| /* | 
 |  * net/sched/sch_netem.c	Network emulator | 
 |  * | 
 |  * 		This program is free software; you can redistribute it and/or | 
 |  * 		modify it under the terms of the GNU General Public License | 
 |  * 		as published by the Free Software Foundation; either version | 
 |  * 		2 of the License. | 
 |  * | 
 |  *  		Many of the algorithms and ideas for this came from | 
 |  *		NIST Net which is not copyrighted. | 
 |  * | 
 |  * Authors:	Stephen Hemminger <shemminger@osdl.org> | 
 |  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/rtnetlink.h> | 
 | #include <linux/reciprocal_div.h> | 
 | #include <linux/rbtree.h> | 
 |  | 
 | #include <net/netlink.h> | 
 | #include <net/pkt_sched.h> | 
 | #include <net/inet_ecn.h> | 
 |  | 
 | #define VERSION "1.3" | 
 |  | 
 | /*	Network Emulation Queuing algorithm. | 
 | 	==================================== | 
 |  | 
 | 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based | 
 | 		 Network Emulation Tool | 
 | 		 [2] Luigi Rizzo, DummyNet for FreeBSD | 
 |  | 
 | 	 ---------------------------------------------------------------- | 
 |  | 
 | 	 This started out as a simple way to delay outgoing packets to | 
 | 	 test TCP but has grown to include most of the functionality | 
 | 	 of a full blown network emulator like NISTnet. It can delay | 
 | 	 packets and add random jitter (and correlation). The random | 
 | 	 distribution can be loaded from a table as well to provide | 
 | 	 normal, Pareto, or experimental curves. Packet loss, | 
 | 	 duplication, and reordering can also be emulated. | 
 |  | 
 | 	 This qdisc does not do classification that can be handled in | 
 | 	 layering other disciplines.  It does not need to do bandwidth | 
 | 	 control either since that can be handled by using token | 
 | 	 bucket or other rate control. | 
 |  | 
 |      Correlated Loss Generator models | 
 |  | 
 | 	Added generation of correlated loss according to the | 
 | 	"Gilbert-Elliot" model, a 4-state markov model. | 
 |  | 
 | 	References: | 
 | 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG | 
 | 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general | 
 | 	and intuitive loss model for packet networks and its implementation | 
 | 	in the Netem module in the Linux kernel", available in [1] | 
 |  | 
 | 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it | 
 | 		 Fabio Ludovici <fabio.ludovici at yahoo.it> | 
 | */ | 
 |  | 
 | struct disttable { | 
 | 	u32  size; | 
 | 	s16 table[0]; | 
 | }; | 
 |  | 
 | struct netem_sched_data { | 
 | 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */ | 
 | 	struct rb_root t_root; | 
 |  | 
 | 	/* optional qdisc for classful handling (NULL at netem init) */ | 
 | 	struct Qdisc	*qdisc; | 
 |  | 
 | 	struct qdisc_watchdog watchdog; | 
 |  | 
 | 	s64 latency; | 
 | 	s64 jitter; | 
 |  | 
 | 	u32 loss; | 
 | 	u32 ecn; | 
 | 	u32 limit; | 
 | 	u32 counter; | 
 | 	u32 gap; | 
 | 	u32 duplicate; | 
 | 	u32 reorder; | 
 | 	u32 corrupt; | 
 | 	u64 rate; | 
 | 	s32 packet_overhead; | 
 | 	u32 cell_size; | 
 | 	struct reciprocal_value cell_size_reciprocal; | 
 | 	s32 cell_overhead; | 
 |  | 
 | 	struct crndstate { | 
 | 		u32 last; | 
 | 		u32 rho; | 
 | 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; | 
 |  | 
 | 	struct disttable *delay_dist; | 
 |  | 
 | 	enum  { | 
 | 		CLG_RANDOM, | 
 | 		CLG_4_STATES, | 
 | 		CLG_GILB_ELL, | 
 | 	} loss_model; | 
 |  | 
 | 	enum { | 
 | 		TX_IN_GAP_PERIOD = 1, | 
 | 		TX_IN_BURST_PERIOD, | 
 | 		LOST_IN_GAP_PERIOD, | 
 | 		LOST_IN_BURST_PERIOD, | 
 | 	} _4_state_model; | 
 |  | 
 | 	enum { | 
 | 		GOOD_STATE = 1, | 
 | 		BAD_STATE, | 
 | 	} GE_state_model; | 
 |  | 
 | 	/* Correlated Loss Generation models */ | 
 | 	struct clgstate { | 
 | 		/* state of the Markov chain */ | 
 | 		u8 state; | 
 |  | 
 | 		/* 4-states and Gilbert-Elliot models */ | 
 | 		u32 a1;	/* p13 for 4-states or p for GE */ | 
 | 		u32 a2;	/* p31 for 4-states or r for GE */ | 
 | 		u32 a3;	/* p32 for 4-states or h for GE */ | 
 | 		u32 a4;	/* p14 for 4-states or 1-k for GE */ | 
 | 		u32 a5; /* p23 used only in 4-states */ | 
 | 	} clg; | 
 |  | 
 | 	struct tc_netem_slot slot_config; | 
 | 	struct slotstate { | 
 | 		u64 slot_next; | 
 | 		s32 packets_left; | 
 | 		s32 bytes_left; | 
 | 	} slot; | 
 |  | 
 | 	struct disttable *slot_dist; | 
 | }; | 
 |  | 
 | /* Time stamp put into socket buffer control block | 
 |  * Only valid when skbs are in our internal t(ime)fifo queue. | 
 |  * | 
 |  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, | 
