| /* | 
 |  * Copyright 2016 Broadcom | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License, version 2, as | 
 |  * published by the Free Software Foundation (the "GPL"). | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License version 2 (GPLv2) for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * version 2 (GPLv2) along with this source code. | 
 |  */ | 
 |  | 
 | #include <linux/err.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/rtnetlink.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/io.h> | 
 | #include <linux/bitops.h> | 
 |  | 
 | #include <crypto/algapi.h> | 
 | #include <crypto/aead.h> | 
 | #include <crypto/internal/aead.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/des.h> | 
 | #include <crypto/hmac.h> | 
 | #include <crypto/sha.h> | 
 | #include <crypto/md5.h> | 
 | #include <crypto/authenc.h> | 
 | #include <crypto/skcipher.h> | 
 | #include <crypto/hash.h> | 
 | #include <crypto/sha3.h> | 
 |  | 
 | #include "util.h" | 
 | #include "cipher.h" | 
 | #include "spu.h" | 
 | #include "spum.h" | 
 | #include "spu2.h" | 
 |  | 
 | /* ================= Device Structure ================== */ | 
 |  | 
 | struct device_private iproc_priv; | 
 |  | 
 | /* ==================== Parameters ===================== */ | 
 |  | 
 | int flow_debug_logging; | 
 | module_param(flow_debug_logging, int, 0644); | 
 | MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); | 
 |  | 
 | int packet_debug_logging; | 
 | module_param(packet_debug_logging, int, 0644); | 
 | MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); | 
 |  | 
 | int debug_logging_sleep; | 
 | module_param(debug_logging_sleep, int, 0644); | 
 | MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); | 
 |  | 
 | /* | 
 |  * The value of these module parameters is used to set the priority for each | 
 |  * algo type when this driver registers algos with the kernel crypto API. | 
 |  * To use a priority other than the default, set the priority in the insmod or | 
 |  * modprobe. Changing the module priority after init time has no effect. | 
 |  * | 
 |  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE | 
 |  * algos, but more preferred than generic software algos. | 
 |  */ | 
 | static int cipher_pri = 150; | 
 | module_param(cipher_pri, int, 0644); | 
 | MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); | 
 |  | 
 | static int hash_pri = 100; | 
 | module_param(hash_pri, int, 0644); | 
 | MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); | 
 |  | 
 | static int aead_pri = 150; | 
 | module_param(aead_pri, int, 0644); | 
 | MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); | 
 |  | 
 | /* A type 3 BCM header, expected to precede the SPU header for SPU-M. | 
 |  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). | 
 |  * 0x60 - ring 0 | 
 |  * 0x68 - ring 1 | 
 |  * 0x70 - ring 2 | 
 |  * 0x78 - ring 3 | 
 |  */ | 
 | char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; | 
 | /* | 
 |  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN | 
 |  * is set dynamically after reading SPU type from device tree. | 
 |  */ | 
 | #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len | 
 |  | 
 | /* min and max time to sleep before retrying when mbox queue is full. usec */ | 
 | #define MBOX_SLEEP_MIN  800 | 
 | #define MBOX_SLEEP_MAX 1000 | 
 |  | 
 | /** | 
 |  * select_channel() - Select a SPU channel to handle a crypto request. Selects | 
 |  * channel in round robin order. | 
 |  * | 
 |  * Return:  channel index | 
 |  */ | 
 | static u8 select_channel(void) | 
 | { | 
 | 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); | 
 |  | 
 | 	return chan_idx % iproc_priv.spu.num_chan; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to | 
 |  * receive a SPU response message for an ablkcipher request. Includes buffers to | 
 |  * catch SPU message headers and the response data. | 
 |  * @mssg:	mailbox message containing the receive sg | 
 |  * @rctx:	crypto request context | 
 |  * @rx_frag_num: number of scatterlist elements required to hold the | 
 |  *		SPU response message | 
 |  * @chunksize:	Number of bytes of response data expected | 
 |  * @stat_pad_len: Number of bytes required to pad the STAT field to | 
 |  *		a 4-byte boundary | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Returns: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int | 
 | spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, | 
 | 			    struct iproc_reqctx_s *rctx, | 
 | 			    u8 rx_frag_num, | 
 | 			    unsigned int chunksize, u32 stat_pad_len) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 datalen;		/* Number of bytes of response data expected */ | 
 |  | 
 | 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (!mssg->spu.dst) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.dst; | 
 | 	sg_init_table(sg, rx_frag_num); | 
 | 	/* Space for SPU message header */ | 
 | 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); | 
 |  | 
 | 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */ | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) && | 
 | 	    spu->spu_xts_tweak_in_payload()) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, | 
 | 			   SPU_XTS_TWEAK_SIZE); | 
 |  | 
 | 	/* Copy in each dst sg entry from request, up to chunksize */ | 
 | 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, | 
 | 				 rctx->dst_nents, chunksize); | 
 | 	if (datalen < chunksize) { | 
