| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * fs/f2fs/inline.c | 
 |  * Copyright (c) 2013, Intel Corporation | 
 |  * Authors: Huajun Li <huajun.li@intel.com> | 
 |  *          Haicheng Li <haicheng.li@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/f2fs_fs.h> | 
 |  | 
 | #include "f2fs.h" | 
 | #include "node.h" | 
 | #include <trace/events/android_fs.h> | 
 |  | 
 | bool f2fs_may_inline_data(struct inode *inode) | 
 | { | 
 | 	if (f2fs_is_atomic_file(inode)) | 
 | 		return false; | 
 |  | 
 | 	if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) | 
 | 		return false; | 
 |  | 
 | 	if (i_size_read(inode) > MAX_INLINE_DATA(inode)) | 
 | 		return false; | 
 |  | 
 | 	if (f2fs_post_read_required(inode)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | bool f2fs_may_inline_dentry(struct inode *inode) | 
 | { | 
 | 	if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) | 
 | 		return false; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void f2fs_do_read_inline_data(struct page *page, struct page *ipage) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	void *src_addr, *dst_addr; | 
 |  | 
 | 	if (PageUptodate(page)) | 
 | 		return; | 
 |  | 
 | 	f2fs_bug_on(F2FS_P_SB(page), page->index); | 
 |  | 
 | 	zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); | 
 |  | 
 | 	/* Copy the whole inline data block */ | 
 | 	src_addr = inline_data_addr(inode, ipage); | 
 | 	dst_addr = kmap_atomic(page); | 
 | 	memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); | 
 | 	flush_dcache_page(page); | 
 | 	kunmap_atomic(dst_addr); | 
 | 	if (!PageUptodate(page)) | 
 | 		SetPageUptodate(page); | 
 | } | 
 |  | 
 | void f2fs_truncate_inline_inode(struct inode *inode, | 
 | 					struct page *ipage, u64 from) | 
 | { | 
 | 	void *addr; | 
 |  | 
 | 	if (from >= MAX_INLINE_DATA(inode)) | 
 | 		return; | 
 |  | 
 | 	addr = inline_data_addr(inode, ipage); | 
 |  | 
 | 	f2fs_wait_on_page_writeback(ipage, NODE, true, true); | 
 | 	memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); | 
 | 	set_page_dirty(ipage); | 
 |  | 
 | 	if (from == 0) | 
 | 		clear_inode_flag(inode, FI_DATA_EXIST); | 
 | } | 
 |  | 
 | int f2fs_read_inline_data(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct page *ipage; | 
 |  | 
 | 	if (trace_android_fs_dataread_start_enabled()) { | 
 | 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN]; | 
 |  | 
 | 		path = android_fstrace_get_pathname(pathbuf, | 
 | 						    MAX_TRACE_PATHBUF_LEN, | 
 | 						    inode); | 
 | 		trace_android_fs_dataread_start(inode, page_offset(page), | 
 | 						PAGE_SIZE, current->pid, | 
 | 						path, current->comm); | 
 | 	} | 
 |  | 
 | 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); | 
 | 	if (IS_ERR(ipage)) { | 
 | 		trace_android_fs_dataread_end(inode, page_offset(page), | 
 | 					      PAGE_SIZE); | 
 | 		unlock_page(page); | 
 | 		return PTR_ERR(ipage); | 
 | 	} | 
 |  | 
 | 	if (!f2fs_has_inline_data(inode)) { | 
 | 		f2fs_put_page(ipage, 1); | 
 | 		trace_android_fs_dataread_end(inode, page_offset(page), | 
 | 					      PAGE_SIZE); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if (page->index) | 
 | 		zero_user_segment(page, 0, PAGE_SIZE); | 
 | 	else | 
 | 		f2fs_do_read_inline_data(page, ipage); | 
 |  | 
 | 	if (!PageUptodate(page)) | 
 | 		SetPageUptodate(page); | 
 | 	f2fs_put_page(ipage, 1); | 
 | 	trace_android_fs_dataread_end(inode, page_offset(page), | 
 | 				      PAGE_SIZE); | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) | 
 | { | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = F2FS_I_SB(dn->inode), | 
 | 		.ino = dn->inode->i_ino, | 
 | 		.type = DATA, | 
 | 		.op = REQ_OP_WRITE, | 
