|  | /* | 
|  | * EDAC driver for Intel(R) Xeon(R) Skylake processors | 
|  | * Copyright (c) 2016, Intel Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_ids.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/edac.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <acpi/nfit.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/intel-family.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mce.h> | 
|  |  | 
|  | #include "edac_module.h" | 
|  |  | 
|  | #define EDAC_MOD_STR    "skx_edac" | 
|  |  | 
|  | /* | 
|  | * Debug macros | 
|  | */ | 
|  | #define skx_printk(level, fmt, arg...)			\ | 
|  | edac_printk(level, "skx", fmt, ##arg) | 
|  |  | 
|  | #define skx_mc_printk(mci, level, fmt, arg...)		\ | 
|  | edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) | 
|  |  | 
|  | /* | 
|  | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | 
|  | */ | 
|  | #define GET_BITFIELD(v, lo, hi) \ | 
|  | (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) | 
|  |  | 
|  | static LIST_HEAD(skx_edac_list); | 
|  |  | 
|  | static u64 skx_tolm, skx_tohm; | 
|  |  | 
|  | #define NUM_IMC			2	/* memory controllers per socket */ | 
|  | #define NUM_CHANNELS		3	/* channels per memory controller */ | 
|  | #define NUM_DIMMS		2	/* Max DIMMS per channel */ | 
|  |  | 
|  | #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */ | 
|  | #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */ | 
|  |  | 
|  | /* | 
|  | * Each cpu socket contains some pci devices that provide global | 
|  | * information, and also some that are local to each of the two | 
|  | * memory controllers on the die. | 
|  | */ | 
|  | struct skx_dev { | 
|  | struct list_head	list; | 
|  | u8			bus[4]; | 
|  | int			seg; | 
|  | struct pci_dev	*sad_all; | 
|  | struct pci_dev	*util_all; | 
|  | u32	mcroute; | 
|  | struct skx_imc { | 
|  | struct mem_ctl_info *mci; | 
|  | u8	mc;	/* system wide mc# */ | 
|  | u8	lmc;	/* socket relative mc# */ | 
|  | u8	src_id, node_id; | 
|  | struct skx_channel { | 
|  | struct pci_dev *cdev; | 
|  | struct skx_dimm { | 
|  | u8	close_pg; | 
|  | u8	bank_xor_enable; | 
|  | u8	fine_grain_bank; | 
|  | u8	rowbits; | 
|  | u8	colbits; | 
|  | } dimms[NUM_DIMMS]; | 
|  | } chan[NUM_CHANNELS]; | 
|  | } imc[NUM_IMC]; | 
|  | }; | 
|  | static int skx_num_sockets; | 
|  |  | 
|  | struct skx_pvt { | 
|  | struct skx_imc	*imc; | 
|  | }; | 
|  |  | 
|  | struct decoded_addr { | 
|  | struct skx_dev *dev; | 
|  | u64	addr; | 
|  | int	socket; | 
|  | int	imc; | 
|  | int	channel; | 
|  | u64	chan_addr; | 
|  | int	sktways; | 
|  | int	chanways; | 
|  | int	dimm; | 
|  | int	rank; | 
|  | int	channel_rank; | 
|  | u64	rank_address; | 
|  | int	row; | 
|  | int	column; | 
|  | int	bank_address; | 
|  | int	bank_group; | 
|  | }; | 
|  |  | 
|  | static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) | 
|  | { | 
|  | struct skx_dev *d; | 
|  |  | 
|  | list_for_each_entry(d, &skx_edac_list, list) { | 
|  | if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) | 
|  | return d; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | enum munittype { | 
|  | CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD | 
|  | }; | 
|  |  | 
|  | struct munit { | 
|  | u16	did; | 
|  | u16	devfn[NUM_IMC]; | 
|  | u8	busidx; | 
|  | u8	per_socket; | 
|  | enum munittype mtype; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * List of PCI device ids that we need together with some device | 
|  | * number and function numbers to tell which memory controller the | 
|  | * device belongs to. | 
|  | */ | 
|  | static const struct munit skx_all_munits[] = { | 
|  | { 0x2054, { }, 1, 1, SAD_ALL }, | 
|  | { 0x2055, { }, 1, 1, UTIL_ALL }, | 
|  | { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, | 
|  | { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, | 
|  | { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, | 
|  | { 0x208e, { }, 1, 0, SAD }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We use the per-socket device 0x2016 to count how many sockets are present, | 
|  | * and to detemine which PCI buses are associated with each socket. Allocate | 
|  | * and build the full list of all the skx_dev structures that we need here. | 
|  | */ | 
|  | static int get_all_bus_mappings(void) | 
|  | { | 
|  | struct pci_dev *pdev, *prev; | 
|  | struct skx_dev *d; | 
|  | u32 reg; | 
|  | int ndev = 0; | 
|  |  | 
|  | prev = NULL; | 
