| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Copyright (C) 2016 Oracle.  All Rights Reserved. | 
 |  * Author: Darrick J. Wong <darrick.wong@oracle.com> | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_defer.h" | 
 | #include "xfs_da_format.h" | 
 | #include "xfs_da_btree.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_dir2_priv.h" | 
 | #include "xfs_ioctl.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_pnfs.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_refcount_btree.h" | 
 | #include "xfs_refcount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_trans_space.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_quota_defs.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_reflink.h" | 
 | #include "xfs_iomap.h" | 
 | #include "xfs_rmap_btree.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag_resv.h" | 
 |  | 
 | /* | 
 |  * Copy on Write of Shared Blocks | 
 |  * | 
 |  * XFS must preserve "the usual" file semantics even when two files share | 
 |  * the same physical blocks.  This means that a write to one file must not | 
 |  * alter the blocks in a different file; the way that we'll do that is | 
 |  * through the use of a copy-on-write mechanism.  At a high level, that | 
 |  * means that when we want to write to a shared block, we allocate a new | 
 |  * block, write the data to the new block, and if that succeeds we map the | 
 |  * new block into the file. | 
 |  * | 
 |  * XFS provides a "delayed allocation" mechanism that defers the allocation | 
 |  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as | 
 |  * possible.  This reduces fragmentation by enabling the filesystem to ask | 
 |  * for bigger chunks less often, which is exactly what we want for CoW. | 
 |  * | 
 |  * The delalloc mechanism begins when the kernel wants to make a block | 
 |  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we | 
 |  * create a delalloc mapping, which is a regular in-core extent, but without | 
 |  * a real startblock.  (For delalloc mappings, the startblock encodes both | 
 |  * a flag that this is a delalloc mapping, and a worst-case estimate of how | 
 |  * many blocks might be required to put the mapping into the BMBT.)  delalloc | 
 |  * mappings are a reservation against the free space in the filesystem; | 
 |  * adjacent mappings can also be combined into fewer larger mappings. | 
 |  * | 
 |  * As an optimization, the CoW extent size hint (cowextsz) creates | 
 |  * outsized aligned delalloc reservations in the hope of landing out of | 
 |  * order nearby CoW writes in a single extent on disk, thereby reducing | 
 |  * fragmentation and improving future performance. | 
 |  * | 
 |  * D: --RRRRRRSSSRRRRRRRR--- (data fork) | 
 |  * C: ------DDDDDDD--------- (CoW fork) | 
 |  * | 
 |  * When dirty pages are being written out (typically in writepage), the | 
 |  * delalloc reservations are converted into unwritten mappings by | 
 |  * allocating blocks and replacing the delalloc mapping with real ones. | 
 |  * A delalloc mapping can be replaced by several unwritten ones if the | 
 |  * free space is fragmented. | 
 |  * | 
 |  * D: --RRRRRRSSSRRRRRRRR--- | 
 |  * C: ------UUUUUUU--------- | 
 |  * | 
 |  * We want to adapt the delalloc mechanism for copy-on-write, since the | 
 |  * write paths are similar.  The first two steps (creating the reservation | 
 |  * and allocating the blocks) are exactly the same as delalloc except that | 
 |  * the mappings must be stored in a separate CoW fork because we do not want | 
 |  * to disturb the mapping in the data fork until we're sure that the write | 
 |  * succeeded.  IO completion in this case is the process of removing the old | 
 |  * mapping from the data fork and moving the new mapping from the CoW fork to | 
 |  * the data fork.  This will be discussed shortly. | 
 |  * | 
 |  * For now, unaligned directio writes will be bounced back to the page cache. | 
 |  * Block-aligned directio writes will use the same mechanism as buffered | 
 |  * writes. | 
 |  * | 
 |  * Just prior to submitting the actual disk write requests, we convert | 
 |  * the extents representing the range of the file actually being written | 
 |  * (as opposed to extra pieces created for the cowextsize hint) to real | 
 |  * extents.  This will become important in the next step: | 
 |  * | 
 |  * D: --RRRRRRSSSRRRRRRRR--- | 
 |  * C: ------UUrrUUU--------- | 
 |  * | 
 |  * CoW remapping must be done after the data block write completes, | 
 |  * because we don't want to destroy the old data fork map until we're sure | 
 |  * the new block has been written.  Since the new mappings are kept in a | 
 |  * separate fork, we can simply iterate these mappings to find the ones | 
 |  * that cover the file blocks that we just CoW'd.  For each extent, simply | 
 |  * unmap the corresponding range in the data fork, map the new range into | 
 |  * the data fork, and remove the extent from the CoW fork.  Because of | 
 |  * the presence of the cowextsize hint, however, we must be careful | 
 |  * only to remap the blocks that we've actually written out --  we must | 
 |  * never remap delalloc reservations nor CoW staging blocks that have | 
 |  * yet to be written.  This corresponds exactly to the real extents in | 
 |  * the CoW fork: | 
 |  * | 
 |  * D: --RRRRRRrrSRRRRRRRR--- | 
 |  * C: ------UU--UUU--------- | 
 |  * | 
 |  * Since the remapping operation can be applied to an arbitrary file | 
 |  * range, we record the need for the remap step as a flag in the ioend | 
 |  * instead of declaring a new IO type.  This is required for direct io | 
 |  * because we only have ioend for the whole dio, and we have to be able to | 
 |  * remember the presence of unwritten blocks and CoW blocks with a single | 
 |  * ioend structure.  Better yet, the more ground we can cover with one | 
 |  * ioend, the better. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Given an AG extent, find the lowest-numbered run of shared blocks | 
 |  * within that range and return the range in fbno/flen.  If | 
 |  * find_end_of_shared is true, return the longest contiguous extent of | 
 |  * shared blocks.  If there are no shared extents, fbno and flen will | 
 |  * be set to NULLAGBLOCK and 0, respectively. | 
 |  */ | 
 | int | 
 | xfs_reflink_find_shared( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_trans	*tp, | 
 | 	xfs_agnumber_t		agno, | 
 | 	xfs_agblock_t		agbno, | 
 | 	xfs_extlen_t		aglen, | 
 | 	xfs_agblock_t		*fbno, | 
 | 	xfs_extlen_t		*flen, | 
 | 	bool			find_end_of_shared) | 
 | { | 
 | 	struct xfs_buf		*agbp; | 
 | 	struct xfs_btree_cur	*cur; | 
 | 	int			error; | 
 |  | 
 | 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); | 
 | 	if (error) | 
 | 		return error; | 
 | 	if (!agbp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno); | 
 |  | 
 | 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, | 
