|  | /* | 
|  | * Intel 5000(P/V/X) class Memory Controllers kernel module | 
|  | * | 
|  | * This file may be distributed under the terms of the | 
|  | * GNU General Public License. | 
|  | * | 
|  | * Written by Douglas Thompson Linux Networx (http://lnxi.com) | 
|  | *	norsk5@xmission.com | 
|  | * | 
|  | * This module is based on the following document: | 
|  | * | 
|  | * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet | 
|  | * 	http://developer.intel.com/design/chipsets/datashts/313070.htm | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_ids.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/edac.h> | 
|  | #include <asm/mmzone.h> | 
|  |  | 
|  | #include "edac_module.h" | 
|  |  | 
|  | /* | 
|  | * Alter this version for the I5000 module when modifications are made | 
|  | */ | 
|  | #define I5000_REVISION    " Ver: 2.0.12" | 
|  | #define EDAC_MOD_STR      "i5000_edac" | 
|  |  | 
|  | #define i5000_printk(level, fmt, arg...) \ | 
|  | edac_printk(level, "i5000", fmt, ##arg) | 
|  |  | 
|  | #define i5000_mc_printk(mci, level, fmt, arg...) \ | 
|  | edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg) | 
|  |  | 
|  | #ifndef PCI_DEVICE_ID_INTEL_FBD_0 | 
|  | #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_INTEL_FBD_1 | 
|  | #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6 | 
|  | #endif | 
|  |  | 
|  | /* Device 16, | 
|  | * Function 0: System Address | 
|  | * Function 1: Memory Branch Map, Control, Errors Register | 
|  | * Function 2: FSB Error Registers | 
|  | * | 
|  | * All 3 functions of Device 16 (0,1,2) share the SAME DID | 
|  | */ | 
|  | #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0 | 
|  |  | 
|  | /* OFFSETS for Function 0 */ | 
|  |  | 
|  | /* OFFSETS for Function 1 */ | 
|  | #define		AMBASE			0x48 | 
|  | #define		MAXCH			0x56 | 
|  | #define		MAXDIMMPERCH		0x57 | 
|  | #define		TOLM			0x6C | 
|  | #define		REDMEMB			0x7C | 
|  | #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF) | 
|  | #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF) | 
|  | #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00) | 
|  | #define		MIR0			0x80 | 
|  | #define		MIR1			0x84 | 
|  | #define		MIR2			0x88 | 
|  | #define		AMIR0			0x8C | 
|  | #define		AMIR1			0x90 | 
|  | #define		AMIR2			0x94 | 
|  |  | 
|  | #define		FERR_FAT_FBD		0x98 | 
|  | #define		NERR_FAT_FBD		0x9C | 
|  | #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3) | 
|  | #define			FERR_FAT_FBDCHAN 0x30000000 | 
|  | #define			FERR_FAT_M3ERR	0x00000004 | 
|  | #define			FERR_FAT_M2ERR	0x00000002 | 
|  | #define			FERR_FAT_M1ERR	0x00000001 | 
|  | #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \ | 
|  | FERR_FAT_M2ERR | \ | 
|  | FERR_FAT_M3ERR) | 
|  |  | 
|  | #define		FERR_NF_FBD		0xA0 | 
|  |  | 
|  | /* Thermal and SPD or BFD errors */ | 
|  | #define			FERR_NF_M28ERR	0x01000000 | 
|  | #define			FERR_NF_M27ERR	0x00800000 | 
|  | #define			FERR_NF_M26ERR	0x00400000 | 
|  | #define			FERR_NF_M25ERR	0x00200000 | 
|  | #define			FERR_NF_M24ERR	0x00100000 | 
|  | #define			FERR_NF_M23ERR	0x00080000 | 
|  | #define			FERR_NF_M22ERR	0x00040000 | 
|  | #define			FERR_NF_M21ERR	0x00020000 | 
|  |  | 
|  | /* Correctable errors */ | 
|  | #define			FERR_NF_M20ERR	0x00010000 | 
|  | #define			FERR_NF_M19ERR	0x00008000 | 
|  | #define			FERR_NF_M18ERR	0x00004000 | 
|  | #define			FERR_NF_M17ERR	0x00002000 | 
|  |  | 
|  | /* Non-Retry or redundant Retry errors */ | 
|  | #define			FERR_NF_M16ERR	0x00001000 | 
|  | #define			FERR_NF_M15ERR	0x00000800 | 
|  | #define			FERR_NF_M14ERR	0x00000400 | 
|  | #define			FERR_NF_M13ERR	0x00000200 | 
|  |  | 
|  | /* Uncorrectable errors */ | 
|  | #define			FERR_NF_M12ERR	0x00000100 | 
|  | #define			FERR_NF_M11ERR	0x00000080 | 
|  | #define			FERR_NF_M10ERR	0x00000040 | 
|  | #define			FERR_NF_M9ERR	0x00000020 | 
|  | #define			FERR_NF_M8ERR	0x00000010 | 
|  | #define			FERR_NF_M7ERR	0x00000008 | 
|  | #define			FERR_NF_M6ERR	0x00000004 | 
|  | #define			FERR_NF_M5ERR	0x00000002 | 
|  | #define			FERR_NF_M4ERR	0x00000001 | 
|  |  | 
|  | #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \ | 
|  | FERR_NF_M11ERR | \ | 
|  | FERR_NF_M10ERR | \ | 
|  | FERR_NF_M9ERR | \ | 
|  | FERR_NF_M8ERR | \ | 
|  | FERR_NF_M7ERR | \ | 
|  | FERR_NF_M6ERR | \ | 
|  | FERR_NF_M5ERR | \ | 
|  | FERR_NF_M4ERR) | 
|  | #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \ | 
|  | FERR_NF_M19ERR | \ | 
|  | FERR_NF_M18ERR | \ | 
|  | FERR_NF_M17ERR) | 
|  | #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \ | 
|  | FERR_NF_M28ERR) | 
|  | #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \ | 
|  | FERR_NF_M25ERR | \ | 
|  | FERR_NF_M24ERR | \ | 
|  | FERR_NF_M23ERR) | 
|  | #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR) | 
|  | #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR) | 
|  | #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \ | 
|  | FERR_NF_M14ERR | \ | 
|  | FERR_NF_M15ERR) | 
|  |  | 
|  | #define		NERR_NF_FBD		0xA4 | 
|  | #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \ | 
|  | FERR_NF_CORRECTABLE | \ | 
|  | FERR_NF_DIMM_SPARE | \ | 
|  | FERR_NF_THERMAL | \ | 
|  | FERR_NF_SPD_PROTOCOL | \ | 
|  | FERR_NF_NORTH_CRC | \ | 
|  | FERR_NF_NON_RETRY) | 
|  |  | 
|  | #define		EMASK_FBD		0xA8 | 
|  | #define			EMASK_FBD_M28ERR	0x08000000 | 
|  | #define			EMASK_FBD_M27ERR	0x04000000 | 
|  | #define			EMASK_FBD_M26ERR	0x02000000 | 
|  | #define			EMASK_FBD_M25ERR	0x01000000 | 
|  | #define			EMASK_FBD_M24ERR	0x00800000 | 
|  | #define			EMASK_FBD_M23ERR	0x00400000 | 
|  | #define			EMASK_FBD_M22ERR	0x00200000 | 
|  | #define			EMASK_FBD_M21ERR	0x00100000 | 
|  | #define			EMASK_FBD_M20ERR	0x00080000 | 
|  | #define			EMASK_FBD_M19ERR	0x00040000 | 
|  | #define			EMASK_FBD_M18ERR	0x00020000 | 
|  | #define			EMASK_FBD_M17ERR	0x00010000 | 
|  |  | 
|  | #define			EMASK_FBD_M15ERR	0x00004000 | 
|  | #define			EMASK_FBD_M14ERR	0x00002000 | 
|  | #define			EMASK_FBD_M13ERR	0x00001000 | 
|  | #define			EMASK_FBD_M12ERR	0x00000800 | 
|  | #define			EMASK_FBD_M11ERR	0x00000400 | 
|  | #define			EMASK_FBD_M10ERR	0x00000200 | 
|  | #define			EMASK_FBD_M9ERR		0x00000100 | 
|  | #define			EMASK_FBD_M8ERR		0x00000080 | 
|  | #define			EMASK_FBD_M7ERR		0x00000040 | 
|  | #define			EMASK_FBD_M6ERR		0x00000020 | 
|  | #define			EMASK_FBD_M5ERR		0x00000010 | 
|  | #define			EMASK_FBD_M4ERR		0x00000008 | 
|  | #define			EMASK_FBD_M3ERR		0x00000004 | 
|  | #define			EMASK_FBD_M2ERR		0x00000002 | 