 | 		.op_flags = REQ_SYNC | REQ_PRIO, | 
 | 		.page = page, | 
 | 		.encrypted_page = NULL, | 
 | 		.io_type = FS_DATA_IO, | 
 | 	}; | 
 | 	struct node_info ni; | 
 | 	int dirty, err; | 
 |  | 
 | 	if (!f2fs_exist_data(dn->inode)) | 
 | 		goto clear_out; | 
 |  | 
 | 	err = f2fs_reserve_block(dn, 0); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = f2fs_get_node_info(fio.sbi, dn->nid, &ni); | 
 | 	if (err) { | 
 | 		f2fs_truncate_data_blocks_range(dn, 1); | 
 | 		f2fs_put_dnode(dn); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	fio.version = ni.version; | 
 |  | 
 | 	if (unlikely(dn->data_blkaddr != NEW_ADDR)) { | 
 | 		f2fs_put_dnode(dn); | 
 | 		set_sbi_flag(fio.sbi, SBI_NEED_FSCK); | 
 | 		f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", | 
 | 			  __func__, dn->inode->i_ino, dn->data_blkaddr); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); | 
 |  | 
 | 	f2fs_do_read_inline_data(page, dn->inode_page); | 
 | 	set_page_dirty(page); | 
 |  | 
 | 	/* clear dirty state */ | 
 | 	dirty = clear_page_dirty_for_io(page); | 
 |  | 
 | 	/* write data page to try to make data consistent */ | 
 | 	set_page_writeback(page); | 
 | 	ClearPageError(page); | 
 | 	fio.old_blkaddr = dn->data_blkaddr; | 
 | 	set_inode_flag(dn->inode, FI_HOT_DATA); | 
 | 	f2fs_outplace_write_data(dn, &fio); | 
 | 	f2fs_wait_on_page_writeback(page, DATA, true, true); | 
 | 	if (dirty) { | 
 | 		inode_dec_dirty_pages(dn->inode); | 
 | 		f2fs_remove_dirty_inode(dn->inode); | 
 | 	} | 
 |  | 
 | 	/* this converted inline_data should be recovered. */ | 
 | 	set_inode_flag(dn->inode, FI_APPEND_WRITE); | 
 |  | 
 | 	/* clear inline data and flag after data writeback */ | 
 | 	f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); | 
 | 	clear_inline_node(dn->inode_page); | 
 | clear_out: | 
 | 	stat_dec_inline_inode(dn->inode); | 
 | 	clear_inode_flag(dn->inode, FI_INLINE_DATA); | 
 | 	f2fs_put_dnode(dn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_convert_inline_inode(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct dnode_of_data dn; | 
 | 	struct page *ipage, *page; | 
 | 	int err = 0; | 
 |  | 
 | 	if (!f2fs_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	page = f2fs_grab_cache_page(inode->i_mapping, 0, false); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	f2fs_lock_op(sbi); | 
 |  | 
 | 	ipage = f2fs_get_node_page(sbi, inode->i_ino); | 
 | 	if (IS_ERR(ipage)) { | 
 | 		err = PTR_ERR(ipage); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	set_new_dnode(&dn, inode, ipage, ipage, 0); | 
 |  | 
 | 	if (f2fs_has_inline_data(inode)) | 
 | 		err = f2fs_convert_inline_page(&dn, page); | 
 |  | 
 | 	f2fs_put_dnode(&dn); | 
 | out: | 
 | 	f2fs_unlock_op(sbi); | 
 |  | 
 | 	f2fs_put_page(page, 1); | 
 |  | 
 | 	f2fs_balance_fs(sbi, dn.node_changed); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int f2fs_write_inline_data(struct inode *inode, struct page *page) | 
 | { | 
 | 	void *src_addr, *dst_addr; | 
 | 	struct dnode_of_data dn; | 
 | 	int err; | 
 |  | 
 | 	set_new_dnode(&dn, inode, NULL, NULL, 0); | 
 | 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (!f2fs_has_inline_data(inode)) { | 
 | 		f2fs_put_dnode(&dn); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	f2fs_bug_on(F2FS_I_SB(inode), page->index); | 
 |  | 
 | 	f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); | 
 | 	src_addr = kmap_atomic(page); | 
 | 	dst_addr = inline_data_addr(inode, dn.inode_page); | 
 | 	memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); | 
 | 	kunmap_atomic(src_addr); | 
 | 	set_page_dirty(dn.inode_page); | 
 |  | 
 | 	f2fs_clear_radix_tree_dirty_tag(page); | 
 |  | 
 | 	set_inode_flag(inode, FI_APPEND_WRITE); | 