 | 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", | 
 | 		       __func__, chunksize, datalen); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (ctx->cipher.alg == CIPHER_ALG_RC4) | 
 | 		/* Add buffer to catch 260-byte SUPDT field for RC4 */ | 
 | 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); | 
 |  | 
 | 	if (stat_pad_len) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); | 
 |  | 
 | 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); | 
 | 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to | 
 |  * send a SPU request message for an ablkcipher request. Includes SPU message | 
 |  * headers and the request data. | 
 |  * @mssg:	mailbox message containing the transmit sg | 
 |  * @rctx:	crypto request context | 
 |  * @tx_frag_num: number of scatterlist elements required to construct the | 
 |  *		SPU request message | 
 |  * @chunksize:	Number of bytes of request data | 
 |  * @pad_len:	Number of pad bytes | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Returns: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int | 
 | spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, | 
 | 			    struct iproc_reqctx_s *rctx, | 
 | 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 datalen;		/* Number of bytes of response data expected */ | 
 | 	u32 stat_len; | 
 |  | 
 | 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (unlikely(!mssg->spu.src)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.src; | 
 | 	sg_init_table(sg, tx_frag_num); | 
 |  | 
 | 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, | 
 | 		   BCM_HDR_LEN + ctx->spu_req_hdr_len); | 
 |  | 
 | 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */ | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) && | 
 | 	    spu->spu_xts_tweak_in_payload()) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); | 
 |  | 
 | 	/* Copy in each src sg entry from request, up to chunksize */ | 
 | 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, | 
 | 				 rctx->src_nents, chunksize); | 
 | 	if (unlikely(datalen < chunksize)) { | 
 | 		pr_err("%s(): failed to copy src sg to mbox msg", | 
 | 		       __func__); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (pad_len) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); | 
 |  | 
 | 	stat_len = spu->spu_tx_status_len(); | 
 | 	if (stat_len) { | 
 | 		memset(rctx->msg_buf.tx_stat, 0, stat_len); | 
 | 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mailbox_send_message(struct brcm_message *mssg, u32 flags, | 
 | 				u8 chan_idx) | 
 | { | 
 | 	int err; | 
 | 	int retry_cnt = 0; | 
 | 	struct device *dev = &(iproc_priv.pdev->dev); | 
 |  | 
 | 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); | 
 | 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { | 
 | 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { | 
 | 			/* | 
 | 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume | 
 | 			 * not in atomic context and we can wait and try again. | 
 | 			 */ | 
 | 			retry_cnt++; | 
 | 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); | 
 | 			err = mbox_send_message(iproc_priv.mbox[chan_idx], | 
 | 						mssg); | 
 | 			atomic_inc(&iproc_priv.mb_no_spc); | 
 | 		} | 
 | 	} | 
 | 	if (err < 0) { | 
 | 		atomic_inc(&iproc_priv.mb_send_fail); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* Check error returned by mailbox controller */ | 
 | 	err = mssg->error; | 
 | 	if (unlikely(err < 0)) { | 
 | 		dev_err(dev, "message error %d", err); | 
 | 		/* Signal txdone for mailbox channel */ | 
 | 	} | 
 |  | 
 | 	/* Signal txdone for mailbox channel */ | 
 | 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in | 
 |  * a single SPU request message, starting at the current position in the request | 
 |  * data. | 
 |  * @rctx:	Crypto request context | 
 |  * | 
 |  * This may be called on the crypto API thread, or, when a request is so large | 
 |  * it must be broken into multiple SPU messages, on the thread used to invoke | 
 |  * the response callback. When requests are broken into multiple SPU | 
 |  * messages, we assume subsequent messages depend on previous results, and | 
 |  * thus always wait for previous results before submitting the next message. | 
 |  * Because requests are submitted in lock step like this, there is no need | 
 |  * to synchronize access to request data structures. | 
 |  * | 
 |  * Return: -EINPROGRESS: request has been accepted and result will be returned | 
 |  *			 asynchronously | 
 |  *         Any other value indicates an error | 
 |  */ | 
 | static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct ablkcipher_request *req = | 
 | 	    container_of(areq, struct ablkcipher_request, base); | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	struct spu_cipher_parms cipher_parms; | 
 | 	int err = 0; | 
 | 	unsigned int chunksize = 0;	/* Num bytes of request to submit */ | 
 | 	int remaining = 0;	/* Bytes of request still to process */ | 
 | 	int chunk_start;	/* Beginning of data for current SPU msg */ | 
 |  | 
 | 	/* IV or ctr value to use in this SPU msg */ | 
 | 	u8 local_iv_ctr[MAX_IV_SIZE]; | 
 | 	u32 stat_pad_len;	/* num bytes to align status field */ | 
 | 	u32 pad_len;		/* total length of all padding */ | 
 | 	bool update_key = false; | 
 | 	struct brcm_message *mssg;	/* mailbox message */ | 
 |  | 
 | 	/* number of entries in src and dst sg in mailbox message. */ | 
 | 	u8 rx_frag_num = 2;	/* response header and STATUS */ | 