|  | #define			EMASK_FBD_M1ERR		0x00000001 | 
|  |  | 
|  | #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \ | 
|  | EMASK_FBD_M2ERR | \ | 
|  | EMASK_FBD_M3ERR) | 
|  |  | 
|  | #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \ | 
|  | EMASK_FBD_M5ERR | \ | 
|  | EMASK_FBD_M6ERR | \ | 
|  | EMASK_FBD_M7ERR | \ | 
|  | EMASK_FBD_M8ERR | \ | 
|  | EMASK_FBD_M9ERR | \ | 
|  | EMASK_FBD_M10ERR | \ | 
|  | EMASK_FBD_M11ERR | \ | 
|  | EMASK_FBD_M12ERR) | 
|  | #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \ | 
|  | EMASK_FBD_M18ERR | \ | 
|  | EMASK_FBD_M19ERR | \ | 
|  | EMASK_FBD_M20ERR) | 
|  | #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \ | 
|  | EMASK_FBD_M28ERR) | 
|  | #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \ | 
|  | EMASK_FBD_M25ERR | \ | 
|  | EMASK_FBD_M24ERR | \ | 
|  | EMASK_FBD_M23ERR) | 
|  | #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR) | 
|  | #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR) | 
|  | #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \ | 
|  | EMASK_FBD_M14ERR | \ | 
|  | EMASK_FBD_M13ERR) | 
|  |  | 
|  | #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \ | 
|  | ENABLE_EMASK_FBD_NORTH_CRC | \ | 
|  | ENABLE_EMASK_FBD_SPD_PROTOCOL | \ | 
|  | ENABLE_EMASK_FBD_THERMALS | \ | 
|  | ENABLE_EMASK_FBD_DIMM_SPARE | \ | 
|  | ENABLE_EMASK_FBD_FATAL_ERRORS | \ | 
|  | ENABLE_EMASK_FBD_CORRECTABLE | \ | 
|  | ENABLE_EMASK_FBD_UNCORRECTABLE) | 
|  |  | 
|  | #define		ERR0_FBD		0xAC | 
|  | #define		ERR1_FBD		0xB0 | 
|  | #define		ERR2_FBD		0xB4 | 
|  | #define		MCERR_FBD		0xB8 | 
|  | #define		NRECMEMA		0xBE | 
|  | #define			NREC_BANK(x)		(((x)>>12) & 0x7) | 
|  | #define			NREC_RDWR(x)		(((x)>>11) & 1) | 
|  | #define			NREC_RANK(x)		(((x)>>8) & 0x7) | 
|  | #define		NRECMEMB		0xC0 | 
|  | #define			NREC_CAS(x)		(((x)>>16) & 0xFFF) | 
|  | #define			NREC_RAS(x)		((x) & 0x7FFF) | 
|  | #define		NRECFGLOG		0xC4 | 
|  | #define		NREEECFBDA		0xC8 | 
|  | #define		NREEECFBDB		0xCC | 
|  | #define		NREEECFBDC		0xD0 | 
|  | #define		NREEECFBDD		0xD4 | 
|  | #define		NREEECFBDE		0xD8 | 
|  | #define		REDMEMA			0xDC | 
|  | #define		RECMEMA			0xE2 | 
|  | #define			REC_BANK(x)		(((x)>>12) & 0x7) | 
|  | #define			REC_RDWR(x)		(((x)>>11) & 1) | 
|  | #define			REC_RANK(x)		(((x)>>8) & 0x7) | 
|  | #define		RECMEMB			0xE4 | 
|  | #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF) | 
|  | #define			REC_RAS(x)		((x) & 0x7FFF) | 
|  | #define		RECFGLOG		0xE8 | 
|  | #define		RECFBDA			0xEC | 
|  | #define		RECFBDB			0xF0 | 
|  | #define		RECFBDC			0xF4 | 
|  | #define		RECFBDD			0xF8 | 
|  | #define		RECFBDE			0xFC | 
|  |  | 
|  | /* OFFSETS for Function 2 */ | 
|  |  | 
|  | /* | 
|  | * Device 21, | 
|  | * Function 0: Memory Map Branch 0 | 
|  | * | 
|  | * Device 22, | 
|  | * Function 0: Memory Map Branch 1 | 
|  | */ | 
|  | #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5 | 
|  | #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6 | 
|  |  | 
|  | #define AMB_PRESENT_0	0x64 | 
|  | #define AMB_PRESENT_1	0x66 | 
|  | #define MTR0		0x80 | 
|  | #define MTR1		0x84 | 
|  | #define MTR2		0x88 | 
|  | #define MTR3		0x8C | 
|  |  | 
|  | #define NUM_MTRS		4 | 
|  | #define CHANNELS_PER_BRANCH	2 | 
|  | #define MAX_BRANCHES		2 | 
|  |  | 
|  | /* Defines to extract the various fields from the | 
|  | *	MTRx - Memory Technology Registers | 
|  | */ | 
|  | #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8)) | 
|  | #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4) | 
|  | #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4) | 
|  | #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) | 
|  | #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1) | 
|  | #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1) | 
|  | #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3) | 
|  | #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13) | 
|  | #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3) | 
|  | #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10) | 
|  |  | 
|  | /* enables the report of miscellaneous messages as CE errors - default off */ | 
|  | static int misc_messages; | 
|  |  | 
|  | /* Enumeration of supported devices */ | 
|  | enum i5000_chips { | 
|  | I5000P = 0, | 
|  | I5000V = 1,		/* future */ | 
|  | I5000X = 2		/* future */ | 
|  | }; | 
|  |  | 
|  | /* Device name and register DID (Device ID) */ | 
|  | struct i5000_dev_info { | 
|  | const char *ctl_name;	/* name for this device */ | 
|  | u16 fsb_mapping_errors;	/* DID for the branchmap,control */ | 
|  | }; | 
|  |  | 
|  | /* Table of devices attributes supported by this driver */ | 
|  | static const struct i5000_dev_info i5000_devs[] = { | 
|  | [I5000P] = { | 
|  | .ctl_name = "I5000", | 
|  | .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | struct i5000_dimm_info { | 
|  | int megabytes;		/* size, 0 means not present  */ | 
|  | int dual_rank; | 
|  | }; | 
|  |  | 
|  | #define	MAX_CHANNELS	6	/* max possible channels */ | 
|  | #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */ | 
|  |  | 
|  | /* driver private data structure */ | 
|  | struct i5000_pvt { | 
|  | struct pci_dev *system_address;	/* 16.0 */ | 
|  | struct pci_dev *branchmap_werrors;	/* 16.1 */ | 
|  | struct pci_dev *fsb_error_regs;	/* 16.2 */ | 
|  | struct pci_dev *branch_0;	/* 21.0 */ | 
|  | struct pci_dev *branch_1;	/* 22.0 */ | 
|  |  | 
|  | u16 tolm;		/* top of low memory */ | 
|  | union { | 
|  | u64 ambase;		/* AMB BAR */ | 
|  | struct { | 
|  | u32 ambase_bottom; | 
|  | u32 ambase_top; | 
|  | } u __packed; | 
|  | }; | 
|  |  | 
|  | u16 mir0, mir1, mir2; | 
|  |  | 
|  | u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */ | 
|  | u16 b0_ambpresent0;	/* Branch 0, Channel 0 */ | 
|  | u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */ | 
|  |  | 
|  | u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */ | 
|  | u16 b1_ambpresent0;	/* Branch 1, Channel 8 */ | 
|  | u16 b1_ambpresent1;	/* Branch 1, Channel 1 */ | 
|  |  | 
|  | /* DIMM information matrix, allocating architecture maximums */ | 
|  | struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; | 
|  |  | 
|  | /* Actual values for this controller */ | 
|  | int maxch;		/* Max channels */ | 
|  | int maxdimmperch;	/* Max DIMMs per channel */ | 
|  | }; | 
|  |  | 
|  | /* I5000 MCH error information retrieved from Hardware */ | 
|  | struct i5000_error_info { | 
|  |  | 
|  | /* These registers are always read from the MC */ | 