 |  * and skb->next & skb->prev are scratch space for a qdisc, | 
 |  * we save skb->tstamp value in skb->cb[] before destroying it. | 
 |  */ | 
 | struct netem_skb_cb { | 
 | 	u64	        time_to_send; | 
 | }; | 
 |  | 
 | static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) | 
 | { | 
 | 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */ | 
 | 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); | 
 | 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; | 
 | } | 
 |  | 
 | /* init_crandom - initialize correlated random number generator | 
 |  * Use entropy source for initial seed. | 
 |  */ | 
 | static void init_crandom(struct crndstate *state, unsigned long rho) | 
 | { | 
 | 	state->rho = rho; | 
 | 	state->last = prandom_u32(); | 
 | } | 
 |  | 
 | /* get_crandom - correlated random number generator | 
 |  * Next number depends on last value. | 
 |  * rho is scaled to avoid floating point. | 
 |  */ | 
 | static u32 get_crandom(struct crndstate *state) | 
 | { | 
 | 	u64 value, rho; | 
 | 	unsigned long answer; | 
 |  | 
 | 	if (!state || state->rho == 0)	/* no correlation */ | 
 | 		return prandom_u32(); | 
 |  | 
 | 	value = prandom_u32(); | 
 | 	rho = (u64)state->rho + 1; | 
 | 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; | 
 | 	state->last = answer; | 
 | 	return answer; | 
 | } | 
 |  | 
 | /* loss_4state - 4-state model loss generator | 
 |  * Generates losses according to the 4-state Markov chain adopted in | 
 |  * the GI (General and Intuitive) loss model. | 
 |  */ | 
 | static bool loss_4state(struct netem_sched_data *q) | 
 | { | 
 | 	struct clgstate *clg = &q->clg; | 
 | 	u32 rnd = prandom_u32(); | 
 |  | 
 | 	/* | 
 | 	 * Makes a comparison between rnd and the transition | 
 | 	 * probabilities outgoing from the current state, then decides the | 
 | 	 * next state and if the next packet has to be transmitted or lost. | 
 | 	 * The four states correspond to: | 
 | 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period | 
 | 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period | 
 | 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period | 
 | 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period | 
 | 	 */ | 
 | 	switch (clg->state) { | 
 | 	case TX_IN_GAP_PERIOD: | 
 | 		if (rnd < clg->a4) { | 
 | 			clg->state = LOST_IN_BURST_PERIOD; | 
 | 			return true; | 
 | 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { | 
 | 			clg->state = LOST_IN_GAP_PERIOD; | 
 | 			return true; | 
 | 		} else if (clg->a1 + clg->a4 < rnd) { | 
 | 			clg->state = TX_IN_GAP_PERIOD; | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	case TX_IN_BURST_PERIOD: | 
 | 		if (rnd < clg->a5) { | 
 | 			clg->state = LOST_IN_GAP_PERIOD; | 
 | 			return true; | 
 | 		} else { | 
 | 			clg->state = TX_IN_BURST_PERIOD; | 
 | 		} | 
 |  | 
 | 		break; | 
 | 	case LOST_IN_GAP_PERIOD: | 
 | 		if (rnd < clg->a3) | 
 | 			clg->state = TX_IN_BURST_PERIOD; | 
 | 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { | 
 | 			clg->state = TX_IN_GAP_PERIOD; | 
 | 		} else if (clg->a2 + clg->a3 < rnd) { | 
 | 			clg->state = LOST_IN_GAP_PERIOD; | 
 | 			return true; | 
 | 		} | 
 | 		break; | 
 | 	case LOST_IN_BURST_PERIOD: | 
 | 		clg->state = TX_IN_GAP_PERIOD; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* loss_gilb_ell - Gilbert-Elliot model loss generator | 
 |  * Generates losses according to the Gilbert-Elliot loss model or | 
 |  * its special cases  (Gilbert or Simple Gilbert) | 
 |  * | 
 |  * Makes a comparison between random number and the transition | 
 |  * probabilities outgoing from the current state, then decides the | 
 |  * next state. A second random number is extracted and the comparison | 
 |  * with the loss probability of the current state decides if the next | 
 |  * packet will be transmitted or lost. | 
 |  */ | 
 | static bool loss_gilb_ell(struct netem_sched_data *q) | 
 | { | 
 | 	struct clgstate *clg = &q->clg; | 
 |  | 
 | 	switch (clg->state) { | 
 | 	case GOOD_STATE: | 
 | 		if (prandom_u32() < clg->a1) | 
 | 			clg->state = BAD_STATE; | 
 | 		if (prandom_u32() < clg->a4) | 
 | 			return true; | 
 | 		break; | 
 | 	case BAD_STATE: | 
 | 		if (prandom_u32() < clg->a2) | 
 | 			clg->state = GOOD_STATE; | 
 | 		if (prandom_u32() > clg->a3) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool loss_event(struct netem_sched_data *q) | 
 | { | 
 | 	switch (q->loss_model) { | 
 | 	case CLG_RANDOM: | 
 | 		/* Random packet drop 0 => none, ~0 => all */ | 
 | 		return q->loss && q->loss >= get_crandom(&q->loss_cor); | 
 |  | 