 | 	u8 tx_frag_num = 1;	/* request header */ | 
 |  | 
 | 	flow_log("%s\n", __func__); | 
 |  | 
 | 	cipher_parms.alg = ctx->cipher.alg; | 
 | 	cipher_parms.mode = ctx->cipher.mode; | 
 | 	cipher_parms.type = ctx->cipher_type; | 
 | 	cipher_parms.key_len = ctx->enckeylen; | 
 | 	cipher_parms.key_buf = ctx->enckey; | 
 | 	cipher_parms.iv_buf = local_iv_ctr; | 
 | 	cipher_parms.iv_len = rctx->iv_ctr_len; | 
 |  | 
 | 	mssg = &rctx->mb_mssg; | 
 | 	chunk_start = rctx->src_sent; | 
 | 	remaining = rctx->total_todo - chunk_start; | 
 |  | 
 | 	/* determine the chunk we are breaking off and update the indexes */ | 
 | 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && | 
 | 	    (remaining > ctx->max_payload)) | 
 | 		chunksize = ctx->max_payload; | 
 | 	else | 
 | 		chunksize = remaining; | 
 |  | 
 | 	rctx->src_sent += chunksize; | 
 | 	rctx->total_sent = rctx->src_sent; | 
 |  | 
 | 	/* Count number of sg entries to be included in this request */ | 
 | 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); | 
 | 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); | 
 |  | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) && | 
 | 	    rctx->is_encrypt && chunk_start) | 
 | 		/* | 
 | 		 * Encrypting non-first first chunk. Copy last block of | 
 | 		 * previous result to IV for this chunk. | 
 | 		 */ | 
 | 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, | 
 | 				    rctx->iv_ctr_len, | 
 | 				    chunk_start - rctx->iv_ctr_len); | 
 |  | 
 | 	if (rctx->iv_ctr_len) { | 
 | 		/* get our local copy of the iv */ | 
 | 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, | 
 | 				 rctx->iv_ctr_len); | 
 |  | 
 | 		/* generate the next IV if possible */ | 
 | 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) && | 
 | 		    !rctx->is_encrypt) { | 
 | 			/* | 
 | 			 * CBC Decrypt: next IV is the last ciphertext block in | 
 | 			 * this chunk | 
 | 			 */ | 
 | 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, | 
 | 					    rctx->iv_ctr_len, | 
 | 					    rctx->src_sent - rctx->iv_ctr_len); | 
 | 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) { | 
 | 			/* | 
 | 			 * The SPU hardware increments the counter once for | 
 | 			 * each AES block of 16 bytes. So update the counter | 
 | 			 * for the next chunk, if there is one. Note that for | 
 | 			 * this chunk, the counter has already been copied to | 
 | 			 * local_iv_ctr. We can assume a block size of 16, | 
 | 			 * because we only support CTR mode for AES, not for | 
 | 			 * any other cipher alg. | 
 | 			 */ | 
 | 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ctx->cipher.alg == CIPHER_ALG_RC4) { | 
 | 		rx_frag_num++; | 
 | 		if (chunk_start) { | 
 | 			/* | 
 | 			 * for non-first RC4 chunks, use SUPDT from previous | 
 | 			 * response as key for this chunk. | 
 | 			 */ | 
 | 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; | 
 | 			update_key = true; | 
 | 			cipher_parms.type = CIPHER_TYPE_UPDT; | 
 | 		} else if (!rctx->is_encrypt) { | 
 | 			/* | 
 | 			 * First RC4 chunk. For decrypt, key in pre-built msg | 
 | 			 * header may have been changed if encrypt required | 
 | 			 * multiple chunks. So revert the key to the | 
 | 			 * ctx->enckey value. | 
 | 			 */ | 
 | 			update_key = true; | 
 | 			cipher_parms.type = CIPHER_TYPE_INIT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) | 
 | 		flow_log("max_payload infinite\n"); | 
 | 	else | 
 | 		flow_log("max_payload %u\n", ctx->max_payload); | 
 |  | 
 | 	flow_log("sent:%u start:%u remains:%u size:%u\n", | 
 | 		 rctx->src_sent, chunk_start, remaining, chunksize); | 
 |  | 
 | 	/* Copy SPU header template created at setkey time */ | 
 | 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, | 
 | 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr)); | 
 |  | 
 | 	/* | 
 | 	 * Pass SUPDT field as key. Key field in finish() call is only used | 
 | 	 * when update_key has been set above for RC4. Will be ignored in | 
 | 	 * all other cases. | 
 | 	 */ | 
 | 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, | 
 | 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt), | 
 | 				   &cipher_parms, update_key, chunksize); | 
 |  | 
 | 	atomic64_add(chunksize, &iproc_priv.bytes_out); | 
 |  | 
 | 	stat_pad_len = spu->spu_wordalign_padlen(chunksize); | 
 | 	if (stat_pad_len) | 
 | 		rx_frag_num++; | 
 | 	pad_len = stat_pad_len; | 
 | 	if (pad_len) { | 
 | 		tx_frag_num++; | 
 | 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, | 
 | 				     0, ctx->auth.alg, ctx->auth.mode, | 
 | 				     rctx->total_sent, stat_pad_len); | 
 | 	} | 
 |  | 
 | 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, | 
 | 			      ctx->spu_req_hdr_len); | 
 | 	packet_log("payload:\n"); | 
 | 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize); | 
 | 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len); | 
 |  | 
 | 	/* | 
 | 	 * Build mailbox message containing SPU request msg and rx buffers | 
 | 	 * to catch response message | 
 | 	 */ | 
 | 	memset(mssg, 0, sizeof(*mssg)); | 
 | 	mssg->type = BRCM_MESSAGE_SPU; | 
 | 	mssg->ctx = rctx;	/* Will be returned in response */ | 
 |  | 
 | 	/* Create rx scatterlist to catch result */ | 
 | 	rx_frag_num += rctx->dst_nents; | 
 |  | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) && | 
 | 	    spu->spu_xts_tweak_in_payload()) | 
 | 		rx_frag_num++;	/* extra sg to insert tweak */ | 
 |  | 
 | 	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, | 