|  | u32 ferr_fat_fbd;	/* First Errors Fatal */ | 
|  | u32 nerr_fat_fbd;	/* Next Errors Fatal */ | 
|  | u32 ferr_nf_fbd;	/* First Errors Non-Fatal */ | 
|  | u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */ | 
|  |  | 
|  | /* These registers are input ONLY if there was a Recoverable  Error */ | 
|  | u32 redmemb;		/* Recoverable Mem Data Error log B */ | 
|  | u16 recmema;		/* Recoverable Mem Error log A */ | 
|  | u32 recmemb;		/* Recoverable Mem Error log B */ | 
|  |  | 
|  | /* These registers are input ONLY if there was a | 
|  | * Non-Recoverable Error */ | 
|  | u16 nrecmema;		/* Non-Recoverable Mem log A */ | 
|  | u32 nrecmemb;		/* Non-Recoverable Mem log B */ | 
|  |  | 
|  | }; | 
|  |  | 
|  | static struct edac_pci_ctl_info *i5000_pci; | 
|  |  | 
|  | /* | 
|  | *	i5000_get_error_info	Retrieve the hardware error information from | 
|  | *				the hardware and cache it in the 'info' | 
|  | *				structure | 
|  | */ | 
|  | static void i5000_get_error_info(struct mem_ctl_info *mci, | 
|  | struct i5000_error_info *info) | 
|  | { | 
|  | struct i5000_pvt *pvt; | 
|  | u32 value; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* read in the 1st FATAL error register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); | 
|  |  | 
|  | /* Mask only the bits that the doc says are valid | 
|  | */ | 
|  | value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); | 
|  |  | 
|  | /* If there is an error, then read in the */ | 
|  | /* NEXT FATAL error register and the Memory Error Log Register A */ | 
|  | if (value & FERR_FAT_MASK) { | 
|  | info->ferr_fat_fbd = value; | 
|  |  | 
|  | /* harvest the various error data we need */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NERR_FAT_FBD, &info->nerr_fat_fbd); | 
|  | pci_read_config_word(pvt->branchmap_werrors, | 
|  | NRECMEMA, &info->nrecmema); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NRECMEMB, &info->nrecmemb); | 
|  |  | 
|  | /* Clear the error bits, by writing them back */ | 
|  | pci_write_config_dword(pvt->branchmap_werrors, | 
|  | FERR_FAT_FBD, value); | 
|  | } else { | 
|  | info->ferr_fat_fbd = 0; | 
|  | info->nerr_fat_fbd = 0; | 
|  | info->nrecmema = 0; | 
|  | info->nrecmemb = 0; | 
|  | } | 
|  |  | 
|  | /* read in the 1st NON-FATAL error register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); | 
|  |  | 
|  | /* If there is an error, then read in the 1st NON-FATAL error | 
|  | * register as well */ | 
|  | if (value & FERR_NF_MASK) { | 
|  | info->ferr_nf_fbd = value; | 
|  |  | 
|  | /* harvest the various error data we need */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | NERR_NF_FBD, &info->nerr_nf_fbd); | 
|  | pci_read_config_word(pvt->branchmap_werrors, | 
|  | RECMEMA, &info->recmema); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | RECMEMB, &info->recmemb); | 
|  | pci_read_config_dword(pvt->branchmap_werrors, | 
|  | REDMEMB, &info->redmemb); | 
|  |  | 
|  | /* Clear the error bits, by writing them back */ | 
|  | pci_write_config_dword(pvt->branchmap_werrors, | 
|  | FERR_NF_FBD, value); | 
|  | } else { | 
|  | info->ferr_nf_fbd = 0; | 
|  | info->nerr_nf_fbd = 0; | 
|  | info->recmema = 0; | 
|  | info->recmemb = 0; | 
|  | info->redmemb = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i5000_process_fatal_error_info(struct mem_ctl_info *mci, | 
|  | * 					struct i5000_error_info *info, | 
|  | * 					int handle_errors); | 
|  | * | 
|  | *	handle the Intel FATAL errors, if any | 
|  | */ | 
|  | static void i5000_process_fatal_error_info(struct mem_ctl_info *mci, | 
|  | struct i5000_error_info *info, | 
|  | int handle_errors) | 
|  | { | 
|  | char msg[EDAC_MC_LABEL_LEN + 1 + 160]; | 
|  | char *specific = NULL; | 
|  | u32 allErrors; | 
|  | int channel; | 
|  | int bank; | 
|  | int rank; | 
|  | int rdwr; | 
|  | int ras, cas; | 
|  |  | 
|  | /* mask off the Error bits that are possible */ | 
|  | allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); | 
|  | if (!allErrors) | 
|  | return;		/* if no error, return now */ | 
|  |  | 
|  | channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd); | 
|  |  | 
|  | /* Use the NON-Recoverable macros to extract data */ | 
|  | bank = NREC_BANK(info->nrecmema); | 
|  | rank = NREC_RANK(info->nrecmema); | 
|  | rdwr = NREC_RDWR(info->nrecmema); | 
|  | ras = NREC_RAS(info->nrecmemb); | 
|  | cas = NREC_CAS(info->nrecmemb); | 
|  |  | 
|  | edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | 
|  | rank, channel, bank, | 
|  | rdwr ? "Write" : "Read", ras, cas); | 
|  |  | 
|  | /* Only 1 bit will be on */ | 
|  | switch (allErrors) { | 
|  | case FERR_FAT_M1ERR: | 
|  | specific = "Alert on non-redundant retry or fast " | 
|  | "reset timeout"; | 
|  | break; | 
|  | case FERR_FAT_M2ERR: | 
|  | specific = "Northbound CRC error on non-redundant " | 
|  | "retry"; | 
|  | break; | 
|  | case FERR_FAT_M3ERR: | 
|  | { | 
|  | static int done; | 
|  |  | 
|  | /* | 
|  | * This error is generated to inform that the intelligent | 
|  | * throttling is disabled and the temperature passed the | 
|  | * specified middle point. Since this is something the BIOS | 
|  | * should take care of, we'll warn only once to avoid | 
|  | * worthlessly flooding the log. | 
|  | */ | 
|  | if (done) | 
|  | return; | 
|  | done++; | 
|  |  | 
|  | specific = ">Tmid Thermal event with intelligent " | 
|  | "throttling disabled"; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)", | 
|  | bank, ras, cas, allErrors, specific); | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, | 
|  | channel >> 1, channel & 1, rank, | 
|  | rdwr ? "Write error" : "Read error", | 
|  | msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i5000_process_fatal_error_info(struct mem_ctl_info *mci, | 
|  | * 				struct i5000_error_info *info, | 
|  | * 				int handle_errors); | 
|  | * | 
|  | *	handle the Intel NON-FATAL errors, if any | 
|  | */ | 
|  | static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci, | 
|  | struct i5000_error_info *info, | 
|  | int handle_errors) | 
|  | { | 
|  | char msg[EDAC_MC_LABEL_LEN + 1 + 170]; | 
|  | char *specific = NULL; | 
|  | u32 allErrors; | 
|  | u32 ue_errors; | 
|  | u32 ce_errors; | 
|  | u32 misc_errors; | 
|  | int branch; | 
|  | int channel; | 
|  | int bank; | 
|  | int rank; | 
|  | int rdwr; | 
|  | int ras, cas; | 
|  |  | 
|  | /* mask off the Error bits that are possible */ | 
|  | allErrors = (info->ferr_nf_fbd & FERR_NF_MASK); | 
|  | if (!allErrors) | 