 | 	case CLG_4_STATES: | 
 | 		/* 4state loss model algorithm (used also for GI model) | 
 | 		* Extracts a value from the markov 4 state loss generator, | 
 | 		* if it is 1 drops a packet and if needed writes the event in | 
 | 		* the kernel logs | 
 | 		*/ | 
 | 		return loss_4state(q); | 
 |  | 
 | 	case CLG_GILB_ELL: | 
 | 		/* Gilbert-Elliot loss model algorithm | 
 | 		* Extracts a value from the Gilbert-Elliot loss generator, | 
 | 		* if it is 1 drops a packet and if needed writes the event in | 
 | 		* the kernel logs | 
 | 		*/ | 
 | 		return loss_gilb_ell(q); | 
 | 	} | 
 |  | 
 | 	return false;	/* not reached */ | 
 | } | 
 |  | 
 |  | 
 | /* tabledist - return a pseudo-randomly distributed value with mean mu and | 
 |  * std deviation sigma.  Uses table lookup to approximate the desired | 
 |  * distribution, and a uniformly-distributed pseudo-random source. | 
 |  */ | 
 | static s64 tabledist(s64 mu, s32 sigma, | 
 | 		     struct crndstate *state, | 
 | 		     const struct disttable *dist) | 
 | { | 
 | 	s64 x; | 
 | 	long t; | 
 | 	u32 rnd; | 
 |  | 
 | 	if (sigma == 0) | 
 | 		return mu; | 
 |  | 
 | 	rnd = get_crandom(state); | 
 |  | 
 | 	/* default uniform distribution */ | 
 | 	if (dist == NULL) | 
 | 		return ((rnd % (2 * sigma)) + mu) - sigma; | 
 |  | 
 | 	t = dist->table[rnd % dist->size]; | 
 | 	x = (sigma % NETEM_DIST_SCALE) * t; | 
 | 	if (x >= 0) | 
 | 		x += NETEM_DIST_SCALE/2; | 
 | 	else | 
 | 		x -= NETEM_DIST_SCALE/2; | 
 |  | 
 | 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; | 
 | } | 
 |  | 
 | static u64 packet_time_ns(u64 len, const struct netem_sched_data *q) | 
 | { | 
 | 	len += q->packet_overhead; | 
 |  | 
 | 	if (q->cell_size) { | 
 | 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); | 
 |  | 
 | 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */ | 
 | 			cells++; | 
 | 		len = cells * (q->cell_size + q->cell_overhead); | 
 | 	} | 
 |  | 
 | 	return div64_u64(len * NSEC_PER_SEC, q->rate); | 
 | } | 
 |  | 
 | static void tfifo_reset(struct Qdisc *sch) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	struct rb_node *p = rb_first(&q->t_root); | 
 |  | 
 | 	while (p) { | 
 | 		struct sk_buff *skb = rb_to_skb(p); | 
 |  | 
 | 		p = rb_next(p); | 
 | 		rb_erase(&skb->rbnode, &q->t_root); | 
 | 		rtnl_kfree_skbs(skb, skb); | 
 | 	} | 
 | } | 
 |  | 
 | static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	u64 tnext = netem_skb_cb(nskb)->time_to_send; | 
 | 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL; | 
 |  | 
 | 	while (*p) { | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		parent = *p; | 
 | 		skb = rb_to_skb(parent); | 
 | 		if (tnext >= netem_skb_cb(skb)->time_to_send) | 
 | 			p = &parent->rb_right; | 
 | 		else | 
 | 			p = &parent->rb_left; | 
 | 	} | 
 | 	rb_link_node(&nskb->rbnode, parent, p); | 
 | 	rb_insert_color(&nskb->rbnode, &q->t_root); | 
 | 	sch->q.qlen++; | 
 | } | 
 |  | 
 | /* netem can't properly corrupt a megapacket (like we get from GSO), so instead | 
 |  * when we statistically choose to corrupt one, we instead segment it, returning | 
 |  * the first packet to be corrupted, and re-enqueue the remaining frames | 
 |  */ | 
 | static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, | 
 | 				     struct sk_buff **to_free) | 
 | { | 
 | 	struct sk_buff *segs; | 
 | 	netdev_features_t features = netif_skb_features(skb); | 
 |  | 
 | 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); | 
 |  | 
 | 	if (IS_ERR_OR_NULL(segs)) { | 
 | 		qdisc_drop(skb, sch, to_free); | 
 | 		return NULL; | 
 | 	} | 
 | 	consume_skb(skb); | 
 | 	return segs; | 
 | } | 
 |  | 
 | static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb) | 
 | { | 
 | 	skb->next = qh->head; | 
 |  | 
 | 	if (!qh->head) | 
 | 		qh->tail = skb; | 
 | 	qh->head = skb; | 
 | 	qh->qlen++; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert one skb into qdisc. | 
 |  * Note: parent depends on return value to account for queue length. | 
 |  * 	NET_XMIT_DROP: queue length didn't change. | 
 |  *      NET_XMIT_SUCCESS: one skb was queued. | 
 |  */ | 
 | static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
 | 			 struct sk_buff **to_free) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	/* We don't fill cb now as skb_unshare() may invalidate it */ | 
 | 	struct netem_skb_cb *cb; | 
 | 	struct sk_buff *skb2; | 
 | 	struct sk_buff *segs = NULL; | 
 | 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb); | 
 | 	int nb = 0; | 
 | 	int count = 1; | 
 | 	int rc = NET_XMIT_SUCCESS; | 