 | 					  stat_pad_len); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Create tx scatterlist containing SPU request message */ | 
 | 	tx_frag_num += rctx->src_nents; | 
 | 	if (spu->spu_tx_status_len()) | 
 | 		tx_frag_num++; | 
 |  | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) && | 
 | 	    spu->spu_xts_tweak_in_payload()) | 
 | 		tx_frag_num++;	/* extra sg to insert tweak */ | 
 |  | 
 | 	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, | 
 | 					  pad_len); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the | 
 |  * total received count for the request and updates global stats. | 
 |  * @rctx:	Crypto request context | 
 |  */ | 
 | static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | #ifdef DEBUG | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct ablkcipher_request *req = ablkcipher_request_cast(areq); | 
 | #endif | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 payload_len; | 
 |  | 
 | 	/* See how much data was returned */ | 
 | 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); | 
 |  | 
 | 	/* | 
 | 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the | 
 | 	 * encrypted tweak ("i") value; we don't count those. | 
 | 	 */ | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) && | 
 | 	    spu->spu_xts_tweak_in_payload() && | 
 | 	    (payload_len >= SPU_XTS_TWEAK_SIZE)) | 
 | 		payload_len -= SPU_XTS_TWEAK_SIZE; | 
 |  | 
 | 	atomic64_add(payload_len, &iproc_priv.bytes_in); | 
 |  | 
 | 	flow_log("%s() offset: %u, bd_len: %u BD:\n", | 
 | 		 __func__, rctx->total_received, payload_len); | 
 |  | 
 | 	dump_sg(req->dst, rctx->total_received, payload_len); | 
 | 	if (ctx->cipher.alg == CIPHER_ALG_RC4) | 
 | 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak, | 
 | 			    SPU_SUPDT_LEN); | 
 |  | 
 | 	rctx->total_received += payload_len; | 
 | 	if (rctx->total_received == rctx->total_todo) { | 
 | 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); | 
 | 		atomic_inc( | 
 | 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to | 
 |  * receive a SPU response message for an ahash request. | 
 |  * @mssg:	mailbox message containing the receive sg | 
 |  * @rctx:	crypto request context | 
 |  * @rx_frag_num: number of scatterlist elements required to hold the | 
 |  *		SPU response message | 
 |  * @digestsize: length of hash digest, in bytes | 
 |  * @stat_pad_len: Number of bytes required to pad the STAT field to | 
 |  *		a 4-byte boundary | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Return: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int | 
 | spu_ahash_rx_sg_create(struct brcm_message *mssg, | 
 | 		       struct iproc_reqctx_s *rctx, | 
 | 		       u8 rx_frag_num, unsigned int digestsize, | 
 | 		       u32 stat_pad_len) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 |  | 
 | 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (!mssg->spu.dst) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.dst; | 
 | 	sg_init_table(sg, rx_frag_num); | 
 | 	/* Space for SPU message header */ | 
 | 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); | 
 |  | 
 | 	/* Space for digest */ | 
 | 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); | 
 |  | 
 | 	if (stat_pad_len) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); | 
 |  | 
 | 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); | 
 | 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send | 
 |  * a SPU request message for an ahash request. Includes SPU message headers and | 
 |  * the request data. | 
 |  * @mssg:	mailbox message containing the transmit sg | 
 |  * @rctx:	crypto request context | 
 |  * @tx_frag_num: number of scatterlist elements required to construct the | 
 |  *		SPU request message | 
 |  * @spu_hdr_len: length in bytes of SPU message header | 
 |  * @hash_carry_len: Number of bytes of data carried over from previous req | 
 |  * @new_data_len: Number of bytes of new request data | 
 |  * @pad_len:	Number of pad bytes | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Return: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int | 
 | spu_ahash_tx_sg_create(struct brcm_message *mssg, | 
 | 		       struct iproc_reqctx_s *rctx, | 
 | 		       u8 tx_frag_num, | 
 | 		       u32 spu_hdr_len, | 
 | 		       unsigned int hash_carry_len, | 
 | 		       unsigned int new_data_len, u32 pad_len) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	u32 datalen;		/* Number of bytes of response data expected */ | 
 | 	u32 stat_len; | 
 |  | 
 | 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (!mssg->spu.src) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.src; | 
 | 	sg_init_table(sg, tx_frag_num); | 
 |  | 
 | 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, | 
 | 		   BCM_HDR_LEN + spu_hdr_len); | 
 |  | 
 | 	if (hash_carry_len) | 
 | 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); | 
 |  | 
 | 	if (new_data_len) { | 
 | 		/* Copy in each src sg entry from request, up to chunksize */ | 
 | 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, | 
 | 					 rctx->src_nents, new_data_len); | 
 | 		if (datalen < new_data_len) { | 
 | 			pr_err("%s(): failed to copy src sg to mbox msg", | 
 | 			       __func__); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pad_len) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); | 
 |  | 
 | 	stat_len = spu->spu_tx_status_len(); | 
 | 	if (stat_len) { | 
 | 		memset(rctx->msg_buf.tx_stat, 0, stat_len); | 