|  | return;		/* if no error, return now */ | 
|  |  | 
|  | /* ONLY ONE of the possible error bits will be set, as per the docs */ | 
|  | ue_errors = allErrors & FERR_NF_UNCORRECTABLE; | 
|  | if (ue_errors) { | 
|  | edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors); | 
|  |  | 
|  | branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); | 
|  |  | 
|  | /* | 
|  | * According with i5000 datasheet, bit 28 has no significance | 
|  | * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD | 
|  | */ | 
|  | channel = branch & 2; | 
|  |  | 
|  | bank = NREC_BANK(info->nrecmema); | 
|  | rank = NREC_RANK(info->nrecmema); | 
|  | rdwr = NREC_RDWR(info->nrecmema); | 
|  | ras = NREC_RAS(info->nrecmemb); | 
|  | cas = NREC_CAS(info->nrecmemb); | 
|  |  | 
|  | edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | 
|  | rank, channel, channel + 1, branch >> 1, bank, | 
|  | rdwr ? "Write" : "Read", ras, cas); | 
|  |  | 
|  | switch (ue_errors) { | 
|  | case FERR_NF_M12ERR: | 
|  | specific = "Non-Aliased Uncorrectable Patrol Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M11ERR: | 
|  | specific = "Non-Aliased Uncorrectable Spare-Copy " | 
|  | "Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M10ERR: | 
|  | specific = "Non-Aliased Uncorrectable Mirrored Demand " | 
|  | "Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M9ERR: | 
|  | specific = "Non-Aliased Uncorrectable Non-Mirrored " | 
|  | "Demand Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M8ERR: | 
|  | specific = "Aliased Uncorrectable Patrol Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M7ERR: | 
|  | specific = "Aliased Uncorrectable Spare-Copy Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M6ERR: | 
|  | specific = "Aliased Uncorrectable Mirrored Demand " | 
|  | "Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M5ERR: | 
|  | specific = "Aliased Uncorrectable Non-Mirrored Demand " | 
|  | "Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M4ERR: | 
|  | specific = "Uncorrectable Data ECC on Replay"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)", | 
|  | rank, bank, ras, cas, ue_errors, specific); | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, | 
|  | channel >> 1, -1, rank, | 
|  | rdwr ? "Write error" : "Read error", | 
|  | msg); | 
|  | } | 
|  |  | 
|  | /* Check correctable errors */ | 
|  | ce_errors = allErrors & FERR_NF_CORRECTABLE; | 
|  | if (ce_errors) { | 
|  | edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors); | 
|  |  | 
|  | branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); | 
|  |  | 
|  | channel = 0; | 
|  | if (REC_ECC_LOCATOR_ODD(info->redmemb)) | 
|  | channel = 1; | 
|  |  | 
|  | /* Convert channel to be based from zero, instead of | 
|  | * from branch base of 0 */ | 
|  | channel += branch; | 
|  |  | 
|  | bank = REC_BANK(info->recmema); | 
|  | rank = REC_RANK(info->recmema); | 
|  | rdwr = REC_RDWR(info->recmema); | 
|  | ras = REC_RAS(info->recmemb); | 
|  | cas = REC_CAS(info->recmemb); | 
|  |  | 
|  | edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", | 
|  | rank, channel, branch >> 1, bank, | 
|  | rdwr ? "Write" : "Read", ras, cas); | 
|  |  | 
|  | switch (ce_errors) { | 
|  | case FERR_NF_M17ERR: | 
|  | specific = "Correctable Non-Mirrored Demand Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M18ERR: | 
|  | specific = "Correctable Mirrored Demand Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M19ERR: | 
|  | specific = "Correctable Spare-Copy Data ECC"; | 
|  | break; | 
|  | case FERR_NF_M20ERR: | 
|  | specific = "Correctable Patrol Data ECC"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Rank=%d Bank=%d RDWR=%s RAS=%d " | 
|  | "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank, | 
|  | rdwr ? "Write" : "Read", ras, cas, ce_errors, | 
|  | specific); | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, | 
|  | channel >> 1, channel % 2, rank, | 
|  | rdwr ? "Write error" : "Read error", | 
|  | msg); | 
|  | } | 
|  |  | 
|  | if (!misc_messages) | 
|  | return; | 
|  |  | 
|  | misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC | | 
|  | FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE); | 
|  | if (misc_errors) { | 
|  | switch (misc_errors) { | 
|  | case FERR_NF_M13ERR: | 
|  | specific = "Non-Retry or Redundant Retry FBD Memory " | 
|  | "Alert or Redundant Fast Reset Timeout"; | 
|  | break; | 
|  | case FERR_NF_M14ERR: | 
|  | specific = "Non-Retry or Redundant Retry FBD " | 
|  | "Configuration Alert"; | 
|  | break; | 
|  | case FERR_NF_M15ERR: | 
|  | specific = "Non-Retry or Redundant Retry FBD " | 
|  | "Northbound CRC error on read data"; | 
|  | break; | 
|  | case FERR_NF_M21ERR: | 
|  | specific = "FBD Northbound CRC error on " | 
|  | "FBD Sync Status"; | 
|  | break; | 
|  | case FERR_NF_M22ERR: | 
|  | specific = "SPD protocol error"; | 
|  | break; | 
|  | case FERR_NF_M27ERR: | 
|  | specific = "DIMM-spare copy started"; | 
|  | break; | 
|  | case FERR_NF_M28ERR: | 
|  | specific = "DIMM-spare copy completed"; | 
|  | break; | 
|  | } | 
|  | branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); | 
|  |  | 
|  | /* Form out message */ | 
|  | snprintf(msg, sizeof(msg), | 
|  | "Err=%#x (%s)", misc_errors, specific); | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, | 
|  | branch >> 1, -1, -1, | 
|  | "Misc error", msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_process_error_info	Process the error info that is | 
|  | *	in the 'info' structure, previously retrieved from hardware | 
|  | */ | 
|  | static void i5000_process_error_info(struct mem_ctl_info *mci, | 
|  | struct i5000_error_info *info, | 
|  | int handle_errors) | 
|  | { | 
|  | /* First handle any fatal errors that occurred */ | 
|  | i5000_process_fatal_error_info(mci, info, handle_errors); | 
|  |  | 
|  | /* now handle any non-fatal errors that occurred */ | 
|  | i5000_process_nonfatal_error_info(mci, info, handle_errors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_clear_error	Retrieve any error from the hardware | 
|  | *				but do NOT process that error. | 
|  | *				Used for 'clearing' out of previous errors | 
|  | *				Called by the Core module. | 
|  | */ | 
|  | static void i5000_clear_error(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_error_info info; | 
|  |  | 
|  | i5000_get_error_info(mci, &info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_check_error	Retrieve and process errors reported by the | 