 | 	int rc_drop = NET_XMIT_DROP; | 
 |  | 
 | 	/* Do not fool qdisc_drop_all() */ | 
 | 	skb->prev = NULL; | 
 |  | 
 | 	/* Random duplication */ | 
 | 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) | 
 | 		++count; | 
 |  | 
 | 	/* Drop packet? */ | 
 | 	if (loss_event(q)) { | 
 | 		if (q->ecn && INET_ECN_set_ce(skb)) | 
 | 			qdisc_qstats_drop(sch); /* mark packet */ | 
 | 		else | 
 | 			--count; | 
 | 	} | 
 | 	if (count == 0) { | 
 | 		qdisc_qstats_drop(sch); | 
 | 		__qdisc_drop(skb, to_free); | 
 | 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; | 
 | 	} | 
 |  | 
 | 	/* If a delay is expected, orphan the skb. (orphaning usually takes | 
 | 	 * place at TX completion time, so _before_ the link transit delay) | 
 | 	 */ | 
 | 	if (q->latency || q->jitter || q->rate) | 
 | 		skb_orphan_partial(skb); | 
 |  | 
 | 	/* | 
 | 	 * If we need to duplicate packet, then re-insert at top of the | 
 | 	 * qdisc tree, since parent queuer expects that only one | 
 | 	 * skb will be queued. | 
 | 	 */ | 
 | 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { | 
 | 		struct Qdisc *rootq = qdisc_root_bh(sch); | 
 | 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ | 
 |  | 
 | 		q->duplicate = 0; | 
 | 		rootq->enqueue(skb2, rootq, to_free); | 
 | 		q->duplicate = dupsave; | 
 | 		rc_drop = NET_XMIT_SUCCESS; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Randomized packet corruption. | 
 | 	 * Make copy if needed since we are modifying | 
 | 	 * If packet is going to be hardware checksummed, then | 
 | 	 * do it now in software before we mangle it. | 
 | 	 */ | 
 | 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { | 
 | 		if (skb_is_gso(skb)) { | 
 | 			segs = netem_segment(skb, sch, to_free); | 
 | 			if (!segs) | 
 | 				return rc_drop; | 
 | 		} else { | 
 | 			segs = skb; | 
 | 		} | 
 |  | 
 | 		skb = segs; | 
 | 		segs = segs->next; | 
 |  | 
 | 		skb = skb_unshare(skb, GFP_ATOMIC); | 
 | 		if (unlikely(!skb)) { | 
 | 			qdisc_qstats_drop(sch); | 
 | 			goto finish_segs; | 
 | 		} | 
 | 		if (skb->ip_summed == CHECKSUM_PARTIAL && | 
 | 		    skb_checksum_help(skb)) { | 
 | 			qdisc_drop(skb, sch, to_free); | 
 | 			goto finish_segs; | 
 | 		} | 
 |  | 
 | 		skb->data[prandom_u32() % skb_headlen(skb)] ^= | 
 | 			1<<(prandom_u32() % 8); | 
 | 	} | 
 |  | 
 | 	if (unlikely(sch->q.qlen >= sch->limit)) { | 
 | 		qdisc_drop_all(skb, sch, to_free); | 
 | 		return rc_drop; | 
 | 	} | 
 |  | 
 | 	qdisc_qstats_backlog_inc(sch, skb); | 
 |  | 
 | 	cb = netem_skb_cb(skb); | 
 | 	if (q->gap == 0 ||		/* not doing reordering */ | 
 | 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */ | 
 | 	    q->reorder < get_crandom(&q->reorder_cor)) { | 
 | 		u64 now; | 
 | 		s64 delay; | 
 |  | 
 | 		delay = tabledist(q->latency, q->jitter, | 
 | 				  &q->delay_cor, q->delay_dist); | 
 |  | 
 | 		now = ktime_get_ns(); | 
 |  | 
 | 		if (q->rate) { | 
 | 			struct netem_skb_cb *last = NULL; | 
 |  | 
 | 			if (sch->q.tail) | 
 | 				last = netem_skb_cb(sch->q.tail); | 
 | 			if (q->t_root.rb_node) { | 
 | 				struct sk_buff *t_skb; | 
 | 				struct netem_skb_cb *t_last; | 
 |  | 
 | 				t_skb = skb_rb_last(&q->t_root); | 
 | 				t_last = netem_skb_cb(t_skb); | 
 | 				if (!last || | 
 | 				    t_last->time_to_send > last->time_to_send) { | 
 | 					last = t_last; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (last) { | 
 | 				/* | 
 | 				 * Last packet in queue is reference point (now), | 
 | 				 * calculate this time bonus and subtract | 
 | 				 * from delay. | 
 | 				 */ | 
 | 				delay -= last->time_to_send - now; | 
 | 				delay = max_t(s64, 0, delay); | 
 | 				now = last->time_to_send; | 
 | 			} | 
 |  | 
 | 			delay += packet_time_ns(qdisc_pkt_len(skb), q); | 
 | 		} | 
 |  | 
 | 		cb->time_to_send = now + delay; | 
 | 		++q->counter; | 
 | 		tfifo_enqueue(skb, sch); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Do re-ordering by putting one out of N packets at the front | 
 | 		 * of the queue. | 
 | 		 */ | 
 | 		cb->time_to_send = ktime_get_ns(); | 
 | 		q->counter = 0; | 
 |  | 
 | 		netem_enqueue_skb_head(&sch->q, skb); | 
 | 		sch->qstats.requeues++; | 
 | 	} | 
 |  | 
 | finish_segs: | 
 | 	if (segs) { | 
 | 		while (segs) { | 
 | 			skb2 = segs->next; | 
 | 			segs->next = NULL; | 
 | 			qdisc_skb_cb(segs)->pkt_len = segs->len; | 
 | 			last_len = segs->len; | 
 | 			rc = qdisc_enqueue(segs, sch, to_free); | 
 | 			if (rc != NET_XMIT_SUCCESS) { | 
 | 				if (net_xmit_drop_count(rc)) | 
 | 					qdisc_qstats_drop(sch); | 
 | 			} else { | 
 | 				nb++; | 
 | 				len += last_len; | 
 | 			} | 
 | 			segs = skb2; | 
 | 		} | 
 | 		sch->q.qlen += nb; | 
 | 		if (nb > 1) | 
 | 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); | 
 | 	} | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | /* Delay the next round with a new future slot with a | 
 |  * correct number of bytes and packets. | 
 |  */ | 
 |  | 
 | static void get_slot_next(struct netem_sched_data *q, u64 now) | 
 | { | 
 | 	s64 next_delay; | 
 |  | 
 | 	if (!q->slot_dist) | 
 | 		next_delay = q->slot_config.min_delay + | 
 | 				(prandom_u32() * | 
 | 				 (q->slot_config.max_delay - | 
 | 				  q->slot_config.min_delay) >> 32); | 
 | 	else | 
 | 		next_delay = tabledist(q->slot_config.dist_delay, | 
 | 				       (s32)(q->slot_config.dist_jitter), | 
 | 				       NULL, q->slot_dist); | 
 |  | 
 | 	q->slot.slot_next = now + next_delay; | 
 | 	q->slot.packets_left = q->slot_config.max_packets; | 
 | 	q->slot.bytes_left = q->slot_config.max_bytes; | 
 | } | 
 |  | 
 | static struct sk_buff *netem_dequeue(struct Qdisc *sch) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	struct sk_buff *skb; | 
 | 	struct rb_node *p; | 
 |  | 
 | tfifo_dequeue: | 
 | 	skb = __qdisc_dequeue_head(&sch->q); | 
 | 	if (skb) { | 
 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | deliver: | 
 | 		qdisc_bstats_update(sch, skb); | 
 | 		return skb; | 
 | 	} | 
 | 	p = rb_first(&q->t_root); | 
 | 	if (p) { | 
 | 		u64 time_to_send; | 
 | 		u64 now = ktime_get_ns(); | 
 |  | 
 | 		skb = rb_to_skb(p); | 
 |  | 
 | 		/* if more time remaining? */ | 
 | 		time_to_send = netem_skb_cb(skb)->time_to_send; | 
 | 		if (q->slot.slot_next && q->slot.slot_next < time_to_send) | 
 | 			get_slot_next(q, now); | 
 |  | 
 | 		if (time_to_send <= now &&  q->slot.slot_next <= now) { | 
 | 			rb_erase(p, &q->t_root); | 
 | 			sch->q.qlen--; | 
 | 			qdisc_qstats_backlog_dec(sch, skb); | 
 | 			skb->next = NULL; | 
 | 			skb->prev = NULL; | 
 | 			/* skb->dev shares skb->rbnode area, | 
 | 			 * we need to restore its value. | 
 | 			 */ | 
 | 			skb->dev = qdisc_dev(sch); | 
 |  | 
 | #ifdef CONFIG_NET_CLS_ACT | 
 | 			/* | 
 | 			 * If it's at ingress let's pretend the delay is | 
 | 			 * from the network (tstamp will be updated). | 
 | 			 */ | 
 | 			if (skb->tc_redirected && skb->tc_from_ingress) | 
 | 				skb->tstamp = 0; | 
 | #endif | 
 |  | 
 | 			if (q->slot.slot_next) { | 
 | 				q->slot.packets_left--; | 
 | 				q->slot.bytes_left -= qdisc_pkt_len(skb); | 
 | 				if (q->slot.packets_left <= 0 || | 
 | 				    q->slot.bytes_left <= 0) | 
 | 					get_slot_next(q, now); | 
 | 			} | 
 |  | 
 | 			if (q->qdisc) { | 
 | 				unsigned int pkt_len = qdisc_pkt_len(skb); | 
 | 				struct sk_buff *to_free = NULL; | 
 | 				int err; | 
 |  | 
 | 				err = qdisc_enqueue(skb, q->qdisc, &to_free); | 
 | 				kfree_skb_list(to_free); | 
 | 				if (err != NET_XMIT_SUCCESS && | 
 | 				    net_xmit_drop_count(err)) { | 
 | 					qdisc_qstats_drop(sch); | 
 | 					qdisc_tree_reduce_backlog(sch, 1, | 
 | 								  pkt_len); | 
 | 				} | 
 | 				goto tfifo_dequeue; | 
 | 			} | 
 | 			goto deliver; | 
 | 		} | 
 |  | 
 | 		if (q->qdisc) { | 
 | 			skb = q->qdisc->ops->dequeue(q->qdisc); | 
 | 			if (skb) | 
 | 				goto deliver; | 
 | 		} | 
 |  | 
 | 		qdisc_watchdog_schedule_ns(&q->watchdog, | 
 | 					   max(time_to_send, | 
 | 					       q->slot.slot_next)); | 
 | 	} | 
 |  | 
 | 	if (q->qdisc) { | 
 | 		skb = q->qdisc->ops->dequeue(q->qdisc); | 
 | 		if (skb) | 
 | 			goto deliver; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void netem_reset(struct Qdisc *sch) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	qdisc_reset_queue(sch); | 
 | 	tfifo_reset(sch); | 
 | 	if (q->qdisc) | 
 | 		qdisc_reset(q->qdisc); | 
 | 	qdisc_watchdog_cancel(&q->watchdog); | 
 | } | 
 |  | 
 | static void dist_free(struct disttable *d) | 
 | { | 
 | 	kvfree(d); | 
 | } | 
 |  | 
 | /* | 
 |  * Distribution data is a variable size payload containing | 
 |  * signed 16 bit values. | 
 |  */ | 
 |  | 
 | static int get_dist_table(struct Qdisc *sch, struct disttable **tbl, | 
 | 			  const struct nlattr *attr) | 
 | { | 
 | 	size_t n = nla_len(attr)/sizeof(__s16); | 
 | 	const __s16 *data = nla_data(attr); | 
 | 	spinlock_t *root_lock; | 
 | 	struct disttable *d; | 
 | 	int i; | 
 |  | 
 | 	if (!n || n > NETEM_DIST_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL); | 
 | 	if (!d) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	d->size = n; | 
 | 	for (i = 0; i < n; i++) | 
 | 		d->table[i] = data[i]; | 
 |  | 
 | 	root_lock = qdisc_root_sleeping_lock(sch); | 
 |  | 
 | 	spin_lock_bh(root_lock); | 
 | 	swap(*tbl, d); | 
 | 	spin_unlock_bh(root_lock); | 
 |  | 
 | 	dist_free(d); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void get_slot(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct tc_netem_slot *c = nla_data(attr); | 
 |  | 
 | 	q->slot_config = *c; | 
 | 	if (q->slot_config.max_packets == 0) | 
 | 		q->slot_config.max_packets = INT_MAX; | 
 | 	if (q->slot_config.max_bytes == 0) | 
 | 		q->slot_config.max_bytes = INT_MAX; | 
 | 	q->slot.packets_left = q->slot_config.max_packets; | 
 | 	q->slot.bytes_left = q->slot_config.max_bytes; | 
 | 	if (q->slot_config.min_delay | q->slot_config.max_delay | | 
 | 	    q->slot_config.dist_jitter) | 
 | 		q->slot.slot_next = ktime_get_ns(); | 
 | 	else | 
 | 		q->slot.slot_next = 0; | 
 | } | 
 |  | 
 | static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct tc_netem_corr *c = nla_data(attr); | 
 |  | 
 | 	init_crandom(&q->delay_cor, c->delay_corr); | 
 | 	init_crandom(&q->loss_cor, c->loss_corr); | 
 | 	init_crandom(&q->dup_cor, c->dup_corr); | 
 | } | 
 |  | 
 | static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct tc_netem_reorder *r = nla_data(attr); | 
 |  | 
 | 	q->reorder = r->probability; | 
 | 	init_crandom(&q->reorder_cor, r->correlation); | 
 | } | 
 |  | 
 | static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct tc_netem_corrupt *r = nla_data(attr); | 
 |  | 
 | 	q->corrupt = r->probability; | 
 | 	init_crandom(&q->corrupt_cor, r->correlation); | 
 | } | 
 |  | 
 | static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct tc_netem_rate *r = nla_data(attr); | 
 |  | 
 | 	q->rate = r->rate; | 
 | 	q->packet_overhead = r->packet_overhead; | 
 | 	q->cell_size = r->cell_size; | 
 | 	q->cell_overhead = r->cell_overhead; | 
 | 	if (q->cell_size) | 
 | 		q->cell_size_reciprocal = reciprocal_value(q->cell_size); | 
 | 	else | 
 | 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; | 
 | } | 
 |  | 
 | static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) | 
 | { | 
 | 	const struct nlattr *la; | 
 | 	int rem; | 
 |  | 
 | 	nla_for_each_nested(la, attr, rem) { | 
 | 		u16 type = nla_type(la); | 
 |  | 
 | 		switch (type) { | 
 | 		case NETEM_LOSS_GI: { | 
 | 			const struct tc_netem_gimodel *gi = nla_data(la); | 
 |  | 
 | 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { | 
 | 				pr_info("netem: incorrect gi model size\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			q->loss_model = CLG_4_STATES; | 
 |  | 
 | 			q->clg.state = TX_IN_GAP_PERIOD; | 
 | 			q->clg.a1 = gi->p13; | 
 | 			q->clg.a2 = gi->p31; | 
 | 			q->clg.a3 = gi->p32; | 
 | 			q->clg.a4 = gi->p14; | 
 | 			q->clg.a5 = gi->p23; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		case NETEM_LOSS_GE: { | 
 | 			const struct tc_netem_gemodel *ge = nla_data(la); | 
 |  | 
 | 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { | 
 | 				pr_info("netem: incorrect ge model size\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			q->loss_model = CLG_GILB_ELL; | 
 | 			q->clg.state = GOOD_STATE; | 
 | 			q->clg.a1 = ge->p; | 
 | 			q->clg.a2 = ge->r; | 
 | 			q->clg.a3 = ge->h; | 
 | 			q->clg.a4 = ge->k1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		default: | 
 | 			pr_info("netem: unknown loss type %u\n", type); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { | 
 | 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) }, | 
 | 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) }, | 
 | 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) }, | 
 | 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) }, | 
 | 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED }, | 
 | 	[TCA_NETEM_ECN]		= { .type = NLA_U32 }, | 
 | 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 }, | 
 | 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 }, | 
 | 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 }, | 
 | 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) }, | 
 | }; | 
 |  | 
 | static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, | 
 | 		      const struct nla_policy *policy, int len) | 
 | { | 
 | 	int nested_len = nla_len(nla) - NLA_ALIGN(len); | 
 |  | 
 | 	if (nested_len < 0) { | 
 | 		pr_info("netem: invalid attributes len %d\n", nested_len); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (nested_len >= nla_attr_size(0)) | 
 | 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), | 
 | 				 nested_len, policy, NULL); | 
 |  | 