 | 			find_end_of_shared); | 
 |  | 
 | 	xfs_btree_del_cursor(cur, error); | 
 |  | 
 | 	xfs_trans_brelse(tp, agbp); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Trim the mapping to the next block where there's a change in the | 
 |  * shared/unshared status.  More specifically, this means that we | 
 |  * find the lowest-numbered extent of shared blocks that coincides with | 
 |  * the given block mapping.  If the shared extent overlaps the start of | 
 |  * the mapping, trim the mapping to the end of the shared extent.  If | 
 |  * the shared region intersects the mapping, trim the mapping to the | 
 |  * start of the shared extent.  If there are no shared regions that | 
 |  * overlap, just return the original extent. | 
 |  */ | 
 | int | 
 | xfs_reflink_trim_around_shared( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_bmbt_irec	*irec, | 
 | 	bool			*shared, | 
 | 	bool			*trimmed) | 
 | { | 
 | 	xfs_agnumber_t		agno; | 
 | 	xfs_agblock_t		agbno; | 
 | 	xfs_extlen_t		aglen; | 
 | 	xfs_agblock_t		fbno; | 
 | 	xfs_extlen_t		flen; | 
 | 	int			error = 0; | 
 |  | 
 | 	/* Holes, unwritten, and delalloc extents cannot be shared */ | 
 | 	if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) { | 
 | 		*shared = false; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	trace_xfs_reflink_trim_around_shared(ip, irec); | 
 |  | 
 | 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock); | 
 | 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock); | 
 | 	aglen = irec->br_blockcount; | 
 |  | 
 | 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno, | 
 | 			aglen, &fbno, &flen, true); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	*shared = *trimmed = false; | 
 | 	if (fbno == NULLAGBLOCK) { | 
 | 		/* No shared blocks at all. */ | 
 | 		return 0; | 
 | 	} else if (fbno == agbno) { | 
 | 		/* | 
 | 		 * The start of this extent is shared.  Truncate the | 
 | 		 * mapping at the end of the shared region so that a | 
 | 		 * subsequent iteration starts at the start of the | 
 | 		 * unshared region. | 
 | 		 */ | 
 | 		irec->br_blockcount = flen; | 
 | 		*shared = true; | 
 | 		if (flen != aglen) | 
 | 			*trimmed = true; | 
 | 		return 0; | 
 | 	} else { | 
 | 		/* | 
 | 		 * There's a shared extent midway through this extent. | 
 | 		 * Truncate the mapping at the start of the shared | 
 | 		 * extent so that a subsequent iteration starts at the | 
 | 		 * start of the shared region. | 
 | 		 */ | 
 | 		irec->br_blockcount = fbno - agbno; | 
 | 		*trimmed = true; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Trim the passed in imap to the next shared/unshared extent boundary, and | 
 |  * if imap->br_startoff points to a shared extent reserve space for it in the | 
 |  * COW fork.  In this case *shared is set to true, else to false. | 
 |  * | 
 |  * Note that imap will always contain the block numbers for the existing blocks | 
 |  * in the data fork, as the upper layers need them for read-modify-write | 
 |  * operations. | 
 |  */ | 
 | int | 
 | xfs_reflink_reserve_cow( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	bool			*shared) | 
 | { | 
 | 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
 | 	struct xfs_bmbt_irec	got; | 
 | 	int			error = 0; | 
 | 	bool			eof = false, trimmed; | 
 | 	struct xfs_iext_cursor	icur; | 
 |  | 
 | 	/* | 
 | 	 * Search the COW fork extent list first.  This serves two purposes: | 
 | 	 * first this implement the speculative preallocation using cowextisze, | 
 | 	 * so that we also unshared block adjacent to shared blocks instead | 
 | 	 * of just the shared blocks themselves.  Second the lookup in the | 
 | 	 * extent list is generally faster than going out to the shared extent | 
 | 	 * tree. | 
 | 	 */ | 
 |  | 
 | 	if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got)) | 
 | 		eof = true; | 
 | 	if (!eof && got.br_startoff <= imap->br_startoff) { | 
 | 		trace_xfs_reflink_cow_found(ip, imap); | 
 | 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount); | 
 |  | 
 | 		*shared = true; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Trim the mapping to the nearest shared extent boundary. */ | 
 | 	error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* Not shared?  Just report the (potentially capped) extent. */ | 
 | 	if (!*shared) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Fork all the shared blocks from our write offset until the end of | 
 | 	 * the extent. | 
 | 	 */ | 
 | 	error = xfs_qm_dqattach_locked(ip, false); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff, | 
 | 			imap->br_blockcount, 0, &got, &icur, eof); | 
 | 	if (error == -ENOSPC || error == -EDQUOT) | 
 | 		trace_xfs_reflink_cow_enospc(ip, imap); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_trim_extent(imap, got.br_startoff, got.br_blockcount); | 
 | 	trace_xfs_reflink_cow_alloc(ip, &got); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Convert part of an unwritten CoW extent to a real one. */ | 
 | STATIC int | 
 | xfs_reflink_convert_cow_extent( | 
 | 	struct xfs_inode		*ip, | 
 | 	struct xfs_bmbt_irec		*imap, | 
 | 	xfs_fileoff_t			offset_fsb, | 
 | 	xfs_filblks_t			count_fsb) | 
 | { | 
 | 	int				nimaps = 1; | 
 |  | 
 | 	if (imap->br_state == XFS_EXT_NORM) | 
 | 		return 0; | 
 |  | 
 | 	xfs_trim_extent(imap, offset_fsb, count_fsb); | 
 | 	trace_xfs_reflink_convert_cow(ip, imap); | 
 | 	if (imap->br_blockcount == 0) | 
 | 		return 0; | 
 | 	return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount, | 
 | 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap, | 
 | 			&nimaps); | 
 | } | 
 |  | 
 | /* Convert all of the unwritten CoW extents in a file's range to real ones. */ | 
 | int | 
 | xfs_reflink_convert_cow( | 
 | 	struct xfs_inode	*ip, | 
 | 	xfs_off_t		offset, | 
 | 	xfs_off_t		count) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
 | 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count); | 
 | 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb; | 
 | 	struct xfs_bmbt_irec	imap; | 
 | 	int			nimaps = 1, error = 0; | 
 |  | 
 | 	ASSERT(count != 0); | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb, | 
 | 			XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT | | 
 | 			XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the extent that maps the given range in the COW fork. Even if the extent | 
 |  * is not shared we might have a preallocation for it in the COW fork. If so we | 
 |  * use it that rather than trigger a new allocation. | 
 |  */ | 
 | static int | 
 | xfs_find_trim_cow_extent( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	bool			*shared, | 
 | 	bool			*found) | 
 | { | 
 | 	xfs_fileoff_t		offset_fsb = imap->br_startoff; | 
 | 	xfs_filblks_t		count_fsb = imap->br_blockcount; | 
 | 	struct xfs_iext_cursor	icur; | 
 | 	struct xfs_bmbt_irec	got; | 
 | 	bool			trimmed; | 
 |  | 
 | 	*found = false; | 