|  | *				hardware. Called by the Core module. | 
|  | */ | 
|  | static void i5000_check_error(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_error_info info; | 
|  | edac_dbg(4, "MC%d\n", mci->mc_idx); | 
|  | i5000_get_error_info(mci, &info); | 
|  | i5000_process_error_info(mci, &info, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_get_devices	Find and perform 'get' operation on the MCH's | 
|  | *			device/functions we want to reference for this driver | 
|  | * | 
|  | *			Need to 'get' device 16 func 1 and func 2 | 
|  | */ | 
|  | static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx) | 
|  | { | 
|  | //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx]; | 
|  | struct i5000_pvt *pvt; | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* Attempt to 'get' the MCH register we want */ | 
|  | pdev = NULL; | 
|  | while (1) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); | 
|  |  | 
|  | /* End of list, leave */ | 
|  | if (pdev == NULL) { | 
|  | i5000_printk(KERN_ERR, | 
|  | "'system address,Process Bus' " | 
|  | "device not found:" | 
|  | "vendor 0x%x device 0x%x FUNC 1 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_I5000_DEV16); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Scan for device 16 func 1 */ | 
|  | if (PCI_FUNC(pdev->devfn) == 1) | 
|  | break; | 
|  | } | 
|  |  | 
|  | pvt->branchmap_werrors = pdev; | 
|  |  | 
|  | /* Attempt to 'get' the MCH register we want */ | 
|  | pdev = NULL; | 
|  | while (1) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); | 
|  |  | 
|  | if (pdev == NULL) { | 
|  | i5000_printk(KERN_ERR, | 
|  | "MC: 'branchmap,control,errors' " | 
|  | "device not found:" | 
|  | "vendor 0x%x device 0x%x Func 2 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_INTEL_I5000_DEV16); | 
|  |  | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Scan for device 16 func 1 */ | 
|  | if (PCI_FUNC(pdev->devfn) == 2) | 
|  | break; | 
|  | } | 
|  |  | 
|  | pvt->fsb_error_regs = pdev; | 
|  |  | 
|  | edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->system_address), | 
|  | pvt->system_address->vendor, pvt->system_address->device); | 
|  | edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->branchmap_werrors), | 
|  | pvt->branchmap_werrors->vendor, | 
|  | pvt->branchmap_werrors->device); | 
|  | edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n", | 
|  | pci_name(pvt->fsb_error_regs), | 
|  | pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); | 
|  |  | 
|  | pdev = NULL; | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_I5000_BRANCH_0, pdev); | 
|  |  | 
|  | if (pdev == NULL) { | 
|  | i5000_printk(KERN_ERR, | 
|  | "MC: 'BRANCH 0' device not found:" | 
|  | "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0); | 
|  |  | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | pci_dev_put(pvt->fsb_error_regs); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pvt->branch_0 = pdev; | 
|  |  | 
|  | /* If this device claims to have more than 2 channels then | 
|  | * fetch Branch 1's information | 
|  | */ | 
|  | if (pvt->maxch >= CHANNELS_PER_BRANCH) { | 
|  | pdev = NULL; | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_I5000_BRANCH_1, pdev); | 
|  |  | 
|  | if (pdev == NULL) { | 
|  | i5000_printk(KERN_ERR, | 
|  | "MC: 'BRANCH 1' device not found:" | 
|  | "vendor 0x%x device 0x%x Func 0 " | 
|  | "(broken BIOS?)\n", | 
|  | PCI_VENDOR_ID_INTEL, | 
|  | PCI_DEVICE_ID_I5000_BRANCH_1); | 
|  |  | 
|  | pci_dev_put(pvt->branchmap_werrors); | 
|  | pci_dev_put(pvt->fsb_error_regs); | 
|  | pci_dev_put(pvt->branch_0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pvt->branch_1 = pdev; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_put_devices	'put' all the devices that we have | 
|  | *				reserved via 'get' | 
|  | */ | 
|  | static void i5000_put_devices(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_pvt *pvt; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */ | 
|  | pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */ | 
|  | pci_dev_put(pvt->branch_0);	/* DEV 21 */ | 
|  |  | 
|  | /* Only if more than 2 channels do we release the second branch */ | 
|  | if (pvt->maxch >= CHANNELS_PER_BRANCH) | 
|  | pci_dev_put(pvt->branch_1);	/* DEV 22 */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	determine_amb_resent | 
|  | * | 
|  | *		the information is contained in NUM_MTRS different registers | 
|  | *		determineing which of the NUM_MTRS requires knowing | 
|  | *		which channel is in question | 
|  | * | 
|  | *	2 branches, each with 2 channels | 
|  | *		b0_ambpresent0 for channel '0' | 
|  | *		b0_ambpresent1 for channel '1' | 
|  | *		b1_ambpresent0 for channel '2' | 
|  | *		b1_ambpresent1 for channel '3' | 
|  | */ | 
|  | static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel) | 
|  | { | 
|  | int amb_present; | 
|  |  | 
|  | if (channel < CHANNELS_PER_BRANCH) { | 
|  | if (channel & 0x1) | 
|  | amb_present = pvt->b0_ambpresent1; | 
|  | else | 
|  | amb_present = pvt->b0_ambpresent0; | 
|  | } else { | 
|  | if (channel & 0x1) | 
|  | amb_present = pvt->b1_ambpresent1; | 
|  | else | 
|  | amb_present = pvt->b1_ambpresent0; | 
|  | } | 
|  |  | 
|  | return amb_present; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * determine_mtr(pvt, csrow, channel) | 
|  | * | 
|  | *	return the proper MTR register as determine by the csrow and channel desired | 
|  | */ | 
|  | static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel) | 
|  | { | 
|  | int mtr; | 
|  |  | 
|  | if (channel < CHANNELS_PER_BRANCH) | 
|  | mtr = pvt->b0_mtr[slot]; | 
|  | else | 
|  | mtr = pvt->b1_mtr[slot]; | 
|  |  | 
|  | return mtr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | */ | 
|  | static void decode_mtr(int slot_row, u16 mtr) | 
|  | { | 
|  | int ans; | 
|  |  | 
|  | ans = MTR_DIMMS_PRESENT(mtr); | 
|  |  | 
|  | edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n", | 
|  | slot_row, mtr, ans ? "" : "NOT "); | 
|  | if (!ans) | 
|  | return; | 
|  |  | 
|  | edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); | 
|  | edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); | 
|  | edac_dbg(2, "\t\tNUMRANK: %s\n", | 
|  | MTR_DIMM_RANK(mtr) ? "double" : "single"); | 
|  | edac_dbg(2, "\t\tNUMROW: %s\n", | 
|  | MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : | 
|  | MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : | 
|  | MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : | 
|  | "reserved"); | 
|  | edac_dbg(2, "\t\tNUMCOL: %s\n", | 
|  | MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : | 
|  | MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : | 
|  | MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : | 
|  | "reserved"); | 
|  | } | 
|  |  | 
|  | static void handle_channel(struct i5000_pvt *pvt, int slot, int channel, | 
|  | struct i5000_dimm_info *dinfo) | 
|  | { | 
|  | int mtr; | 
|  | int amb_present_reg; | 
|  | int addrBits; | 
|  |  | 
|  | mtr = determine_mtr(pvt, slot, channel); | 
|  | if (MTR_DIMMS_PRESENT(mtr)) { | 
|  | amb_present_reg = determine_amb_present_reg(pvt, channel); | 
|  |  | 
|  | /* Determine if there is a DIMM present in this DIMM slot */ | 
|  | if (amb_present_reg) { | 
|  | dinfo->dual_rank = MTR_DIMM_RANK(mtr); | 
|  |  | 
|  | /* Start with the number of bits for a Bank | 
|  | * on the DRAM */ | 
|  | addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); | 
|  | /* Add the number of ROW bits */ | 
|  | addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); | 
|  | /* add the number of COLUMN bits */ | 
|  | addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); | 
|  |  | 
|  | /* Dual-rank memories have twice the size */ | 
|  | if (dinfo->dual_rank) | 
|  | addrBits++; | 
|  |  | 
|  | addrBits += 6;	/* add 64 bits per DIMM */ | 
|  | addrBits -= 20;	/* divide by 2^^20 */ | 
|  | addrBits -= 3;	/* 8 bits per bytes */ | 
|  |  | 
|  | dinfo->megabytes = 1 << addrBits; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	calculate_dimm_size | 
|  | * | 
|  | *	also will output a DIMM matrix map, if debug is enabled, for viewing | 
|  | *	how the DIMMs are populated | 
|  | */ | 
|  | static void calculate_dimm_size(struct i5000_pvt *pvt) | 
|  | { | 
|  | struct i5000_dimm_info *dinfo; | 
|  | int slot, channel, branch; | 
|  | char *p, *mem_buffer; | 
|  | int space, n; | 
|  |  | 
|  | /* ================= Generate some debug output ================= */ | 
|  | space = PAGE_SIZE; | 
|  | mem_buffer = p = kmalloc(space, GFP_KERNEL); | 
|  | if (p == NULL) { | 
|  | i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", | 
|  | __FILE__, __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Scan all the actual slots | 
|  | * and calculate the information for each DIMM | 
|  | * Start with the highest slot first, to display it first | 
|  | * and work toward the 0th slot | 
|  | */ | 
|  | for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) { | 
|  |  | 
|  | /* on an odd slot, first output a 'boundary' marker, | 
|  | * then reset the message buffer  */ | 
|  | if (slot & 0x1) { | 
|  | n = snprintf(p, space, "--------------------------" | 
|  | "--------------------------------"); | 
|  | p += n; | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  | } | 
|  | n = snprintf(p, space, "slot %2d    ", slot); | 
|  | p += n; | 
|  | space -= n; | 
|  |  | 
|  | for (channel = 0; channel < pvt->maxch; channel++) { | 
|  | dinfo = &pvt->dimm_info[slot][channel]; | 
|  | handle_channel(pvt, slot, channel, dinfo); | 
|  | if (dinfo->megabytes) | 
|  | n = snprintf(p, space, "%4d MB %dR| ", | 
|  | dinfo->megabytes, dinfo->dual_rank + 1); | 
|  | else | 
|  | n = snprintf(p, space, "%4d MB   | ", 0); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  | p += n; | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* Output the last bottom 'boundary' marker */ | 
|  | n = snprintf(p, space, "--------------------------" | 
|  | "--------------------------------"); | 
|  | p += n; | 
|  | space -= n; | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  |  | 
|  | /* now output the 'channel' labels */ | 
|  | n = snprintf(p, space, "           "); | 
|  | p += n; | 
|  | space -= n; | 
|  | for (channel = 0; channel < pvt->maxch; channel++) { | 
|  | n = snprintf(p, space, "channel %d | ", channel); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | p = mem_buffer; | 
|  | space = PAGE_SIZE; | 
|  |  | 
|  | n = snprintf(p, space, "           "); | 
|  | p += n; | 
|  | for (branch = 0; branch < MAX_BRANCHES; branch++) { | 
|  | n = snprintf(p, space, "       branch %d       | ", branch); | 
|  | p += n; | 
|  | space -= n; | 
|  | } | 
|  |  | 
|  | /* output the last message and free buffer */ | 
|  | edac_dbg(2, "%s\n", mem_buffer); | 
|  | kfree(mem_buffer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_get_mc_regs	read in the necessary registers and | 
|  | *				cache locally | 
|  | * | 
|  | *			Fills in the private data members | 
|  | */ | 
|  | static void i5000_get_mc_regs(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_pvt *pvt; | 
|  | u32 actual_tolm; | 
|  | u16 limit; | 
|  | int slot_row; | 
|  | int maxch; | 
|  | int maxdimmperch; | 
|  | int way0, way1; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | pci_read_config_dword(pvt->system_address, AMBASE, | 
|  | &pvt->u.ambase_bottom); | 
|  | pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), | 
|  | &pvt->u.ambase_top); | 
|  |  | 
|  | maxdimmperch = pvt->maxdimmperch; | 
|  | maxch = pvt->maxch; | 
|  |  | 
|  | edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n", | 
|  | (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); | 
|  |  | 
|  | /* Get the Branch Map regs */ | 
|  | pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); | 
|  | pvt->tolm >>= 12; | 
|  | edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", | 
|  | pvt->tolm, pvt->tolm); | 
|  |  | 
|  | actual_tolm = pvt->tolm << 28; | 
|  | edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n", | 
|  | actual_tolm, actual_tolm); | 
|  |  | 
|  | pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); | 
|  | pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); | 
|  | pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2); | 
|  |  | 
|  | /* Get the MIR[0-2] regs */ | 
|  | limit = (pvt->mir0 >> 4) & 0x0FFF; | 
|  | way0 = pvt->mir0 & 0x1; | 
|  | way1 = pvt->mir0 & 0x2; | 
|  | edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", | 
|  | limit, way1, way0); | 
|  | limit = (pvt->mir1 >> 4) & 0x0FFF; | 
|  | way0 = pvt->mir1 & 0x1; | 
|  | way1 = pvt->mir1 & 0x2; | 
|  | edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", | 
|  | limit, way1, way0); | 
|  | limit = (pvt->mir2 >> 4) & 0x0FFF; | 
|  | way0 = pvt->mir2 & 0x1; | 
|  | way1 = pvt->mir2 & 0x2; | 
|  | edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", | 
|  | limit, way1, way0); | 
|  |  | 
|  | /* Get the MTR[0-3] regs */ | 
|  | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | 