|  | for (;;) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); | 
|  | if (!pdev) | 
|  | break; | 
|  | ndev++; | 
|  | d = kzalloc(sizeof(*d), GFP_KERNEL); | 
|  | if (!d) { | 
|  | pci_dev_put(pdev); | 
|  | return -ENOMEM; | 
|  | } | 
|  | d->seg = pci_domain_nr(pdev->bus); | 
|  | pci_read_config_dword(pdev, 0xCC, ®); | 
|  | d->bus[0] =  GET_BITFIELD(reg, 0, 7); | 
|  | d->bus[1] =  GET_BITFIELD(reg, 8, 15); | 
|  | d->bus[2] =  GET_BITFIELD(reg, 16, 23); | 
|  | d->bus[3] =  GET_BITFIELD(reg, 24, 31); | 
|  | edac_dbg(2, "busses: %x, %x, %x, %x\n", | 
|  | d->bus[0], d->bus[1], d->bus[2], d->bus[3]); | 
|  | list_add_tail(&d->list, &skx_edac_list); | 
|  | skx_num_sockets++; | 
|  | prev = pdev; | 
|  | } | 
|  |  | 
|  | return ndev; | 
|  | } | 
|  |  | 
|  | static int get_all_munits(const struct munit *m) | 
|  | { | 
|  | struct pci_dev *pdev, *prev; | 
|  | struct skx_dev *d; | 
|  | u32 reg; | 
|  | int i = 0, ndev = 0; | 
|  |  | 
|  | prev = NULL; | 
|  | for (;;) { | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); | 
|  | if (!pdev) | 
|  | break; | 
|  | ndev++; | 
|  | if (m->per_socket == NUM_IMC) { | 
|  | for (i = 0; i < NUM_IMC; i++) | 
|  | if (m->devfn[i] == pdev->devfn) | 
|  | break; | 
|  | if (i == NUM_IMC) | 
|  | goto fail; | 
|  | } | 
|  | d = get_skx_dev(pdev->bus, m->busidx); | 
|  | if (!d) | 
|  | goto fail; | 
|  |  | 
|  | /* Be sure that the device is enabled */ | 
|  | if (unlikely(pci_enable_device(pdev) < 0)) { | 
|  | skx_printk(KERN_ERR, | 
|  | "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | switch (m->mtype) { | 
|  | case CHAN0: case CHAN1: case CHAN2: | 
|  | pci_dev_get(pdev); | 
|  | d->imc[i].chan[m->mtype].cdev = pdev; | 
|  | break; | 
|  | case SAD_ALL: | 
|  | pci_dev_get(pdev); | 
|  | d->sad_all = pdev; | 
|  | break; | 
|  | case UTIL_ALL: | 
|  | pci_dev_get(pdev); | 
|  | d->util_all = pdev; | 
|  | break; | 
|  | case SAD: | 
|  | /* | 
|  | * one of these devices per core, including cores | 
|  | * that don't exist on this SKU. Ignore any that | 
|  | * read a route table of zero, make sure all the | 
|  | * non-zero values match. | 
|  | */ | 
|  | pci_read_config_dword(pdev, 0xB4, ®); | 
|  | if (reg != 0) { | 
|  | if (d->mcroute == 0) | 
|  | d->mcroute = reg; | 
|  | else if (d->mcroute != reg) { | 
|  | skx_printk(KERN_ERR, | 
|  | "mcroute mismatch\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | ndev--; | 
|  | break; | 
|  | } | 
|  |  | 
|  | prev = pdev; | 
|  | } | 
|  |  | 
|  | return ndev; | 
|  | fail: | 
|  | pci_dev_put(pdev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static const struct x86_cpu_id skx_cpuids[] = { | 
|  | { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); | 
|  |  | 
|  | static u8 get_src_id(struct skx_dev *d) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(d->util_all, 0xF0, ®); | 
|  |  | 
|  | return GET_BITFIELD(reg, 12, 14); | 
|  | } | 
|  |  | 
|  | static u8 skx_get_node_id(struct skx_dev *d) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(d->util_all, 0xF4, ®); | 
|  |  | 
|  | return GET_BITFIELD(reg, 0, 2); | 
|  | } | 
|  |  | 
|  | static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, | 
|  | int maxval, char *name) | 
|  | { | 
|  | u32 val = GET_BITFIELD(reg, lobit, hibit); | 
|  |  | 
|  | if (val < minval || val > maxval) { | 
|  | edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); | 
|  | return -EINVAL; | 
|  | } | 
|  | return val + add; | 
|  | } | 
|  |  | 
|  | #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD((mtr), 15, 15) | 
|  | #define IS_NVDIMM_PRESENT(mcddrtcfg, i)	GET_BITFIELD((mcddrtcfg), (i), (i)) | 
|  |  | 
|  | #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks") | 
|  | #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") | 
|  | #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") | 
|  |  | 
|  | static int get_width(u32 mtr) | 
|  | { | 
|  | switch (GET_BITFIELD(mtr, 8, 9)) { | 
|  | case 0: | 
|  | return DEV_X4; | 
|  | case 1: | 
|  | return DEV_X8; | 
|  | case 2: | 
|  | return DEV_X16; | 
|  | } | 
|  | return DEV_UNKNOWN; | 
|  | } | 
|  |  | 
|  | static int skx_get_hi_lo(void) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  | u32 reg; | 
|  |  | 
|  | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); | 
|  | if (!pdev) { | 
|  | edac_dbg(0, "Can't get tolm/tohm\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(pdev, 0xD0, ®); | 
|  | skx_tolm = reg; | 
|  | pci_read_config_dword(pdev, 0xD4, ®); | 