 |  | 
 | 	/* | 
 | 	 * If we don't find an overlapping extent, trim the range we need to | 
 | 	 * allocate to fit the hole we found. | 
 | 	 */ | 
 | 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) || | 
 | 	    got.br_startoff > offset_fsb) | 
 | 		return xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed); | 
 |  | 
 | 	*shared = true; | 
 | 	if (isnullstartblock(got.br_startblock)) { | 
 | 		xfs_trim_extent(imap, got.br_startoff, got.br_blockcount); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* real extent found - no need to allocate */ | 
 | 	xfs_trim_extent(&got, offset_fsb, count_fsb); | 
 | 	*imap = got; | 
 | 	*found = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Allocate all CoW reservations covering a range of blocks in a file. */ | 
 | int | 
 | xfs_reflink_allocate_cow( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	bool			*shared, | 
 | 	uint			*lockmode) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	xfs_fileoff_t		offset_fsb = imap->br_startoff; | 
 | 	xfs_filblks_t		count_fsb = imap->br_blockcount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			nimaps, error = 0; | 
 | 	bool			found; | 
 | 	xfs_filblks_t		resaligned; | 
 | 	xfs_extlen_t		resblks = 0; | 
 |  | 
 | 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
 | 	ASSERT(xfs_is_reflink_inode(ip)); | 
 |  | 
 | 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found); | 
 | 	if (error || !*shared) | 
 | 		return error; | 
 | 	if (found) | 
 | 		goto convert; | 
 |  | 
 | 	resaligned = xfs_aligned_fsb_count(imap->br_startoff, | 
 | 		imap->br_blockcount, xfs_get_cowextsz_hint(ip)); | 
 | 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); | 
 |  | 
 | 	xfs_iunlock(ip, *lockmode); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); | 
 | 	*lockmode = XFS_ILOCK_EXCL; | 
 | 	xfs_ilock(ip, *lockmode); | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	error = xfs_qm_dqattach_locked(ip, false); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	/* | 
 | 	 * Check for an overlapping extent again now that we dropped the ilock. | 
 | 	 */ | 
 | 	error = xfs_find_trim_cow_extent(ip, imap, shared, &found); | 
 | 	if (error || !*shared) | 
 | 		goto out_trans_cancel; | 
 | 	if (found) { | 
 | 		xfs_trans_cancel(tp); | 
 | 		goto convert; | 
 | 	} | 
 |  | 
 | 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0, | 
 | 			XFS_QMOPT_RES_REGBLKS); | 
 | 	if (error) | 
 | 		goto out_trans_cancel; | 
 |  | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* Allocate the entire reservation as unwritten blocks. */ | 
 | 	nimaps = 1; | 
 | 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, | 
 | 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, | 
 | 			resblks, imap, &nimaps); | 
 | 	if (error) | 
 | 		goto out_unreserve; | 
 |  | 
 | 	xfs_inode_set_cowblocks_tag(ip); | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * Allocation succeeded but the requested range was not even partially | 
 | 	 * satisfied?  Bail out! | 
 | 	 */ | 
 | 	if (nimaps == 0) | 
 | 		return -ENOSPC; | 
 | convert: | 
 | 	return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb); | 
 |  | 
 | out_unreserve: | 
 | 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0, | 
 | 			XFS_QMOPT_RES_REGBLKS); | 
 | out_trans_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel CoW reservations for some block range of an inode. | 
 |  * | 
 |  * If cancel_real is true this function cancels all COW fork extents for the | 
 |  * inode; if cancel_real is false, real extents are not cleared. | 
 |  * | 
 |  * Caller must have already joined the inode to the current transaction. The | 
 |  * inode will be joined to the transaction returned to the caller. | 
 |  */ | 
 | int | 
 | xfs_reflink_cancel_cow_blocks( | 
 | 	struct xfs_inode		*ip, | 
 | 	struct xfs_trans		**tpp, | 
 | 	xfs_fileoff_t			offset_fsb, | 
 | 	xfs_fileoff_t			end_fsb, | 
 | 	bool				cancel_real) | 
 | { | 
 | 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
 | 	struct xfs_bmbt_irec		got, del; | 
 | 	struct xfs_iext_cursor		icur; | 
 | 	int				error = 0; | 
 |  | 
 | 	if (!xfs_inode_has_cow_data(ip)) | 
 | 		return 0; | 
 | 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) | 
 | 		return 0; | 
 |  | 
 | 	/* Walk backwards until we're out of the I/O range... */ | 
 | 	while (got.br_startoff + got.br_blockcount > offset_fsb) { | 
 | 		del = got; | 
 | 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); | 
 |  | 
 | 		/* Extent delete may have bumped ext forward */ | 
 | 		if (!del.br_blockcount) { | 
 | 			xfs_iext_prev(ifp, &icur); | 
 | 			goto next_extent; | 
 | 		} | 
 |  | 
 | 		trace_xfs_reflink_cancel_cow(ip, &del); | 
 |  | 
 | 		if (isnullstartblock(del.br_startblock)) { | 
 | 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, | 
 | 					&icur, &got, &del); | 
 | 			if (error) | 
 | 				break; | 
 | 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { | 
 | 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK); | 
 |  | 
 | 			/* Free the CoW orphan record. */ | 
 | 			error = xfs_refcount_free_cow_extent(*tpp, | 
 | 					del.br_startblock, del.br_blockcount); | 
 | 			if (error) | 
 | 				break; | 
 |  | 
 | 			xfs_bmap_add_free(*tpp, del.br_startblock, | 
 | 					  del.br_blockcount, NULL); | 
 |  | 
 | 			/* Roll the transaction */ | 
 | 			error = xfs_defer_finish(tpp); | 
 | 			if (error) | 
 | 				break; | 
 |  | 
 | 			/* Remove the mapping from the CoW fork. */ | 
 | 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del); | 
 |  | 
 | 			/* Remove the quota reservation */ | 
 | 			error = xfs_trans_reserve_quota_nblks(NULL, ip, | 
 | 					-(long)del.br_blockcount, 0, | 
 | 					XFS_QMOPT_RES_REGBLKS); | 
 | 			if (error) | 
 | 				break; | 
 | 		} else { | 
 | 			/* Didn't do anything, push cursor back. */ | 
 | 			xfs_iext_prev(ifp, &icur); | 
 | 		} | 
 | next_extent: | 
 | 		if (!xfs_iext_get_extent(ifp, &icur, &got)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* clear tag if cow fork is emptied */ | 
 | 	if (!ifp->if_bytes) | 
 | 		xfs_inode_clear_cowblocks_tag(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel CoW reservations for some byte range of an inode. | 
 |  * | 
 |  * If cancel_real is true this function cancels all COW fork extents for the | 
 |  * inode; if cancel_real is false, real extents are not cleared. | 
 |  */ | 
 | int | 
 | xfs_reflink_cancel_cow_range( | 
 | 	struct xfs_inode	*ip, | 
 | 	xfs_off_t		offset, | 
 | 	xfs_off_t		count, | 
 | 	bool			cancel_real) | 
 | { | 
 | 	struct xfs_trans	*tp; | 
 | 	xfs_fileoff_t		offset_fsb; | 
 | 	xfs_fileoff_t		end_fsb; | 
 | 	int			error; | 
 |  | 
 | 	trace_xfs_reflink_cancel_cow_range(ip, offset, count); | 
 | 	ASSERT(xfs_is_reflink_inode(ip)); | 
 |  | 
 | 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); | 
 | 	if (count == NULLFILEOFF) | 
 | 		end_fsb = NULLFILEOFF; | 
 | 	else | 