|  | int where = MTR0 + (slot_row * sizeof(u32)); | 
|  |  | 
|  | pci_read_config_word(pvt->branch_0, where, | 
|  | &pvt->b0_mtr[slot_row]); | 
|  |  | 
|  | edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", | 
|  | slot_row, where, pvt->b0_mtr[slot_row]); | 
|  |  | 
|  | if (pvt->maxch >= CHANNELS_PER_BRANCH) { | 
|  | pci_read_config_word(pvt->branch_1, where, | 
|  | &pvt->b1_mtr[slot_row]); | 
|  | edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", | 
|  | slot_row, where, pvt->b1_mtr[slot_row]); | 
|  | } else { | 
|  | pvt->b1_mtr[slot_row] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read and dump branch 0's MTRs */ | 
|  | edac_dbg(2, "Memory Technology Registers:\n"); | 
|  | edac_dbg(2, "   Branch 0:\n"); | 
|  | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | 
|  | decode_mtr(slot_row, pvt->b0_mtr[slot_row]); | 
|  | } | 
|  | pci_read_config_word(pvt->branch_0, AMB_PRESENT_0, | 
|  | &pvt->b0_ambpresent0); | 
|  | edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); | 
|  | pci_read_config_word(pvt->branch_0, AMB_PRESENT_1, | 
|  | &pvt->b0_ambpresent1); | 
|  | edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); | 
|  |  | 
|  | /* Only if we have 2 branchs (4 channels) */ | 
|  | if (pvt->maxch < CHANNELS_PER_BRANCH) { | 
|  | pvt->b1_ambpresent0 = 0; | 
|  | pvt->b1_ambpresent1 = 0; | 
|  | } else { | 
|  | /* Read and dump  branch 1's MTRs */ | 
|  | edac_dbg(2, "   Branch 1:\n"); | 
|  | for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { | 
|  | decode_mtr(slot_row, pvt->b1_mtr[slot_row]); | 
|  | } | 
|  | pci_read_config_word(pvt->branch_1, AMB_PRESENT_0, | 
|  | &pvt->b1_ambpresent0); | 
|  | edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", | 
|  | pvt->b1_ambpresent0); | 
|  | pci_read_config_word(pvt->branch_1, AMB_PRESENT_1, | 
|  | &pvt->b1_ambpresent1); | 
|  | edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", | 
|  | pvt->b1_ambpresent1); | 
|  | } | 
|  |  | 
|  | /* Go and determine the size of each DIMM and place in an | 
|  | * orderly matrix */ | 
|  | calculate_dimm_size(pvt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_init_csrows	Initialize the 'csrows' table within | 
|  | *				the mci control	structure with the | 
|  | *				addressing of memory. | 
|  | * | 
|  | *	return: | 
|  | *		0	success | 
|  | *		1	no actual memory found on this MC | 
|  | */ | 
|  | static int i5000_init_csrows(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_pvt *pvt; | 
|  | struct dimm_info *dimm; | 
|  | int empty, channel_count; | 
|  | int max_csrows; | 
|  | int mtr; | 
|  | int csrow_megs; | 
|  | int channel; | 
|  | int slot; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | channel_count = pvt->maxch; | 
|  | max_csrows = pvt->maxdimmperch * 2; | 
|  |  | 
|  | empty = 1;		/* Assume NO memory */ | 
|  |  | 
|  | /* | 
|  | * FIXME: The memory layout used to map slot/channel into the | 
|  | * real memory architecture is weird: branch+slot are "csrows" | 
|  | * and channel is channel. That required an extra array (dimm_info) | 
|  | * to map the dimms. A good cleanup would be to remove this array, | 
|  | * and do a loop here with branch, channel, slot | 
|  | */ | 
|  | for (slot = 0; slot < max_csrows; slot++) { | 
|  | for (channel = 0; channel < pvt->maxch; channel++) { | 
|  |  | 
|  | mtr = determine_mtr(pvt, slot, channel); | 
|  |  | 
|  | if (!MTR_DIMMS_PRESENT(mtr)) | 
|  | continue; | 
|  |  | 
|  | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, | 
|  | channel / MAX_BRANCHES, | 
|  | channel % MAX_BRANCHES, slot); | 
|  |  | 
|  | csrow_megs = pvt->dimm_info[slot][channel].megabytes; | 
|  | dimm->grain = 8; | 
|  |  | 
|  | /* Assume DDR2 for now */ | 
|  | dimm->mtype = MEM_FB_DDR2; | 
|  |  | 
|  | /* ask what device type on this row */ | 
|  | if (MTR_DRAM_WIDTH(mtr) == 8) | 
|  | dimm->dtype = DEV_X8; | 
|  | else | 
|  | dimm->dtype = DEV_X4; | 
|  |  | 
|  | dimm->edac_mode = EDAC_S8ECD8ED; | 
|  | dimm->nr_pages = csrow_megs << 8; | 
|  | } | 
|  |  | 
|  | empty = 0; | 
|  | } | 
|  |  | 
|  | return empty; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_enable_error_reporting | 
|  | *			Turn on the memory reporting features of the hardware | 
|  | */ | 
|  | static void i5000_enable_error_reporting(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct i5000_pvt *pvt; | 
|  | u32 fbd_error_mask; | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  |  | 
|  | /* Read the FBD Error Mask Register */ | 
|  | pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, | 
|  | &fbd_error_mask); | 
|  |  | 
|  | /* Enable with a '0' */ | 
|  | fbd_error_mask &= ~(ENABLE_EMASK_ALL); | 
|  |  | 
|  | pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, | 
|  | fbd_error_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels) | 
|  | * | 
|  | *	ask the device how many channels are present and how many CSROWS | 
|  | *	 as well | 
|  | */ | 
|  | static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev, | 
|  | int *num_dimms_per_channel, | 
|  | int *num_channels) | 
|  | { | 
|  | u8 value; | 
|  |  | 
|  | /* Need to retrieve just how many channels and dimms per channel are | 
|  | * supported on this memory controller | 
|  | */ | 
|  | pci_read_config_byte(pdev, MAXDIMMPERCH, &value); | 
|  | *num_dimms_per_channel = (int)value; | 
|  |  | 
|  | pci_read_config_byte(pdev, MAXCH, &value); | 
|  | *num_channels = (int)value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_probe1	Probe for ONE instance of device to see if it is | 
|  | *			present. | 
|  | *	return: | 
|  | *		0 for FOUND a device | 
|  | *		< 0 for error code | 
|  | */ | 
|  | static int i5000_probe1(struct pci_dev *pdev, int dev_idx) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct edac_mc_layer layers[3]; | 
|  | struct i5000_pvt *pvt; | 
|  | int num_channels; | 
|  | int num_dimms_per_channel; | 
|  |  | 
|  | edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", | 
|  | pdev->bus->number, | 
|  | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
|  |  | 
|  | /* We only are looking for func 0 of the set */ | 
|  | if (PCI_FUNC(pdev->devfn) != 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Ask the devices for the number of CSROWS and CHANNELS so | 
|  | * that we can calculate the memory resources, etc | 
|  | * | 
|  | * The Chipset will report what it can handle which will be greater | 
|  | * or equal to what the motherboard manufacturer will implement. | 