 | 	set_inode_flag(inode, FI_DATA_EXIST); | 
 |  | 
 | 	clear_inline_node(dn.inode_page); | 
 | 	f2fs_put_dnode(&dn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool f2fs_recover_inline_data(struct inode *inode, struct page *npage) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	struct f2fs_inode *ri = NULL; | 
 | 	void *src_addr, *dst_addr; | 
 | 	struct page *ipage; | 
 |  | 
 | 	/* | 
 | 	 * The inline_data recovery policy is as follows. | 
 | 	 * [prev.] [next] of inline_data flag | 
 | 	 *    o       o  -> recover inline_data | 
 | 	 *    o       x  -> remove inline_data, and then recover data blocks | 
 | 	 *    x       o  -> remove inline_data, and then recover inline_data | 
 | 	 *    x       x  -> recover data blocks | 
 | 	 */ | 
 | 	if (IS_INODE(npage)) | 
 | 		ri = F2FS_INODE(npage); | 
 |  | 
 | 	if (f2fs_has_inline_data(inode) && | 
 | 			ri && (ri->i_inline & F2FS_INLINE_DATA)) { | 
 | process_inline: | 
 | 		ipage = f2fs_get_node_page(sbi, inode->i_ino); | 
 | 		f2fs_bug_on(sbi, IS_ERR(ipage)); | 
 |  | 
 | 		f2fs_wait_on_page_writeback(ipage, NODE, true, true); | 
 |  | 
 | 		src_addr = inline_data_addr(inode, npage); | 
 | 		dst_addr = inline_data_addr(inode, ipage); | 
 | 		memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); | 
 |  | 
 | 		set_inode_flag(inode, FI_INLINE_DATA); | 
 | 		set_inode_flag(inode, FI_DATA_EXIST); | 
 |  | 
 | 		set_page_dirty(ipage); | 
 | 		f2fs_put_page(ipage, 1); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (f2fs_has_inline_data(inode)) { | 
 | 		ipage = f2fs_get_node_page(sbi, inode->i_ino); | 
 | 		f2fs_bug_on(sbi, IS_ERR(ipage)); | 
 | 		f2fs_truncate_inline_inode(inode, ipage, 0); | 
 | 		clear_inode_flag(inode, FI_INLINE_DATA); | 
 | 		f2fs_put_page(ipage, 1); | 
 | 	} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { | 
 | 		if (f2fs_truncate_blocks(inode, 0, false)) | 
 | 			return false; | 
 | 		goto process_inline; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, | 
 | 			struct fscrypt_name *fname, struct page **res_page) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); | 
 | 	struct qstr name = FSTR_TO_QSTR(&fname->disk_name); | 
 | 	struct f2fs_dir_entry *de; | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	struct page *ipage; | 
 | 	void *inline_dentry; | 
 | 	f2fs_hash_t namehash; | 
 |  | 
 | 	ipage = f2fs_get_node_page(sbi, dir->i_ino); | 
 | 	if (IS_ERR(ipage)) { | 
 | 		*res_page = ipage; | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	namehash = f2fs_dentry_hash(dir, &name, fname); | 
 |  | 
 | 	inline_dentry = inline_data_addr(dir, ipage); | 
 |  | 
 | 	make_dentry_ptr_inline(dir, &d, inline_dentry); | 
 | 	de = f2fs_find_target_dentry(fname, namehash, NULL, &d); | 
 | 	unlock_page(ipage); | 
 | 	if (de) | 
 | 		*res_page = ipage; | 
 | 	else | 
 | 		f2fs_put_page(ipage, 0); | 
 |  | 
 | 	return de; | 
 | } | 
 |  | 
 | int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, | 
 | 							struct page *ipage) | 
 | { | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	void *inline_dentry; | 
 |  | 
 | 	inline_dentry = inline_data_addr(inode, ipage); | 
 |  | 
 | 	make_dentry_ptr_inline(inode, &d, inline_dentry); | 
 | 	f2fs_do_make_empty_dir(inode, parent, &d); | 
 |  | 
 | 	set_page_dirty(ipage); | 
 |  | 
 | 	/* update i_size to MAX_INLINE_DATA */ | 
 | 	if (i_size_read(inode) < MAX_INLINE_DATA(inode)) | 
 | 		f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: ipage is grabbed by caller, but if any error occurs, we should | 
 |  * release ipage in this function. | 
 |  */ | 
 | static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, | 
 | 							void *inline_dentry) | 