 | 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); | 
 |  | 
 | 	/* Start a rolling transaction to remove the mappings */ | 
 | 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, | 
 | 			0, 0, XFS_TRANS_NOFS, &tp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* Scrape out the old CoW reservations */ | 
 | 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, | 
 | 			cancel_real); | 
 | 	if (error) | 
 | 		goto out_cancel; | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 |  | 
 | out_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out: | 
 | 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Remap parts of a file's data fork after a successful CoW. | 
 |  */ | 
 | int | 
 | xfs_reflink_end_cow( | 
 | 	struct xfs_inode		*ip, | 
 | 	xfs_off_t			offset, | 
 | 	xfs_off_t			count) | 
 | { | 
 | 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
 | 	struct xfs_bmbt_irec		got, del; | 
 | 	struct xfs_trans		*tp; | 
 | 	xfs_fileoff_t			offset_fsb; | 
 | 	xfs_fileoff_t			end_fsb; | 
 | 	int				error; | 
 | 	unsigned int			resblks; | 
 | 	xfs_filblks_t			rlen; | 
 | 	struct xfs_iext_cursor		icur; | 
 |  | 
 | 	trace_xfs_reflink_end_cow(ip, offset, count); | 
 |  | 
 | 	/* No COW extents?  That's easy! */ | 
 | 	if (ifp->if_bytes == 0) | 
 | 		return 0; | 
 |  | 
 | 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); | 
 | 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); | 
 |  | 
 | 	/* | 
 | 	 * Start a rolling transaction to switch the mappings.  We're | 
 | 	 * unlikely ever to have to remap 16T worth of single-block | 
 | 	 * extents, so just cap the worst case extent count to 2^32-1. | 
 | 	 * Stick a warning in just in case, and avoid 64-bit division. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX); | 
 | 	if (end_fsb - offset_fsb > UINT_MAX) { | 
 | 		error = -EFSCORRUPTED; | 
 | 		xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE); | 
 | 		ASSERT(0); | 
 | 		goto out; | 
 | 	} | 
 | 	resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount, | 
 | 			(unsigned int)(end_fsb - offset_fsb), | 
 | 			XFS_DATA_FORK); | 
 | 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, | 
 | 			resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* | 
 | 	 * In case of racing, overlapping AIO writes no COW extents might be | 
 | 	 * left by the time I/O completes for the loser of the race.  In that | 
 | 	 * case we are done. | 
 | 	 */ | 
 | 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) | 
 | 		goto out_cancel; | 
 |  | 
 | 	/* Walk backwards until we're out of the I/O range... */ | 
 | 	while (got.br_startoff + got.br_blockcount > offset_fsb) { | 
 | 		del = got; | 
 | 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); | 
 |  | 
 | 		/* Extent delete may have bumped ext forward */ | 
 | 		if (!del.br_blockcount) | 
 | 			goto prev_extent; | 
 |  | 
 | 		/* | 
 | 		 * Only remap real extent that contain data.  With AIO | 
 | 		 * speculatively preallocations can leak into the range we | 
 | 		 * are called upon, and we need to skip them. | 
 | 		 */ | 
 | 		if (!xfs_bmap_is_real_extent(&got)) | 
 | 			goto prev_extent; | 
 |  | 
 | 		/* Unmap the old blocks in the data fork. */ | 
 | 		ASSERT(tp->t_firstblock == NULLFSBLOCK); | 
 | 		rlen = del.br_blockcount; | 
 | 		error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* Trim the extent to whatever got unmapped. */ | 
 | 		if (rlen) { | 
 | 			xfs_trim_extent(&del, del.br_startoff + rlen, | 
 | 				del.br_blockcount - rlen); | 
 | 		} | 
 | 		trace_xfs_reflink_cow_remap(ip, &del); | 
 |  | 
 | 		/* Free the CoW orphan record. */ | 
 | 		error = xfs_refcount_free_cow_extent(tp, del.br_startblock, | 
 | 				del.br_blockcount); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* Map the new blocks into the data fork. */ | 
 | 		error = xfs_bmap_map_extent(tp, ip, &del); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* Charge this new data fork mapping to the on-disk quota. */ | 
 | 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, | 
 | 				(long)del.br_blockcount); | 
 |  | 
 | 		/* Remove the mapping from the CoW fork. */ | 
 | 		xfs_bmap_del_extent_cow(ip, &icur, &got, &del); | 
 |  | 
 | 		error = xfs_defer_finish(&tp); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 | 		if (!xfs_iext_get_extent(ifp, &icur, &got)) | 
 | 			break; | 
 | 		continue; | 
 | prev_extent: | 
 | 		if (!xfs_iext_prev_extent(ifp, &icur, &got)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	if (error) | 
 | 		goto out; | 
 | 	return 0; | 
 |  | 
 | out_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out: | 
 | 	trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Free leftover CoW reservations that didn't get cleaned out. | 
 |  */ | 
 | int | 
 | xfs_reflink_recover_cow( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	xfs_agnumber_t		agno; | 
 | 	int			error = 0; | 
 |  | 
 | 	if (!xfs_sb_version_hasreflink(&mp->m_sb)) | 
 | 		return 0; | 
 |  | 
 | 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | 
 | 		error = xfs_refcount_recover_cow_leftovers(mp, agno); | 
 | 		if (error) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Reflinking (Block) Ranges of Two Files Together | 
 |  * | 
 |  * First, ensure that the reflink flag is set on both inodes.  The flag is an | 
 |  * optimization to avoid unnecessary refcount btree lookups in the write path. | 
 |  * | 
 |  * Now we can iteratively remap the range of extents (and holes) in src to the | 
 |  * corresponding ranges in dest.  Let drange and srange denote the ranges of | 
 |  * logical blocks in dest and src touched by the reflink operation. | 
 |  * | 
 |  * While the length of drange is greater than zero, | 
 |  *    - Read src's bmbt at the start of srange ("imap") | 
 |  *    - If imap doesn't exist, make imap appear to start at the end of srange | 
 |  *      with zero length. | 
 |  *    - If imap starts before srange, advance imap to start at srange. | 
 |  *    - If imap goes beyond srange, truncate imap to end at the end of srange. | 
 |  *    - Punch (imap start - srange start + imap len) blocks from dest at | 
 |  *      offset (drange start). | 
 |  *    - If imap points to a real range of pblks, | 
 |  *         > Increase the refcount of the imap's pblks | 
 |  *         > Map imap's pblks into dest at the offset | 
 |  *           (drange start + imap start - srange start) | 
 |  *    - Advance drange and srange by (imap start - srange start + imap len) | 
 |  * | 
 |  * Finally, if the reflink made dest longer, update both the in-core and | 
 |  * on-disk file sizes. | 
 |  * | 
 |  * ASCII Art Demonstration: | 
 |  * | 
 |  * Let's say we want to reflink this source file: | 
 |  * | 
 |  * ----SSSSSSS-SSSSS----SSSSSS (src file) | 
 |  *   <--------------------> | 
 |  * | 
 |  * into this destination file: | 
 |  * | 
 |  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) | 
