| // SPDX-License-Identifier: GPL-2.0 | 
 | // Copyright (c) 2014 Samsung Electronics Co., Ltd. | 
 | //		http://www.samsung.com | 
 | // | 
 | // Based on arch/arm/mach-vexpress/dcscb.c | 
 |  | 
 | #include <linux/arm-cci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/io.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/soc/samsung/exynos-regs-pmu.h> | 
 |  | 
 | #include <asm/cputype.h> | 
 | #include <asm/cp15.h> | 
 | #include <asm/mcpm.h> | 
 | #include <asm/smp_plat.h> | 
 |  | 
 | #include "common.h" | 
 |  | 
 | #define EXYNOS5420_CPUS_PER_CLUSTER	4 | 
 | #define EXYNOS5420_NR_CLUSTERS		2 | 
 |  | 
 | #define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN	BIT(9) | 
 | #define EXYNOS5420_USE_ARM_CORE_DOWN_STATE	BIT(29) | 
 | #define EXYNOS5420_USE_L2_COMMON_UP_STATE	BIT(30) | 
 |  | 
 | static void __iomem *ns_sram_base_addr __ro_after_init; | 
 |  | 
 | /* | 
 |  * The common v7_exit_coherency_flush API could not be used because of the | 
 |  * Erratum 799270 workaround. This macro is the same as the common one (in | 
 |  * arch/arm/include/asm/cacheflush.h) except for the erratum handling. | 
 |  */ | 
 | #define exynos_v7_exit_coherency_flush(level) \ | 
 | 	asm volatile( \ | 
 | 	"stmfd	sp!, {fp, ip}\n\t"\ | 
 | 	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR\n\t" \ | 
 | 	"bic	r0, r0, #"__stringify(CR_C)"\n\t" \ | 
 | 	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR\n\t" \ | 
 | 	"isb\n\t"\ | 
 | 	"bl	v7_flush_dcache_"__stringify(level)"\n\t" \ | 
 | 	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR\n\t" \ | 
 | 	"bic	r0, r0, #(1 << 6)	@ disable local coherency\n\t" \ | 
 | 	/* Dummy Load of a device register to avoid Erratum 799270 */ \ | 
 | 	"ldr	r4, [%0]\n\t" \ | 
 | 	"and	r4, r4, #0\n\t" \ | 
 | 	"orr	r0, r0, r4\n\t" \ | 
 | 	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR\n\t" \ | 
 | 	"isb\n\t" \ | 
 | 	"dsb\n\t" \ | 
 | 	"ldmfd	sp!, {fp, ip}" \ | 
 | 	: \ | 
 | 	: "Ir" (pmu_base_addr + S5P_INFORM0) \ | 
 | 	: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ | 
 | 	  "r9", "r10", "lr", "memory") | 
 |  | 
 | static int exynos_cpu_powerup(unsigned int cpu, unsigned int cluster) | 
 | { | 
 | 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); | 
 |  | 
 | 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); | 
 | 	if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER || | 
 | 		cluster >= EXYNOS5420_NR_CLUSTERS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!exynos_cpu_power_state(cpunr)) { | 
 | 		exynos_cpu_power_up(cpunr); | 
 |  | 
 | 		/* | 
 | 		 * This assumes the cluster number of the big cores(Cortex A15) | 
 | 		 * is 0 and the Little cores(Cortex A7) is 1. | 
 | 		 * When the system was booted from the Little core, | 
 | 		 * they should be reset during power up cpu. | 
 | 		 */ | 
 | 		if (cluster && | 
 | 		    cluster == MPIDR_AFFINITY_LEVEL(cpu_logical_map(0), 1)) { | 
 | 			/* | 
 | 			 * Before we reset the Little cores, we should wait | 
 | 			 * the SPARE2 register is set to 1 because the init | 
 | 			 * codes of the iROM will set the register after | 
 | 			 * initialization. | 
 | 			 */ | 
 | 			while (!pmu_raw_readl(S5P_PMU_SPARE2)) | 
 | 				udelay(10); | 
 |  | 
 | 			pmu_raw_writel(EXYNOS5420_KFC_CORE_RESET(cpu), | 
 | 					EXYNOS_SWRESET); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int exynos_cluster_powerup(unsigned int cluster) | 