|  | skx_tohm = reg; | 
|  | pci_read_config_dword(pdev, 0xD8, ®); | 
|  | skx_tohm |= (u64)reg << 32; | 
|  |  | 
|  | pci_dev_put(pdev); | 
|  | edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, | 
|  | struct skx_imc *imc, int chan, int dimmno) | 
|  | { | 
|  | int  banks = 16, ranks, rows, cols, npages; | 
|  | u64 size; | 
|  |  | 
|  | ranks = numrank(mtr); | 
|  | rows = numrow(mtr); | 
|  | cols = numcol(mtr); | 
|  |  | 
|  | /* | 
|  | * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) | 
|  | */ | 
|  | size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); | 
|  | npages = MiB_TO_PAGES(size); | 
|  |  | 
|  | edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | 
|  | imc->mc, chan, dimmno, size, npages, | 
|  | banks, 1 << ranks, rows, cols); | 
|  |  | 
|  | imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); | 
|  | imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); | 
|  | imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); | 
|  | imc->chan[chan].dimms[dimmno].rowbits = rows; | 
|  | imc->chan[chan].dimms[dimmno].colbits = cols; | 
|  |  | 
|  | dimm->nr_pages = npages; | 
|  | dimm->grain = 32; | 
|  | dimm->dtype = get_width(mtr); | 
|  | dimm->mtype = MEM_DDR4; | 
|  | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | 
|  | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | 
|  | imc->src_id, imc->lmc, chan, dimmno); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, | 
|  | int chan, int dimmno) | 
|  | { | 
|  | int smbios_handle; | 
|  | u32 dev_handle; | 
|  | u16 flags; | 
|  | u64 size = 0; | 
|  |  | 
|  | dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, | 
|  | imc->src_id, 0); | 
|  |  | 
|  | smbios_handle = nfit_get_smbios_id(dev_handle, &flags); | 
|  | if (smbios_handle == -EOPNOTSUPP) { | 
|  | pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n"); | 
|  | goto unknown_size; | 
|  | } | 
|  |  | 
|  | if (smbios_handle < 0) { | 
|  | skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle); | 
|  | goto unknown_size; | 
|  | } | 
|  |  | 
|  | if (flags & ACPI_NFIT_MEM_MAP_FAILED) { | 
|  | skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle); | 
|  | goto unknown_size; | 
|  | } | 
|  |  | 
|  | size = dmi_memdev_size(smbios_handle); | 
|  | if (size == ~0ull) | 
|  | skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n", | 
|  | dev_handle, smbios_handle); | 
|  |  | 
|  | unknown_size: | 
|  | dimm->nr_pages = size >> PAGE_SHIFT; | 
|  | dimm->grain = 32; | 
|  | dimm->dtype = DEV_UNKNOWN; | 
|  | dimm->mtype = MEM_NVDIMM; | 
|  | dimm->edac_mode = EDAC_SECDED; /* likely better than this */ | 
|  |  | 
|  | edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", | 
|  | imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); | 
|  |  | 
|  | snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", | 
|  | imc->src_id, imc->lmc, chan, dimmno); | 
|  |  | 
|  | return (size == 0 || size == ~0ull) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | #define SKX_GET_MTMTR(dev, reg) \ | 
|  | pci_read_config_dword((dev), 0x87c, ®) | 
|  |  | 
|  | static bool skx_check_ecc(struct pci_dev *pdev) | 
|  | { | 
|  | u32 mtmtr; | 
|  |  | 
|  | SKX_GET_MTMTR(pdev, mtmtr); | 
|  |  | 
|  | return !!GET_BITFIELD(mtmtr, 2, 2); | 
|  | } | 
|  |  | 
|  | static int skx_get_dimm_config(struct mem_ctl_info *mci) | 
|  | { | 
|  | struct skx_pvt *pvt = mci->pvt_info; | 
|  | struct skx_imc *imc = pvt->imc; | 
|  | u32 mtr, amap, mcddrtcfg; | 
|  | struct dimm_info *dimm; | 
|  | int i, j; | 
|  | int ndimms; | 
|  |  | 
|  | for (i = 0; i < NUM_CHANNELS; i++) { | 
|  | ndimms = 0; | 
|  | pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); | 
|  | pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); | 
|  | for (j = 0; j < NUM_DIMMS; j++) { | 
|  | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, | 
|  | mci->n_layers, i, j, 0); | 
|  | pci_read_config_dword(imc->chan[i].cdev, | 
|  | 0x80 + 4*j, &mtr); | 
|  | if (IS_DIMM_PRESENT(mtr)) | 
|  | ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); | 
|  | else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) | 
|  | ndimms += get_nvdimm_info(dimm, imc, i, j); | 
|  | } | 
|  | if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { | 
|  | skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void skx_unregister_mci(struct skx_imc *imc) | 
|  | { | 
|  | struct mem_ctl_info *mci = imc->mci; | 