 | 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_ahash_req() - Process an asynchronous hash request from the crypto | 
 |  * API. | 
 |  * @rctx:  Crypto request context | 
 |  * | 
 |  * Builds a SPU request message embedded in a mailbox message and submits the | 
 |  * mailbox message on a selected mailbox channel. The SPU request message is | 
 |  * constructed as a scatterlist, including entries from the crypto API's | 
 |  * src scatterlist to avoid copying the data to be hashed. This function is | 
 |  * called either on the thread from the crypto API, or, in the case that the | 
 |  * crypto API request is too large to fit in a single SPU request message, | 
 |  * on the thread that invokes the receive callback with a response message. | 
 |  * Because some operations require the response from one chunk before the next | 
 |  * chunk can be submitted, we always wait for the response for the previous | 
 |  * chunk before submitting the next chunk. Because requests are submitted in | 
 |  * lock step like this, there is no need to synchronize access to request data | 
 |  * structures. | 
 |  * | 
 |  * Return: | 
 |  *   -EINPROGRESS: request has been submitted to SPU and response will be | 
 |  *		   returned asynchronously | 
 |  *   -EAGAIN:      non-final request included a small amount of data, which for | 
 |  *		   efficiency we did not submit to the SPU, but instead stored | 
 |  *		   to be submitted to the SPU with the next part of the request | 
 |  *   other:        an error code | 
 |  */ | 
 | static int handle_ahash_req(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct ahash_request *req = ahash_request_cast(areq); | 
 | 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); | 
 | 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); | 
 | 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 |  | 
 | 	/* number of bytes still to be hashed in this req */ | 
 | 	unsigned int nbytes_to_hash = 0; | 
 | 	int err = 0; | 
 | 	unsigned int chunksize = 0;	/* length of hash carry + new data */ | 
 | 	/* | 
 | 	 * length of new data, not from hash carry, to be submitted in | 
 | 	 * this hw request | 
 | 	 */ | 
 | 	unsigned int new_data_len; | 
 |  | 
 | 	unsigned int chunk_start = 0; | 
 | 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */ | 
 | 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ | 
 | 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */ | 
 | 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */ | 
 | 	struct brcm_message *mssg;	/* mailbox message */ | 
 | 	struct spu_request_opts req_opts; | 
 | 	struct spu_cipher_parms cipher_parms; | 
 | 	struct spu_hash_parms hash_parms; | 
 | 	struct spu_aead_parms aead_parms; | 
 | 	unsigned int local_nbuf; | 
 | 	u32 spu_hdr_len; | 
 | 	unsigned int digestsize; | 
 | 	u16 rem = 0; | 
 |  | 
 | 	/* | 
 | 	 * number of entries in src and dst sg. Always includes SPU msg header. | 
 | 	 * rx always includes a buffer to catch digest and STATUS. | 
 | 	 */ | 
 | 	u8 rx_frag_num = 3; | 
 | 	u8 tx_frag_num = 1; | 
 |  | 
 | 	flow_log("total_todo %u, total_sent %u\n", | 
 | 		 rctx->total_todo, rctx->total_sent); | 
 |  | 
 | 	memset(&req_opts, 0, sizeof(req_opts)); | 
 | 	memset(&cipher_parms, 0, sizeof(cipher_parms)); | 
 | 	memset(&hash_parms, 0, sizeof(hash_parms)); | 
 | 	memset(&aead_parms, 0, sizeof(aead_parms)); | 
 |  | 
 | 	req_opts.bd_suppress = true; | 
 | 	hash_parms.alg = ctx->auth.alg; | 
 | 	hash_parms.mode = ctx->auth.mode; | 
 | 	hash_parms.type = HASH_TYPE_NONE; | 
 | 	hash_parms.key_buf = (u8 *)ctx->authkey; | 
 | 	hash_parms.key_len = ctx->authkeylen; | 
 |  | 
 | 	/* | 
 | 	 * For hash algorithms below assignment looks bit odd but | 
 | 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms | 
 | 	 * to differentiate between 128, 192, 256 bit key values. | 
 | 	 * Based on the key values, hash algorithm is selected. | 
 | 	 * For example for 128 bit key, hash algorithm is AES-128. | 
 | 	 */ | 
 | 	cipher_parms.type = ctx->cipher_type; | 
 |  | 
 | 	mssg = &rctx->mb_mssg; | 
 | 	chunk_start = rctx->src_sent; | 
 |  | 
 | 	/* | 
 | 	 * Compute the amount remaining to hash. This may include data | 
 | 	 * carried over from previous requests. | 
 | 	 */ | 
 | 	nbytes_to_hash = rctx->total_todo - rctx->total_sent; | 
 | 	chunksize = nbytes_to_hash; | 
 | 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && | 
 | 	    (chunksize > ctx->max_payload)) | 
 | 		chunksize = ctx->max_payload; | 
 |  | 
 | 	/* | 
 | 	 * If this is not a final request and the request data is not a multiple | 
 | 	 * of a full block, then simply park the extra data and prefix it to the | 
 | 	 * data for the next request. | 
 | 	 */ | 
 | 	if (!rctx->is_final) { | 
 | 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len; | 
 | 		u16 new_len;  /* len of data to add to hash carry */ | 
 |  | 
 | 		rem = chunksize % blocksize;   /* remainder */ | 
 | 		if (rem) { | 
 | 			/* chunksize not a multiple of blocksize */ | 
 | 			chunksize -= rem; | 
 | 			if (chunksize == 0) { | 
 | 				/* Don't have a full block to submit to hw */ | 
 | 				new_len = rem - rctx->hash_carry_len; | 
 | 				sg_copy_part_to_buf(req->src, dest, new_len, | 
 | 						    rctx->src_sent); | 
 | 				rctx->hash_carry_len = rem; | 
 | 				flow_log("Exiting with hash carry len: %u\n", | 
 | 					 rctx->hash_carry_len); | 
 | 				packet_dump("  buf: ", | 