 | { | 
 | 	pr_debug("%s: cluster %u\n", __func__, cluster); | 
 | 	if (cluster >= EXYNOS5420_NR_CLUSTERS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	exynos_cluster_power_up(cluster); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void exynos_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster) | 
 | { | 
 | 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); | 
 |  | 
 | 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); | 
 | 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || | 
 | 			cluster >= EXYNOS5420_NR_CLUSTERS); | 
 | 	exynos_cpu_power_down(cpunr); | 
 | } | 
 |  | 
 | static void exynos_cluster_powerdown_prepare(unsigned int cluster) | 
 | { | 
 | 	pr_debug("%s: cluster %u\n", __func__, cluster); | 
 | 	BUG_ON(cluster >= EXYNOS5420_NR_CLUSTERS); | 
 | 	exynos_cluster_power_down(cluster); | 
 | } | 
 |  | 
 | static void exynos_cpu_cache_disable(void) | 
 | { | 
 | 	/* Disable and flush the local CPU cache. */ | 
 | 	exynos_v7_exit_coherency_flush(louis); | 
 | } | 
 |  | 
 | static void exynos_cluster_cache_disable(void) | 
 | { | 
 | 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { | 
 | 		/* | 
 | 		 * On the Cortex-A15 we need to disable | 
 | 		 * L2 prefetching before flushing the cache. | 
 | 		 */ | 
 | 		asm volatile( | 
 | 		"mcr	p15, 1, %0, c15, c0, 3\n\t" | 
 | 		"isb\n\t" | 
 | 		"dsb" | 
 | 		: : "r" (0x400)); | 
 | 	} | 
 |  | 
 | 	/* Flush all cache levels for this cluster. */ | 
 | 	exynos_v7_exit_coherency_flush(all); | 
 |  | 
 | 	/* | 
 | 	 * Disable cluster-level coherency by masking | 
 | 	 * incoming snoops and DVM messages: | 
 | 	 */ | 
 | 	cci_disable_port_by_cpu(read_cpuid_mpidr()); | 
 | } | 
 |  | 
 | static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster) | 
 | { | 
 | 	unsigned int tries = 100; | 
 | 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER); | 
 |  | 
 | 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); | 
 | 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER || | 
 | 			cluster >= EXYNOS5420_NR_CLUSTERS); | 
 |  | 
 | 	/* Wait for the core state to be OFF */ | 
 | 	while (tries--) { | 
 | 		if ((exynos_cpu_power_state(cpunr) == 0)) | 
 | 			return 0; /* success: the CPU is halted */ | 
 |  | 
 | 		/* Otherwise, wait and retry: */ | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	return -ETIMEDOUT; /* timeout */ | 
 | } | 
 |  | 
 | static void exynos_cpu_is_up(unsigned int cpu, unsigned int cluster) | 
 | { | 
 | 	/* especially when resuming: make sure power control is set */ | 
 | 	exynos_cpu_powerup(cpu, cluster); | 
 | } | 
 |  | 
 | static const struct mcpm_platform_ops exynos_power_ops = { | 
 | 	.cpu_powerup		= exynos_cpu_powerup, | 
 | 	.cluster_powerup	= exynos_cluster_powerup, | 
 | 	.cpu_powerdown_prepare	= exynos_cpu_powerdown_prepare, | 
 | 	.cluster_powerdown_prepare = exynos_cluster_powerdown_prepare, | 
 | 	.cpu_cache_disable	= exynos_cpu_cache_disable, | 
 | 	.cluster_cache_disable	= exynos_cluster_cache_disable, | 
 | 	.wait_for_powerdown	= exynos_wait_for_powerdown, | 
 | 	.cpu_is_up		= exynos_cpu_is_up, | 
 | }; | 
 |  | 
 | /* | 
 |  * Enable cluster-level coherency, in preparation for turning on the MMU. | 
 |  */ | 
 | static void __naked exynos_pm_power_up_setup(unsigned int affinity_level) | 
 | { | 
 | 	asm volatile ("\n" | 
 | 	"cmp	r0, #1\n" | 
 | 	"bxne	lr\n" | 
 | 	"b	cci_enable_port_for_self"); | 
 | } | 
 |  | 
 | static const struct of_device_id exynos_dt_mcpm_match[] = { | 
 | 	{ .compatible = "samsung,exynos5420" }, | 
 | 	{ .compatible = "samsung,exynos5800" }, | 
 | 	{}, | 
 | }; | 
 |  | 
 | static void exynos_mcpm_setup_entry_point(void) | 
 | { | 
 | 	/* | 
 | 	 * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr | 
 | 	 * as part of secondary_cpu_start().  Let's redirect it to the | 
 | 	 * mcpm_entry_point(). This is done during both secondary boot-up as | 
 | 	 * well as system resume. | 
 | 	 */ | 
 | 	__raw_writel(0xe59f0000, ns_sram_base_addr);     /* ldr r0, [pc, #0] */ | 
 | 	__raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx  r0 */ | 
 | 	__raw_writel(__pa_symbol(mcpm_entry_point), ns_sram_base_addr + 8); | 
 | } | 
 |  | 
 | static struct syscore_ops exynos_mcpm_syscore_ops = { | 
 | 	.resume	= exynos_mcpm_setup_entry_point, | 
 | }; | 
 |  | 
 | static int __init exynos_mcpm_init(void) | 
 | { | 
 | 	struct device_node *node; | 
 | 	unsigned int value, i; | 
 | 	int ret; | 
 |  | 
 | 	node = of_find_matching_node(NULL, exynos_dt_mcpm_match); | 
 | 	if (!node) | 
 | 		return -ENODEV; | 
 | 	of_node_put(node); | 
 |  | 
 | 	if (!cci_probed()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	node = of_find_compatible_node(NULL, NULL, | 
 | 			"samsung,exynos4210-sysram-ns"); | 
 | 	if (!node) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ns_sram_base_addr = of_iomap(node, 0); | 
 | 	of_node_put(node); | 
 | 	if (!ns_sram_base_addr) { | 
 | 		pr_err("failed to map non-secure iRAM base address\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * To increase the stability of KFC reset we need to program | 
 | 	 * the PMU SPARE3 register | 
 | 	 */ | 
 | 	pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3); | 
 |  | 
 | 	ret = mcpm_platform_register(&exynos_power_ops); | 
 | 	if (!ret) | 
 | 		ret = mcpm_sync_init(exynos_pm_power_up_setup); | 
 | 	if (!ret) | 
 | 		ret = mcpm_loopback(exynos_cluster_cache_disable); /* turn on the CCI */ | 
 | 	if (ret) { | 
 | 		iounmap(ns_sram_base_addr); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	mcpm_smp_set_ops(); | 
 |  | 
 | 	pr_info("Exynos MCPM support installed\n"); | 
 |  | 
 | 	/* | 
 | 	 * On Exynos5420/5800 for the A15 and A7 clusters: | 
 | 	 * | 
 | 	 * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores | 
 | 	 * in a cluster are turned off before turning off the cluster L2. | 
 | 	 * | 
 | 	 * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered | 
 | 	 * off before waking it up. | 
 | 	 * | 
 | 	 * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be | 
 | 	 * turned on before the first man is powered up. | 
 | 	 */ | 
 | 	for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) { | 
 | 		value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i)); | 
 | 		value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN | | 
 | 			 EXYNOS5420_USE_ARM_CORE_DOWN_STATE    | | 
 | 			 EXYNOS5420_USE_L2_COMMON_UP_STATE; | 
 | 		pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i)); | 
 | 	} | 
 |  | 
 | 	exynos_mcpm_setup_entry_point(); | 
 |  | 
 | 	register_syscore_ops(&exynos_mcpm_syscore_ops); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | early_initcall(exynos_mcpm_init); |