|  |  | 
|  | if (!mci) | 
|  | return; | 
|  |  | 
|  | edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); | 
|  |  | 
|  | /* Remove MC sysfs nodes */ | 
|  | edac_mc_del_mc(mci->pdev); | 
|  |  | 
|  | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
|  | kfree(mci->ctl_name); | 
|  | edac_mc_free(mci); | 
|  | } | 
|  |  | 
|  | static int skx_register_mci(struct skx_imc *imc) | 
|  | { | 
|  | struct mem_ctl_info *mci; | 
|  | struct edac_mc_layer layers[2]; | 
|  | struct pci_dev *pdev = imc->chan[0].cdev; | 
|  | struct skx_pvt *pvt; | 
|  | int rc; | 
|  |  | 
|  | /* allocate a new MC control structure */ | 
|  | layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
|  | layers[0].size = NUM_CHANNELS; | 
|  | layers[0].is_virt_csrow = false; | 
|  | layers[1].type = EDAC_MC_LAYER_SLOT; | 
|  | layers[1].size = NUM_DIMMS; | 
|  | layers[1].is_virt_csrow = true; | 
|  | mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, | 
|  | sizeof(struct skx_pvt)); | 
|  |  | 
|  | if (unlikely(!mci)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); | 
|  |  | 
|  | /* Associate skx_dev and mci for future usage */ | 
|  | imc->mci = mci; | 
|  | pvt = mci->pvt_info; | 
|  | pvt->imc = imc; | 
|  |  | 
|  | mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", | 
|  | imc->node_id, imc->lmc); | 
|  | if (!mci->ctl_name) { | 
|  | rc = -ENOMEM; | 
|  | goto fail0; | 
|  | } | 
|  |  | 
|  | mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; | 
|  | mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
|  | mci->edac_cap = EDAC_FLAG_NONE; | 
|  | mci->mod_name = EDAC_MOD_STR; | 
|  | mci->dev_name = pci_name(imc->chan[0].cdev); | 
|  | mci->ctl_page_to_phys = NULL; | 
|  |  | 
|  | rc = skx_get_dimm_config(mci); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  |  | 
|  | /* record ptr to the generic device */ | 
|  | mci->pdev = &pdev->dev; | 
|  |  | 
|  | /* add this new MC control structure to EDAC's list of MCs */ | 
|  | if (unlikely(edac_mc_add_mc(mci))) { | 
|  | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
|  | rc = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | kfree(mci->ctl_name); | 
|  | fail0: | 
|  | edac_mc_free(mci); | 
|  | imc->mci = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define	SKX_MAX_SAD 24 | 
|  |  | 
|  | #define SKX_GET_SAD(d, i, reg)	\ | 
|  | pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) | 
|  | #define SKX_GET_ILV(d, i, reg)	\ | 
|  | pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) | 
|  |  | 
|  | #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31) | 
|  | #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27) | 
|  | #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) | 
|  | #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6) | 
|  | #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4) | 
|  | #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2) | 
|  | #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0) | 
|  |  | 
|  | #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0) | 
|  | #define SKX_ILV_TARGET(tgt)	((tgt) & 7) | 
|  |  | 
|  | static bool skx_sad_decode(struct decoded_addr *res) | 
|  | { | 
|  | struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); | 
|  | u64 addr = res->addr; | 
|  | int i, idx, tgt, lchan, shift; | 
|  | u32 sad, ilv; | 
|  | u64 limit, prev_limit; | 
|  | int remote = 0; | 
|  |  | 
|  | /* Simple sanity check for I/O space or out of range */ | 
|  | if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { | 
|  | edac_dbg(0, "Address %llx out of range\n", addr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | restart: | 
|  | prev_limit = 0; | 
|  | for (i = 0; i < SKX_MAX_SAD; i++) { | 
|  | SKX_GET_SAD(d, i, sad); | 
|  | limit = SKX_SAD_LIMIT(sad); | 
|  | if (SKX_SAD_ENABLE(sad)) { | 
|  | if (addr >= prev_limit && addr <= limit) | 
|  | goto sad_found; | 
|  | } | 
|  | prev_limit = limit + 1; | 
|  | } | 
|  | edac_dbg(0, "No SAD entry for %llx\n", addr); | 
|  | return false; | 
|  |  | 
|  | sad_found: | 
|  | SKX_GET_ILV(d, i, ilv); | 
|  |  | 
|  | switch (SKX_SAD_INTERLEAVE(sad)) { | 
|  | case 0: | 
|  | idx = GET_BITFIELD(addr, 6, 8); | 
|  | break; | 
|  | case 1: | 
|  | idx = GET_BITFIELD(addr, 8, 10); | 
|  | break; | 
|  | case 2: | 
|  | idx = GET_BITFIELD(addr, 12, 14); | 
|  | break; | 
|  | case 3: | 
|  | idx = GET_BITFIELD(addr, 30, 32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); | 