 | 					    rctx->hash_carry, | 
 | 					    rctx->hash_carry_len); | 
 | 				return -EAGAIN; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* if we have hash carry, then prefix it to the data in this request */ | 
 | 	local_nbuf = rctx->hash_carry_len; | 
 | 	rctx->hash_carry_len = 0; | 
 | 	if (local_nbuf) | 
 | 		tx_frag_num++; | 
 | 	new_data_len = chunksize - local_nbuf; | 
 |  | 
 | 	/* Count number of sg entries to be used in this request */ | 
 | 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, | 
 | 				       new_data_len); | 
 |  | 
 | 	/* AES hashing keeps key size in type field, so need to copy it here */ | 
 | 	if (hash_parms.alg == HASH_ALG_AES) | 
 | 		hash_parms.type = (enum hash_type)cipher_parms.type; | 
 | 	else | 
 | 		hash_parms.type = spu->spu_hash_type(rctx->total_sent); | 
 |  | 
 | 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, | 
 | 					  hash_parms.type); | 
 | 	hash_parms.digestsize =	digestsize; | 
 |  | 
 | 	/* update the indexes */ | 
 | 	rctx->total_sent += chunksize; | 
 | 	/* if you sent a prebuf then that wasn't from this req->src */ | 
 | 	rctx->src_sent += new_data_len; | 
 |  | 
 | 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) | 
 | 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, | 
 | 							   hash_parms.mode, | 
 | 							   chunksize, | 
 | 							   blocksize); | 
 |  | 
 | 	/* | 
 | 	 * If a non-first chunk, then include the digest returned from the | 
 | 	 * previous chunk so that hw can add to it (except for AES types). | 
 | 	 */ | 
 | 	if ((hash_parms.type == HASH_TYPE_UPDT) && | 
 | 	    (hash_parms.alg != HASH_ALG_AES)) { | 
 | 		hash_parms.key_buf = rctx->incr_hash; | 
 | 		hash_parms.key_len = digestsize; | 
 | 	} | 
 |  | 
 | 	atomic64_add(chunksize, &iproc_priv.bytes_out); | 
 |  | 
 | 	flow_log("%s() final: %u nbuf: %u ", | 
 | 		 __func__, rctx->is_final, local_nbuf); | 
 |  | 
 | 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) | 
 | 		flow_log("max_payload infinite\n"); | 
 | 	else | 
 | 		flow_log("max_payload %u\n", ctx->max_payload); | 
 |  | 
 | 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); | 
 |  | 
 | 	/* Prepend SPU header with type 3 BCM header */ | 
 | 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); | 
 |  | 
 | 	hash_parms.prebuf_len = local_nbuf; | 
 | 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + | 
 | 					      BCM_HDR_LEN, | 
 | 					      &req_opts, &cipher_parms, | 
 | 					      &hash_parms, &aead_parms, | 
 | 					      new_data_len); | 
 |  | 
 | 	if (spu_hdr_len == 0) { | 
 | 		pr_err("Failed to create SPU request header\n"); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Determine total length of padding required. Put all padding in one | 
 | 	 * buffer. | 
 | 	 */ | 
 | 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); | 
 | 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, | 
 | 				   0, 0, hash_parms.pad_len); | 
 | 	if (spu->spu_tx_status_len()) | 
 | 		stat_pad_len = spu->spu_wordalign_padlen(db_size); | 
 | 	if (stat_pad_len) | 
 | 		rx_frag_num++; | 
 | 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; | 
 | 	if (pad_len) { | 
 | 		tx_frag_num++; | 
 | 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, | 
 | 				     hash_parms.pad_len, ctx->auth.alg, | 
 | 				     ctx->auth.mode, rctx->total_sent, | 
 | 				     stat_pad_len); | 
 | 	} | 
 |  | 
 | 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, | 
 | 			      spu_hdr_len); | 
 | 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf); | 
 | 	flow_log("Data:\n"); | 
 | 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); | 
 | 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len); | 
 |  | 
 | 	/* | 
 | 	 * Build mailbox message containing SPU request msg and rx buffers | 
 | 	 * to catch response message | 
 | 	 */ | 
 | 	memset(mssg, 0, sizeof(*mssg)); | 
 | 	mssg->type = BRCM_MESSAGE_SPU; | 
 | 	mssg->ctx = rctx;	/* Will be returned in response */ | 
 |  | 
 | 	/* Create rx scatterlist to catch result */ | 
 | 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, | 
 | 				     stat_pad_len); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Create tx scatterlist containing SPU request message */ | 
 | 	tx_frag_num += rctx->src_nents; | 
 | 	if (spu->spu_tx_status_len()) | 
 | 		tx_frag_num++; | 
 | 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, | 
 | 				     local_nbuf, new_data_len, pad_len); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash | 
 |  * for an HMAC request. | 
 |  * @req:  The HMAC request from the crypto API | 
 |  * @ctx:  The session context | 
 |  * | 
 |  * Return: 0 if synchronous hash operation successful | 
 |  *         -EINVAL if the hash algo is unrecognized | 
 |  *         any other value indicates an error | 
 |  */ | 
 | static int spu_hmac_outer_hash(struct ahash_request *req, | 
 | 			       struct iproc_ctx_s *ctx) | 
 | { | 
 | 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); | 
 | 	unsigned int blocksize = | 
 | 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); | 
 | 	int rc; | 
 |  | 
 | 	switch (ctx->auth.alg) { | 
 | 	case HASH_ALG_MD5: | 
 | 		rc = do_shash("md5", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	case HASH_ALG_SHA1: | 
 | 		rc = do_shash("sha1", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	case HASH_ALG_SHA224: | 
 | 		rc = do_shash("sha224", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	case HASH_ALG_SHA256: | 