 |  *        <--------------------> | 
 |  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. | 
 |  * Observe that the range has different logical offsets in either file. | 
 |  * | 
 |  * Consider that the first extent in the source file doesn't line up with our | 
 |  * reflink range.  Unmapping  and remapping are separate operations, so we can | 
 |  * unmap more blocks from the destination file than we remap. | 
 |  * | 
 |  * ----SSSSSSS-SSSSS----SSSSSS | 
 |  *   <-------> | 
 |  * --DDDDD---------DDDDD--DDD | 
 |  *        <-------> | 
 |  * | 
 |  * Now remap the source extent into the destination file: | 
 |  * | 
 |  * ----SSSSSSS-SSSSS----SSSSSS | 
 |  *   <-------> | 
 |  * --DDDDD--SSSSSSSDDDDD--DDD | 
 |  *        <-------> | 
 |  * | 
 |  * Do likewise with the second hole and extent in our range.  Holes in the | 
 |  * unmap range don't affect our operation. | 
 |  * | 
 |  * ----SSSSSSS-SSSSS----SSSSSS | 
 |  *            <----> | 
 |  * --DDDDD--SSSSSSS-SSSSS-DDD | 
 |  *                 <----> | 
 |  * | 
 |  * Finally, unmap and remap part of the third extent.  This will increase the | 
 |  * size of the destination file. | 
 |  * | 
 |  * ----SSSSSSS-SSSSS----SSSSSS | 
 |  *                  <-----> | 
 |  * --DDDDD--SSSSSSS-SSSSS----SSS | 
 |  *                       <-----> | 
 |  * | 
 |  * Once we update the destination file's i_size, we're done. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Ensure the reflink bit is set in both inodes. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_set_inode_flag( | 
 | 	struct xfs_inode	*src, | 
 | 	struct xfs_inode	*dest) | 
 | { | 
 | 	struct xfs_mount	*mp = src->i_mount; | 
 | 	int			error; | 
 | 	struct xfs_trans	*tp; | 
 |  | 
 | 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) | 
 | 		return 0; | 
 |  | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); | 
 | 	if (error) | 
 | 		goto out_error; | 
 |  | 
 | 	/* Lock both files against IO */ | 
 | 	if (src->i_ino == dest->i_ino) | 
 | 		xfs_ilock(src, XFS_ILOCK_EXCL); | 
 | 	else | 
 | 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); | 
 |  | 
 | 	if (!xfs_is_reflink_inode(src)) { | 
 | 		trace_xfs_reflink_set_inode_flag(src); | 
 | 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); | 
 | 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; | 
 | 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); | 
 | 		xfs_ifork_init_cow(src); | 
 | 	} else | 
 | 		xfs_iunlock(src, XFS_ILOCK_EXCL); | 
 |  | 
 | 	if (src->i_ino == dest->i_ino) | 
 | 		goto commit_flags; | 
 |  | 
 | 	if (!xfs_is_reflink_inode(dest)) { | 
 | 		trace_xfs_reflink_set_inode_flag(dest); | 
 | 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); | 
 | 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; | 
 | 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); | 
 | 		xfs_ifork_init_cow(dest); | 
 | 	} else | 
 | 		xfs_iunlock(dest, XFS_ILOCK_EXCL); | 
 |  | 
 | commit_flags: | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_error; | 
 | 	return error; | 
 |  | 
 | out_error: | 
 | 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Update destination inode size & cowextsize hint, if necessary. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_update_dest( | 
 | 	struct xfs_inode	*dest, | 
 | 	xfs_off_t		newlen, | 
 | 	xfs_extlen_t		cowextsize, | 
 | 	bool			is_dedupe) | 
 | { | 
 | 	struct xfs_mount	*mp = dest->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) | 
 | 		return 0; | 
 |  | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); | 
 | 	if (error) | 
 | 		goto out_error; | 
 |  | 
 | 	xfs_ilock(dest, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); | 
 |  | 
 | 	if (newlen > i_size_read(VFS_I(dest))) { | 
 | 		trace_xfs_reflink_update_inode_size(dest, newlen); | 
 | 		i_size_write(VFS_I(dest), newlen); | 
 | 		dest->i_d.di_size = newlen; | 
 | 	} | 
 |  | 
 | 	if (cowextsize) { | 
 | 		dest->i_d.di_cowextsize = cowextsize; | 
 | 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; | 
 | 	} | 
 |  | 
 | 	if (!is_dedupe) { | 
 | 		xfs_trans_ichgtime(tp, dest, | 
 | 				   XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
 | 	} | 
 | 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out_error; | 
 | 	return error; | 
 |  | 
 | out_error: | 
 | 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Do we have enough reserve in this AG to handle a reflink?  The refcount | 
 |  * btree already reserved all the space it needs, but the rmap btree can grow | 
 |  * infinitely, so we won't allow more reflinks when the AG is down to the | 
 |  * btree reserves. | 
 |  */ | 
 | static int | 
 | xfs_reflink_ag_has_free_space( | 
 | 	struct xfs_mount	*mp, | 
 | 	xfs_agnumber_t		agno) | 
 | { | 
 | 	struct xfs_perag	*pag; | 
 | 	int			error = 0; | 
 |  | 
 | 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) | 
 | 		return 0; | 
 |  | 
 | 	pag = xfs_perag_get(mp, agno); | 
 | 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || | 
 | 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) | 
 | 		error = -ENOSPC; | 
 | 	xfs_perag_put(pag); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Unmap a range of blocks from a file, then map other blocks into the hole. | 
 |  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount). | 
 |  * The extent irec is mapped into dest at irec->br_startoff. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_remap_extent( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_bmbt_irec	*irec, | 
 | 	xfs_fileoff_t		destoff, | 
 | 	xfs_off_t		new_isize) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	bool			real_extent = xfs_bmap_is_real_extent(irec); | 
 | 	struct xfs_trans	*tp; | 
 | 	unsigned int		resblks; | 
 | 	struct xfs_bmbt_irec	uirec; | 
 | 	xfs_filblks_t		rlen; | 
 | 	xfs_filblks_t		unmap_len; | 
 | 	xfs_off_t		newlen; | 
 | 	int			error; | 
 |  | 
 | 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff; | 
 | 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len); | 
 |  | 
 | 	/* No reflinking if we're low on space */ | 
 | 	if (real_extent) { | 
 | 		error = xfs_reflink_ag_has_free_space(mp, | 
 | 				XFS_FSB_TO_AGNO(mp, irec->br_startblock)); | 
 | 		if (error) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Start a rolling transaction to switch the mappings */ | 
 | 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK); | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	/* If we're not just clearing space, then do we have enough quota? */ | 
 | 	if (real_extent) { | 
 | 		error = xfs_trans_reserve_quota_nblks(tp, ip, | 
 | 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 | 	} | 
 |  | 
 | 	trace_xfs_reflink_remap(ip, irec->br_startoff, | 
 | 				irec->br_blockcount, irec->br_startblock); | 
 |  | 
 | 	/* Unmap the old blocks in the data fork. */ | 
 | 	rlen = unmap_len; | 
 | 	while (rlen) { | 
 | 		ASSERT(tp->t_firstblock == NULLFSBLOCK); | 
 | 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* | 
 | 		 * Trim the extent to whatever got unmapped. | 
 | 		 * Remember, bunmapi works backwards. | 
 | 		 */ | 
 | 		uirec.br_startblock = irec->br_startblock + rlen; | 
 | 		uirec.br_startoff = irec->br_startoff + rlen; | 
 | 		uirec.br_blockcount = unmap_len - rlen; | 
 | 		unmap_len = rlen; | 
 |  | 
 | 		/* If this isn't a real mapping, we're done. */ | 
 | 		if (!real_extent || uirec.br_blockcount == 0) | 
 | 			goto next_extent; | 
 |  | 
 | 		trace_xfs_reflink_remap(ip, uirec.br_startoff, | 
 | 				uirec.br_blockcount, uirec.br_startblock); | 
 |  | 
 | 		/* Update the refcount tree */ | 
 | 		error = xfs_refcount_increase_extent(tp, &uirec); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* Map the new blocks into the data fork. */ | 
 | 		error = xfs_bmap_map_extent(tp, ip, &uirec); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 |  | 
 | 		/* Update quota accounting. */ | 
 | 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, | 
 | 				uirec.br_blockcount); | 
 |  | 
 | 		/* Update dest isize if needed. */ | 
 | 		newlen = XFS_FSB_TO_B(mp, | 
 | 				uirec.br_startoff + uirec.br_blockcount); | 
 | 		newlen = min_t(xfs_off_t, newlen, new_isize); | 
 | 		if (newlen > i_size_read(VFS_I(ip))) { | 
 | 			trace_xfs_reflink_update_inode_size(ip, newlen); | 
 | 			i_size_write(VFS_I(ip), newlen); | 
 | 			ip->i_d.di_size = newlen; | 
 | 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 		} | 
 |  | 
 | next_extent: | 
 | 		/* Process all the deferred stuff. */ | 
 | 		error = xfs_defer_finish(&tp); | 
 | 		if (error) | 
 | 			goto out_cancel; | 
 | 	} | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	if (error) | 
 | 		goto out; | 
 | 	return 0; | 
 |  | 
 | out_cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out: | 
 | 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Iteratively remap one file's extents (and holes) to another's. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_remap_blocks( | 
 | 	struct xfs_inode	*src, | 
 | 	xfs_fileoff_t		srcoff, | 
 | 	struct xfs_inode	*dest, | 
 | 	xfs_fileoff_t		destoff, | 
 | 	xfs_filblks_t		len, | 
 | 	xfs_off_t		new_isize) | 
 | { | 
 | 	struct xfs_bmbt_irec	imap; | 
 | 	int			nimaps; | 
 | 	int			error = 0; | 
 | 	xfs_filblks_t		range_len; | 
 |  | 
 | 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */ | 
 | 	while (len) { | 
 | 		uint		lock_mode; | 
 |  | 
 | 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len, | 
 | 				dest, destoff); | 
 |  | 
 | 		/* Read extent from the source file */ | 
 | 		nimaps = 1; | 
 | 		lock_mode = xfs_ilock_data_map_shared(src); | 
 | 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); | 
 | 		xfs_iunlock(src, lock_mode); | 
 | 		if (error) | 
 | 			goto err; | 
 | 		ASSERT(nimaps == 1); | 
 |  | 
 | 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE, | 
 | 				&imap); | 
 |  | 
 | 		/* Translate imap into the destination file. */ | 
 | 		range_len = imap.br_startoff + imap.br_blockcount - srcoff; | 
 | 		imap.br_startoff += destoff - srcoff; | 
 |  | 
 | 		/* Clear dest from destoff to the end of imap and map it in. */ | 
 | 		error = xfs_reflink_remap_extent(dest, &imap, destoff, | 
 | 				new_isize); | 
 | 		if (error) | 
 | 			goto err; | 
 |  | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			error = -EINTR; | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		/* Advance drange/srange */ | 
 | 		srcoff += range_len; | 
 | 		destoff += range_len; | 
 | 		len -= range_len; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Grab the exclusive iolock for a data copy from src to dest, making | 
 |  * sure to abide vfs locking order (lowest pointer value goes first) and | 
 |  * breaking the pnfs layout leases on dest before proceeding.  The loop | 
 |  * is needed because we cannot call the blocking break_layout() with the | 
 |  * src iolock held, and therefore have to back out both locks. | 
 |  */ | 
 | static int | 
 | xfs_iolock_two_inodes_and_break_layout( | 
 | 	struct inode		*src, | 
 | 	struct inode		*dest) | 
 | { | 
 | 	int			error; | 
 |  | 
 | retry: | 
 | 	if (src < dest) { | 
 | 		inode_lock_shared(src); | 
 | 		inode_lock_nested(dest, I_MUTEX_NONDIR2); | 
 | 	} else { | 
 | 		/* src >= dest */ | 
 | 		inode_lock(dest); | 
 | 	} | 
 |  | 
 | 	error = break_layout(dest, false); | 
 | 	if (error == -EWOULDBLOCK) { | 
 | 		inode_unlock(dest); | 
 | 		if (src < dest) | 
 | 			inode_unlock_shared(src); | 
 | 		error = break_layout(dest, true); | 
 | 		if (error) | 
 | 			return error; | 
 | 		goto retry; | 
 | 	} | 
 | 	if (error) { | 
 | 		inode_unlock(dest); | 
 | 		if (src < dest) | 
 | 			inode_unlock_shared(src); | 
 | 		return error; | 
 | 	} | 
 | 	if (src > dest) | 
 | 		inode_lock_shared_nested(src, I_MUTEX_NONDIR2); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Unlock both inodes after they've been prepped for a range clone. */ | 
 | STATIC void | 
 | xfs_reflink_remap_unlock( | 
 | 	struct file		*file_in, | 
 | 	struct file		*file_out) | 
 | { | 
 | 	struct inode		*inode_in = file_inode(file_in); | 
 | 	struct xfs_inode	*src = XFS_I(inode_in); | 
 | 	struct inode		*inode_out = file_inode(file_out); | 
 | 	struct xfs_inode	*dest = XFS_I(inode_out); | 
 | 	bool			same_inode = (inode_in == inode_out); | 
 |  | 
 | 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL); | 
 | 	if (!same_inode) | 
 | 		xfs_iunlock(src, XFS_MMAPLOCK_SHARED); | 
 | 	inode_unlock(inode_out); | 
 | 	if (!same_inode) | 
 | 		inode_unlock_shared(inode_in); | 
 | } | 
 |  | 
 | /* | 
 |  * If we're reflinking to a point past the destination file's EOF, we must | 
 |  * zero any speculative post-EOF preallocations that sit between the old EOF | 
 |  * and the destination file offset. | 
 |  */ | 
 | static int | 
 | xfs_reflink_zero_posteof( | 
 | 	struct xfs_inode	*ip, | 
 | 	loff_t			pos) | 
 | { | 
 | 	loff_t			isize = i_size_read(VFS_I(ip)); | 
 |  | 
 | 	if (pos <= isize) | 
 | 		return 0; | 
 |  | 
 | 	trace_xfs_zero_eof(ip, isize, pos - isize); | 
 | 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL, | 
 | 			&xfs_iomap_ops); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare two files for range cloning.  Upon a successful return both inodes | 
 |  * will have the iolock and mmaplock held, the page cache of the out file will | 
 |  * be truncated, and any leases on the out file will have been broken.  This | 
 |  * function borrows heavily from xfs_file_aio_write_checks. | 
 |  * | 
 |  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't | 
 |  * checked that the bytes beyond EOF physically match. Hence we cannot use the | 
 |  * EOF block in the source dedupe range because it's not a complete block match, | 
 |  * hence can introduce a corruption into the file that has it's block replaced. | 
 |  * | 
 |  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be | 
 |  * "block aligned" for the purposes of cloning entire files.  However, if the | 
 |  * source file range includes the EOF block and it lands within the existing EOF | 
 |  * of the destination file, then we can expose stale data from beyond the source | 
 |  * file EOF in the destination file. | 
 |  * | 
 |  * XFS doesn't support partial block sharing, so in both cases we have check | 
 |  * these cases ourselves. For dedupe, we can simply round the length to dedupe | 
 |  * down to the previous whole block and ignore the partial EOF block. While this | 
 |  * means we can't dedupe the last block of a file, this is an acceptible | 
 |  * tradeoff for simplicity on implementation. | 
 |  * | 
 |  * For cloning, we want to share the partial EOF block if it is also the new EOF | 
 |  * block of the destination file. If the partial EOF block lies inside the | 
 |  * existing destination EOF, then we have to abort the clone to avoid exposing | 
 |  * stale data in the destination file. Hence we reject these clone attempts with | 
 |  * -EINVAL in this case. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_remap_prep( | 
 | 	struct file		*file_in, | 
 | 	loff_t			pos_in, | 
 | 	struct file		*file_out, | 
 | 	loff_t			pos_out, | 
 | 	u64			*len, | 
 | 	bool			is_dedupe) | 
 | { | 
 | 	struct inode		*inode_in = file_inode(file_in); | 
 | 	struct xfs_inode	*src = XFS_I(inode_in); | 
 | 	struct inode		*inode_out = file_inode(file_out); | 
 | 	struct xfs_inode	*dest = XFS_I(inode_out); | 
 | 	bool			same_inode = (inode_in == inode_out); | 
 | 	u64			blkmask = i_blocksize(inode_in) - 1; | 
 | 	ssize_t			ret; | 
 |  | 
 | 	/* Lock both files against IO */ | 
 | 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	if (same_inode) | 
 | 		xfs_ilock(src, XFS_MMAPLOCK_EXCL); | 
 | 	else | 
 | 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest, | 
 | 				XFS_MMAPLOCK_EXCL); | 
 |  | 
 | 	/* Check file eligibility and prepare for block sharing. */ | 
 | 	ret = -EINVAL; | 
 | 	/* Don't reflink realtime inodes */ | 
 | 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Don't share DAX file data for now. */ | 
 | 	if (IS_DAX(inode_in) || IS_DAX(inode_out)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out, | 
 | 			len, is_dedupe); | 
 | 	if (ret <= 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If the dedupe data matches, chop off the partial EOF block | 
 | 	 * from the source file so we don't try to dedupe the partial | 
 | 	 * EOF block. | 
 | 	 */ | 
 | 	if (is_dedupe) { | 
 | 		*len &= ~blkmask; | 
 | 	} else if (*len & blkmask) { | 
 | 		/* | 
 | 		 * The user is attempting to share a partial EOF block, | 
 | 		 * if it's inside the destination EOF then reject it. | 
 | 		 */ | 
 | 		if (pos_out + *len < i_size_read(inode_out)) { | 
 | 			ret = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Attach dquots to dest inode before changing block map */ | 
 | 	ret = xfs_qm_dqattach(dest); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Zero existing post-eof speculative preallocations in the destination | 
 | 	 * file. | 
 | 	 */ | 
 | 	ret = xfs_reflink_zero_posteof(dest, pos_out); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Set flags and remap blocks. */ | 
 | 	ret = xfs_reflink_set_inode_flag(src, dest); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * If pos_out > EOF, we may have dirtied blocks between EOF and | 
 | 	 * pos_out. In that case, we need to extend the flush and unmap to cover | 
 | 	 * from EOF to the end of the copy length. | 
 | 	 */ | 
 | 	if (pos_out > XFS_ISIZE(dest)) { | 
 | 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest)); | 
 | 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); | 
 | 	} else { | 
 | 		ret = xfs_flush_unmap_range(dest, pos_out, *len); | 
 | 	} | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* If we're altering the file contents... */ | 
 | 	if (!is_dedupe) { | 
 | 		/* | 
 | 		 * ...update the timestamps (which will grab the ilock again | 
 | 		 * from xfs_fs_dirty_inode, so we have to call it before we | 
 | 		 * take the ilock). | 
 | 		 */ | 
 | 		if (!(file_out->f_mode & FMODE_NOCMTIME)) { | 
 | 			ret = file_update_time(file_out); | 
 | 			if (ret) | 
 | 				goto out_unlock; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * ...clear the security bits if the process is not being run | 
 | 		 * by root.  This keeps people from modifying setuid and setgid | 
 | 		 * binaries. | 
 | 		 */ | 
 | 		ret = file_remove_privs(file_out); | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | out_unlock: | 
 | 	xfs_reflink_remap_unlock(file_in, file_out); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Link a range of blocks from one file to another. | 
 |  */ | 
 | int | 
 | xfs_reflink_remap_range( | 
 | 	struct file		*file_in, | 
 | 	loff_t			pos_in, | 
 | 	struct file		*file_out, | 
 | 	loff_t			pos_out, | 
 | 	u64			len, | 
 | 	bool			is_dedupe) | 
 | { | 
 | 	struct inode		*inode_in = file_inode(file_in); | 
 | 	struct xfs_inode	*src = XFS_I(inode_in); | 
 | 	struct inode		*inode_out = file_inode(file_out); | 
 | 	struct xfs_inode	*dest = XFS_I(inode_out); | 
 | 	struct xfs_mount	*mp = src->i_mount; | 
 | 	xfs_fileoff_t		sfsbno, dfsbno; | 
 | 	xfs_filblks_t		fsblen; | 
 | 	xfs_extlen_t		cowextsize; | 
 | 	ssize_t			ret; | 
 |  | 
 | 	if (!xfs_sb_version_hasreflink(&mp->m_sb)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Prepare and then clone file data. */ | 
 | 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, | 
 | 			&len, is_dedupe); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 |  | 
 | 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); | 
 |  | 
 | 	dfsbno = XFS_B_TO_FSBT(mp, pos_out); | 
 | 	sfsbno = XFS_B_TO_FSBT(mp, pos_in); | 
 | 	fsblen = XFS_B_TO_FSB(mp, len); | 
 | 	ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen, | 
 | 			pos_out + len); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Carry the cowextsize hint from src to dest if we're sharing the | 
 | 	 * entire source file to the entire destination file, the source file | 
 | 	 * has a cowextsize hint, and the destination file does not. | 
 | 	 */ | 
 | 	cowextsize = 0; | 
 | 	if (pos_in == 0 && len == i_size_read(inode_in) && | 
 | 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && | 
 | 	    pos_out == 0 && len >= i_size_read(inode_out) && | 
 | 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) | 
 | 		cowextsize = src->i_d.di_cowextsize; | 
 |  | 
 | 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, | 
 | 			is_dedupe); | 
 |  | 
 | out_unlock: | 
 | 	xfs_reflink_remap_unlock(file_in, file_out); | 
 | 	if (ret) | 
 | 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * The user wants to preemptively CoW all shared blocks in this file, | 
 |  * which enables us to turn off the reflink flag.  Iterate all | 
 |  * extents which are not prealloc/delalloc to see which ranges are | 
 |  * mentioned in the refcount tree, then read those blocks into the | 
 |  * pagecache, dirty them, fsync them back out, and then we can update | 
 |  * the inode flag.  What happens if we run out of memory? :) | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_dirty_extents( | 
 | 	struct xfs_inode	*ip, | 
 | 	xfs_fileoff_t		fbno, | 
 | 	xfs_filblks_t		end, | 
 | 	xfs_off_t		isize) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	xfs_agnumber_t		agno; | 
 | 	xfs_agblock_t		agbno; | 
 | 	xfs_extlen_t		aglen; | 
 | 	xfs_agblock_t		rbno; | 
 | 	xfs_extlen_t		rlen; | 
 | 	xfs_off_t		fpos; | 
 | 	xfs_off_t		flen; | 
 | 	struct xfs_bmbt_irec	map[2]; | 
 | 	int			nmaps; | 
 | 	int			error = 0; | 
 |  | 
 | 	while (end - fbno > 0) { | 
 | 		nmaps = 1; | 
 | 		/* | 
 | 		 * Look for extents in the file.  Skip holes, delalloc, or | 
 | 		 * unwritten extents; they can't be reflinked. | 
 | 		 */ | 
 | 		error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0); | 
 | 		if (error) | 
 | 			goto out; | 
 | 		if (nmaps == 0) | 
 | 			break; | 
 | 		if (!xfs_bmap_is_real_extent(&map[0])) | 
 | 			goto next; | 
 |  | 
 | 		map[1] = map[0]; | 
 | 		while (map[1].br_blockcount) { | 
 | 			agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock); | 
 | 			agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock); | 
 | 			aglen = map[1].br_blockcount; | 
 |  | 
 | 			error = xfs_reflink_find_shared(mp, NULL, agno, agbno, | 
 | 					aglen, &rbno, &rlen, true); | 
 | 			if (error) | 
 | 				goto out; | 
 | 			if (rbno == NULLAGBLOCK) | 
 | 				break; | 
 |  | 
 | 			/* Dirty the pages */ | 
 | 			xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 			fpos = XFS_FSB_TO_B(mp, map[1].br_startoff + | 
 | 					(rbno - agbno)); | 
 | 			flen = XFS_FSB_TO_B(mp, rlen); | 
 | 			if (fpos + flen > isize) | 
 | 				flen = isize - fpos; | 
 | 			error = iomap_file_dirty(VFS_I(ip), fpos, flen, | 
 | 					&xfs_iomap_ops); | 
 | 			xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 			if (error) | 
 | 				goto out; | 
 |  | 
 | 			map[1].br_blockcount -= (rbno - agbno + rlen); | 
 | 			map[1].br_startoff += (rbno - agbno + rlen); | 
 | 			map[1].br_startblock += (rbno - agbno + rlen); | 
 | 		} | 
 |  | 
 | next: | 
 | 		fbno = map[0].br_startoff + map[0].br_blockcount; | 
 | 	} | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* Does this inode need the reflink flag? */ | 
 | int | 
 | xfs_reflink_inode_has_shared_extents( | 
 | 	struct xfs_trans		*tp, | 
 | 	struct xfs_inode		*ip, | 
 | 	bool				*has_shared) | 
 | { | 
 | 	struct xfs_bmbt_irec		got; | 
 | 	struct xfs_mount		*mp = ip->i_mount; | 
 | 	struct xfs_ifork		*ifp; | 
 | 	xfs_agnumber_t			agno; | 
 | 	xfs_agblock_t			agbno; | 
 | 	xfs_extlen_t			aglen; | 
 | 	xfs_agblock_t			rbno; | 
 | 	xfs_extlen_t			rlen; | 
 | 	struct xfs_iext_cursor		icur; | 
 | 	bool				found; | 
 | 	int				error; | 
 |  | 
 | 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); | 
 | 	if (!(ifp->if_flags & XFS_IFEXTENTS)) { | 
 | 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	*has_shared = false; | 
 | 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); | 
 | 	while (found) { | 
 | 		if (isnullstartblock(got.br_startblock) || | 
 | 		    got.br_state != XFS_EXT_NORM) | 
 | 			goto next; | 
 | 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock); | 
 | 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); | 
 | 		aglen = got.br_blockcount; | 
 |  | 
 | 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen, | 
 | 				&rbno, &rlen, false); | 
 | 		if (error) | 
 | 			return error; | 
 | 		/* Is there still a shared block here? */ | 
 | 		if (rbno != NULLAGBLOCK) { | 
 | 			*has_shared = true; | 
 | 			return 0; | 
 | 		} | 
 | next: | 
 | 		found = xfs_iext_next_extent(ifp, &icur, &got); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the inode reflink flag if there are no shared extents. | 
 |  * | 
 |  * The caller is responsible for joining the inode to the transaction passed in. | 
 |  * The inode will be joined to the transaction that is returned to the caller. | 
 |  */ | 
 | int | 
 | xfs_reflink_clear_inode_flag( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_trans	**tpp) | 
 | { | 
 | 	bool			needs_flag; | 
 | 	int			error = 0; | 
 |  | 
 | 	ASSERT(xfs_is_reflink_inode(ip)); | 
 |  | 
 | 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); | 
 | 	if (error || needs_flag) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * We didn't find any shared blocks so turn off the reflink flag. | 
 | 	 * First, get rid of any leftover CoW mappings. | 
 | 	 */ | 
 | 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* Clear the inode flag. */ | 
 | 	trace_xfs_reflink_unset_inode_flag(ip); | 
 | 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; | 
 | 	xfs_inode_clear_cowblocks_tag(ip); | 
 | 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the inode reflink flag if there are no shared extents and the size | 
 |  * hasn't changed. | 
 |  */ | 
 | STATIC int | 
 | xfs_reflink_try_clear_inode_flag( | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error = 0; | 
 |  | 
 | 	/* Start a rolling transaction to remove the mappings */ | 
 | 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ijoin(tp, ip, 0); | 
 |  | 
 | 	error = xfs_reflink_clear_inode_flag(ip, &tp); | 
 | 	if (error) | 
 | 		goto cancel; | 
 |  | 
 | 	error = xfs_trans_commit(tp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return 0; | 
 | cancel: | 
 | 	xfs_trans_cancel(tp); | 
 | out: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Pre-COW all shared blocks within a given byte range of a file and turn off | 
 |  * the reflink flag if we unshare all of the file's blocks. | 
 |  */ | 
 | int | 
 | xfs_reflink_unshare( | 
 | 	struct xfs_inode	*ip, | 
 | 	xfs_off_t		offset, | 
 | 	xfs_off_t		len) | 
 | { | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	xfs_fileoff_t		fbno; | 
 | 	xfs_filblks_t		end; | 
 | 	xfs_off_t		isize; | 
 | 	int			error; | 
 |  | 
 | 	if (!xfs_is_reflink_inode(ip)) | 
 | 		return 0; | 
 |  | 
 | 	trace_xfs_reflink_unshare(ip, offset, len); | 
 |  | 
 | 	inode_dio_wait(VFS_I(ip)); | 
 |  | 
 | 	/* Try to CoW the selected ranges */ | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	fbno = XFS_B_TO_FSBT(mp, offset); | 
 | 	isize = i_size_read(VFS_I(ip)); | 
 | 	end = XFS_B_TO_FSB(mp, offset + len); | 
 | 	error = xfs_reflink_dirty_extents(ip, fbno, end, isize); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* Wait for the IO to finish */ | 
 | 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	/* Turn off the reflink flag if possible. */ | 
 | 	error = xfs_reflink_try_clear_inode_flag(ip); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out: | 
 | 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); | 
 | 	return error; | 
 | } |