|  |  | 
|  | /* If point to another node, find it and start over */ | 
|  | if (SKX_ILV_REMOTE(tgt)) { | 
|  | if (remote) { | 
|  | edac_dbg(0, "Double remote!\n"); | 
|  | return false; | 
|  | } | 
|  | remote = 1; | 
|  | list_for_each_entry(d, &skx_edac_list, list) { | 
|  | if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) | 
|  | goto restart; | 
|  | } | 
|  | edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SKX_SAD_MOD3(sad) == 0) | 
|  | lchan = SKX_ILV_TARGET(tgt); | 
|  | else { | 
|  | switch (SKX_SAD_MOD3MODE(sad)) { | 
|  | case 0: | 
|  | shift = 6; | 
|  | break; | 
|  | case 1: | 
|  | shift = 8; | 
|  | break; | 
|  | case 2: | 
|  | shift = 12; | 
|  | break; | 
|  | default: | 
|  | edac_dbg(0, "illegal mod3mode\n"); | 
|  | return false; | 
|  | } | 
|  | switch (SKX_SAD_MOD3ASMOD2(sad)) { | 
|  | case 0: | 
|  | lchan = (addr >> shift) % 3; | 
|  | break; | 
|  | case 1: | 
|  | lchan = (addr >> shift) % 2; | 
|  | break; | 
|  | case 2: | 
|  | lchan = (addr >> shift) % 2; | 
|  | lchan = (lchan << 1) | !lchan; | 
|  | break; | 
|  | case 3: | 
|  | lchan = ((addr >> shift) % 2) << 1; | 
|  | break; | 
|  | } | 
|  | lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); | 
|  | } | 
|  |  | 
|  | res->dev = d; | 
|  | res->socket = d->imc[0].src_id; | 
|  | res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); | 
|  | res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); | 
|  |  | 
|  | edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", | 
|  | res->addr, res->socket, res->imc, res->channel); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define	SKX_MAX_TAD 8 | 
|  |  | 
|  | #define SKX_GET_TADBASE(d, mc, i, reg)			\ | 
|  | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) | 
|  | #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\ | 
|  | pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) | 
|  | #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\ | 
|  | pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) | 
|  |  | 
|  | #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26) | 
|  | #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5) | 
|  | #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7) | 
|  | #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) | 
|  | #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26) | 
|  | #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11)) | 
|  | #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1) | 
|  |  | 
|  | /* which bit used for both socket and channel interleave */ | 
|  | static int skx_granularity[] = { 6, 8, 12, 30 }; | 
|  |  | 
|  | static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) | 
|  | { | 
|  | addr >>= shift; | 
|  | addr /= ways; | 
|  | addr <<= shift; | 
|  |  | 
|  | return addr | (lowbits & ((1ull << shift) - 1)); | 
|  | } | 
|  |  | 
|  | static bool skx_tad_decode(struct decoded_addr *res) | 
|  | { | 
|  | int i; | 
|  | u32 base, wayness, chnilvoffset; | 
|  | int skt_interleave_bit, chn_interleave_bit; | 
|  | u64 channel_addr; | 
|  |  | 
|  | for (i = 0; i < SKX_MAX_TAD; i++) { | 
|  | SKX_GET_TADBASE(res->dev, res->imc, i, base); | 
|  | SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); | 
|  | if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) | 
|  | goto tad_found; | 
|  | } | 
|  | edac_dbg(0, "No TAD entry for %llx\n", res->addr); | 
|  | return false; | 
|  |  | 
|  | tad_found: | 
|  | res->sktways = SKX_TAD_SKTWAYS(wayness); | 
|  | res->chanways = SKX_TAD_CHNWAYS(wayness); | 
|  | skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; | 
|  | chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; | 
|  |  | 
|  | SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); | 
|  | channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); | 
|  |  | 
|  | if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { | 
|  | /* Must handle channel first, then socket */ | 
|  | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | 
|  | res->chanways, channel_addr); | 
|  | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | 
|  | res->sktways, channel_addr); | 
|  | } else { | 
|  | /* Handle socket then channel. Preserve low bits from original address */ | 
|  | channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, | 
|  | res->sktways, res->addr); | 
|  | channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, | 
|  | res->chanways, res->addr); | 
|  | } | 