 | { | 
 | 	struct page *page; | 
 | 	struct dnode_of_data dn; | 
 | 	struct f2fs_dentry_block *dentry_blk; | 
 | 	struct f2fs_dentry_ptr src, dst; | 
 | 	int err; | 
 |  | 
 | 	page = f2fs_grab_cache_page(dir->i_mapping, 0, false); | 
 | 	if (!page) { | 
 | 		f2fs_put_page(ipage, 1); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	set_new_dnode(&dn, dir, ipage, NULL, 0); | 
 | 	err = f2fs_reserve_block(&dn, 0); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (unlikely(dn.data_blkaddr != NEW_ADDR)) { | 
 | 		f2fs_put_dnode(&dn); | 
 | 		set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); | 
 | 		f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", | 
 | 			  __func__, dir->i_ino, dn.data_blkaddr); | 
 | 		err = -EFSCORRUPTED; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	f2fs_wait_on_page_writeback(page, DATA, true, true); | 
 |  | 
 | 	dentry_blk = page_address(page); | 
 |  | 
 | 	make_dentry_ptr_inline(dir, &src, inline_dentry); | 
 | 	make_dentry_ptr_block(dir, &dst, dentry_blk); | 
 |  | 
 | 	/* copy data from inline dentry block to new dentry block */ | 
 | 	memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); | 
 | 	memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap); | 
 | 	/* | 
 | 	 * we do not need to zero out remainder part of dentry and filename | 
 | 	 * field, since we have used bitmap for marking the usage status of | 
 | 	 * them, besides, we can also ignore copying/zeroing reserved space | 
 | 	 * of dentry block, because them haven't been used so far. | 
 | 	 */ | 
 | 	memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); | 
 | 	memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); | 
 |  | 
 | 	if (!PageUptodate(page)) | 
 | 		SetPageUptodate(page); | 
 | 	set_page_dirty(page); | 
 |  | 
 | 	/* clear inline dir and flag after data writeback */ | 
 | 	f2fs_truncate_inline_inode(dir, ipage, 0); | 
 |  | 
 | 	stat_dec_inline_dir(dir); | 
 | 	clear_inode_flag(dir, FI_INLINE_DENTRY); | 
 |  | 
 | 	/* | 
 | 	 * should retrieve reserved space which was used to keep | 
 | 	 * inline_dentry's structure for backward compatibility. | 
 | 	 */ | 
 | 	if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && | 
 | 			!f2fs_has_inline_xattr(dir)) | 
 | 		F2FS_I(dir)->i_inline_xattr_size = 0; | 
 |  | 
 | 	f2fs_i_depth_write(dir, 1); | 
 | 	if (i_size_read(dir) < PAGE_SIZE) | 
 | 		f2fs_i_size_write(dir, PAGE_SIZE); | 
 | out: | 
 | 	f2fs_put_page(page, 1); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) | 
 | { | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	unsigned long bit_pos = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	make_dentry_ptr_inline(dir, &d, inline_dentry); | 
 |  | 
 | 	while (bit_pos < d.max) { | 
 | 		struct f2fs_dir_entry *de; | 
 | 		struct qstr new_name; | 
 | 		nid_t ino; | 
 | 		umode_t fake_mode; | 
 |  | 
 | 		if (!test_bit_le(bit_pos, d.bitmap)) { | 
 | 			bit_pos++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		de = &d.dentry[bit_pos]; | 
 |  | 
 | 		if (unlikely(!de->name_len)) { | 
 | 			bit_pos++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_name.name = d.filename[bit_pos]; | 
 | 		new_name.len = le16_to_cpu(de->name_len); | 
 |  | 
 | 		ino = le32_to_cpu(de->ino); | 
 | 		fake_mode = f2fs_get_de_type(de) << S_SHIFT; | 
 |  | 
 | 		err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL, | 
 | 							ino, fake_mode); | 
 | 		if (err) | 
 | 			goto punch_dentry_pages; | 
 |  | 
 | 		bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); | 
 | 	} | 
 | 	return 0; | 
 | punch_dentry_pages: | 
 | 	truncate_inode_pages(&dir->i_data, 0); | 
 | 	f2fs_truncate_blocks(dir, 0, false); | 