|  | * | 
|  | * As we don't have a motherboard identification routine to determine | 
|  | * actual number of slots/dimms per channel, we thus utilize the | 
|  | * resource as specified by the chipset. Thus, we might have | 
|  | * have more DIMMs per channel than actually on the mobo, but this | 
|  | * allows the driver to support up to the chipset max, without | 
|  | * some fancy mobo determination. | 
|  | */ | 
|  | i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel, | 
|  | &num_channels); | 
|  |  | 
|  | edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n", | 
|  | num_channels, num_dimms_per_channel); | 
|  |  | 
|  | /* allocate a new MC control structure */ | 
|  |  | 
|  | layers[0].type = EDAC_MC_LAYER_BRANCH; | 
|  | layers[0].size = MAX_BRANCHES; | 
|  | layers[0].is_virt_csrow = false; | 
|  | layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[1].size = num_channels / MAX_BRANCHES; | 
|  | layers[1].is_virt_csrow = false; | 
|  | layers[2].type = EDAC_MC_LAYER_SLOT; | 
|  | layers[2].size = num_dimms_per_channel; | 
|  | layers[2].is_virt_csrow = true; | 
|  | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); | 
|  | if (mci == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | edac_dbg(0, "MC: mci = %p\n", mci); | 
|  |  | 
|  | mci->pdev = &pdev->dev;	/* record ptr  to the generic device */ | 
|  |  | 
|  | pvt = mci->pvt_info; | 
|  | pvt->system_address = pdev;	/* Record this device in our private */ | 
|  | pvt->maxch = num_channels; | 
|  | pvt->maxdimmperch = num_dimms_per_channel; | 
|  |  | 
|  | /* 'get' the pci devices we want to reserve for our use */ | 
|  | if (i5000_get_devices(mci, dev_idx)) | 
|  | goto fail0; | 
|  |  | 
|  | /* Time to get serious */ | 
|  | i5000_get_mc_regs(mci);	/* retrieve the hardware registers */ | 
|  |  | 
|  | mci->mc_idx = 0; | 
|  | mci->mtype_cap = MEM_FLAG_FB_DDR2; | 
|  | mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  | mci->mod_name = "i5000_edac.c"; | 
|  | mci->ctl_name = i5000_devs[dev_idx].ctl_name; | 
|  | mci->dev_name = pci_name(pdev); | 
|  | mci->ctl_page_to_phys = NULL; | 
|  |  | 
|  | /* Set the function pointer to an actual operation function */ | 
|  | mci->edac_check = i5000_check_error; | 
|  |  | 
|  | /* initialize the MC control structure 'csrows' table | 
|  | * with the mapping and control information */ | 
|  | if (i5000_init_csrows(mci)) { | 
|  | edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n"); | 
|  | mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */ | 
|  | } else { | 
|  | edac_dbg(1, "MC: Enable error reporting now\n"); | 
|  | i5000_enable_error_reporting(mci); | 
|  | } | 
|  |  | 
|  | /* add this new MC control structure to EDAC's list of MCs */ | 
|  | if (edac_mc_add_mc(mci)) { | 
|  | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
|  | /* FIXME: perhaps some code should go here that disables error | 
|  | * reporting if we just enabled it | 
|  | */ | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | i5000_clear_error(mci); | 
|  |  | 
|  | /* allocating generic PCI control info */ | 
|  | i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); | 
|  | if (!i5000_pci) { | 
|  | printk(KERN_WARNING | 
|  | "%s(): Unable to create PCI control\n", | 
|  | __func__); | 
|  | printk(KERN_WARNING | 
|  | "%s(): PCI error report via EDAC not setup\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* Error exit unwinding stack */ | 
|  | fail1: | 
|  |  | 
|  | i5000_put_devices(mci); | 
|  |  | 
|  | fail0: | 
|  | edac_mc_free(mci); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_init_one	constructor for one instance of device | 
|  | * | 
|  | * 	returns: | 
|  | *		negative on error | 
|  | *		count (>= 0) | 
|  | */ | 
|  | static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | edac_dbg(0, "MC:\n"); | 
|  |  | 
|  | /* wake up device */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* now probe and enable the device */ | 
|  | return i5000_probe1(pdev, id->driver_data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_remove_one	destructor for one instance of device | 
|  | * | 
|  | */ | 
|  | static void i5000_remove_one(struct pci_dev *pdev) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  |  | 
|  | if (i5000_pci) | 
|  | edac_pci_release_generic_ctl(i5000_pci); | 
|  |  | 
|  | if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) | 
|  | return; | 
|  |  | 
|  | /* retrieve references to resources, and free those resources */ | 
|  | i5000_put_devices(mci); | 
|  | edac_mc_free(mci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	pci_device_id	table for which devices we are looking for | 
|  | * | 
|  | *	The "E500P" device is the first device supported. | 
|  | */ | 
|  | static const struct pci_device_id i5000_pci_tbl[] = { | 
|  | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16), | 
|  | .driver_data = I5000P}, | 
|  |  | 
|  | {0,}			/* 0 terminated list. */ | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, i5000_pci_tbl); | 
|  |  | 
|  | /* | 
|  | *	i5000_driver	pci_driver structure for this module | 
|  | * | 
|  | */ | 
|  | static struct pci_driver i5000_driver = { | 
|  | .name = KBUILD_BASENAME, | 
|  | .probe = i5000_init_one, | 
|  | .remove = i5000_remove_one, | 
|  | .id_table = i5000_pci_tbl, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *	i5000_init		Module entry function | 
|  | *			Try to initialize this module for its devices | 
|  | */ | 
|  | static int __init i5000_init(void) | 
|  | { | 
|  | int pci_rc; | 
|  |  | 
|  | edac_dbg(2, "MC:\n"); | 
|  |  | 
|  | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
|  | opstate_init(); | 
|  |  | 
|  | pci_rc = pci_register_driver(&i5000_driver); | 
|  |  | 
|  | return (pci_rc < 0) ? pci_rc : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	i5000_exit()	Module exit function | 
|  | *			Unregister the driver | 
|  | */ | 
|  | static void __exit i5000_exit(void) | 
|  | { | 
|  | edac_dbg(2, "MC:\n"); | 
|  | pci_unregister_driver(&i5000_driver); | 
|  | } | 
|  |  | 
|  | module_init(i5000_init); | 
|  | module_exit(i5000_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR | 
|  | ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>"); | 
|  | MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " | 
|  | I5000_REVISION); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
|  | module_param(misc_messages, int, 0444); | 
|  | MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages"); | 
|  |  |