|  |  | 
|  | res->chan_addr = channel_addr; | 
|  |  | 
|  | edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", | 
|  | res->addr, res->chan_addr, res->sktways, res->chanways); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define SKX_MAX_RIR 4 | 
|  |  | 
|  | #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\ | 
|  | pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\ | 
|  | 0x108 + 4 * (i), ®) | 
|  | #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\ | 
|  | pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\ | 
|  | 0x120 + 16 * idx + 4 * (i), ®) | 
|  |  | 
|  | #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) | 
|  | #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) | 
|  | #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) | 
|  | #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) | 
|  | #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) | 
|  |  | 
|  | static bool skx_rir_decode(struct decoded_addr *res) | 
|  | { | 
|  | int i, idx, chan_rank; | 
|  | int shift; | 
|  | u32 rirway, rirlv; | 
|  | u64 rank_addr, prev_limit = 0, limit; | 
|  |  | 
|  | if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) | 
|  | shift = 6; | 
|  | else | 
|  | shift = 13; | 
|  |  | 
|  | for (i = 0; i < SKX_MAX_RIR; i++) { | 
|  | SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); | 
|  | limit = SKX_RIR_LIMIT(rirway); | 
|  | if (SKX_RIR_VALID(rirway)) { | 
|  | if (prev_limit <= res->chan_addr && | 
|  | res->chan_addr <= limit) | 
|  | goto rir_found; | 
|  | } | 
|  | prev_limit = limit; | 
|  | } | 
|  | edac_dbg(0, "No RIR entry for %llx\n", res->addr); | 
|  | return false; | 
|  |  | 
|  | rir_found: | 
|  | rank_addr = res->chan_addr >> shift; | 
|  | rank_addr /= SKX_RIR_WAYS(rirway); | 
|  | rank_addr <<= shift; | 
|  | rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); | 
|  |  | 
|  | res->rank_address = rank_addr; | 
|  | idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); | 
|  |  | 
|  | SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); | 
|  | res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); | 
|  | chan_rank = SKX_RIR_CHAN_RANK(rirlv); | 
|  | res->channel_rank = chan_rank; | 
|  | res->dimm = chan_rank / 4; | 
|  | res->rank = chan_rank % 4; | 
|  |  | 
|  | edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", | 
|  | res->addr, res->dimm, res->rank, | 
|  | res->channel_rank, res->rank_address); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u8 skx_close_row[] = { | 
|  | 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 | 
|  | }; | 
|  | static u8 skx_close_column[] = { | 
|  | 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 | 
|  | }; | 
|  | static u8 skx_open_row[] = { | 
|  | 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 | 
|  | }; | 
|  | static u8 skx_open_column[] = { | 
|  | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 
|  | }; | 
|  | static u8 skx_open_fine_column[] = { | 
|  | 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 | 
|  | }; | 
|  |  | 
|  | static int skx_bits(u64 addr, int nbits, u8 *bits) | 
|  | { | 
|  | int i, res = 0; | 
|  |  | 
|  | for (i = 0; i < nbits; i++) | 
|  | res |= ((addr >> bits[i]) & 1) << i; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) | 
|  | { | 
|  | int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); | 
|  |  | 
|  | if (do_xor) | 
|  | ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool skx_mad_decode(struct decoded_addr *r) | 
|  | { | 
|  | struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; | 
|  | int bg0 = dimm->fine_grain_bank ? 6 : 13; | 
|  |  | 
|  | if (dimm->close_pg) { | 
|  | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); | 
|  | r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); | 
|  | r->column |= 0x400; /* C10 is autoprecharge, always set */ | 
|  | r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); | 
|  | r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); | 
|  | } else { | 
|  | r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); | 
|  | if (dimm->fine_grain_bank) | 
|  | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); | 
|  | else | 
|  | r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); | 
|  | r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); | 
|  | r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); | 
|  | } | 
|  | r->row &= (1u << dimm->rowbits) - 1; | 
|  |  | 