 | 	f2fs_remove_dirty_inode(dir); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, | 
 | 							void *inline_dentry) | 
 | { | 
 | 	void *backup_dentry; | 
 | 	int err; | 
 |  | 
 | 	backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), | 
 | 				MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); | 
 | 	if (!backup_dentry) { | 
 | 		f2fs_put_page(ipage, 1); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); | 
 | 	f2fs_truncate_inline_inode(dir, ipage, 0); | 
 |  | 
 | 	unlock_page(ipage); | 
 |  | 
 | 	err = f2fs_add_inline_entries(dir, backup_dentry); | 
 | 	if (err) | 
 | 		goto recover; | 
 |  | 
 | 	lock_page(ipage); | 
 |  | 
 | 	stat_dec_inline_dir(dir); | 
 | 	clear_inode_flag(dir, FI_INLINE_DENTRY); | 
 |  | 
 | 	/* | 
 | 	 * should retrieve reserved space which was used to keep | 
 | 	 * inline_dentry's structure for backward compatibility. | 
 | 	 */ | 
 | 	if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && | 
 | 			!f2fs_has_inline_xattr(dir)) | 
 | 		F2FS_I(dir)->i_inline_xattr_size = 0; | 
 |  | 
 | 	kvfree(backup_dentry); | 
 | 	return 0; | 
 | recover: | 
 | 	lock_page(ipage); | 
 | 	f2fs_wait_on_page_writeback(ipage, NODE, true, true); | 
 | 	memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); | 
 | 	f2fs_i_depth_write(dir, 0); | 
 | 	f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); | 
 | 	set_page_dirty(ipage); | 
 | 	f2fs_put_page(ipage, 1); | 
 |  | 
 | 	kvfree(backup_dentry); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage, | 
 | 							void *inline_dentry) | 
 | { | 
 | 	if (!F2FS_I(dir)->i_dir_level) | 
 | 		return f2fs_move_inline_dirents(dir, ipage, inline_dentry); | 
 | 	else | 
 | 		return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); | 
 | } | 
 |  | 
 | int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, | 
 | 				const struct qstr *orig_name, | 
 | 				struct inode *inode, nid_t ino, umode_t mode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(dir); | 
 | 	struct page *ipage; | 
 | 	unsigned int bit_pos; | 
 | 	f2fs_hash_t name_hash; | 
 | 	void *inline_dentry = NULL; | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	int slots = GET_DENTRY_SLOTS(new_name->len); | 
 | 	struct page *page = NULL; | 
 | 	int err = 0; | 
 |  | 
 | 	ipage = f2fs_get_node_page(sbi, dir->i_ino); | 
 | 	if (IS_ERR(ipage)) | 
 | 		return PTR_ERR(ipage); | 
 |  | 
 | 	inline_dentry = inline_data_addr(dir, ipage); | 
 | 	make_dentry_ptr_inline(dir, &d, inline_dentry); | 
 |  | 
 | 	bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); | 
 | 	if (bit_pos >= d.max) { | 
 | 		err = f2fs_convert_inline_dir(dir, ipage, inline_dentry); | 
 | 		if (err) | 
 | 			return err; | 
 | 		err = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (inode) { | 
 | 		down_write(&F2FS_I(inode)->i_sem); | 
 | 		page = f2fs_init_inode_metadata(inode, dir, new_name, | 
 | 						orig_name, ipage); | 
 | 		if (IS_ERR(page)) { | 
 | 			err = PTR_ERR(page); | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	f2fs_wait_on_page_writeback(ipage, NODE, true, true); | 
 |  | 
 | 	name_hash = f2fs_dentry_hash(dir, new_name, NULL); | 
 | 	f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos); | 
 |  | 
 | 	set_page_dirty(ipage); | 
 |  | 
 | 	/* we don't need to mark_inode_dirty now */ | 
 | 	if (inode) { | 
 | 		f2fs_i_pino_write(inode, dir->i_ino); | 
 |  | 
 | 		/* synchronize inode page's data from inode cache */ | 
 | 		if (is_inode_flag_set(inode, FI_NEW_INODE)) | 
 | 			f2fs_update_inode(inode, page); | 
 |  | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 |  | 
 | 	f2fs_update_parent_metadata(dir, inode, 0); | 
 | fail: | 
 | 	if (inode) | 
 | 		up_write(&F2FS_I(inode)->i_sem); | 