 | 		rc = do_shash("sha256", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	case HASH_ALG_SHA384: | 
 | 		rc = do_shash("sha384", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	case HASH_ALG_SHA512: | 
 | 		rc = do_shash("sha512", req->result, ctx->opad, blocksize, | 
 | 			      req->result, ctx->digestsize, NULL, 0); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("%s() Error : unknown hmac type\n", __func__); | 
 | 		rc = -EINVAL; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ahash_req_done() - Process a hash result from the SPU hardware. | 
 |  * @rctx: Crypto request context | 
 |  * | 
 |  * Return: 0 if successful | 
 |  *         < 0 if an error | 
 |  */ | 
 | static int ahash_req_done(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct ahash_request *req = ahash_request_cast(areq); | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	int err; | 
 |  | 
 | 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); | 
 |  | 
 | 	if (spu->spu_type == SPU_TYPE_SPUM) { | 
 | 		/* byte swap the output from the UPDT function to network byte | 
 | 		 * order | 
 | 		 */ | 
 | 		if (ctx->auth.alg == HASH_ALG_MD5) { | 
 | 			__swab32s((u32 *)req->result); | 
 | 			__swab32s(((u32 *)req->result) + 1); | 
 | 			__swab32s(((u32 *)req->result) + 2); | 
 | 			__swab32s(((u32 *)req->result) + 3); | 
 | 			__swab32s(((u32 *)req->result) + 4); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	flow_dump("  digest ", req->result, ctx->digestsize); | 
 |  | 
 | 	/* if this an HMAC then do the outer hash */ | 
 | 	if (rctx->is_sw_hmac) { | 
 | 		err = spu_hmac_outer_hash(req, ctx); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 		flow_dump("  hmac: ", req->result, ctx->digestsize); | 
 | 	} | 
 |  | 
 | 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { | 
 | 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); | 
 | 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); | 
 | 	} else { | 
 | 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); | 
 | 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_ahash_resp() - Process a SPU response message for a hash request. | 
 |  * Checks if the entire crypto API request has been processed, and if so, | 
 |  * invokes post processing on the result. | 
 |  * @rctx: Crypto request context | 
 |  */ | 
 | static void handle_ahash_resp(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | #ifdef DEBUG | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct ahash_request *req = ahash_request_cast(areq); | 
 | 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); | 
 | 	unsigned int blocksize = | 
 | 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); | 
 | #endif | 
 | 	/* | 
 | 	 * Save hash to use as input to next op if incremental. Might be copying | 
 | 	 * too much, but that's easier than figuring out actual digest size here | 
 | 	 */ | 
 | 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); | 
 |  | 
 | 	flow_log("%s() blocksize:%u digestsize:%u\n", | 
 | 		 __func__, blocksize, ctx->digestsize); | 
 |  | 
 | 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); | 
 |  | 
 | 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) | 
 | 		ahash_req_done(rctx); | 
 | } | 
 |  | 
 | /** | 
 |  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive | 
 |  * a SPU response message for an AEAD request. Includes buffers to catch SPU | 
 |  * message headers and the response data. | 
 |  * @mssg:	mailbox message containing the receive sg | 
 |  * @rctx:	crypto request context | 
 |  * @rx_frag_num: number of scatterlist elements required to hold the | 
 |  *		SPU response message | 
 |  * @assoc_len:	Length of associated data included in the crypto request | 
 |  * @ret_iv_len: Length of IV returned in response | 
 |  * @resp_len:	Number of bytes of response data expected to be written to | 
 |  *              dst buffer from crypto API | 
 |  * @digestsize: Length of hash digest, in bytes | 
 |  * @stat_pad_len: Number of bytes required to pad the STAT field to | 
 |  *		a 4-byte boundary | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Returns: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int spu_aead_rx_sg_create(struct brcm_message *mssg, | 
 | 				 struct aead_request *req, | 
 | 				 struct iproc_reqctx_s *rctx, | 
 | 				 u8 rx_frag_num, | 
 | 				 unsigned int assoc_len, | 
 | 				 u32 ret_iv_len, unsigned int resp_len, | 
 | 				 unsigned int digestsize, u32 stat_pad_len) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 datalen;		/* Number of bytes of response data expected */ | 
 | 	u32 assoc_buf_len; | 
 | 	u8 data_padlen = 0; | 
 |  | 
 | 	if (ctx->is_rfc4543) { | 
 | 		/* RFC4543: only pad after data, not after AAD */ | 
 | 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, | 
 | 							  assoc_len + resp_len); | 
 | 		assoc_buf_len = assoc_len; | 
 | 	} else { | 
 | 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, | 
 | 							  resp_len); | 
 | 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, | 
 | 						assoc_len, ret_iv_len, | 
 | 						rctx->is_encrypt); | 
 | 	} | 
 |  | 
 | 	if (ctx->cipher.mode == CIPHER_MODE_CCM) | 
 | 		/* ICV (after data) must be in the next 32-bit word for CCM */ | 
 | 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + | 
 | 							 resp_len + | 
 | 							 data_padlen); | 
 |  | 
 | 	if (data_padlen) | 
 | 		/* have to catch gcm pad in separate buffer */ | 
 | 		rx_frag_num++; | 