|  | edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", | 
|  | r->addr, r->row, r->column, r->bank_address, | 
|  | r->bank_group); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool skx_decode(struct decoded_addr *res) | 
|  | { | 
|  |  | 
|  | return skx_sad_decode(res) && skx_tad_decode(res) && | 
|  | skx_rir_decode(res) && skx_mad_decode(res); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_EDAC_DEBUG | 
|  | /* | 
|  | * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. | 
|  | * Write an address to this file to exercise the address decode | 
|  | * logic in this driver. | 
|  | */ | 
|  | static struct dentry *skx_test; | 
|  | static u64 skx_fake_addr; | 
|  |  | 
|  | static int debugfs_u64_set(void *data, u64 val) | 
|  | { | 
|  | struct decoded_addr res; | 
|  |  | 
|  | res.addr = val; | 
|  | skx_decode(&res); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | 
|  |  | 
|  | static struct dentry *mydebugfs_create(const char *name, umode_t mode, | 
|  | struct dentry *parent, u64 *value) | 
|  | { | 
|  | return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); | 
|  | } | 
|  |  | 
|  | static void setup_skx_debug(void) | 
|  | { | 
|  | skx_test = debugfs_create_dir("skx_edac_test", NULL); | 
|  | mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); | 
|  | } | 
|  |  | 
|  | static void teardown_skx_debug(void) | 
|  | { | 
|  | debugfs_remove_recursive(skx_test); | 
|  | } | 
|  | #else | 
|  | static void setup_skx_debug(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void teardown_skx_debug(void) | 
|  | { | 
|  | } | 
|  | #endif /*CONFIG_EDAC_DEBUG*/ | 
|  |  | 
|  | static void skx_mce_output_error(struct mem_ctl_info *mci, | 
|  | const struct mce *m, | 
|  | struct decoded_addr *res) | 
|  | { | 
|  | enum hw_event_mc_err_type tp_event; | 
|  | char *type, *optype, msg[256]; | 
|  | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | 
|  | bool overflow = GET_BITFIELD(m->status, 62, 62); | 
|  | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | 
|  | bool recoverable; | 
|  | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
|  | u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
|  | u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
|  | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
|  |  | 
|  | recoverable = GET_BITFIELD(m->status, 56, 56); | 
|  |  | 
|  | if (uncorrected_error) { | 
|  | core_err_cnt = 1; | 
|  | if (ripv) { | 
|  | type = "FATAL"; | 
|  | tp_event = HW_EVENT_ERR_FATAL; | 
|  | } else { | 
|  | type = "NON_FATAL"; | 
|  | tp_event = HW_EVENT_ERR_UNCORRECTED; | 
|  | } | 
|  | } else { | 
|  | type = "CORRECTED"; | 
|  | tp_event = HW_EVENT_ERR_CORRECTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * According with Table 15-9 of the Intel Architecture spec vol 3A, | 
|  | * memory errors should fit in this mask: | 
|  | *	000f 0000 1mmm cccc (binary) | 
|  | * where: | 
|  | *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
|  | *	    won't be shown | 
|  | *	mmm = error type | 
|  | *	cccc = channel | 
|  | * If the mask doesn't match, report an error to the parsing logic | 
|  | */ | 
|  | if (!((errcode & 0xef80) == 0x80)) { | 
|  | optype = "Can't parse: it is not a mem"; | 
|  | } else { | 
|  | switch (optypenum) { | 
|  | case 0: | 
|  | optype = "generic undef request error"; | 
|  | break; | 
|  | case 1: | 
|  | optype = "memory read error"; | 
|  | break; | 
|  | case 2: | 
|  | optype = "memory write error"; | 
|  | break; | 
|  | case 3: | 
|  | optype = "addr/cmd error"; | 
|  | break; | 
|  | case 4: | 
|  | optype = "memory scrubbing error"; | 
|  | break; | 
|  | default: | 
|  | optype = "reserved"; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | snprintf(msg, sizeof(msg), | 
|  | "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", | 
|  | overflow ? " OVERFLOW" : "", | 
|  | (uncorrected_error && recoverable) ? " recoverable" : "", | 
|  | mscod, errcode, | 
|  | res->socket, res->imc, res->rank, | 
|  | res->bank_group, res->bank_address, res->row, res->column); | 
|  |  | 
|  | edac_dbg(0, "%s\n", msg); | 
|  |  | 
|  | /* Call the helper to output message */ | 
|  | edac_mc_handle_error(tp_event, mci, core_err_cnt, | 
|  | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | 
|  | res->channel, res->dimm, -1, | 
|  | optype, msg); | 
|  | } | 
|  |  | 
|  | static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct mce *mce = (struct mce *)data; | 