 | 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Parse netlink message to set options */ | 
 | static int netem_change(struct Qdisc *sch, struct nlattr *opt, | 
 | 			struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	struct nlattr *tb[TCA_NETEM_MAX + 1]; | 
 | 	struct tc_netem_qopt *qopt; | 
 | 	struct clgstate old_clg; | 
 | 	int old_loss_model = CLG_RANDOM; | 
 | 	int ret; | 
 |  | 
 | 	if (opt == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	qopt = nla_data(opt); | 
 | 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* backup q->clg and q->loss_model */ | 
 | 	old_clg = q->clg; | 
 | 	old_loss_model = q->loss_model; | 
 |  | 
 | 	if (tb[TCA_NETEM_LOSS]) { | 
 | 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); | 
 | 		if (ret) { | 
 | 			q->loss_model = old_loss_model; | 
 | 			return ret; | 
 | 		} | 
 | 	} else { | 
 | 		q->loss_model = CLG_RANDOM; | 
 | 	} | 
 |  | 
 | 	if (tb[TCA_NETEM_DELAY_DIST]) { | 
 | 		ret = get_dist_table(sch, &q->delay_dist, | 
 | 				     tb[TCA_NETEM_DELAY_DIST]); | 
 | 		if (ret) | 
 | 			goto get_table_failure; | 
 | 	} | 
 |  | 
 | 	if (tb[TCA_NETEM_SLOT_DIST]) { | 
 | 		ret = get_dist_table(sch, &q->slot_dist, | 
 | 				     tb[TCA_NETEM_SLOT_DIST]); | 
 | 		if (ret) | 
 | 			goto get_table_failure; | 
 | 	} | 
 |  | 
 | 	sch->limit = qopt->limit; | 
 |  | 
 | 	q->latency = PSCHED_TICKS2NS(qopt->latency); | 
 | 	q->jitter = PSCHED_TICKS2NS(qopt->jitter); | 
 | 	q->limit = qopt->limit; | 
 | 	q->gap = qopt->gap; | 
 | 	q->counter = 0; | 
 | 	q->loss = qopt->loss; | 
 | 	q->duplicate = qopt->duplicate; | 
 |  | 
 | 	/* for compatibility with earlier versions. | 
 | 	 * if gap is set, need to assume 100% probability | 
 | 	 */ | 
 | 	if (q->gap) | 
 | 		q->reorder = ~0; | 
 |  | 
 | 	if (tb[TCA_NETEM_CORR]) | 
 | 		get_correlation(q, tb[TCA_NETEM_CORR]); | 
 |  | 
 | 	if (tb[TCA_NETEM_REORDER]) | 
 | 		get_reorder(q, tb[TCA_NETEM_REORDER]); | 
 |  | 
 | 	if (tb[TCA_NETEM_CORRUPT]) | 
 | 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]); | 
 |  | 
 | 	if (tb[TCA_NETEM_RATE]) | 
 | 		get_rate(q, tb[TCA_NETEM_RATE]); | 
 |  | 
 | 	if (tb[TCA_NETEM_RATE64]) | 
 | 		q->rate = max_t(u64, q->rate, | 
 | 				nla_get_u64(tb[TCA_NETEM_RATE64])); | 
 |  | 
 | 	if (tb[TCA_NETEM_LATENCY64]) | 
 | 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]); | 
 |  | 
 | 	if (tb[TCA_NETEM_JITTER64]) | 
 | 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]); | 
 |  | 
 | 	if (tb[TCA_NETEM_ECN]) | 
 | 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); | 
 |  | 
 | 	if (tb[TCA_NETEM_SLOT]) | 
 | 		get_slot(q, tb[TCA_NETEM_SLOT]); | 
 |  | 
 | 	return ret; | 
 |  | 
 | get_table_failure: | 
 | 	/* recover clg and loss_model, in case of | 
 | 	 * q->clg and q->loss_model were modified | 
 | 	 * in get_loss_clg() | 
 | 	 */ | 
 | 	q->clg = old_clg; | 
 | 	q->loss_model = old_loss_model; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int netem_init(struct Qdisc *sch, struct nlattr *opt, | 
 | 		      struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	int ret; | 
 |  | 
 | 	qdisc_watchdog_init(&q->watchdog, sch); | 
 |  | 
 | 	if (!opt) | 
 | 		return -EINVAL; | 
 |  | 
 | 	q->loss_model = CLG_RANDOM; | 
 | 	ret = netem_change(sch, opt, extack); | 
 | 	if (ret) | 
 | 		pr_info("netem: change failed\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void netem_destroy(struct Qdisc *sch) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	qdisc_watchdog_cancel(&q->watchdog); | 
 | 	if (q->qdisc) | 
 | 		qdisc_destroy(q->qdisc); | 
 | 	dist_free(q->delay_dist); | 
 | 	dist_free(q->slot_dist); | 
 | } | 
 |  | 
 | static int dump_loss_model(const struct netem_sched_data *q, | 
 | 			   struct sk_buff *skb) | 
 | { | 
 | 	struct nlattr *nest; | 
 |  | 
 | 	nest = nla_nest_start(skb, TCA_NETEM_LOSS); | 
 | 	if (nest == NULL) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	switch (q->loss_model) { | 
 | 	case CLG_RANDOM: | 
 | 		/* legacy loss model */ | 
 | 		nla_nest_cancel(skb, nest); | 
 | 		return 0;	/* no data */ | 
 |  | 
 | 	case CLG_4_STATES: { | 
 | 		struct tc_netem_gimodel gi = { | 
 | 			.p13 = q->clg.a1, | 
 | 			.p31 = q->clg.a2, | 
 | 			.p32 = q->clg.a3, | 
 | 			.p14 = q->clg.a4, | 
 | 			.p23 = q->clg.a5, | 
 | 		}; | 
 |  | 
 | 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) | 
 | 			goto nla_put_failure; | 
 | 		break; | 
 | 	} | 
 | 	case CLG_GILB_ELL: { | 
 | 		struct tc_netem_gemodel ge = { | 
 | 			.p = q->clg.a1, | 
 | 			.r = q->clg.a2, | 
 | 			.h = q->clg.a3, | 
 | 			.k1 = q->clg.a4, | 
 | 		}; | 
 |  | 
 | 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) | 
 | 			goto nla_put_failure; | 
 | 		break; | 
 | 	} | 
 | 	} | 
 |  | 
 | 	nla_nest_end(skb, nest); | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	nla_nest_cancel(skb, nest); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | { | 
 | 	const struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); | 
 | 	struct tc_netem_qopt qopt; | 
 | 	struct tc_netem_corr cor; | 
 | 	struct tc_netem_reorder reorder; | 
 | 	struct tc_netem_corrupt corrupt; | 
 | 	struct tc_netem_rate rate; | 
 | 	struct tc_netem_slot slot; | 
 |  | 
 | 	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency), | 
 | 			     UINT_MAX); | 
 | 	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter), | 
 | 			    UINT_MAX); | 
 | 	qopt.limit = q->limit; | 
 | 	qopt.loss = q->loss; | 
 | 	qopt.gap = q->gap; | 
 | 	qopt.duplicate = q->duplicate; | 
 | 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	cor.delay_corr = q->delay_cor.rho; | 
 | 	cor.loss_corr = q->loss_cor.rho; | 
 | 	cor.dup_corr = q->dup_cor.rho; | 
 | 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	reorder.probability = q->reorder; | 
 | 	reorder.correlation = q->reorder_cor.rho; | 
 | 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	corrupt.probability = q->corrupt; | 
 | 	corrupt.correlation = q->corrupt_cor.rho; | 
 | 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (q->rate >= (1ULL << 32)) { | 
 | 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, | 
 | 				      TCA_NETEM_PAD)) | 
 | 			goto nla_put_failure; | 
 | 		rate.rate = ~0U; | 
 | 	} else { | 
 | 		rate.rate = q->rate; | 
 | 	} | 
 | 	rate.packet_overhead = q->packet_overhead; | 
 | 	rate.cell_size = q->cell_size; | 
 | 	rate.cell_overhead = q->cell_overhead; | 
 | 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (dump_loss_model(q, skb) != 0) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (q->slot_config.min_delay | q->slot_config.max_delay | | 
 | 	    q->slot_config.dist_jitter) { | 
 | 		slot = q->slot_config; | 
 | 		if (slot.max_packets == INT_MAX) | 
 | 			slot.max_packets = 0; | 
 | 		if (slot.max_bytes == INT_MAX) | 
 | 			slot.max_bytes = 0; | 
 | 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	return nla_nest_end(skb, nla); | 
 |  | 
 | nla_put_failure: | 
 | 	nlmsg_trim(skb, nla); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int netem_dump_class(struct Qdisc *sch, unsigned long cl, | 
 | 			  struct sk_buff *skb, struct tcmsg *tcm) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	if (cl != 1 || !q->qdisc) 	/* only one class */ | 
 | 		return -ENOENT; | 
 |  | 
 | 	tcm->tcm_handle |= TC_H_MIN(1); | 
 | 	tcm->tcm_info = q->qdisc->handle; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, | 
 | 		     struct Qdisc **old, struct netlink_ext_ack *extack) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 |  | 
 | 	*old = qdisc_replace(sch, new, &q->qdisc); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) | 
 | { | 
 | 	struct netem_sched_data *q = qdisc_priv(sch); | 
 | 	return q->qdisc; | 
 | } | 
 |  | 
 | static unsigned long netem_find(struct Qdisc *sch, u32 classid) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) | 
 | { | 
 | 	if (!walker->stop) { | 
 | 		if (walker->count >= walker->skip) | 
 | 			if (walker->fn(sch, 1, walker) < 0) { | 
 | 				walker->stop = 1; | 
 | 				return; | 
 | 			} | 
 | 		walker->count++; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct Qdisc_class_ops netem_class_ops = { | 
 | 	.graft		=	netem_graft, | 
 | 	.leaf		=	netem_leaf, | 
 | 	.find		=	netem_find, | 
 | 	.walk		=	netem_walk, | 
 | 	.dump		=	netem_dump_class, | 
 | }; | 
 |  | 
 | static struct Qdisc_ops netem_qdisc_ops __read_mostly = { | 
 | 	.id		=	"netem", | 
 | 	.cl_ops		=	&netem_class_ops, | 
 | 	.priv_size	=	sizeof(struct netem_sched_data), | 
 | 	.enqueue	=	netem_enqueue, | 
 | 	.dequeue	=	netem_dequeue, | 
 | 	.peek		=	qdisc_peek_dequeued, | 
 | 	.init		=	netem_init, | 
 | 	.reset		=	netem_reset, | 
 | 	.destroy	=	netem_destroy, | 
 | 	.change		=	netem_change, | 
 | 	.dump		=	netem_dump, | 
 | 	.owner		=	THIS_MODULE, | 
 | }; | 
 |  | 
 |  | 
 | static int __init netem_module_init(void) | 
 | { | 
 | 	pr_info("netem: version " VERSION "\n"); | 
 | 	return register_qdisc(&netem_qdisc_ops); | 
 | } | 
 | static void __exit netem_module_exit(void) | 
 | { | 
 | 	unregister_qdisc(&netem_qdisc_ops); | 
 | } | 
 | module_init(netem_module_init) | 
 | module_exit(netem_module_exit) | 
 | MODULE_LICENSE("GPL"); |