whether we or coincidence | 
 | 	 * freed the entry).  Initialize this start_mm with a hold. | 
 | 	 * | 
 | 	 * A simpler strategy would be to start at the last mm we | 
 | 	 * freed the previous entry from; but that would take less | 
 | 	 * advantage of mmlist ordering, which clusters forked mms | 
 | 	 * together, child after parent.  If we race with dup_mmap(), we | 
 | 	 * prefer to resolve parent before child, lest we miss entries | 
 | 	 * duplicated after we scanned child: using last mm would invert | 
 | 	 * that. | 
 | 	 */ | 
 | 	start_mm = &init_mm; | 
 | 	mmget(&init_mm); | 
 |  | 
 | 	/* | 
 | 	 * Keep on scanning until all entries have gone.  Usually, | 
 | 	 * one pass through swap_map is enough, but not necessarily: | 
 | 	 * there are races when an instance of an entry might be missed. | 
 | 	 */ | 
 | 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { | 
 | 		if (signal_pending(current)) { | 
 | 			retval = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Get a page for the entry, using the existing swap | 
 | 		 * cache page if there is one.  Otherwise, get a clean | 
 | 		 * page and read the swap into it. | 
 | 		 */ | 
 | 		swap_map = &si->swap_map[i]; | 
 | 		entry = swp_entry(type, i); | 
 | 		page = read_swap_cache_async(entry, | 
 | 					GFP_HIGHUSER_MOVABLE, NULL, 0, false); | 
 | 		if (!page) { | 
 | 			/* | 
 | 			 * Either swap_duplicate() failed because entry | 
 | 			 * has been freed independently, and will not be | 
 | 			 * reused since sys_swapoff() already disabled | 
 | 			 * allocation from here, or alloc_page() failed. | 
 | 			 */ | 
 | 			swcount = *swap_map; | 
 | 			/* | 
 | 			 * We don't hold lock here, so the swap entry could be | 
 | 			 * SWAP_MAP_BAD (when the cluster is discarding). | 
 | 			 * Instead of fail out, We can just skip the swap | 
 | 			 * entry because swapoff will wait for discarding | 
 | 			 * finish anyway. | 
 | 			 */ | 
 | 			if (!swcount || swcount == SWAP_MAP_BAD) | 
 | 				continue; | 
 | 			retval = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Don't hold on to start_mm if it looks like exiting. | 
 | 		 */ | 
 | 		if (atomic_read(&start_mm->mm_users) == 1) { | 
 | 			mmput(start_mm); | 
 | 			start_mm = &init_mm; | 
 | 			mmget(&init_mm); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wait for and lock page.  When do_swap_page races with | 
 | 		 * try_to_unuse, do_swap_page can handle the fault much | 
 | 		 * faster than try_to_unuse can locate the entry.  This | 
 | 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
 | 		 * defer to do_swap_page in such a case - in some tests, | 
 | 		 * do_swap_page and try_to_unuse repeatedly compete. | 
 | 		 */ | 
 | 		wait_on_page_locked(page); | 
 | 		wait_on_page_writeback(page); | 
 | 		lock_page(page); | 
 | 		wait_on_page_writeback(page); | 
 |  | 
 | 		/* | 
 | 		 * Remove all references to entry. | 
 | 		 */ | 
 | 		swcount = *swap_map; | 
 | 		if (swap_count(swcount) == SWAP_MAP_SHMEM) { | 
 | 			retval = shmem_unuse(entry, page); | 
 | 			/* page has already been unlocked and released */ | 
 | 			if (retval < 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 | 		if (swap_count(swcount) && start_mm != &init_mm) | 
 | 			retval = unuse_mm(start_mm, entry, page); | 
 |  | 
 | 		if (swap_count(*swap_map)) { | 
 | 			int set_start_mm = (*swap_map >= swcount); | 
 | 			struct list_head *p = &start_mm->mmlist; | 
 | 			struct mm_struct *new_start_mm = start_mm; | 
 | 			struct mm_struct *prev_mm = start_mm; | 
 | 			struct mm_struct *mm; | 
 |  | 
 | 			mmget(new_start_mm); | 
 | 			mmget(prev_mm); | 
 | 			spin_lock(&mmlist_lock); | 
 | 			while (swap_count(*swap_map) && !retval && | 
 | 					(p = p->next) != &start_mm->mmlist) { | 
 | 				mm = list_entry(p, struct mm_struct, mmlist); | 
 | 				if (!mmget_not_zero(mm)) | 
 | 					continue; | 
 | 				spin_unlock(&mmlist_lock); | 
 | 				mmput(prev_mm); | 
 | 				prev_mm = mm; | 
 |  | 
 | 				cond_resched(); | 
 |  | 
 | 				swcount = *swap_map; | 
 | 				if (!swap_count(swcount)) /* any usage ? */ | 
 | 					; | 
 | 				else if (mm == &init_mm) | 
 | 					set_start_mm = 1; | 
 | 				else | 
 | 					retval = unuse_mm(mm, entry, page); | 
 |  | 
 | 				if (set_start_mm && *swap_map < swcount) { | 
 | 					mmput(new_start_mm); | 
 | 					mmget(mm); | 
 | 					new_start_mm = mm; | 
 | 					set_start_mm = 0; | 
 | 				} | 
 | 				spin_lock(&mmlist_lock); | 
 | 			} | 
 | 			spin_unlock(&mmlist_lock); | 
 | 			mmput(prev_mm); | 
 | 			mmput(start_mm); | 
 | 			start_mm = new_start_mm; | 
 | 		} | 
 | 		if (retval) { | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If a reference remains (rare), we would like to leave | 
 | 		 * the page in the swap cache; but try_to_unmap could | 
 | 		 * then re-duplicate the entry once we drop page lock, | 
 | 		 * so we might loop indefinitely; also, that page could | 
 | 		 * not be swapped out to other storage meanwhile.  So: | 
 | 		 * delete from cache even if there's another reference, | 
 | 		 * after ensuring that the data has been saved to disk - | 
 | 		 * since if the reference remains (rarer), it will be | 
 | 		 * read from disk into another page.  Splitting into two | 
 | 		 * pages would be incorrect if swap supported "shared | 
 | 		 * private" pages, but they are handled by tmpfs files. | 
 | 		 * | 
 | 		 * Given how unuse_vma() targets one particular offset | 
 | 		 * in an anon_vma, once the anon_vma has been determined, | 
 | 		 * this splitting happens to be just what is needed to | 
 | 		 * handle where KSM pages have been swapped out: re-reading | 
 | 		 * is unnecessarily slow, but we can fix that later on. | 
 | 		 */ | 
 | 		if (swap_count(*swap_map) && | 
 | 		     PageDirty(page) && PageSwapCache(page)) { | 
 | 			struct writeback_control wbc = { | 
 | 				.sync_mode = WB_SYNC_NONE, | 
 | 			}; | 
 |  | 
 | 			swap_writepage(compound_head(page), &wbc); | 
 | 			lock_page(page); | 
 | 			wait_on_page_writeback(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It is conceivable that a racing task removed this page from | 
 | 		 * swap cache just before we acquired the page lock at the top, | 
 | 		 * or while we dropped it in unuse_mm().  The page might even | 
 | 		 * be back in swap cache on another swap area: that we must not | 
 | 		 * delete, since it may not have been written out to swap yet. | 
 | 		 */ | 
 | 		if (PageSwapCache(page) && | 
 | 		    likely(page_private(page) == entry.val) && | 
 | 		    (!PageTransCompound(page) || | 
 | 		     !swap_page_trans_huge_swapped(si, entry))) | 
 | 			delete_from_swap_cache(compound_head(page)); | 
 |  | 
 | 		/* | 
 | 		 * So we could skip searching mms once swap count went | 
 | 		 * to 1, we did not mark any present ptes as dirty: must | 
 | 		 * mark page dirty so shrink_page_list will preserve it. | 
 | 		 */ | 
 | 		SetPageDirty(page); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 |  | 
 | 		/* | 
 | 		 * Make sure that we aren't completely killing | 
 | 		 * interactive performance. | 
 | 		 */ | 
 | 		cond_resched(); | 
 | 		if (frontswap && pages_to_unuse > 0) { | 
 | 			if (!--pages_to_unuse) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mmput(start_mm); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * After a successful try_to_unuse, if no swap is now in use, we know | 
 |  * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
 |  * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
 |  * added to the mmlist just after page_duplicate - before would be racy. | 
 |  */ | 
 | static void drain_mmlist(void) | 
 | { | 
 | 	struct list_head *p, *next; | 
 | 	unsigned int type; | 
 |  | 
 | 	for (type = 0; type < nr_swapfiles; type++) | 
 | 		if (swap_info[type]->inuse_pages) | 
 | 			return; | 
 | 	spin_lock(&mmlist_lock); | 
 | 	list_for_each_safe(p, next, &init_mm.mmlist) | 
 | 		list_del_init(p); | 
 | 	spin_unlock(&mmlist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
 |  * corresponds to page offset for the specified swap entry. | 
 |  * Note that the type of this function is sector_t, but it returns page offset | 
 |  * into the bdev, not sector offset. | 
 |  */ | 
 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) | 
 | { | 
 | 	struct swap_info_struct *sis; | 
 | 	struct swap_extent *start_se; | 
 | 	struct swap_extent *se; | 
 | 	pgoff_t offset; | 
 |  | 
 | 	sis = swp_swap_info(entry); | 
 | 	*bdev = sis->bdev; | 
 |  | 
 | 	offset = swp_offset(entry); | 
 | 	start_se = sis->curr_swap_extent; | 
 | 	se = start_se; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		if (se->start_page <= offset && | 
 | 				offset < (se->start_page + se->nr_pages)) { | 
 | 			return se->start_block + (offset - se->start_page); | 
 | 		} | 
 | 		se = list_next_entry(se, list); | 
 | 		sis->curr_swap_extent = se; | 
 | 		BUG_ON(se == start_se);		/* It *must* be present */ | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the page offset into bdev for the specified page's swap entry. | 
 |  */ | 
 | sector_t map_swap_page(struct page *page, struct block_device **bdev) | 
 | { | 
 | 	swp_entry_t entry; | 
 | 	entry.val = page_private(page); | 
 | 	return map_swap_entry(entry, bdev); | 
 | } | 
 |  | 
 | /* | 
 |  * Free all of a swapdev's extent information | 
 |  */ | 
 | static void destroy_swap_extents(struct swap_info_struct *sis) | 
 | { | 
 | 	while (!list_empty(&sis->first_swap_extent.list)) { | 
 | 		struct swap_extent *se; | 
 |  | 
 | 		se = list_first_entry(&sis->first_swap_extent.list, | 
 | 				struct swap_extent, list); | 
 | 		list_del(&se->list); | 
 | 		kfree(se); | 
 | 	} | 
 |  | 
 | 	if (sis->flags & SWP_FILE) { | 
 | 		struct file *swap_file = sis->swap_file; | 
 | 		struct address_space *mapping = swap_file->f_mapping; | 
 |  | 
 | 		sis->flags &= ~SWP_FILE; | 
 | 		mapping->a_ops->swap_deactivate(swap_file); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Add a block range (and the corresponding page range) into this swapdev's | 
 |  * extent list.  The extent list is kept sorted in page order. | 
 |  * | 
 |  * This function rather assumes that it is called in ascending page order. | 
 |  */ | 
 | int | 
 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
 | 		unsigned long nr_pages, sector_t start_block) | 
 | { | 
 | 	struct swap_extent *se; | 
 | 	struct swap_extent *new_se; | 
 | 	struct list_head *lh; | 
 |  | 
 | 	if (start_page == 0) { | 
 | 		se = &sis->first_swap_extent; | 
 | 		sis->curr_swap_extent = se; | 
 | 		se->start_page = 0; | 
 | 		se->nr_pages = nr_pages; | 
 | 		se->start_block = start_block; | 
 | 		return 1; | 
 | 	} else { | 
 | 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */ | 
 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 		BUG_ON(se->start_page + se->nr_pages != start_page); | 
 | 		if (se->start_block + se->nr_pages == start_block) { | 
 | 			/* Merge it */ | 
 | 			se->nr_pages += nr_pages; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No merge.  Insert a new extent, preserving ordering. | 
 | 	 */ | 
 | 	new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
 | 	if (new_se == NULL) | 
 | 		return -ENOMEM; | 
 | 	new_se->start_page = start_page; | 
 | 	new_se->nr_pages = nr_pages; | 
 | 	new_se->start_block = start_block; | 
 |  | 
 | 	list_add_tail(&new_se->list, &sis->first_swap_extent.list); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * A `swap extent' is a simple thing which maps a contiguous range of pages | 
 |  * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
 |  * is built at swapon time and is then used at swap_writepage/swap_readpage | 
 |  * time for locating where on disk a page belongs. | 
 |  * | 
 |  * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
 |  * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
 |  * swap files identically. | 
 |  * | 
 |  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
 |  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
 |  * swapfiles are handled *identically* after swapon time. | 
 |  * | 
 |  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
 |  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
 |  * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
 |  * requirements, they are simply tossed out - we will never use those blocks | 
 |  * for swapping. | 
 |  * | 
 |  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This | 
 |  * prevents users from writing to the swap device, which will corrupt memory. | 
 |  * | 
 |  * The amount of disk space which a single swap extent represents varies. | 
 |  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
 |  * extents in the list.  To avoid much list walking, we cache the previous | 
 |  * search location in `curr_swap_extent', and start new searches from there. | 
 |  * This is extremely effective.  The average number of iterations in | 
 |  * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
 |  */ | 
 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
 | { | 
 | 	struct file *swap_file = sis->swap_file; | 
 | 	struct address_space *mapping = swap_file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret; | 
 |  | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 		*span = sis->pages; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (mapping->a_ops->swap_activate) { | 
 | 		ret = mapping->a_ops->swap_activate(sis, swap_file, span); | 
 | 		if (!ret) { | 
 | 			sis->flags |= SWP_FILE; | 
 | 			ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 			*span = sis->pages; | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return generic_swapfile_activate(sis, swap_file, span); | 
 | } | 
 |  | 
 | static int swap_node(struct swap_info_struct *p) | 
 | { | 
 | 	struct block_device *bdev; | 
 |  | 
 | 	if (p->bdev) | 
 | 		bdev = p->bdev; | 
 | 	else | 
 | 		bdev = p->swap_file->f_inode->i_sb->s_bdev; | 
 |  | 
 | 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; | 
 | } | 
 |  | 
 | static void _enable_swap_info(struct swap_info_struct *p, int prio, | 
 | 				unsigned char *swap_map, | 
 | 				struct swap_cluster_info *cluster_info) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (prio >= 0) | 
 | 		p->prio = prio; | 
 | 	else | 
 | 		p->prio = --least_priority; | 
 | 	/* | 
 | 	 * the plist prio is negated because plist ordering is | 
 | 	 * low-to-high, while swap ordering is high-to-low | 
 | 	 */ | 
 | 	p->list.prio = -p->prio; | 
 | 	for_each_node(i) { | 
 | 		if (p->prio >= 0) | 
 | 			p->avail_lists[i].prio = -p->prio; | 
 | 		else { | 
 | 			if (swap_node(p) == i) | 
 | 				p->avail_lists[i].prio = 1; | 
 | 			else | 
 | 				p->avail_lists[i].prio = -p->prio; | 
 | 		} | 
 | 	} | 
 | 	p->swap_map = swap_map; | 
 | 	p->cluster_info = cluster_info; | 
 | 	p->flags |= SWP_WRITEOK; | 
 | 	atomic_long_add(p->pages, &nr_swap_pages); | 
 | 	total_swap_pages += p->pages; | 
 |  | 
 | 	assert_spin_locked(&swap_lock); | 
 | 	/* | 
 | 	 * both lists are plists, and thus priority ordered. | 
 | 	 * swap_active_head needs to be priority ordered for swapoff(), | 
 | 	 * which on removal of any swap_info_struct with an auto-assigned | 
 | 	 * (i.e. negative) priority increments the auto-assigned priority | 
 | 	 * of any lower-priority swap_info_structs. | 
 | 	 * swap_avail_head needs to be priority ordered for get_swap_page(), | 
 | 	 * which allocates swap pages from the highest available priority | 
 | 	 * swap_info_struct. | 
 | 	 */ | 
 | 	plist_add(&p->list, &swap_active_head); | 
 | 	add_to_avail_list(p); | 
 | } | 
 |  | 
 | static void enable_swap_info(struct swap_info_struct *p, int prio, | 
 | 				unsigned char *swap_map, | 
 | 				struct swap_cluster_info *cluster_info, | 
 | 				unsigned long *frontswap_map) | 
 | { | 
 | 	frontswap_init(p->type, frontswap_map); | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&p->lock); | 
 | 	 _enable_swap_info(p, prio, swap_map, cluster_info); | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | static void reinsert_swap_info(struct swap_info_struct *p) | 
 | { | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&p->lock); | 
 | 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | bool has_usable_swap(void) | 
 | { | 
 | 	bool ret = true; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	if (plist_head_empty(&swap_active_head)) | 
 | 		ret = false; | 
 | 	spin_unlock(&swap_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
 | { | 
 | 	struct swap_info_struct *p = NULL; | 
 | 	unsigned char *swap_map; | 
 | 	struct swap_cluster_info *cluster_info; | 
 | 	unsigned long *frontswap_map; | 
 | 	struct file *swap_file, *victim; | 
 | 	struct address_space *mapping; | 
 | 	struct inode *inode; | 
 | 	struct filename *pathname; | 
 | 	int err, found = 0; | 
 | 	unsigned int old_block_size; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	BUG_ON(!current->mm); | 
 |  | 
 | 	pathname = getname(specialfile); | 
 | 	if (IS_ERR(pathname)) | 
 | 		return PTR_ERR(pathname); | 
 |  | 
 | 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); | 
 | 	err = PTR_ERR(victim); | 
 | 	if (IS_ERR(victim)) | 
 | 		goto out; | 
 |  | 
 | 	mapping = victim->f_mapping; | 
 | 	spin_lock(&swap_lock); | 
 | 	plist_for_each_entry(p, &swap_active_head, list) { | 
 | 		if (p->flags & SWP_WRITEOK) { | 
 | 			if (p->swap_file->f_mapping == mapping) { | 
 | 				found = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (!found) { | 
 | 		err = -EINVAL; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	if (!security_vm_enough_memory_mm(current->mm, p->pages)) | 
 | 		vm_unacct_memory(p->pages); | 
 | 	else { | 
 | 		err = -ENOMEM; | 
 | 		spin_unlock(&swap_lock); | 
 | 		goto out_dput; | 
 | 	} | 
 | 	del_from_avail_list(p); | 
 | 	spin_lock(&p->lock); | 
 | 	if (p->prio < 0) { | 
 | 		struct swap_info_struct *si = p; | 
 | 		int nid; | 
 |  | 
 | 		plist_for_each_entry_continue(si, &swap_active_head, list) { | 
 | 			si->prio++; | 
 | 			si->list.prio--; | 
 | 			for_each_node(nid) { | 
 | 				if (si->avail_lists[nid].prio != 1) | 
 | 					si->avail_lists[nid].prio--; | 
 | 			} | 
 | 		} | 
 | 		least_priority++; | 
 | 	} | 
 | 	plist_del(&p->list, &swap_active_head); | 
 | 	atomic_long_sub(p->pages, &nr_swap_pages); | 
 | 	total_swap_pages -= p->pages; | 
 | 	p->flags &= ~SWP_WRITEOK; | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	disable_swap_slots_cache_lock(); | 
 |  | 
 | 	set_current_oom_origin(); | 
 | 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ | 
 | 	clear_current_oom_origin(); | 
 |  | 
 | 	if (err) { | 
 | 		/* re-insert swap space back into swap_list */ | 
 | 		reinsert_swap_info(p); | 
 | 		reenable_swap_slots_cache_unlock(); | 
 | 		goto out_dput; | 
 | 	} | 
 |  | 
 | 	reenable_swap_slots_cache_unlock(); | 
 |  | 
 | 	flush_work(&p->discard_work); | 
 |  | 
 | 	destroy_swap_extents(p); | 
 | 	if (p->flags & SWP_CONTINUED) | 
 | 		free_swap_count_continuations(p); | 
 |  | 
 | 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) | 
 | 		atomic_dec(&nr_rotate_swap); | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	spin_lock(&swap_lock); | 
 | 	spin_lock(&p->lock); | 
 | 	drain_mmlist(); | 
 |  | 
 | 	/* wait for anyone still in scan_swap_map */ | 
 | 	p->highest_bit = 0;		/* cuts scans short */ | 
 | 	while (p->flags >= SWP_SCANNING) { | 
 | 		spin_unlock(&p->lock); | 
 | 		spin_unlock(&swap_lock); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		spin_lock(&swap_lock); | 
 | 		spin_lock(&p->lock); | 
 | 	} | 
 |  | 
 | 	swap_file = p->swap_file; | 
 | 	old_block_size = p->old_block_size; | 
 | 	p->swap_file = NULL; | 
 | 	p->max = 0; | 
 | 	swap_map = p->swap_map; | 
 | 	p->swap_map = NULL; | 
 | 	cluster_info = p->cluster_info; | 
 | 	p->cluster_info = NULL; | 
 | 	frontswap_map = frontswap_map_get(p); | 
 | 	spin_unlock(&p->lock); | 
 | 	spin_unlock(&swap_lock); | 
 | 	frontswap_invalidate_area(p->type); | 
 | 	frontswap_map_set(p, NULL); | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	free_percpu(p->percpu_cluster); | 
 | 	p->percpu_cluster = NULL; | 
 | 	vfree(swap_map); | 
 | 	kvfree(cluster_info); | 
 | 	kvfree(frontswap_map); | 
 | 	/* Destroy swap account information */ | 
 | 	swap_cgroup_swapoff(p->type); | 
 | 	exit_swap_address_space(p->type); | 
 |  | 
 | 	inode = mapping->host; | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		struct block_device *bdev = I_BDEV(inode); | 
 |  | 
 | 		set_blocksize(bdev, old_block_size); | 
 | 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 	} | 
 |  | 
 | 	inode_lock(inode); | 
 | 	inode->i_flags &= ~S_SWAPFILE; | 
 | 	inode_unlock(inode); | 
 | 	filp_close(swap_file, NULL); | 
 |  | 
 | 	/* | 
 | 	 * Clear the SWP_USED flag after all resources are freed so that swapon | 
 | 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to | 
 | 	 * not hold p->lock after we cleared its SWP_WRITEOK. | 
 | 	 */ | 
 | 	spin_lock(&swap_lock); | 
 | 	p->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 |  | 
 | 	err = 0; | 
 | 	atomic_inc(&proc_poll_event); | 
 | 	wake_up_interruptible(&proc_poll_wait); | 
 |  | 
 | out_dput: | 
 | 	filp_close(victim, NULL); | 
 | out: | 
 | 	putname(pathname); | 
 | 	return err; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static __poll_t swaps_poll(struct file *file, poll_table *wait) | 
 | { | 
 | 	struct seq_file *seq = file->private_data; | 
 |  | 
 | 	poll_wait(file, &proc_poll_wait, wait); | 
 |  | 
 | 	if (seq->poll_event != atomic_read(&proc_poll_event)) { | 
 | 		seq->poll_event = atomic_read(&proc_poll_event); | 
 | 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; | 
 | 	} | 
 |  | 
 | 	return EPOLLIN | EPOLLRDNORM; | 
 | } | 
 |  | 
 | /* iterator */ | 
 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	int type; | 
 | 	loff_t l = *pos; | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 |  | 
 | 	if (!l) | 
 | 		return SEQ_START_TOKEN; | 
 |  | 
 | 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) { | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		if (!--l) | 
 | 			return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	int type; | 
 |  | 
 | 	if (v == SEQ_START_TOKEN) | 
 | 		type = 0; | 
 | 	else | 
 | 		type = si->type + 1; | 
 |  | 
 | 	for (; (si = swap_type_to_swap_info(type)); type++) { | 
 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 			continue; | 
 | 		++*pos; | 
 | 		return si; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void swap_stop(struct seq_file *swap, void *v) | 
 | { | 
 | 	mutex_unlock(&swapon_mutex); | 
 | } | 
 |  | 
 | static int swap_show(struct seq_file *swap, void *v) | 
 | { | 
 | 	struct swap_info_struct *si = v; | 
 | 	struct file *file; | 
 | 	int len; | 
 |  | 
 | 	if (si == SEQ_START_TOKEN) { | 
 | 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	file = si->swap_file; | 
 | 	len = seq_file_path(swap, file, " \t\n\\"); | 
 | 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
 | 			len < 40 ? 40 - len : 1, " ", | 
 | 			S_ISBLK(file_inode(file)->i_mode) ? | 
 | 				"partition" : "file\t", | 
 | 			si->pages << (PAGE_SHIFT - 10), | 
 | 			si->inuse_pages << (PAGE_SHIFT - 10), | 
 | 			si->prio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations swaps_op = { | 
 | 	.start =	swap_start, | 
 | 	.next =		swap_next, | 
 | 	.stop =		swap_stop, | 
 | 	.show =		swap_show | 
 | }; | 
 |  | 
 | static int swaps_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct seq_file *seq; | 
 | 	int ret; | 
 |  | 
 | 	ret = seq_open(file, &swaps_op); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	seq = file->private_data; | 
 | 	seq->poll_event = atomic_read(&proc_poll_event); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations proc_swaps_operations = { | 
 | 	.open		= swaps_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release, | 
 | 	.poll		= swaps_poll, | 
 | }; | 
 |  | 
 | static int __init procswaps_init(void) | 
 | { | 
 | 	proc_create("swaps", 0, NULL, &proc_swaps_operations); | 
 | 	return 0; | 
 | } | 
 | __initcall(procswaps_init); | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef MAX_SWAPFILES_CHECK | 
 | static int __init max_swapfiles_check(void) | 
 | { | 
 | 	MAX_SWAPFILES_CHECK(); | 
 | 	return 0; | 
 | } | 
 | late_initcall(max_swapfiles_check); | 
 | #endif | 
 |  | 
 | static struct swap_info_struct *alloc_swap_info(void) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	unsigned int type; | 
 | 	int i; | 
 | 	int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node); | 
 |  | 
 | 	p = kvzalloc(size, GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		if (!(swap_info[type]->flags & SWP_USED)) | 
 | 			break; | 
 | 	} | 
 | 	if (type >= MAX_SWAPFILES) { | 
 | 		spin_unlock(&swap_lock); | 
 | 		kvfree(p); | 
 | 		return ERR_PTR(-EPERM); | 
 | 	} | 
 | 	if (type >= nr_swapfiles) { | 
 | 		p->type = type; | 
 | 		WRITE_ONCE(swap_info[type], p); | 
 | 		/* | 
 | 		 * Write swap_info[type] before nr_swapfiles, in case a | 
 | 		 * racing procfs swap_start() or swap_next() is reading them. | 
 | 		 * (We never shrink nr_swapfiles, we never free this entry.) | 
 | 		 */ | 
 | 		smp_wmb(); | 
 | 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); | 
 | 	} else { | 
 | 		kvfree(p); | 
 | 		p = swap_info[type]; | 
 | 		/* | 
 | 		 * Do not memset this entry: a racing procfs swap_next() | 
 | 		 * would be relying on p->type to remain valid. | 
 | 		 */ | 
 | 	} | 
 | 	INIT_LIST_HEAD(&p->first_swap_extent.list); | 
 | 	plist_node_init(&p->list, 0); | 
 | 	for_each_node(i) | 
 | 		plist_node_init(&p->avail_lists[i], 0); | 
 | 	p->flags = SWP_USED; | 
 | 	spin_unlock(&swap_lock); | 
 | 	spin_lock_init(&p->lock); | 
 | 	spin_lock_init(&p->cont_lock); | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 		p->bdev = bdgrab(I_BDEV(inode)); | 
 | 		error = blkdev_get(p->bdev, | 
 | 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); | 
 | 		if (error < 0) { | 
 | 			p->bdev = NULL; | 
 | 			return error; | 
 | 		} | 
 | 		p->old_block_size = block_size(p->bdev); | 
 | 		error = set_blocksize(p->bdev, PAGE_SIZE); | 
 | 		if (error < 0) | 
 | 			return error; | 
 | 		p->flags |= SWP_BLKDEV; | 
 | 	} else if (S_ISREG(inode->i_mode)) { | 
 | 		p->bdev = inode->i_sb->s_bdev; | 
 | 	} | 
 |  | 
 | 	inode_lock(inode); | 
 | 	if (IS_SWAPFILE(inode)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Find out how many pages are allowed for a single swap device. There | 
 |  * are two limiting factors: | 
 |  * 1) the number of bits for the swap offset in the swp_entry_t type, and | 
 |  * 2) the number of bits in the swap pte, as defined by the different | 
 |  * architectures. | 
 |  * | 
 |  * In order to find the largest possible bit mask, a swap entry with | 
 |  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, | 
 |  * decoded to a swp_entry_t again, and finally the swap offset is | 
 |  * extracted. | 
 |  * | 
 |  * This will mask all the bits from the initial ~0UL mask that can't | 
 |  * be encoded in either the swp_entry_t or the architecture definition | 
 |  * of a swap pte. | 
 |  */ | 
 | unsigned long generic_max_swapfile_size(void) | 
 | { | 
 | 	return swp_offset(pte_to_swp_entry( | 
 | 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
 | } | 
 |  | 
 | /* Can be overridden by an architecture for additional checks. */ | 
 | __weak unsigned long max_swapfile_size(void) | 
 | { | 
 | 	return generic_max_swapfile_size(); | 
 | } | 
 |  | 
 | static unsigned long read_swap_header(struct swap_info_struct *p, | 
 | 					union swap_header *swap_header, | 
 | 					struct inode *inode) | 
 | { | 
 | 	int i; | 
 | 	unsigned long maxpages; | 
 | 	unsigned long swapfilepages; | 
 | 	unsigned long last_page; | 
 |  | 
 | 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
 | 		pr_err("Unable to find swap-space signature\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* swap partition endianess hack... */ | 
 | 	if (swab32(swap_header->info.version) == 1) { | 
 | 		swab32s(&swap_header->info.version); | 
 | 		swab32s(&swap_header->info.last_page); | 
 | 		swab32s(&swap_header->info.nr_badpages); | 
 | 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 			return 0; | 
 | 		for (i = 0; i < swap_header->info.nr_badpages; i++) | 
 | 			swab32s(&swap_header->info.badpages[i]); | 
 | 	} | 
 | 	/* Check the swap header's sub-version */ | 
 | 	if (swap_header->info.version != 1) { | 
 | 		pr_warn("Unable to handle swap header version %d\n", | 
 | 			swap_header->info.version); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	p->lowest_bit  = 1; | 
 | 	p->cluster_next = 1; | 
 | 	p->cluster_nr = 0; | 
 |  | 
 | 	maxpages = max_swapfile_size(); | 
 | 	last_page = swap_header->info.last_page; | 
 | 	if (!last_page) { | 
 | 		pr_warn("Empty swap-file\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (last_page > maxpages) { | 
 | 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", | 
 | 			maxpages << (PAGE_SHIFT - 10), | 
 | 			last_page << (PAGE_SHIFT - 10)); | 
 | 	} | 
 | 	if (maxpages > last_page) { | 
 | 		maxpages = last_page + 1; | 
 | 		/* p->max is an unsigned int: don't overflow it */ | 
 | 		if ((unsigned int)maxpages == 0) | 
 | 			maxpages = UINT_MAX; | 
 | 	} | 
 | 	p->highest_bit = maxpages - 1; | 
 |  | 
 | 	if (!maxpages) | 
 | 		return 0; | 
 | 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
 | 	if (swapfilepages && maxpages > swapfilepages) { | 
 | 		pr_warn("Swap area shorter than signature indicates\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 | 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 		return 0; | 
 |  | 
 | 	return maxpages; | 
 | } | 
 |  | 
 | #define SWAP_CLUSTER_INFO_COLS						\ | 
 | 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) | 
 | #define SWAP_CLUSTER_SPACE_COLS						\ | 
 | 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) | 
 | #define SWAP_CLUSTER_COLS						\ | 
 | 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) | 
 |  | 
 | static int setup_swap_map_and_extents(struct swap_info_struct *p, | 
 | 					union swap_header *swap_header, | 
 | 					unsigned char *swap_map, | 
 | 					struct swap_cluster_info *cluster_info, | 
 | 					unsigned long maxpages, | 
 | 					sector_t *span) | 
 | { | 
 | 	unsigned int j, k; | 
 | 	unsigned int nr_good_pages; | 
 | 	int nr_extents; | 
 | 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 | 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; | 
 | 	unsigned long i, idx; | 
 |  | 
 | 	nr_good_pages = maxpages - 1;	/* omit header page */ | 
 |  | 
 | 	cluster_list_init(&p->free_clusters); | 
 | 	cluster_list_init(&p->discard_clusters); | 
 |  | 
 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 | 		if (page_nr == 0 || page_nr > swap_header->info.last_page) | 
 | 			return -EINVAL; | 
 | 		if (page_nr < maxpages) { | 
 | 			swap_map[page_nr] = SWAP_MAP_BAD; | 
 | 			nr_good_pages--; | 
 | 			/* | 
 | 			 * Haven't marked the cluster free yet, no list | 
 | 			 * operation involved | 
 | 			 */ | 
 | 			inc_cluster_info_page(p, cluster_info, page_nr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Haven't marked the cluster free yet, no list operation involved */ | 
 | 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) | 
 | 		inc_cluster_info_page(p, cluster_info, i); | 
 |  | 
 | 	if (nr_good_pages) { | 
 | 		swap_map[0] = SWAP_MAP_BAD; | 
 | 		/* | 
 | 		 * Not mark the cluster free yet, no list | 
 | 		 * operation involved | 
 | 		 */ | 
 | 		inc_cluster_info_page(p, cluster_info, 0); | 
 | 		p->max = maxpages; | 
 | 		p->pages = nr_good_pages; | 
 | 		nr_extents = setup_swap_extents(p, span); | 
 | 		if (nr_extents < 0) | 
 | 			return nr_extents; | 
 | 		nr_good_pages = p->pages; | 
 | 	} | 
 | 	if (!nr_good_pages) { | 
 | 		pr_warn("Empty swap-file\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!cluster_info) | 
 | 		return nr_extents; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Reduce false cache line sharing between cluster_info and | 
 | 	 * sharing same address space. | 
 | 	 */ | 
 | 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) { | 
 | 		j = (k + col) % SWAP_CLUSTER_COLS; | 
 | 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { | 
 | 			idx = i * SWAP_CLUSTER_COLS + j; | 
 | 			if (idx >= nr_clusters) | 
 | 				continue; | 
 | 			if (cluster_count(&cluster_info[idx])) | 
 | 				continue; | 
 | 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); | 
 | 			cluster_list_add_tail(&p->free_clusters, cluster_info, | 
 | 					      idx); | 
 | 		} | 
 | 	} | 
 | 	return nr_extents; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper to sys_swapon determining if a given swap | 
 |  * backing device queue supports DISCARD operations. | 
 |  */ | 
 | static bool swap_discardable(struct swap_info_struct *si) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(si->bdev); | 
 |  | 
 | 	if (!q || !blk_queue_discard(q)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	struct filename *name; | 
 | 	struct file *swap_file = NULL; | 
 | 	struct address_space *mapping; | 
 | 	int prio; | 
 | 	int error; | 
 | 	union swap_header *swap_header; | 
 | 	int nr_extents; | 
 | 	sector_t span; | 
 | 	unsigned long maxpages; | 
 | 	unsigned char *swap_map = NULL; | 
 | 	struct swap_cluster_info *cluster_info = NULL; | 
 | 	unsigned long *frontswap_map = NULL; | 
 | 	struct page *page = NULL; | 
 | 	struct inode *inode = NULL; | 
 | 	bool inced_nr_rotate_swap = false; | 
 |  | 
 | 	if (swap_flags & ~SWAP_FLAGS_VALID) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!swap_avail_heads) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	p = alloc_swap_info(); | 
 | 	if (IS_ERR(p)) | 
 | 		return PTR_ERR(p); | 
 |  | 
 | 	INIT_WORK(&p->discard_work, swap_discard_work); | 
 |  | 
 | 	name = getname(specialfile); | 
 | 	if (IS_ERR(name)) { | 
 | 		error = PTR_ERR(name); | 
 | 		name = NULL; | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); | 
 | 	if (IS_ERR(swap_file)) { | 
 | 		error = PTR_ERR(swap_file); | 
 | 		swap_file = NULL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	p->swap_file = swap_file; | 
 | 	mapping = swap_file->f_mapping; | 
 | 	inode = mapping->host; | 
 |  | 
 | 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ | 
 | 	error = claim_swapfile(p, inode); | 
 | 	if (unlikely(error)) | 
 | 		goto bad_swap; | 
 |  | 
 | 	/* | 
 | 	 * Read the swap header. | 
 | 	 */ | 
 | 	if (!mapping->a_ops->readpage) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	page = read_mapping_page(mapping, 0, swap_file); | 
 | 	if (IS_ERR(page)) { | 
 | 		error = PTR_ERR(page); | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	swap_header = kmap(page); | 
 |  | 
 | 	maxpages = read_swap_header(p, swap_header, inode); | 
 | 	if (unlikely(!maxpages)) { | 
 | 		error = -EINVAL; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	/* OK, set up the swap map and apply the bad block list */ | 
 | 	swap_map = vzalloc(maxpages); | 
 | 	if (!swap_map) { | 
 | 		error = -ENOMEM; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) | 
 | 		p->flags |= SWP_STABLE_WRITES; | 
 |  | 
 | 	if (bdi_cap_synchronous_io(inode_to_bdi(inode))) | 
 | 		p->flags |= SWP_SYNCHRONOUS_IO; | 
 |  | 
 | 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { | 
 | 		int cpu; | 
 | 		unsigned long ci, nr_cluster; | 
 |  | 
 | 		p->flags |= SWP_SOLIDSTATE; | 
 | 		/* | 
 | 		 * select a random position to start with to help wear leveling | 
 | 		 * SSD | 
 | 		 */ | 
 | 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit); | 
 | 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 |  | 
 | 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), | 
 | 					GFP_KERNEL); | 
 | 		if (!cluster_info) { | 
 | 			error = -ENOMEM; | 
 | 			goto bad_swap; | 
 | 		} | 
 |  | 
 | 		for (ci = 0; ci < nr_cluster; ci++) | 
 | 			spin_lock_init(&((cluster_info + ci)->lock)); | 
 |  | 
 | 		p->percpu_cluster = alloc_percpu(struct percpu_cluster); | 
 | 		if (!p->percpu_cluster) { | 
 | 			error = -ENOMEM; | 
 | 			goto bad_swap; | 
 | 		} | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct percpu_cluster *cluster; | 
 | 			cluster = per_cpu_ptr(p->percpu_cluster, cpu); | 
 | 			cluster_set_null(&cluster->index); | 
 | 		} | 
 | 	} else { | 
 | 		atomic_inc(&nr_rotate_swap); | 
 | 		inced_nr_rotate_swap = true; | 
 | 	} | 
 |  | 
 | 	error = swap_cgroup_swapon(p->type, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap; | 
 |  | 
 | 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, | 
 | 		cluster_info, maxpages, &span); | 
 | 	if (unlikely(nr_extents < 0)) { | 
 | 		error = nr_extents; | 
 | 		goto bad_swap; | 
 | 	} | 
 | 	/* frontswap enabled? set up bit-per-page map for frontswap */ | 
 | 	if (IS_ENABLED(CONFIG_FRONTSWAP)) | 
 | 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), | 
 | 					 sizeof(long), | 
 | 					 GFP_KERNEL); | 
 |  | 
 | 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { | 
 | 		/* | 
 | 		 * When discard is enabled for swap with no particular | 
 | 		 * policy flagged, we set all swap discard flags here in | 
 | 		 * order to sustain backward compatibility with older | 
 | 		 * swapon(8) releases. | 
 | 		 */ | 
 | 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | | 
 | 			     SWP_PAGE_DISCARD); | 
 |  | 
 | 		/* | 
 | 		 * By flagging sys_swapon, a sysadmin can tell us to | 
 | 		 * either do single-time area discards only, or to just | 
 | 		 * perform discards for released swap page-clusters. | 
 | 		 * Now it's time to adjust the p->flags accordingly. | 
 | 		 */ | 
 | 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE) | 
 | 			p->flags &= ~SWP_PAGE_DISCARD; | 
 | 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) | 
 | 			p->flags &= ~SWP_AREA_DISCARD; | 
 |  | 
 | 		/* issue a swapon-time discard if it's still required */ | 
 | 		if (p->flags & SWP_AREA_DISCARD) { | 
 | 			int err = discard_swap(p); | 
 | 			if (unlikely(err)) | 
 | 				pr_err("swapon: discard_swap(%p): %d\n", | 
 | 					p, err); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	error = init_swap_address_space(p->type, maxpages); | 
 | 	if (error) | 
 | 		goto bad_swap; | 
 |  | 
 | 	/* | 
 | 	 * Flush any pending IO and dirty mappings before we start using this | 
 | 	 * swap device. | 
 | 	 */ | 
 | 	inode->i_flags |= S_SWAPFILE; | 
 | 	error = inode_drain_writes(inode); | 
 | 	if (error) { | 
 | 		inode->i_flags &= ~S_SWAPFILE; | 
 | 		goto bad_swap; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&swapon_mutex); | 
 | 	prio = -1; | 
 | 	if (swap_flags & SWAP_FLAG_PREFER) | 
 | 		prio = | 
 | 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | 
 | 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); | 
 |  | 
 | 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", | 
 | 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio, | 
 | 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), | 
 | 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
 | 		(p->flags & SWP_DISCARDABLE) ? "D" : "", | 
 | 		(p->flags & SWP_AREA_DISCARD) ? "s" : "", | 
 | 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "", | 
 | 		(frontswap_map) ? "FS" : ""); | 
 |  | 
 | 	mutex_unlock(&swapon_mutex); | 
 | 	atomic_inc(&proc_poll_event); | 
 | 	wake_up_interruptible(&proc_poll_wait); | 
 |  | 
 | 	error = 0; | 
 | 	goto out; | 
 | bad_swap: | 
 | 	free_percpu(p->percpu_cluster); | 
 | 	p->percpu_cluster = NULL; | 
 | 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) { | 
 | 		set_blocksize(p->bdev, p->old_block_size); | 
 | 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 	} | 
 | 	destroy_swap_extents(p); | 
 | 	swap_cgroup_swapoff(p->type); | 
 | 	spin_lock(&swap_lock); | 
 | 	p->swap_file = NULL; | 
 | 	p->flags = 0; | 
 | 	spin_unlock(&swap_lock); | 
 | 	vfree(swap_map); | 
 | 	kvfree(cluster_info); | 
 | 	kvfree(frontswap_map); | 
 | 	if (inced_nr_rotate_swap) | 
 | 		atomic_dec(&nr_rotate_swap); | 
 | 	if (swap_file) { | 
 | 		if (inode) { | 
 | 			inode_unlock(inode); | 
 | 			inode = NULL; | 
 | 		} | 
 | 		filp_close(swap_file, NULL); | 
 | 	} | 
 | out: | 
 | 	if (page && !IS_ERR(page)) { | 
 | 		kunmap(page); | 
 | 		put_page(page); | 
 | 	} | 
 | 	if (name) | 
 | 		putname(name); | 
 | 	if (inode) | 
 | 		inode_unlock(inode); | 
 | 	if (!error) | 
 | 		enable_swap_slots_cache(); | 
 | 	return error; | 
 | } | 
 |  | 
 | void si_swapinfo(struct sysinfo *val) | 
 | { | 
 | 	unsigned int type; | 
 | 	unsigned long nr_to_be_unused = 0; | 
 |  | 
 | 	spin_lock(&swap_lock); | 
 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 		struct swap_info_struct *si = swap_info[type]; | 
 |  | 
 | 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
 | 			nr_to_be_unused += si->inuse_pages; | 
 | 	} | 
 | 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; | 
 | 	val->totalswap = total_swap_pages + nr_to_be_unused; | 
 | 	spin_unlock(&swap_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify that a swap entry is valid and increment its swap map count. | 
 |  * | 
 |  * Returns error code in following case. | 
 |  * - success -> 0 | 
 |  * - swp_entry is invalid -> EINVAL | 
 |  * - swp_entry is migration entry -> EINVAL | 
 |  * - swap-cache reference is requested but there is already one. -> EEXIST | 
 |  * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
 |  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
 |  */ | 
 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) | 
 | { | 
 | 	struct swap_info_struct *p; | 
 | 	struct swap_cluster_info *ci; | 
 | 	unsigned long offset; | 
 | 	unsigned char count; | 
 | 	unsigned char has_cache; | 
 | 	int err = -EINVAL; | 
 |  | 
 | 	if (non_swap_entry(entry)) | 
 | 		goto out; | 
 |  | 
 | 	p = swp_swap_info(entry); | 
 | 	if (!p) | 
 | 		goto bad_file; | 
 |  | 
 | 	offset = swp_offset(entry); | 
 | 	if (unlikely(offset >= p->max)) | 
 | 		goto out; | 
 |  | 
 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 |  | 
 | 	count = p->swap_map[offset]; | 
 |  | 
 | 	/* | 
 | 	 * swapin_readahead() doesn't check if a swap entry is valid, so the | 
 | 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held. | 
 | 	 */ | 
 | 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { | 
 | 		err = -ENOENT; | 
 | 		goto unlock_out; | 
 | 	} | 
 |  | 
 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 	count &= ~SWAP_HAS_CACHE; | 
 | 	err = 0; | 
 |  | 
 | 	if (usage == SWAP_HAS_CACHE) { | 
 |  | 
 | 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */ | 
 | 		if (!has_cache && count) | 
 | 			has_cache = SWAP_HAS_CACHE; | 
 | 		else if (has_cache)		/* someone else added cache */ | 
 | 			err = -EEXIST; | 
 | 		else				/* no users remaining */ | 
 | 			err = -ENOENT; | 
 |  | 
 | 	} else if (count || has_cache) { | 
 |  | 
 | 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
 | 			count += usage; | 
 | 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) | 
 | 			err = -EINVAL; | 
 | 		else if (swap_count_continued(p, offset, count)) | 
 | 			count = COUNT_CONTINUED; | 
 | 		else | 
 | 			err = -ENOMEM; | 
 | 	} else | 
 | 		err = -ENOENT;			/* unused swap entry */ | 
 |  | 
 | 	p->swap_map[offset] = count | has_cache; | 
 |  | 
 | unlock_out: | 
 | 	unlock_cluster_or_swap_info(p, ci); | 
 | out: | 
 | 	return err; | 
 |  | 
 | bad_file: | 
 | 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
 |  * (in which case its reference count is never incremented). | 
 |  */ | 
 | void swap_shmem_alloc(swp_entry_t entry) | 
 | { | 
 | 	__swap_duplicate(entry, SWAP_MAP_SHMEM); | 
 | } | 
 |  | 
 | /* | 
 |  * Increase reference count of swap entry by 1. | 
 |  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
 |  * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
 |  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
 |  * might occur if a page table entry has got corrupted. | 
 |  */ | 
 | int swap_duplicate(swp_entry_t entry) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM) | 
 | 		err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * @entry: swap entry for which we allocate swap cache. | 
 |  * | 
 |  * Called when allocating swap cache for existing swap entry, | 
 |  * This can return error codes. Returns 0 at success. | 
 |  * -EBUSY means there is a swap cache. | 
 |  * Note: return code is different from swap_duplicate(). | 
 |  */ | 
 | int swapcache_prepare(swp_entry_t entry) | 
 | { | 
 | 	return __swap_duplicate(entry, SWAP_HAS_CACHE); | 
 | } | 
 |  | 
 | struct swap_info_struct *swp_swap_info(swp_entry_t entry) | 
 | { | 
 | 	return swap_type_to_swap_info(swp_type(entry)); | 
 | } | 
 |  | 
 | struct swap_info_struct *page_swap_info(struct page *page) | 
 | { | 
 | 	swp_entry_t entry = { .val = page_private(page) }; | 
 | 	return swp_swap_info(entry); | 
 | } | 
 |  | 
 | /* | 
 |  * out-of-line __page_file_ methods to avoid include hell. | 
 |  */ | 
 | struct address_space *__page_file_mapping(struct page *page) | 
 | { | 
 | 	return page_swap_info(page)->swap_file->f_mapping; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__page_file_mapping); | 
 |  | 
 | pgoff_t __page_file_index(struct page *page) | 
 | { | 
 | 	swp_entry_t swap = { .val = page_private(page) }; | 
 | 	return swp_offset(swap); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__page_file_index); | 
 |  | 
 | /* | 
 |  * add_swap_count_continuation - called when a swap count is duplicated | 
 |  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
 |  * page of the original vmalloc'ed swap_map, to hold the continuation count | 
 |  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
 |  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
 |  * | 
 |  * These continuation pages are seldom referenced: the common paths all work | 
 |  * on the original swap_map, only referring to a continuation page when the | 
 |  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
 |  * | 
 |  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
 |  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
 |  * can be called after dropping locks. | 
 |  */ | 
 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
 | { | 
 | 	struct swap_info_struct *si; | 
 | 	struct swap_cluster_info *ci; | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	struct page *list_page; | 
 | 	pgoff_t offset; | 
 | 	unsigned char count; | 
 |  | 
 | 	/* | 
 | 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
 | 	 * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
 | 	 */ | 
 | 	page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
 |  | 
 | 	si = swap_info_get(entry); | 
 | 	if (!si) { | 
 | 		/* | 
 | 		 * An acceptable race has occurred since the failing | 
 | 		 * __swap_duplicate(): the swap entry has been freed, | 
 | 		 * perhaps even the whole swap_map cleared for swapoff. | 
 | 		 */ | 
 | 		goto outer; | 
 | 	} | 
 |  | 
 | 	offset = swp_offset(entry); | 
 |  | 
 | 	ci = lock_cluster(si, offset); | 
 |  | 
 | 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE; | 
 |  | 
 | 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
 | 		/* | 
 | 		 * The higher the swap count, the more likely it is that tasks | 
 | 		 * will race to add swap count continuation: we need to avoid | 
 | 		 * over-provisioning. | 
 | 		 */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page) { | 
 | 		unlock_cluster(ci); | 
 | 		spin_unlock(&si->lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map, | 
 | 	 * no architecture is using highmem pages for kernel page tables: so it | 
 | 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. | 
 | 	 */ | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	offset &= ~PAGE_MASK; | 
 |  | 
 | 	spin_lock(&si->cont_lock); | 
 | 	/* | 
 | 	 * Page allocation does not initialize the page's lru field, | 
 | 	 * but it does always reset its private field. | 
 | 	 */ | 
 | 	if (!page_private(head)) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		INIT_LIST_HEAD(&head->lru); | 
 | 		set_page_private(head, SWP_CONTINUED); | 
 | 		si->flags |= SWP_CONTINUED; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(list_page, &head->lru, lru) { | 
 | 		unsigned char *map; | 
 |  | 
 | 		/* | 
 | 		 * If the previous map said no continuation, but we've found | 
 | 		 * a continuation page, free our allocation and use this one. | 
 | 		 */ | 
 | 		if (!(count & COUNT_CONTINUED)) | 
 | 			goto out_unlock_cont; | 
 |  | 
 | 		map = kmap_atomic(list_page) + offset; | 
 | 		count = *map; | 
 | 		kunmap_atomic(map); | 
 |  | 
 | 		/* | 
 | 		 * If this continuation count now has some space in it, | 
 | 		 * free our allocation and use this one. | 
 | 		 */ | 
 | 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
 | 			goto out_unlock_cont; | 
 | 	} | 
 |  | 
 | 	list_add_tail(&page->lru, &head->lru); | 
 | 	page = NULL;			/* now it's attached, don't free it */ | 
 | out_unlock_cont: | 
 | 	spin_unlock(&si->cont_lock); | 
 | out: | 
 | 	unlock_cluster(ci); | 
 | 	spin_unlock(&si->lock); | 
 | outer: | 
 | 	if (page) | 
 | 		__free_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * swap_count_continued - when the original swap_map count is incremented | 
 |  * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
 |  * into, carry if so, or else fail until a new continuation page is allocated; | 
 |  * when the original swap_map count is decremented from 0 with continuation, | 
 |  * borrow from the continuation and report whether it still holds more. | 
 |  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster | 
 |  * lock. | 
 |  */ | 
 | static bool swap_count_continued(struct swap_info_struct *si, | 
 | 				 pgoff_t offset, unsigned char count) | 
 | { | 
 | 	struct page *head; | 
 | 	struct page *page; | 
 | 	unsigned char *map; | 
 | 	bool ret; | 
 |  | 
 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 	if (page_private(head) != SWP_CONTINUED) { | 
 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 		return false;		/* need to add count continuation */ | 
 | 	} | 
 |  | 
 | 	spin_lock(&si->cont_lock); | 
 | 	offset &= ~PAGE_MASK; | 
 | 	page = list_entry(head->lru.next, struct page, lru); | 
 | 	map = kmap_atomic(page) + offset; | 
 |  | 
 | 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
 | 		goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
 |  | 
 | 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
 | 		/* | 
 | 		 * Think of how you add 1 to 999 | 
 | 		 */ | 
 | 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
 | 			kunmap_atomic(map); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_atomic(page) + offset; | 
 | 		} | 
 | 		if (*map == SWAP_CONT_MAX) { | 
 | 			kunmap_atomic(map); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			if (page == head) { | 
 | 				ret = false;	/* add count continuation */ | 
 | 				goto out; | 
 | 			} | 
 | 			map = kmap_atomic(page) + offset; | 
 | init_map:		*map = 0;		/* we didn't zero the page */ | 
 | 		} | 
 | 		*map += 1; | 
 | 		kunmap_atomic(map); | 
 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 		while (page != head) { | 
 | 			map = kmap_atomic(page) + offset; | 
 | 			*map = COUNT_CONTINUED; | 
 | 			kunmap_atomic(map); | 
 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 		} | 
 | 		ret = true;			/* incremented */ | 
 |  | 
 | 	} else {				/* decrementing */ | 
 | 		/* | 
 | 		 * Think of how you subtract 1 from 1000 | 
 | 		 */ | 
 | 		BUG_ON(count != COUNT_CONTINUED); | 
 | 		while (*map == COUNT_CONTINUED) { | 
 | 			kunmap_atomic(map); | 
 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 			BUG_ON(page == head); | 
 | 			map = kmap_atomic(page) + offset; | 
 | 		} | 
 | 		BUG_ON(*map == 0); | 
 | 		*map -= 1; | 
 | 		if (*map == 0) | 
 | 			count = 0; | 
 | 		kunmap_atomic(map); | 
 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 		while (page != head) { | 
 | 			map = kmap_atomic(page) + offset; | 
 | 			*map = SWAP_CONT_MAX | count; | 
 | 			count = COUNT_CONTINUED; | 
 | 			kunmap_atomic(map); | 
 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 		} | 
 | 		ret = count == COUNT_CONTINUED; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&si->cont_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * free_swap_count_continuations - swapoff free all the continuation pages | 
 |  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
 |  */ | 
 | static void free_swap_count_continuations(struct swap_info_struct *si) | 
 | { | 
 | 	pgoff_t offset; | 
 |  | 
 | 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
 | 		struct page *head; | 
 | 		head = vmalloc_to_page(si->swap_map + offset); | 
 | 		if (page_private(head)) { | 
 | 			struct page *page, *next; | 
 |  | 
 | 			list_for_each_entry_safe(page, next, &head->lru, lru) { | 
 | 				list_del(&page->lru); | 
 | 				__free_page(page); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) | 
 | void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, | 
 | 				  gfp_t gfp_mask) | 
 | { | 
 | 	struct swap_info_struct *si, *next; | 
 | 	if (!(gfp_mask & __GFP_IO) || !memcg) | 
 | 		return; | 
 |  | 
 | 	if (!blk_cgroup_congested()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We've already scheduled a throttle, avoid taking the global swap | 
 | 	 * lock. | 
 | 	 */ | 
 | 	if (current->throttle_queue) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&swap_avail_lock); | 
 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], | 
 | 				  avail_lists[node]) { | 
 | 		if (si->bdev) { | 
 | 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), | 
 | 						true); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&swap_avail_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static int __init swapfile_init(void) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), | 
 | 					 GFP_KERNEL); | 
 | 	if (!swap_avail_heads) { | 
 | 		pr_emerg("Not enough memory for swap heads, swap is disabled\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for_each_node(nid) | 
 | 		plist_head_init(&swap_avail_heads[nid]); | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(swapfile_init); |