|  | struct decoded_addr res; | 
|  | struct mem_ctl_info *mci; | 
|  | char *type; | 
|  |  | 
|  | if (edac_get_report_status() == EDAC_REPORTING_DISABLED) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* ignore unless this is memory related with an address */ | 
|  | if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | res.addr = mce->addr; | 
|  | if (!skx_decode(&res)) | 
|  | return NOTIFY_DONE; | 
|  | mci = res.dev->imc[res.imc].mci; | 
|  |  | 
|  | if (mce->mcgstatus & MCG_STATUS_MCIP) | 
|  | type = "Exception"; | 
|  | else | 
|  | type = "Event"; | 
|  |  | 
|  | skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); | 
|  |  | 
|  | skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " | 
|  | "Bank %d: %016Lx\n", mce->extcpu, type, | 
|  | mce->mcgstatus, mce->bank, mce->status); | 
|  | skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); | 
|  | skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); | 
|  | skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); | 
|  |  | 
|  | skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " | 
|  | "%u APIC %x\n", mce->cpuvendor, mce->cpuid, | 
|  | mce->time, mce->socketid, mce->apicid); | 
|  |  | 
|  | skx_mce_output_error(mci, mce, &res); | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block skx_mce_dec = { | 
|  | .notifier_call	= skx_mce_check_error, | 
|  | .priority	= MCE_PRIO_EDAC, | 
|  | }; | 
|  |  | 
|  | static void skx_remove(void) | 
|  | { | 
|  | int i, j; | 
|  | struct skx_dev *d, *tmp; | 
|  |  | 
|  | edac_dbg(0, "\n"); | 
|  |  | 
|  | list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { | 
|  | list_del(&d->list); | 
|  | for (i = 0; i < NUM_IMC; i++) { | 
|  | skx_unregister_mci(&d->imc[i]); | 
|  | for (j = 0; j < NUM_CHANNELS; j++) | 
|  | pci_dev_put(d->imc[i].chan[j].cdev); | 
|  | } | 
|  | pci_dev_put(d->util_all); | 
|  | pci_dev_put(d->sad_all); | 
|  |  | 
|  | kfree(d); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * skx_init: | 
|  | *	make sure we are running on the correct cpu model | 
|  | *	search for all the devices we need | 
|  | *	check which DIMMs are present. | 
|  | */ | 
|  | static int __init skx_init(void) | 
|  | { | 
|  | const struct x86_cpu_id *id; | 
|  | const struct munit *m; | 
|  | const char *owner; | 
|  | int rc = 0, i; | 
|  | u8 mc = 0, src_id, node_id; | 
|  | struct skx_dev *d; | 
|  |  | 
|  | edac_dbg(2, "\n"); | 
|  |  | 
|  | owner = edac_get_owner(); | 
|  | if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
|  | return -EBUSY; | 
|  |  | 
|  | id = x86_match_cpu(skx_cpuids); | 
|  | if (!id) | 
|  | return -ENODEV; | 
|  |  | 
|  | rc = skx_get_hi_lo(); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = get_all_bus_mappings(); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | if (rc == 0) { | 
|  | edac_dbg(2, "No memory controllers found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | for (m = skx_all_munits; m->did; m++) { | 
|  | rc = get_all_munits(m); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | if (rc != m->per_socket * skx_num_sockets) { | 
|  | edac_dbg(2, "Expected %d, got %d of %x\n", | 
|  | m->per_socket * skx_num_sockets, rc, m->did); | 
|  | rc = -ENODEV; | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry(d, &skx_edac_list, list) { | 
|  | src_id = get_src_id(d); | 
|  | node_id = skx_get_node_id(d); | 
|  | edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); | 
|  | for (i = 0; i < NUM_IMC; i++) { | 
|  | d->imc[i].mc = mc++; | 
|  | d->imc[i].lmc = i; | 
|  | d->imc[i].src_id = src_id; | 
|  | d->imc[i].node_id = node_id; | 
|  | rc = skx_register_mci(&d->imc[i]); | 
|  | if (rc < 0) | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
|  | opstate_init(); | 
|  |  | 
|  | setup_skx_debug(); | 
|  |  | 
|  | mce_register_decode_chain(&skx_mce_dec); | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | skx_remove(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __exit skx_exit(void) | 
|  | { | 
|  | edac_dbg(2, "\n"); | 
|  | mce_unregister_decode_chain(&skx_mce_dec); | 
|  | skx_remove(); | 
|  | teardown_skx_debug(); | 
|  | } | 
|  |  | 
|  | module_init(skx_init); | 
|  | module_exit(skx_exit); | 
|  |  | 
|  | module_param(edac_op_state, int, 0444); | 
|  | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
|  |  | 
|  | MODULE_LICENSE("GPL v2"); | 
|  | MODULE_AUTHOR("Tony Luck"); | 
|  | MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |