|  | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | #ifndef __KVM_X86_MMU_H | 
|  | #define __KVM_X86_MMU_H | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include "kvm_cache_regs.h" | 
|  |  | 
|  | #define PT64_PT_BITS 9 | 
|  | #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) | 
|  | #define PT32_PT_BITS 10 | 
|  | #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) | 
|  |  | 
|  | #define PT_WRITABLE_SHIFT 1 | 
|  | #define PT_USER_SHIFT 2 | 
|  |  | 
|  | #define PT_PRESENT_MASK (1ULL << 0) | 
|  | #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) | 
|  | #define PT_USER_MASK (1ULL << PT_USER_SHIFT) | 
|  | #define PT_PWT_MASK (1ULL << 3) | 
|  | #define PT_PCD_MASK (1ULL << 4) | 
|  | #define PT_ACCESSED_SHIFT 5 | 
|  | #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) | 
|  | #define PT_DIRTY_SHIFT 6 | 
|  | #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) | 
|  | #define PT_PAGE_SIZE_SHIFT 7 | 
|  | #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) | 
|  | #define PT_PAT_MASK (1ULL << 7) | 
|  | #define PT_GLOBAL_MASK (1ULL << 8) | 
|  | #define PT64_NX_SHIFT 63 | 
|  | #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) | 
|  |  | 
|  | #define PT_PAT_SHIFT 7 | 
|  | #define PT_DIR_PAT_SHIFT 12 | 
|  | #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) | 
|  |  | 
|  | #define PT32_DIR_PSE36_SIZE 4 | 
|  | #define PT32_DIR_PSE36_SHIFT 13 | 
|  | #define PT32_DIR_PSE36_MASK \ | 
|  | (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) | 
|  |  | 
|  | #define PT64_ROOT_5LEVEL 5 | 
|  | #define PT64_ROOT_4LEVEL 4 | 
|  | #define PT32_ROOT_LEVEL 2 | 
|  | #define PT32E_ROOT_LEVEL 3 | 
|  |  | 
|  | #define PT_PDPE_LEVEL 3 | 
|  | #define PT_DIRECTORY_LEVEL 2 | 
|  | #define PT_PAGE_TABLE_LEVEL 1 | 
|  | #define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1) | 
|  |  | 
|  | static inline u64 rsvd_bits(int s, int e) | 
|  | { | 
|  | if (e < s) | 
|  | return 0; | 
|  |  | 
|  | return ((1ULL << (e - s + 1)) - 1) << s; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value); | 
|  |  | 
|  | void | 
|  | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); | 
|  |  | 
|  | void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots); | 
|  | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); | 
|  | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, | 
|  | bool accessed_dirty, gpa_t new_eptp); | 
|  | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); | 
|  | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, | 
|  | u64 fault_address, char *insn, int insn_len); | 
|  |  | 
|  | static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) | 
|  | { | 
|  | if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) | 
|  | return kvm->arch.n_max_mmu_pages - | 
|  | kvm->arch.n_used_mmu_pages; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE)) | 
|  | return 0; | 
|  |  | 
|  | return kvm_mmu_load(vcpu); | 
|  | } | 
|  |  | 
|  | static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) | 
|  | { | 
|  | BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); | 
|  |  | 
|  | return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) | 
|  | ? cr3 & X86_CR3_PCID_MASK | 
|  | : 0; | 
|  | } | 
|  |  | 
|  | static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); | 
|  | } | 
|  |  | 
|  | static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa | | 
|  | kvm_get_active_pcid(vcpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently, we have two sorts of write-protection, a) the first one | 
|  | * write-protects guest page to sync the guest modification, b) another one is | 
|  | * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences | 
|  | * between these two sorts are: | 
|  | * 1) the first case clears SPTE_MMU_WRITEABLE bit. | 
|  | * 2) the first case requires flushing tlb immediately avoiding corrupting | 
|  | *    shadow page table between all vcpus so it should be in the protection of | 
|  | *    mmu-lock. And the another case does not need to flush tlb until returning | 
|  | *    the dirty bitmap to userspace since it only write-protects the page | 
|  | *    logged in the bitmap, that means the page in the dirty bitmap is not | 
|  | *    missed, so it can flush tlb out of mmu-lock. | 