 | out: | 
 | 	f2fs_put_page(ipage, 1); | 
 | 	return err; | 
 | } | 
 |  | 
 | void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, | 
 | 					struct inode *dir, struct inode *inode) | 
 | { | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	void *inline_dentry; | 
 | 	int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); | 
 | 	unsigned int bit_pos; | 
 | 	int i; | 
 |  | 
 | 	lock_page(page); | 
 | 	f2fs_wait_on_page_writeback(page, NODE, true, true); | 
 |  | 
 | 	inline_dentry = inline_data_addr(dir, page); | 
 | 	make_dentry_ptr_inline(dir, &d, inline_dentry); | 
 |  | 
 | 	bit_pos = dentry - d.dentry; | 
 | 	for (i = 0; i < slots; i++) | 
 | 		__clear_bit_le(bit_pos + i, d.bitmap); | 
 |  | 
 | 	set_page_dirty(page); | 
 | 	f2fs_put_page(page, 1); | 
 |  | 
 | 	dir->i_ctime = dir->i_mtime = current_time(dir); | 
 | 	f2fs_mark_inode_dirty_sync(dir, false); | 
 |  | 
 | 	if (inode) | 
 | 		f2fs_drop_nlink(dir, inode); | 
 | } | 
 |  | 
 | bool f2fs_empty_inline_dir(struct inode *dir) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(dir); | 
 | 	struct page *ipage; | 
 | 	unsigned int bit_pos = 2; | 
 | 	void *inline_dentry; | 
 | 	struct f2fs_dentry_ptr d; | 
 |  | 
 | 	ipage = f2fs_get_node_page(sbi, dir->i_ino); | 
 | 	if (IS_ERR(ipage)) | 
 | 		return false; | 
 |  | 
 | 	inline_dentry = inline_data_addr(dir, ipage); | 
 | 	make_dentry_ptr_inline(dir, &d, inline_dentry); | 
 |  | 
 | 	bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); | 
 |  | 
 | 	f2fs_put_page(ipage, 1); | 
 |  | 
 | 	if (bit_pos < d.max) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, | 
 | 				struct fscrypt_str *fstr) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct page *ipage = NULL; | 
 | 	struct f2fs_dentry_ptr d; | 
 | 	void *inline_dentry = NULL; | 
 | 	int err; | 
 |  | 
 | 	make_dentry_ptr_inline(inode, &d, inline_dentry); | 
 |  | 
 | 	if (ctx->pos == d.max) | 
 | 		return 0; | 
 |  | 
 | 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); | 
 | 	if (IS_ERR(ipage)) | 
 | 		return PTR_ERR(ipage); | 
 |  | 
 | 	/* | 
 | 	 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access | 
 | 	 * ipage without page's lock held. | 
 | 	 */ | 
 | 	unlock_page(ipage); | 
 |  | 
 | 	inline_dentry = inline_data_addr(inode, ipage); | 
 |  | 
 | 	make_dentry_ptr_inline(inode, &d, inline_dentry); | 
 |  | 
 | 	err = f2fs_fill_dentries(ctx, &d, 0, fstr); | 
 | 	if (!err) | 
 | 		ctx->pos = d.max; | 
 |  | 
 | 	f2fs_put_page(ipage, 0); | 
 | 	return err < 0 ? err : 0; | 
 | } | 
 |  | 
 | int f2fs_inline_data_fiemap(struct inode *inode, | 
 | 		struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) | 
 | { | 
 | 	__u64 byteaddr, ilen; | 
 | 	__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | | 
 | 		FIEMAP_EXTENT_LAST; | 
 | 	struct node_info ni; | 
 | 	struct page *ipage; | 
 | 	int err = 0; | 
 |  | 
 | 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); | 
 | 	if (IS_ERR(ipage)) | 
 | 		return PTR_ERR(ipage); | 
 |  | 
 | 	if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && | 
 | 				!f2fs_has_inline_data(inode)) { | 
 | 		err = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { | 
 | 		err = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); | 
 | 	if (start >= ilen) | 
 | 		goto out; | 
 | 	if (start + len < ilen) | 
 | 		ilen = start + len; | 
 | 	ilen -= start; | 
 |  | 
 | 	err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; | 
 | 	byteaddr += (char *)inline_data_addr(inode, ipage) - | 
 | 					(char *)F2FS_INODE(ipage); | 
 | 	err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); | 
 | out: | 
 | 	f2fs_put_page(ipage, 1); | 
 | 	return err; | 
 | } |