| /* | 
 |  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI) | 
 |  * | 
 |  *  Copyright (C) 2011 Weinmann Medical GmbH | 
 |  *  Author: Nikolaus Voss <n.voss@weinmann.de> | 
 |  * | 
 |  *  Evolved from original work by: | 
 |  *  Copyright (C) 2004 Rick Bronson | 
 |  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com> | 
 |  * | 
 |  *  Borrowed heavily from original work by: | 
 |  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; either version 2 of the License, or | 
 |  *  (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/clk.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/err.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/platform_data/dma-atmel.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/pinctrl/consumer.h> | 
 |  | 
 | #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */ | 
 | #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */ | 
 | #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */ | 
 | #define AUTOSUSPEND_TIMEOUT		2000 | 
 | #define AT91_I2C_MAX_ALT_CMD_DATA_SIZE	256 | 
 |  | 
 | /* AT91 TWI register definitions */ | 
 | #define	AT91_TWI_CR		0x0000	/* Control Register */ | 
 | #define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */ | 
 | #define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */ | 
 | #define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */ | 
 | #define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */ | 
 | #define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */ | 
 | #define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */ | 
 | #define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */ | 
 | #define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */ | 
 | #define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */ | 
 | #define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */ | 
 | #define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */ | 
 | #define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */ | 
 | #define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */ | 
 | #define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */ | 
 | #define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */ | 
 |  | 
 | #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */ | 
 | #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */ | 
 | #define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */ | 
 |  | 
 | #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */ | 
 |  | 
 | #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */ | 
 | #define	AT91_TWI_CWGR_HOLD_MAX	0x1f | 
 | #define	AT91_TWI_CWGR_HOLD(x)	(((x) & AT91_TWI_CWGR_HOLD_MAX) << 24) | 
 |  | 
 | #define	AT91_TWI_SR		0x0020	/* Status Register */ | 
 | #define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */ | 
 | #define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */ | 
 | #define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */ | 
 | #define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */ | 
 | #define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */ | 
 | #define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */ | 
 | #define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */ | 
 |  | 
 | #define	AT91_TWI_INT_MASK \ | 
 | 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK) | 
 |  | 
 | #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */ | 
 | #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */ | 
 | #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */ | 
 | #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */ | 
 | #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */ | 
 |  | 
 | #define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */ | 
 | #define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff) | 
 | #define	AT91_TWI_ACR_DIR	BIT(8) | 
 |  | 
 | #define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */ | 
 | #define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0) | 
 | #define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0) | 
 | #define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4) | 
 | #define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4) | 
 | #define	AT91_TWI_ONE_DATA	0x0 | 
 | #define	AT91_TWI_TWO_DATA	0x1 | 
 | #define	AT91_TWI_FOUR_DATA	0x2 | 
 |  | 
 | #define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */ | 
 |  | 
 | #define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */ | 
 | #define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */ | 
 | #define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */ | 
 | #define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */ | 
 |  | 
 | #define	AT91_TWI_VER		0x00fc	/* Version Register */ | 
 |  | 
 | struct at91_twi_pdata { | 
 | 	unsigned clk_max_div; | 
 | 	unsigned clk_offset; | 
 | 	bool has_unre_flag; | 
 | 	bool has_alt_cmd; | 
 | 	bool has_hold_field; | 
 | 	struct at_dma_slave dma_slave; | 
 | }; | 
 |  | 
 | struct at91_twi_dma { | 
 | 	struct dma_chan *chan_rx; | 
 | 	struct dma_chan *chan_tx; | 
 | 	struct scatterlist sg[2]; | 
 | 	struct dma_async_tx_descriptor *data_desc; | 
 | 	enum dma_data_direction direction; | 
 | 	bool buf_mapped; | 
 | 	bool xfer_in_progress; | 
 | }; | 
 |  | 
 | struct at91_twi_dev { | 
 | 	struct device *dev; | 
 | 	void __iomem *base; | 
 | 	struct completion cmd_complete; | 
 | 	struct clk *clk; | 
 | 	u8 *buf; | 
 | 	size_t buf_len; | 
 | 	struct i2c_msg *msg; | 
 | 	int irq; | 
 | 	unsigned imr; | 
 | 	unsigned transfer_status; | 
 | 	struct i2c_adapter adapter; | 
 | 	unsigned twi_cwgr_reg; | 
 | 	struct at91_twi_pdata *pdata; | 
 | 	bool use_dma; | 
 | 	bool use_alt_cmd; | 
 | 	bool recv_len_abort; | 
 | 	u32 fifo_size; | 
 | 	struct at91_twi_dma dma; | 
 | }; | 
 |  | 
 | static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg) | 
 | { | 
 | 	return readl_relaxed(dev->base + reg); | 
 | } | 
 |  | 
 | static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val) | 
 | { | 
 | 	writel_relaxed(val, dev->base + reg); | 
 | } | 
 |  | 
 | static void at91_disable_twi_interrupts(struct at91_twi_dev *dev) | 
 | { | 
 | 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK); | 
 | } | 
 |  | 
 | static void at91_twi_irq_save(struct at91_twi_dev *dev) | 
 | { | 
 | 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK; | 
 | 	at91_disable_twi_interrupts(dev); | 
 | } | 
 |  | 
 | static void at91_twi_irq_restore(struct at91_twi_dev *dev) | 
 | { | 
 | 	at91_twi_write(dev, AT91_TWI_IER, dev->imr); | 
 | } | 
 |  | 
 | static void at91_init_twi_bus(struct at91_twi_dev *dev) | 
 | { | 
 | 	at91_disable_twi_interrupts(dev); | 
 | 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST); | 
 | 	/* FIFO should be enabled immediately after the software reset */ | 
 | 	if (dev->fifo_size) | 
 | 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN); | 
 | 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN); | 
 | 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS); | 
 | 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate symmetric clock as stated in datasheet: | 
 |  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset)) | 
 |  */ | 
 | static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk) | 
 | { | 
 | 	int ckdiv, cdiv, div, hold = 0; | 
 | 	struct at91_twi_pdata *pdata = dev->pdata; | 
 | 	int offset = pdata->clk_offset; | 
 | 	int max_ckdiv = pdata->clk_max_div; | 
 | 	u32 twd_hold_time_ns = 0; | 
 |  | 
 | 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk), | 
 | 				       2 * twi_clk) - offset); | 
 | 	ckdiv = fls(div >> 8); | 
 | 	cdiv = div >> ckdiv; | 
 |  | 
 | 	if (ckdiv > max_ckdiv) { | 
 | 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n", | 
 | 			 ckdiv, max_ckdiv); | 
 | 		ckdiv = max_ckdiv; | 
 | 		cdiv = 255; | 
 | 	} | 
 |  | 
 | 	if (pdata->has_hold_field) { | 
 | 		of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns", | 
 | 				     &twd_hold_time_ns); | 
 |  | 
 | 		/* | 
 | 		 * hold time = HOLD + 3 x T_peripheral_clock | 
 | 		 * Use clk rate in kHz to prevent overflows when computing | 
 | 		 * hold. | 
 | 		 */ | 
 | 		hold = DIV_ROUND_UP(twd_hold_time_ns | 
 | 				    * (clk_get_rate(dev->clk) / 1000), 1000000); | 
 | 		hold -= 3; | 
 | 		if (hold < 0) | 
 | 			hold = 0; | 
 | 		if (hold > AT91_TWI_CWGR_HOLD_MAX) { | 
 | 			dev_warn(dev->dev, | 
 | 				 "HOLD field set to its maximum value (%d instead of %d)\n", | 
 | 				 AT91_TWI_CWGR_HOLD_MAX, hold); | 
 | 			hold = AT91_TWI_CWGR_HOLD_MAX; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv | 
 | 			    | AT91_TWI_CWGR_HOLD(hold); | 
 |  | 
 | 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n", | 
 | 		cdiv, ckdiv, hold, twd_hold_time_ns); | 
 | } | 
 |  | 
 | static void at91_twi_dma_cleanup(struct at91_twi_dev *dev) | 
 | { | 
 | 	struct at91_twi_dma *dma = &dev->dma; | 
 |  | 
 | 	at91_twi_irq_save(dev); | 
 |  | 
 | 	if (dma->xfer_in_progress) { | 
 | 		if (dma->direction == DMA_FROM_DEVICE) | 
 | 			dmaengine_terminate_all(dma->chan_rx); | 
 | 		else | 
 | 			dmaengine_terminate_all(dma->chan_tx); | 
 | 		dma->xfer_in_progress = false; | 
 | 	} | 
 | 	if (dma->buf_mapped) { | 
 | 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]), | 
 | 				 dev->buf_len, dma->direction); | 
 | 		dma->buf_mapped = false; | 
 | 	} | 
 |  | 
 | 	at91_twi_irq_restore(dev); | 
 | } | 
 |  | 
 | static void at91_twi_write_next_byte(struct at91_twi_dev *dev) | 
 | { | 
 | 	if (!dev->buf_len) | 
 | 		return; | 
 |  | 
 | 	/* 8bit write works with and without FIFO */ | 
 | 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR); | 
 |  | 
 | 	/* send stop when last byte has been written */ | 
 | 	if (--dev->buf_len == 0) { | 
 | 		if (!dev->use_alt_cmd) | 
 | 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); | 
 | 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY); | 
 | 	} | 
 |  | 
 | 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len); | 
 |  | 
 | 	++dev->buf; | 
 | } | 
 |  | 
 | static void at91_twi_write_data_dma_callback(void *data) | 
 | { | 
 | 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data; | 
 |  | 
 | 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), | 
 | 			 dev->buf_len, DMA_TO_DEVICE); | 
 |  | 
 | 	/* | 
 | 	 * When this callback is called, THR/TX FIFO is likely not to be empty | 
 | 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the | 
 | 	 * Status Register to be sure that the STOP bit has been sent and the | 
 | 	 * transfer is completed. The NACK interrupt has already been enabled, | 
 | 	 * we just have to enable TXCOMP one. | 
 | 	 */ | 
 | 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); | 
 | 	if (!dev->use_alt_cmd) | 
 | 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); | 
 | } | 
 |  | 
 | static void at91_twi_write_data_dma(struct at91_twi_dev *dev) | 
 | { | 
 | 	dma_addr_t dma_addr; | 
 | 	struct dma_async_tx_descriptor *txdesc; | 
 | 	struct at91_twi_dma *dma = &dev->dma; | 
 | 	struct dma_chan *chan_tx = dma->chan_tx; | 
 | 	unsigned int sg_len = 1; | 
 |  | 
 | 	if (!dev->buf_len) | 
 | 		return; | 
 |  | 
 | 	dma->direction = DMA_TO_DEVICE; | 
 |  | 
 | 	at91_twi_irq_save(dev); | 
 | 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len, | 
 | 				  DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev->dev, dma_addr)) { | 
 | 		dev_err(dev->dev, "dma map failed\n"); | 
 | 		return; | 
 | 	} | 
 | 	dma->buf_mapped = true; | 
 | 	at91_twi_irq_restore(dev); | 
 |  | 
 | 	if (dev->fifo_size) { | 
 | 		size_t part1_len, part2_len; | 
 | 		struct scatterlist *sg; | 
 | 		unsigned fifo_mr; | 
 |  | 
 | 		sg_len = 0; | 
 |  | 
 | 		part1_len = dev->buf_len & ~0x3; | 
 | 		if (part1_len) { | 
 | 			sg = &dma->sg[sg_len++]; | 
 | 			sg_dma_len(sg) = part1_len; | 
 | 			sg_dma_address(sg) = dma_addr; | 
 | 		} | 
 |  | 
 | 		part2_len = dev->buf_len & 0x3; | 
 | 		if (part2_len) { | 
 | 			sg = &dma->sg[sg_len++]; | 
 | 			sg_dma_len(sg) = part2_len; | 
 | 			sg_dma_address(sg) = dma_addr + part1_len; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * DMA controller is triggered when at least 4 data can be | 
 | 		 * written into the TX FIFO | 
 | 		 */ | 
 | 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); | 
 | 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK; | 
 | 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA); | 
 | 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); | 
 | 	} else { | 
 | 		sg_dma_len(&dma->sg[0]) = dev->buf_len; | 
 | 		sg_dma_address(&dma->sg[0]) = dma_addr; | 
 | 	} | 
 |  | 
 | 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len, | 
 | 					 DMA_MEM_TO_DEV, | 
 | 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 	if (!txdesc) { | 
 | 		dev_err(dev->dev, "dma prep slave sg failed\n"); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	txdesc->callback = at91_twi_write_data_dma_callback; | 
 | 	txdesc->callback_param = dev; | 
 |  | 
 | 	dma->xfer_in_progress = true; | 
 | 	dmaengine_submit(txdesc); | 
 | 	dma_async_issue_pending(chan_tx); | 
 |  | 
 | 	return; | 
 |  | 
 | error: | 
 | 	at91_twi_dma_cleanup(dev); | 
 | } | 
 |  | 
 | static void at91_twi_read_next_byte(struct at91_twi_dev *dev) | 
 | { | 
 | 	/* | 
 | 	 * If we are in this case, it means there is garbage data in RHR, so | 
 | 	 * delete them. | 
 | 	 */ | 
 | 	if (!dev->buf_len) { | 
 | 		at91_twi_read(dev, AT91_TWI_RHR); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* 8bit read works with and without FIFO */ | 
 | 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR); | 
 | 	--dev->buf_len; | 
 |  | 
 | 	/* return if aborting, we only needed to read RHR to clear RXRDY*/ | 
 | 	if (dev->recv_len_abort) | 
 | 		return; | 
 |  | 
 | 	/* handle I2C_SMBUS_BLOCK_DATA */ | 
 | 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) { | 
 | 		/* ensure length byte is a valid value */ | 
 | 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) { | 
 | 			dev->msg->flags &= ~I2C_M_RECV_LEN; | 
 | 			dev->buf_len += *dev->buf; | 
 | 			dev->msg->len = dev->buf_len + 1; | 
 | 			dev_dbg(dev->dev, "received block length %zu\n", | 
 | 					 dev->buf_len); | 
 | 		} else { | 
 | 			/* abort and send the stop by reading one more byte */ | 
 | 			dev->recv_len_abort = true; | 
 | 			dev->buf_len = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* send stop if second but last byte has been read */ | 
 | 	if (!dev->use_alt_cmd && dev->buf_len == 1) | 
 | 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); | 
 |  | 
 | 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len); | 
 |  | 
 | 	++dev->buf; | 
 | } | 
 |  | 
 | static void at91_twi_read_data_dma_callback(void *data) | 
 | { | 
 | 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data; | 
 | 	unsigned ier = AT91_TWI_TXCOMP; | 
 |  | 
 | 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), | 
 | 			 dev->buf_len, DMA_FROM_DEVICE); | 
 |  | 
 | 	if (!dev->use_alt_cmd) { | 
 | 		/* The last two bytes have to be read without using dma */ | 
 | 		dev->buf += dev->buf_len - 2; | 
 | 		dev->buf_len = 2; | 
 | 		ier |= AT91_TWI_RXRDY; | 
 | 	} | 
 | 	at91_twi_write(dev, AT91_TWI_IER, ier); | 
 | } | 
 |  | 
 | static void at91_twi_read_data_dma(struct at91_twi_dev *dev) | 
 | { | 
 | 	dma_addr_t dma_addr; | 
 | 	struct dma_async_tx_descriptor *rxdesc; | 
 | 	struct at91_twi_dma *dma = &dev->dma; | 
 | 	struct dma_chan *chan_rx = dma->chan_rx; | 
 | 	size_t buf_len; | 
 |  | 
 | 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2; | 
 | 	dma->direction = DMA_FROM_DEVICE; | 
 |  | 
 | 	/* Keep in mind that we won't use dma to read the last two bytes */ | 
 | 	at91_twi_irq_save(dev); | 
 | 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE); | 
 | 	if (dma_mapping_error(dev->dev, dma_addr)) { | 
 | 		dev_err(dev->dev, "dma map failed\n"); | 
 | 		return; | 
 | 	} | 
 | 	dma->buf_mapped = true; | 
 | 	at91_twi_irq_restore(dev); | 
 |  | 
 | 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) { | 
 | 		unsigned fifo_mr; | 
 |  | 
 | 		/* | 
 | 		 * DMA controller is triggered when at least 4 data can be | 
 | 		 * read from the RX FIFO | 
 | 		 */ | 
 | 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); | 
 | 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK; | 
 | 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA); | 
 | 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); | 
 | 	} | 
 |  | 
 | 	sg_dma_len(&dma->sg[0]) = buf_len; | 
 | 	sg_dma_address(&dma->sg[0]) = dma_addr; | 
 |  | 
 | 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM, | 
 | 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
 | 	if (!rxdesc) { | 
 | 		dev_err(dev->dev, "dma prep slave sg failed\n"); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	rxdesc->callback = at91_twi_read_data_dma_callback; | 
 | 	rxdesc->callback_param = dev; | 
 |  | 
 | 	dma->xfer_in_progress = true; | 
 | 	dmaengine_submit(rxdesc); | 
 | 	dma_async_issue_pending(dma->chan_rx); | 
 |  | 
 | 	return; | 
 |  | 
 | error: | 
 | 	at91_twi_dma_cleanup(dev); | 
 | } | 
 |  | 
 | static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct at91_twi_dev *dev = dev_id; | 
 | 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR); | 
 | 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR); | 
 |  | 
 | 	if (!irqstatus) | 
 | 		return IRQ_NONE; | 
 | 	/* | 
 | 	 * In reception, the behavior of the twi device (before sama5d2) is | 
 | 	 * weird. There is some magic about RXRDY flag! When a data has been | 
 | 	 * almost received, the reception of a new one is anticipated if there | 
 | 	 * is no stop command to send. That is the reason why ask for sending | 
 | 	 * the stop command not on the last data but on the second last one. | 
 | 	 * | 
 | 	 * Unfortunately, we could still have the RXRDY flag set even if the | 
 | 	 * transfer is done and we have read the last data. It might happen | 
 | 	 * when the i2c slave device sends too quickly data after receiving the | 
 | 	 * ack from the master. The data has been almost received before having | 
 | 	 * the order to send stop. In this case, sending the stop command could | 
 | 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage | 
 | 	 * the RXRDY interrupt first in order to not keep garbage data in the | 
 | 	 * Receive Holding Register for the next transfer. | 
 | 	 */ | 
 | 	if (irqstatus & AT91_TWI_RXRDY) { | 
 | 		/* | 
 | 		 * Read all available bytes at once by polling RXRDY usable w/ | 
 | 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and | 
 | 		 * avoid polling RXRDY. | 
 | 		 */ | 
 | 		do { | 
 | 			at91_twi_read_next_byte(dev); | 
 | 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When a NACK condition is detected, the I2C controller sets the NACK, | 
 | 	 * TXCOMP and TXRDY bits all together in the Status Register (SR). | 
 | 	 * | 
 | 	 * 1 - Handling NACK errors with CPU write transfer. | 
 | 	 * | 
 | 	 * In such case, we should not write the next byte into the Transmit | 
 | 	 * Holding Register (THR) otherwise the I2C controller would start a new | 
 | 	 * transfer and the I2C slave is likely to reply by another NACK. | 
 | 	 * | 
 | 	 * 2 - Handling NACK errors with DMA write transfer. | 
 | 	 * | 
 | 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers | 
 | 	 * the DMA controller to write the next data into the THR. Then the | 
 | 	 * result depends on the hardware version of the I2C controller. | 
 | 	 * | 
 | 	 * 2a - Without support of the Alternative Command mode. | 
 | 	 * | 
 | 	 * This is the worst case: the DMA controller is triggered to write the | 
 | 	 * next data into the THR, hence starting a new transfer: the I2C slave | 
 | 	 * is likely to reply by another NACK. | 
 | 	 * Concurrently, this interrupt handler is likely to be called to manage | 
 | 	 * the first NACK before the I2C controller detects the second NACK and | 
 | 	 * sets once again the NACK bit into the SR. | 
 | 	 * When handling the first NACK, this interrupt handler disables the I2C | 
 | 	 * controller interruptions, especially the NACK interrupt. | 
 | 	 * Hence, the NACK bit is pending into the SR. This is why we should | 
 | 	 * read the SR to clear all pending interrupts at the beginning of | 
 | 	 * at91_do_twi_transfer() before actually starting a new transfer. | 
 | 	 * | 
 | 	 * 2b - With support of the Alternative Command mode. | 
 | 	 * | 
 | 	 * When a NACK condition is detected, the I2C controller also locks the | 
 | 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller | 
 | 	 * is triggered by the TXRDY bit to write the next data into the THR, | 
 | 	 * this data actually won't go on the I2C bus hence a second NACK is not | 
 | 	 * generated. | 
 | 	 */ | 
 | 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) { | 
 | 		at91_disable_twi_interrupts(dev); | 
 | 		complete(&dev->cmd_complete); | 
 | 	} else if (irqstatus & AT91_TWI_TXRDY) { | 
 | 		at91_twi_write_next_byte(dev); | 
 | 	} | 
 |  | 
 | 	/* catch error flags */ | 
 | 	dev->transfer_status |= status; | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int at91_do_twi_transfer(struct at91_twi_dev *dev) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long time_left; | 
 | 	bool has_unre_flag = dev->pdata->has_unre_flag; | 
 | 	bool has_alt_cmd = dev->pdata->has_alt_cmd; | 
 |  | 
 | 	/* | 
 | 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on | 
 | 	 * read flag but shows the state of the transmission at the time the | 
 | 	 * Status Register is read. According to the programmer datasheet, | 
 | 	 * TXCOMP is set when both holding register and internal shifter are | 
 | 	 * empty and STOP condition has been sent. | 
 | 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to | 
 | 	 * detect transmission failure. | 
 | 	 * Indeed let's take the case of an i2c write command using DMA. | 
 | 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and | 
 | 	 * TXCOMP bits are set together into the Status Register. | 
 | 	 * LOCK is a clear on write bit, which is set to prevent the DMA | 
 | 	 * controller from sending new data on the i2c bus after a NACK | 
 | 	 * condition has happened. Once locked, this i2c peripheral stops | 
 | 	 * triggering the DMA controller for new data but it is more than | 
 | 	 * likely that a new DMA transaction is already in progress, writing | 
 | 	 * into the Transmit Holding Register. Since the peripheral is locked, | 
 | 	 * these new data won't be sent to the i2c bus but they will remain | 
 | 	 * into the Transmit Holding Register, so TXCOMP bit is cleared. | 
 | 	 * Then when the interrupt handler is called, the Status Register is | 
 | 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver | 
 | 	 * manage the error properly, without waiting for timeout. | 
 | 	 * This case can be reproduced easyly when writing into an at24 eeprom. | 
 | 	 * | 
 | 	 * Besides, the TXCOMP bit is already set before the i2c transaction | 
 | 	 * has been started. For read transactions, this bit is cleared when | 
 | 	 * writing the START bit into the Control Register. So the | 
 | 	 * corresponding interrupt can safely be enabled just after. | 
 | 	 * However for write transactions managed by the CPU, we first write | 
 | 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP | 
 | 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR, | 
 | 	 * the interrupt handler would be called immediately and the i2c command | 
 | 	 * would be reported as completed. | 
 | 	 * Also when a write transaction is managed by the DMA controller, | 
 | 	 * enabling the TXCOMP interrupt in this function may lead to a race | 
 | 	 * condition since we don't know whether the TXCOMP interrupt is enabled | 
 | 	 * before or after the DMA has started to write into THR. So the TXCOMP | 
 | 	 * interrupt is enabled later by at91_twi_write_data_dma_callback(). | 
 | 	 * Immediately after in that DMA callback, if the alternative command | 
 | 	 * mode is not used, we still need to send the STOP condition manually | 
 | 	 * writing the corresponding bit into the Control Register. | 
 | 	 */ | 
 |  | 
 | 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n", | 
 | 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len); | 
 |  | 
 | 	reinit_completion(&dev->cmd_complete); | 
 | 	dev->transfer_status = 0; | 
 |  | 
 | 	/* Clear pending interrupts, such as NACK. */ | 
 | 	at91_twi_read(dev, AT91_TWI_SR); | 
 |  | 
 | 	if (dev->fifo_size) { | 
 | 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); | 
 |  | 
 | 		/* Reset FIFO mode register */ | 
 | 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK | | 
 | 			     AT91_TWI_FMR_RXRDYM_MASK); | 
 | 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA); | 
 | 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA); | 
 | 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); | 
 |  | 
 | 		/* Flush FIFOs */ | 
 | 		at91_twi_write(dev, AT91_TWI_CR, | 
 | 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR); | 
 | 	} | 
 |  | 
 | 	if (!dev->buf_len) { | 
 | 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK); | 
 | 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); | 
 | 	} else if (dev->msg->flags & I2C_M_RD) { | 
 | 		unsigned start_flags = AT91_TWI_START; | 
 |  | 
 | 		/* if only one byte is to be read, immediately stop transfer */ | 
 | 		if (!dev->use_alt_cmd && dev->buf_len <= 1 && | 
 | 		    !(dev->msg->flags & I2C_M_RECV_LEN)) | 
 | 			start_flags |= AT91_TWI_STOP; | 
 | 		at91_twi_write(dev, AT91_TWI_CR, start_flags); | 
 | 		/* | 
 | 		 * When using dma without alternative command mode, the last | 
 | 		 * byte has to be read manually in order to not send the stop | 
 | 		 * command too late and then to receive extra data. | 
 | 		 * In practice, there are some issues if you use the dma to | 
 | 		 * read n-1 bytes because of latency. | 
 | 		 * Reading n-2 bytes with dma and the two last ones manually | 
 | 		 * seems to be the best solution. | 
 | 		 */ | 
 | 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { | 
 | 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); | 
 | 			at91_twi_read_data_dma(dev); | 
 | 		} else { | 
 | 			at91_twi_write(dev, AT91_TWI_IER, | 
 | 				       AT91_TWI_TXCOMP | | 
 | 				       AT91_TWI_NACK | | 
 | 				       AT91_TWI_RXRDY); | 
 | 		} | 
 | 	} else { | 
 | 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { | 
 | 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); | 
 | 			at91_twi_write_data_dma(dev); | 
 | 		} else { | 
 | 			at91_twi_write_next_byte(dev); | 
 | 			at91_twi_write(dev, AT91_TWI_IER, | 
 | 				       AT91_TWI_TXCOMP | AT91_TWI_NACK | | 
 | 				       (dev->buf_len ? AT91_TWI_TXRDY : 0)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	time_left = wait_for_completion_timeout(&dev->cmd_complete, | 
 | 					      dev->adapter.timeout); | 
 | 	if (time_left == 0) { | 
 | 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); | 
 | 		dev_err(dev->dev, "controller timed out\n"); | 
 | 		at91_init_twi_bus(dev); | 
 | 		ret = -ETIMEDOUT; | 
 | 		goto error; | 
 | 	} | 
 | 	if (dev->transfer_status & AT91_TWI_NACK) { | 
 | 		dev_dbg(dev->dev, "received nack\n"); | 
 | 		ret = -EREMOTEIO; | 
 | 		goto error; | 
 | 	} | 
 | 	if (dev->transfer_status & AT91_TWI_OVRE) { | 
 | 		dev_err(dev->dev, "overrun while reading\n"); | 
 | 		ret = -EIO; | 
 | 		goto error; | 
 | 	} | 
 | 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) { | 
 | 		dev_err(dev->dev, "underrun while writing\n"); | 
 | 		ret = -EIO; | 
 | 		goto error; | 
 | 	} | 
 | 	if ((has_alt_cmd || dev->fifo_size) && | 
 | 	    (dev->transfer_status & AT91_TWI_LOCK)) { | 
 | 		dev_err(dev->dev, "tx locked\n"); | 
 | 		ret = -EIO; | 
 | 		goto error; | 
 | 	} | 
 | 	if (dev->recv_len_abort) { | 
 | 		dev_err(dev->dev, "invalid smbus block length recvd\n"); | 
 | 		ret = -EPROTO; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	dev_dbg(dev->dev, "transfer complete\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	/* first stop DMA transfer if still in progress */ | 
 | 	at91_twi_dma_cleanup(dev); | 
 | 	/* then flush THR/FIFO and unlock TX if locked */ | 
 | 	if ((has_alt_cmd || dev->fifo_size) && | 
 | 	    (dev->transfer_status & AT91_TWI_LOCK)) { | 
 | 		dev_dbg(dev->dev, "unlock tx\n"); | 
 | 		at91_twi_write(dev, AT91_TWI_CR, | 
 | 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) | 
 | { | 
 | 	struct at91_twi_dev *dev = i2c_get_adapdata(adap); | 
 | 	int ret; | 
 | 	unsigned int_addr_flag = 0; | 
 | 	struct i2c_msg *m_start = msg; | 
 | 	bool is_read; | 
 |  | 
 | 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num); | 
 |  | 
 | 	ret = pm_runtime_get_sync(dev->dev); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (num == 2) { | 
 | 		int internal_address = 0; | 
 | 		int i; | 
 |  | 
 | 		/* 1st msg is put into the internal address, start with 2nd */ | 
 | 		m_start = &msg[1]; | 
 | 		for (i = 0; i < msg->len; ++i) { | 
 | 			const unsigned addr = msg->buf[msg->len - 1 - i]; | 
 |  | 
 | 			internal_address |= addr << (8 * i); | 
 | 			int_addr_flag += AT91_TWI_IADRSZ_1; | 
 | 		} | 
 | 		at91_twi_write(dev, AT91_TWI_IADR, internal_address); | 
 | 	} | 
 |  | 
 | 	dev->use_alt_cmd = false; | 
 | 	is_read = (m_start->flags & I2C_M_RD); | 
 | 	if (dev->pdata->has_alt_cmd) { | 
 | 		if (m_start->len > 0 && | 
 | 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) { | 
 | 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN); | 
 | 			at91_twi_write(dev, AT91_TWI_ACR, | 
 | 				       AT91_TWI_ACR_DATAL(m_start->len) | | 
 | 				       ((is_read) ? AT91_TWI_ACR_DIR : 0)); | 
 | 			dev->use_alt_cmd = true; | 
 | 		} else { | 
 | 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	at91_twi_write(dev, AT91_TWI_MMR, | 
 | 		       (m_start->addr << 16) | | 
 | 		       int_addr_flag | | 
 | 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0)); | 
 |  | 
 | 	dev->buf_len = m_start->len; | 
 | 	dev->buf = m_start->buf; | 
 | 	dev->msg = m_start; | 
 | 	dev->recv_len_abort = false; | 
 |  | 
 | 	ret = at91_do_twi_transfer(dev); | 
 |  | 
 | 	ret = (ret < 0) ? ret : num; | 
 | out: | 
 | 	pm_runtime_mark_last_busy(dev->dev); | 
 | 	pm_runtime_put_autosuspend(dev->dev); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The hardware can handle at most two messages concatenated by a | 
 |  * repeated start via it's internal address feature. | 
 |  */ | 
 | static const struct i2c_adapter_quirks at91_twi_quirks = { | 
 | 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR, | 
 | 	.max_comb_1st_msg_len = 3, | 
 | }; | 
 |  | 
 | static u32 at91_twi_func(struct i2c_adapter *adapter) | 
 | { | 
 | 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | 
 | 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA; | 
 | } | 
 |  | 
 | static const struct i2c_algorithm at91_twi_algorithm = { | 
 | 	.master_xfer	= at91_twi_xfer, | 
 | 	.functionality	= at91_twi_func, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata at91rm9200_config = { | 
 | 	.clk_max_div = 5, | 
 | 	.clk_offset = 3, | 
 | 	.has_unre_flag = true, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata at91sam9261_config = { | 
 | 	.clk_max_div = 5, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata at91sam9260_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata at91sam9g20_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata at91sam9g10_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static const struct platform_device_id at91_twi_devtypes[] = { | 
 | 	{ | 
 | 		.name = "i2c-at91rm9200", | 
 | 		.driver_data = (unsigned long) &at91rm9200_config, | 
 | 	}, { | 
 | 		.name = "i2c-at91sam9261", | 
 | 		.driver_data = (unsigned long) &at91sam9261_config, | 
 | 	}, { | 
 | 		.name = "i2c-at91sam9260", | 
 | 		.driver_data = (unsigned long) &at91sam9260_config, | 
 | 	}, { | 
 | 		.name = "i2c-at91sam9g20", | 
 | 		.driver_data = (unsigned long) &at91sam9g20_config, | 
 | 	}, { | 
 | 		.name = "i2c-at91sam9g10", | 
 | 		.driver_data = (unsigned long) &at91sam9g10_config, | 
 | 	}, { | 
 | 		/* sentinel */ | 
 | 	} | 
 | }; | 
 |  | 
 | #if defined(CONFIG_OF) | 
 | static struct at91_twi_pdata at91sam9x5_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = false, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata sama5d4_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 4, | 
 | 	.has_unre_flag = false, | 
 | 	.has_alt_cmd = false, | 
 | 	.has_hold_field = true, | 
 | }; | 
 |  | 
 | static struct at91_twi_pdata sama5d2_config = { | 
 | 	.clk_max_div = 7, | 
 | 	.clk_offset = 3, | 
 | 	.has_unre_flag = true, | 
 | 	.has_alt_cmd = true, | 
 | 	.has_hold_field = true, | 
 | }; | 
 |  | 
 | static const struct of_device_id atmel_twi_dt_ids[] = { | 
 | 	{ | 
 | 		.compatible = "atmel,at91rm9200-i2c", | 
 | 		.data = &at91rm9200_config, | 
 | 	} , { | 
 | 		.compatible = "atmel,at91sam9260-i2c", | 
 | 		.data = &at91sam9260_config, | 
 | 	} , { | 
 | 		.compatible = "atmel,at91sam9261-i2c", | 
 | 		.data = &at91sam9261_config, | 
 | 	} , { | 
 | 		.compatible = "atmel,at91sam9g20-i2c", | 
 | 		.data = &at91sam9g20_config, | 
 | 	} , { | 
 | 		.compatible = "atmel,at91sam9g10-i2c", | 
 | 		.data = &at91sam9g10_config, | 
 | 	}, { | 
 | 		.compatible = "atmel,at91sam9x5-i2c", | 
 | 		.data = &at91sam9x5_config, | 
 | 	}, { | 
 | 		.compatible = "atmel,sama5d4-i2c", | 
 | 		.data = &sama5d4_config, | 
 | 	}, { | 
 | 		.compatible = "atmel,sama5d2-i2c", | 
 | 		.data = &sama5d2_config, | 
 | 	}, { | 
 | 		/* sentinel */ | 
 | 	} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids); | 
 | #endif | 
 |  | 
 | static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct dma_slave_config slave_config; | 
 | 	struct at91_twi_dma *dma = &dev->dma; | 
 | 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
 |  | 
 | 	/* | 
 | 	 * The actual width of the access will be chosen in | 
 | 	 * dmaengine_prep_slave_sg(): | 
 | 	 * for each buffer in the scatter-gather list, if its size is aligned | 
 | 	 * to addr_width then addr_width accesses will be performed to transfer | 
 | 	 * the buffer. On the other hand, if the buffer size is not aligned to | 
 | 	 * addr_width then the buffer is transferred using single byte accesses. | 
 | 	 * Please refer to the Atmel eXtended DMA controller driver. | 
 | 	 * When FIFOs are used, the TXRDYM threshold can always be set to | 
 | 	 * trigger the XDMAC when at least 4 data can be written into the TX | 
 | 	 * FIFO, even if single byte accesses are performed. | 
 | 	 * However the RXRDYM threshold must be set to fit the access width, | 
 | 	 * deduced from buffer length, so the XDMAC is triggered properly to | 
 | 	 * read data from the RX FIFO. | 
 | 	 */ | 
 | 	if (dev->fifo_size) | 
 | 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
 |  | 
 | 	memset(&slave_config, 0, sizeof(slave_config)); | 
 | 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR; | 
 | 	slave_config.src_addr_width = addr_width; | 
 | 	slave_config.src_maxburst = 1; | 
 | 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR; | 
 | 	slave_config.dst_addr_width = addr_width; | 
 | 	slave_config.dst_maxburst = 1; | 
 | 	slave_config.device_fc = false; | 
 |  | 
 | 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx"); | 
 | 	if (IS_ERR(dma->chan_tx)) { | 
 | 		ret = PTR_ERR(dma->chan_tx); | 
 | 		dma->chan_tx = NULL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx"); | 
 | 	if (IS_ERR(dma->chan_rx)) { | 
 | 		ret = PTR_ERR(dma->chan_rx); | 
 | 		dma->chan_rx = NULL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	slave_config.direction = DMA_MEM_TO_DEV; | 
 | 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) { | 
 | 		dev_err(dev->dev, "failed to configure tx channel\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	slave_config.direction = DMA_DEV_TO_MEM; | 
 | 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) { | 
 | 		dev_err(dev->dev, "failed to configure rx channel\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	sg_init_table(dma->sg, 2); | 
 | 	dma->buf_mapped = false; | 
 | 	dma->xfer_in_progress = false; | 
 | 	dev->use_dma = true; | 
 |  | 
 | 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n", | 
 | 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx)); | 
 |  | 
 | 	return ret; | 
 |  | 
 | error: | 
 | 	if (ret != -EPROBE_DEFER) | 
 | 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n"); | 
 | 	if (dma->chan_rx) | 
 | 		dma_release_channel(dma->chan_rx); | 
 | 	if (dma->chan_tx) | 
 | 		dma_release_channel(dma->chan_tx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct at91_twi_pdata *at91_twi_get_driver_data( | 
 | 					struct platform_device *pdev) | 
 | { | 
 | 	if (pdev->dev.of_node) { | 
 | 		const struct of_device_id *match; | 
 | 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node); | 
 | 		if (!match) | 
 | 			return NULL; | 
 | 		return (struct at91_twi_pdata *)match->data; | 
 | 	} | 
 | 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data; | 
 | } | 
 |  | 
 | static int at91_twi_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct at91_twi_dev *dev; | 
 | 	struct resource *mem; | 
 | 	int rc; | 
 | 	u32 phy_addr; | 
 | 	u32 bus_clk_rate; | 
 |  | 
 | 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 | 	init_completion(&dev->cmd_complete); | 
 | 	dev->dev = &pdev->dev; | 
 |  | 
 | 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!mem) | 
 | 		return -ENODEV; | 
 | 	phy_addr = mem->start; | 
 |  | 
 | 	dev->pdata = at91_twi_get_driver_data(pdev); | 
 | 	if (!dev->pdata) | 
 | 		return -ENODEV; | 
 |  | 
 | 	dev->base = devm_ioremap_resource(&pdev->dev, mem); | 
 | 	if (IS_ERR(dev->base)) | 
 | 		return PTR_ERR(dev->base); | 
 |  | 
 | 	dev->irq = platform_get_irq(pdev, 0); | 
 | 	if (dev->irq < 0) | 
 | 		return dev->irq; | 
 |  | 
 | 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0, | 
 | 			 dev_name(dev->dev), dev); | 
 | 	if (rc) { | 
 | 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, dev); | 
 |  | 
 | 	dev->clk = devm_clk_get(dev->dev, NULL); | 
 | 	if (IS_ERR(dev->clk)) { | 
 | 		dev_err(dev->dev, "no clock defined\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	rc = clk_prepare_enable(dev->clk); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (dev->dev->of_node) { | 
 | 		rc = at91_twi_configure_dma(dev, phy_addr); | 
 | 		if (rc == -EPROBE_DEFER) { | 
 | 			clk_disable_unprepare(dev->clk); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", | 
 | 				  &dev->fifo_size)) { | 
 | 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size); | 
 | 	} | 
 |  | 
 | 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency", | 
 | 			&bus_clk_rate); | 
 | 	if (rc) | 
 | 		bus_clk_rate = DEFAULT_TWI_CLK_HZ; | 
 |  | 
 | 	at91_calc_twi_clock(dev, bus_clk_rate); | 
 | 	at91_init_twi_bus(dev); | 
 |  | 
 | 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91"); | 
 | 	i2c_set_adapdata(&dev->adapter, dev); | 
 | 	dev->adapter.owner = THIS_MODULE; | 
 | 	dev->adapter.class = I2C_CLASS_DEPRECATED; | 
 | 	dev->adapter.algo = &at91_twi_algorithm; | 
 | 	dev->adapter.quirks = &at91_twi_quirks; | 
 | 	dev->adapter.dev.parent = dev->dev; | 
 | 	dev->adapter.nr = pdev->id; | 
 | 	dev->adapter.timeout = AT91_I2C_TIMEOUT; | 
 | 	dev->adapter.dev.of_node = pdev->dev.of_node; | 
 |  | 
 | 	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT); | 
 | 	pm_runtime_use_autosuspend(dev->dev); | 
 | 	pm_runtime_set_active(dev->dev); | 
 | 	pm_runtime_enable(dev->dev); | 
 |  | 
 | 	rc = i2c_add_numbered_adapter(&dev->adapter); | 
 | 	if (rc) { | 
 | 		clk_disable_unprepare(dev->clk); | 
 |  | 
 | 		pm_runtime_disable(dev->dev); | 
 | 		pm_runtime_set_suspended(dev->dev); | 
 |  | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n", | 
 | 		 at91_twi_read(dev, AT91_TWI_VER)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int at91_twi_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct at91_twi_dev *dev = platform_get_drvdata(pdev); | 
 |  | 
 | 	i2c_del_adapter(&dev->adapter); | 
 | 	clk_disable_unprepare(dev->clk); | 
 |  | 
 | 	pm_runtime_disable(dev->dev); | 
 | 	pm_runtime_set_suspended(dev->dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 |  | 
 | static int at91_twi_runtime_suspend(struct device *dev) | 
 | { | 
 | 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev); | 
 |  | 
 | 	clk_disable_unprepare(twi_dev->clk); | 
 |  | 
 | 	pinctrl_pm_select_sleep_state(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int at91_twi_runtime_resume(struct device *dev) | 
 | { | 
 | 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev); | 
 |  | 
 | 	pinctrl_pm_select_default_state(dev); | 
 |  | 
 | 	return clk_prepare_enable(twi_dev->clk); | 
 | } | 
 |  | 
 | static int at91_twi_suspend_noirq(struct device *dev) | 
 | { | 
 | 	if (!pm_runtime_status_suspended(dev)) | 
 | 		at91_twi_runtime_suspend(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int at91_twi_resume_noirq(struct device *dev) | 
 | { | 
 | 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	if (!pm_runtime_status_suspended(dev)) { | 
 | 		ret = at91_twi_runtime_resume(dev); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	pm_runtime_mark_last_busy(dev); | 
 | 	pm_request_autosuspend(dev); | 
 |  | 
 | 	at91_init_twi_bus(twi_dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops at91_twi_pm = { | 
 | 	.suspend_noirq	= at91_twi_suspend_noirq, | 
 | 	.resume_noirq	= at91_twi_resume_noirq, | 
 | 	.runtime_suspend	= at91_twi_runtime_suspend, | 
 | 	.runtime_resume		= at91_twi_runtime_resume, | 
 | }; | 
 |  | 
 | #define at91_twi_pm_ops (&at91_twi_pm) | 
 | #else | 
 | #define at91_twi_pm_ops NULL | 
 | #endif | 
 |  | 
 | static struct platform_driver at91_twi_driver = { | 
 | 	.probe		= at91_twi_probe, | 
 | 	.remove		= at91_twi_remove, | 
 | 	.id_table	= at91_twi_devtypes, | 
 | 	.driver		= { | 
 | 		.name	= "at91_i2c", | 
 | 		.of_match_table = of_match_ptr(atmel_twi_dt_ids), | 
 | 		.pm	= at91_twi_pm_ops, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int __init at91_twi_init(void) | 
 | { | 
 | 	return platform_driver_register(&at91_twi_driver); | 
 | } | 
 |  | 
 | static void __exit at91_twi_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&at91_twi_driver); | 
 | } | 
 |  | 
 | subsys_initcall(at91_twi_init); | 
 | module_exit(at91_twi_exit); | 
 |  | 
 | MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>"); | 
 | MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS("platform:at91_i2c"); |