|  | /* | 
|  | * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <misc/cxl-base.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/trace.h> | 
|  | #include <asm/powernv.h> | 
|  |  | 
|  | #include "mmu_decl.h" | 
|  | #include <trace/events/thp.h> | 
|  |  | 
|  | unsigned long __pmd_frag_nr; | 
|  | EXPORT_SYMBOL(__pmd_frag_nr); | 
|  | unsigned long __pmd_frag_size_shift; | 
|  | EXPORT_SYMBOL(__pmd_frag_size_shift); | 
|  |  | 
|  | int (*register_process_table)(unsigned long base, unsigned long page_size, | 
|  | unsigned long tbl_size); | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | /* | 
|  | * This is called when relaxing access to a hugepage. It's also called in the page | 
|  | * fault path when we don't hit any of the major fault cases, ie, a minor | 
|  | * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have | 
|  | * handled those two for us, we additionally deal with missing execute | 
|  | * permission here on some processors | 
|  | */ | 
|  | int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, | 
|  | pmd_t *pmdp, pmd_t entry, int dirty) | 
|  | { | 
|  | int changed; | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); | 
|  | assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); | 
|  | #endif | 
|  | changed = !pmd_same(*(pmdp), entry); | 
|  | if (changed) { | 
|  | /* | 
|  | * We can use MMU_PAGE_2M here, because only radix | 
|  | * path look at the psize. | 
|  | */ | 
|  | __ptep_set_access_flags(vma, pmdp_ptep(pmdp), | 
|  | pmd_pte(entry), address, MMU_PAGE_2M); | 
|  | } | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | int pmdp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); | 
|  | } | 
|  | /* | 
|  | * set a new huge pmd. We should not be called for updating | 
|  | * an existing pmd entry. That should go via pmd_hugepage_update. | 
|  | */ | 
|  | void set_pmd_at(struct mm_struct *mm, unsigned long addr, | 
|  | pmd_t *pmdp, pmd_t pmd) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); | 
|  | assert_spin_locked(pmd_lockptr(mm, pmdp)); | 
|  | WARN_ON(!(pmd_trans_huge(pmd) || pmd_devmap(pmd))); | 
|  | #endif | 
|  | trace_hugepage_set_pmd(addr, pmd_val(pmd)); | 
|  | return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); | 
|  | } | 
|  |  | 
|  | static void do_nothing(void *unused) | 
|  | { | 
|  |  | 
|  | } | 
|  | /* | 
|  | * Serialize against find_current_mm_pte which does lock-less | 
|  | * lookup in page tables with local interrupts disabled. For huge pages | 
|  | * it casts pmd_t to pte_t. Since format of pte_t is different from | 
|  | * pmd_t we want to prevent transit from pmd pointing to page table | 
|  | * to pmd pointing to huge page (and back) while interrupts are disabled. | 
|  | * We clear pmd to possibly replace it with page table pointer in | 
|  | * different code paths. So make sure we wait for the parallel | 
|  | * find_current_mm_pte to finish. | 
|  | */ | 
|  | void serialize_against_pte_lookup(struct mm_struct *mm) | 
|  | { | 
|  | smp_mb(); | 
|  | smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use this to invalidate a pmdp entry before switching from a | 
|  | * hugepte to regular pmd entry. | 
|  | */ | 
|  | pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, | 
|  | pmd_t *pmdp) | 
|  | { | 
|  | unsigned long old_pmd; | 
|  |  | 
|  | old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0); | 
|  | flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  | /* | 
|  | * This ensures that generic code that rely on IRQ disabling | 
|  | * to prevent a parallel THP split work as expected. | 
|  | */ | 
|  | serialize_against_pte_lookup(vma->vm_mm); | 
|  | return __pmd(old_pmd); | 
|  | } | 
|  |  | 
|  | static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) | 
|  | { | 
|  | return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); | 
|  | } | 
|  |  | 
|  | pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) | 
|  | { | 
|  | unsigned long pmdv; | 
|  |  | 
|  | pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; | 
|  | return pmd_set_protbits(__pmd(pmdv), pgprot); | 
|  | } | 
|  |  | 
|  | pmd_t mk_pmd(struct page *page, pgprot_t pgprot) | 
|  | { | 
|  | return pfn_pmd(page_to_pfn(page), pgprot); | 
|  | } | 
|  |  | 
|  | pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) | 
|  | { | 
|  | unsigned long pmdv; | 
|  |  | 
|  | pmdv = pmd_val(pmd); | 
|  | pmdv &= _HPAGE_CHG_MASK; | 
|  | return pmd_set_protbits(__pmd(pmdv), newprot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called at the end of handling a user page fault, when the | 
|  | * fault has been handled by updating a HUGE PMD entry in the linux page tables. | 
|  | * We use it to preload an HPTE into the hash table corresponding to | 
|  | * the updated linux HUGE PMD entry. | 
|  | */ | 
|  | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | prefetch((void *)addr); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | /* For use by kexec */ | 
|  | void mmu_cleanup_all(void) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | radix__mmu_cleanup_all(); | 
|  | else if (mmu_hash_ops.hpte_clear_all) | 
|  | mmu_hash_ops.hpte_clear_all(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | return radix__create_section_mapping(start, end, nid); | 
|  |  | 
|  | return hash__create_section_mapping(start, end, nid); | 
|  | } | 
|  |  | 
|  | int __meminit remove_section_mapping(unsigned long start, unsigned long end) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | return radix__remove_section_mapping(start, end); | 
|  |  | 
|  | return hash__remove_section_mapping(start, end); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | void __init mmu_partition_table_init(void) | 
|  | { | 
|  | unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; | 
|  | unsigned long ptcr; | 
|  |  | 
|  | BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large."); | 
|  | partition_tb = __va(memblock_alloc_base(patb_size, patb_size, | 
|  | MEMBLOCK_ALLOC_ANYWHERE)); | 
|  |  | 
|  | /* Initialize the Partition Table with no entries */ | 
|  | memset((void *)partition_tb, 0, patb_size); | 
|  |  | 
|  | /* | 
|  | * update partition table control register, | 
|  | * 64 K size. | 
|  | */ | 
|  | ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); | 
|  | mtspr(SPRN_PTCR, ptcr); | 
|  | powernv_set_nmmu_ptcr(ptcr); | 
|  | } | 
|  |  | 
|  | void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, | 
|  | unsigned long dw1) | 
|  | { | 
|  | unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); | 
|  |  | 
|  | partition_tb[lpid].patb0 = cpu_to_be64(dw0); | 
|  | partition_tb[lpid].patb1 = cpu_to_be64(dw1); | 
|  |  | 
|  | /* | 
|  | * Global flush of TLBs and partition table caches for this lpid. | 
|  | * The type of flush (hash or radix) depends on what the previous | 
|  | * use of this partition ID was, not the new use. | 
|  | */ | 
|  | asm volatile("ptesync" : : : "memory"); | 
|  | if (old & PATB_HR) { | 
|  | asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : | 
|  | "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); | 
|  | asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : | 
|  | "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); | 
|  | trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1); | 
|  | } else { | 
|  | asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : | 
|  | "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); | 
|  | trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); | 
|  | } | 
|  | /* do we need fixup here ?*/ | 
|  | asm volatile("eieio; tlbsync; ptesync" : : : "memory"); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); | 
|  |  | 
|  | static pmd_t *get_pmd_from_cache(struct mm_struct *mm) | 
|  | { | 
|  | void *pmd_frag, *ret; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | ret = mm->context.pmd_frag; | 
|  | if (ret) { | 
|  | pmd_frag = ret + PMD_FRAG_SIZE; | 
|  | /* | 
|  | * If we have taken up all the fragments mark PTE page NULL | 
|  | */ | 
|  | if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) | 
|  | pmd_frag = NULL; | 
|  | mm->context.pmd_frag = pmd_frag; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return (pmd_t *)ret; | 
|  | } | 
|  |  | 
|  | static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) | 
|  | { | 
|  | void *ret = NULL; | 
|  | struct page *page; | 
|  | gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; | 
|  |  | 
|  | if (mm == &init_mm) | 
|  | gfp &= ~__GFP_ACCOUNT; | 
|  | page = alloc_page(gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (!pgtable_pmd_page_ctor(page)) { | 
|  | __free_pages(page, 0); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_set(&page->pt_frag_refcount, 1); | 
|  |  | 
|  | ret = page_address(page); | 
|  | /* | 
|  | * if we support only one fragment just return the | 
|  | * allocated page. | 
|  | */ | 
|  | if (PMD_FRAG_NR == 1) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | /* | 
|  | * If we find pgtable_page set, we return | 
|  | * the allocated page with single fragement | 
|  | * count. | 
|  | */ | 
|  | if (likely(!mm->context.pmd_frag)) { | 
|  | atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR); | 
|  | mm->context.pmd_frag = ret + PMD_FRAG_SIZE; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | return (pmd_t *)ret; | 
|  | } | 
|  |  | 
|  | pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) | 
|  | { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = get_pmd_from_cache(mm); | 
|  | if (pmd) | 
|  | return pmd; | 
|  |  | 
|  | return __alloc_for_pmdcache(mm); | 
|  | } | 
|  |  | 
|  | void pmd_fragment_free(unsigned long *pmd) | 
|  | { | 
|  | struct page *page = virt_to_page(pmd); | 
|  |  | 
|  | BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); | 
|  | if (atomic_dec_and_test(&page->pt_frag_refcount)) { | 
|  | pgtable_pmd_page_dtor(page); | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static pte_t *get_pte_from_cache(struct mm_struct *mm) | 
|  | { | 
|  | void *pte_frag, *ret; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | ret = mm->context.pte_frag; | 
|  | if (ret) { | 
|  | pte_frag = ret + PTE_FRAG_SIZE; | 
|  | /* | 
|  | * If we have taken up all the fragments mark PTE page NULL | 
|  | */ | 
|  | if (((unsigned long)pte_frag & ~PAGE_MASK) == 0) | 
|  | pte_frag = NULL; | 
|  | mm->context.pte_frag = pte_frag; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return (pte_t *)ret; | 
|  | } | 
|  |  | 
|  | static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel) | 
|  | { | 
|  | void *ret = NULL; | 
|  | struct page *page; | 
|  |  | 
|  | if (!kernel) { | 
|  | page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT); | 
|  | if (!page) | 
|  | return NULL; | 
|  | if (!pgtable_page_ctor(page)) { | 
|  | __free_page(page); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | page = alloc_page(PGALLOC_GFP); | 
|  | if (!page) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_set(&page->pt_frag_refcount, 1); | 
|  |  | 
|  | ret = page_address(page); | 
|  | /* | 
|  | * if we support only one fragment just return the | 
|  | * allocated page. | 
|  | */ | 
|  | if (PTE_FRAG_NR == 1) | 
|  | return ret; | 
|  | spin_lock(&mm->page_table_lock); | 
|  | /* | 
|  | * If we find pgtable_page set, we return | 
|  | * the allocated page with single fragement | 
|  | * count. | 
|  | */ | 
|  | if (likely(!mm->context.pte_frag)) { | 
|  | atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR); | 
|  | mm->context.pte_frag = ret + PTE_FRAG_SIZE; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | return (pte_t *)ret; | 
|  | } | 
|  |  | 
|  | pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = get_pte_from_cache(mm); | 
|  | if (pte) | 
|  | return pte; | 
|  |  | 
|  | return __alloc_for_ptecache(mm, kernel); | 
|  | } | 
|  |  | 
|  | void pte_fragment_free(unsigned long *table, int kernel) | 
|  | { | 
|  | struct page *page = virt_to_page(table); | 
|  |  | 
|  | BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0); | 
|  | if (atomic_dec_and_test(&page->pt_frag_refcount)) { | 
|  | if (!kernel) | 
|  | pgtable_page_dtor(page); | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void pgtable_free(void *table, int index) | 
|  | { | 
|  | switch (index) { | 
|  | case PTE_INDEX: | 
|  | pte_fragment_free(table, 0); | 
|  | break; | 
|  | case PMD_INDEX: | 
|  | pmd_fragment_free(table); | 
|  | break; | 
|  | case PUD_INDEX: | 
|  | kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table); | 
|  | break; | 
|  | #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE) | 
|  | /* 16M hugepd directory at pud level */ | 
|  | case HTLB_16M_INDEX: | 
|  | BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0); | 
|  | kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table); | 
|  | break; | 
|  | /* 16G hugepd directory at the pgd level */ | 
|  | case HTLB_16G_INDEX: | 
|  | BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0); | 
|  | kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table); | 
|  | break; | 
|  | #endif | 
|  | /* We don't free pgd table via RCU callback */ | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) | 
|  | { | 
|  | unsigned long pgf = (unsigned long)table; | 
|  |  | 
|  | BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); | 
|  | pgf |= index; | 
|  | tlb_remove_table(tlb, (void *)pgf); | 
|  | } | 
|  |  | 
|  | void __tlb_remove_table(void *_table) | 
|  | { | 
|  | void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); | 
|  | unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; | 
|  |  | 
|  | return pgtable_free(table, index); | 
|  | } | 
|  | #else | 
|  | void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) | 
|  | { | 
|  | return pgtable_free(table, index); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; | 
|  |  | 
|  | void arch_report_meminfo(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Hash maps the memory with one size mmu_linear_psize. | 
|  | * So don't bother to print these on hash | 
|  | */ | 
|  | if (!radix_enabled()) | 
|  | return; | 
|  | seq_printf(m, "DirectMap4k:    %8lu kB\n", | 
|  | atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); | 
|  | seq_printf(m, "DirectMap64k:    %8lu kB\n", | 
|  | atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); | 
|  | seq_printf(m, "DirectMap2M:    %8lu kB\n", | 
|  | atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); | 
|  | seq_printf(m, "DirectMap1G:    %8lu kB\n", | 
|  | atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); | 
|  | } | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | /* | 
|  | * For hash translation mode, we use the deposited table to store hash slot | 
|  | * information and they are stored at PTRS_PER_PMD offset from related pmd | 
|  | * location. Hence a pmd move requires deposit and withdraw. | 
|  | * | 
|  | * For radix translation with split pmd ptl, we store the deposited table in the | 
|  | * pmd page. Hence if we have different pmd page we need to withdraw during pmd | 
|  | * move. | 
|  | * | 
|  | * With hash we use deposited table always irrespective of anon or not. | 
|  | * With radix we use deposited table only for anonymous mapping. | 
|  | */ | 
|  | int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, | 
|  | struct spinlock *old_pmd_ptl, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | if (radix_enabled()) | 
|  | return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); | 
|  |  | 
|  | return true; | 
|  | } |