|  | * | 
|  | * So, there is the problem: the first case can meet the corrupted tlb caused | 
|  | * by another case which write-protects pages but without flush tlb | 
|  | * immediately. In order to making the first case be aware this problem we let | 
|  | * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit | 
|  | * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. | 
|  | * | 
|  | * Anyway, whenever a spte is updated (only permission and status bits are | 
|  | * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes | 
|  | * readonly, if that happens, we need to flush tlb. Fortunately, | 
|  | * mmu_spte_update() has already handled it perfectly. | 
|  | * | 
|  | * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: | 
|  | * - if we want to see if it has writable tlb entry or if the spte can be | 
|  | *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most | 
|  | *   case, otherwise | 
|  | * - if we fix page fault on the spte or do write-protection by dirty logging, | 
|  | *   check PT_WRITABLE_MASK. | 
|  | * | 
|  | * TODO: introduce APIs to split these two cases. | 
|  | */ | 
|  | static inline int is_writable_pte(unsigned long pte) | 
|  | { | 
|  | return pte & PT_WRITABLE_MASK; | 
|  | } | 
|  |  | 
|  | static inline bool is_write_protection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_read_cr0_bits(vcpu, X86_CR0_WP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a given access (described through the I/D, W/R and U/S bits of a | 
|  | * page fault error code pfec) causes a permission fault with the given PTE | 
|  | * access rights (in ACC_* format). | 
|  | * | 
|  | * Return zero if the access does not fault; return the page fault error code | 
|  | * if the access faults. | 
|  | */ | 
|  | static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
|  | unsigned pte_access, unsigned pte_pkey, | 
|  | unsigned pfec) | 
|  | { | 
|  | int cpl = kvm_x86_ops->get_cpl(vcpu); | 
|  | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); | 
|  |  | 
|  | /* | 
|  | * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. | 
|  | * | 
|  | * If CPL = 3, SMAP applies to all supervisor-mode data accesses | 
|  | * (these are implicit supervisor accesses) regardless of the value | 
|  | * of EFLAGS.AC. | 
|  | * | 
|  | * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving | 
|  | * the result in X86_EFLAGS_AC. We then insert it in place of | 
|  | * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, | 
|  | * but it will be one in index if SMAP checks are being overridden. | 
|  | * It is important to keep this branchless. | 
|  | */ | 
|  | unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); | 
|  | int index = (pfec >> 1) + | 
|  | (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); | 
|  | bool fault = (mmu->permissions[index] >> pte_access) & 1; | 
|  | u32 errcode = PFERR_PRESENT_MASK; | 
|  |  | 
|  | WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); | 
|  | if (unlikely(mmu->pkru_mask)) { | 
|  | u32 pkru_bits, offset; | 
|  |  | 
|  | /* | 
|  | * PKRU defines 32 bits, there are 16 domains and 2 | 
|  | * attribute bits per domain in pkru.  pte_pkey is the | 
|  | * index of the protection domain, so pte_pkey * 2 is | 
|  | * is the index of the first bit for the domain. | 
|  | */ | 
|  | pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; | 
|  |  | 
|  | /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ | 
|  | offset = (pfec & ~1) + | 
|  | ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); | 
|  |  | 
|  | pkru_bits &= mmu->pkru_mask >> offset; | 
|  | errcode |= -pkru_bits & PFERR_PK_MASK; | 
|  | fault |= (pkru_bits != 0); | 
|  | } | 
|  |  | 
|  | return -(u32)fault & errcode; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm); | 
|  | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); | 
|  |  | 
|  | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); | 
|  | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); | 
|  | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, u64 gfn); | 
|  | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | int kvm_mmu_post_init_vm(struct kvm *kvm); | 
|  | void kvm_mmu_pre_destroy_vm(struct kvm *kvm); | 
|  |  | 
|  | #endif |