 |  | 
 | 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (!mssg->spu.dst) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.dst; | 
 | 	sg_init_table(sg, rx_frag_num); | 
 |  | 
 | 	/* Space for SPU message header */ | 
 | 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); | 
 |  | 
 | 	if (assoc_buf_len) { | 
 | 		/* | 
 | 		 * Don't write directly to req->dst, because SPU may pad the | 
 | 		 * assoc data in the response | 
 | 		 */ | 
 | 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); | 
 | 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); | 
 | 	} | 
 |  | 
 | 	if (resp_len) { | 
 | 		/* | 
 | 		 * Copy in each dst sg entry from request, up to chunksize. | 
 | 		 * dst sg catches just the data. digest caught in separate buf. | 
 | 		 */ | 
 | 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, | 
 | 					 rctx->dst_nents, resp_len); | 
 | 		if (datalen < (resp_len)) { | 
 | 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", | 
 | 			       __func__, resp_len, datalen); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If GCM/CCM data is padded, catch padding in separate buffer */ | 
 | 	if (data_padlen) { | 
 | 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); | 
 | 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); | 
 | 	} | 
 |  | 
 | 	/* Always catch ICV in separate buffer */ | 
 | 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); | 
 |  | 
 | 	flow_log("stat_pad_len %u\n", stat_pad_len); | 
 | 	if (stat_pad_len) { | 
 | 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); | 
 | 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); | 
 | 	} | 
 |  | 
 | 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); | 
 | 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a | 
 |  * SPU request message for an AEAD request. Includes SPU message headers and the | 
 |  * request data. | 
 |  * @mssg:	mailbox message containing the transmit sg | 
 |  * @rctx:	crypto request context | 
 |  * @tx_frag_num: number of scatterlist elements required to construct the | 
 |  *		SPU request message | 
 |  * @spu_hdr_len: length of SPU message header in bytes | 
 |  * @assoc:	crypto API associated data scatterlist | 
 |  * @assoc_len:	length of associated data | 
 |  * @assoc_nents: number of scatterlist entries containing assoc data | 
 |  * @aead_iv_len: length of AEAD IV, if included | 
 |  * @chunksize:	Number of bytes of request data | 
 |  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. | 
 |  * @pad_len:	Number of pad bytes | 
 |  * @incl_icv:	If true, write separate ICV buffer after data and | 
 |  *              any padding | 
 |  * | 
 |  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() | 
 |  * when the request completes, whether the request is handled successfully or | 
 |  * there is an error. | 
 |  * | 
 |  * Return: | 
 |  *   0 if successful | 
 |  *   < 0 if an error | 
 |  */ | 
 | static int spu_aead_tx_sg_create(struct brcm_message *mssg, | 
 | 				 struct iproc_reqctx_s *rctx, | 
 | 				 u8 tx_frag_num, | 
 | 				 u32 spu_hdr_len, | 
 | 				 struct scatterlist *assoc, | 
 | 				 unsigned int assoc_len, | 
 | 				 int assoc_nents, | 
 | 				 unsigned int aead_iv_len, | 
 | 				 unsigned int chunksize, | 
 | 				 u32 aad_pad_len, u32 pad_len, bool incl_icv) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct scatterlist *sg;	/* used to build sgs in mbox message */ | 
 | 	struct scatterlist *assoc_sg = assoc; | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 datalen;		/* Number of bytes of data to write */ | 
 | 	u32 written;		/* Number of bytes of data written */ | 
 | 	u32 assoc_offset = 0; | 
 | 	u32 stat_len; | 
 |  | 
 | 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), | 
 | 				rctx->gfp); | 
 | 	if (!mssg->spu.src) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg = mssg->spu.src; | 
 | 	sg_init_table(sg, tx_frag_num); | 
 |  | 
 | 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, | 
 | 		   BCM_HDR_LEN + spu_hdr_len); | 
 |  | 
 | 	if (assoc_len) { | 
 | 		/* Copy in each associated data sg entry from request */ | 
 | 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, | 
 | 					 assoc_nents, assoc_len); | 
 | 		if (written < assoc_len) { | 
 | 			pr_err("%s(): failed to copy assoc sg to mbox msg", | 
 | 			       __func__); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (aead_iv_len) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); | 
 |  | 
 | 	if (aad_pad_len) { | 
 | 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); | 
 | 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); | 
 | 	} | 
 |  | 
 | 	datalen = chunksize; | 
 | 	if ((chunksize > ctx->digestsize) && incl_icv) | 
 | 		datalen -= ctx->digestsize; | 
 | 	if (datalen) { | 
 | 		/* For aead, a single msg should consume the entire src sg */ | 
 | 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, | 
 | 					 rctx->src_nents, datalen); | 
 | 		if (written < datalen) { | 
 | 			pr_err("%s(): failed to copy src sg to mbox msg", | 
 | 			       __func__); | 
 | 			return -EFAULT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pad_len) { | 
 | 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len); | 
 | 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); | 
 | 	} | 
 |  | 
 | 	if (incl_icv) | 
 | 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); | 
 |  | 
 | 	stat_len = spu->spu_tx_status_len(); | 
 | 	if (stat_len) { | 
 | 		memset(rctx->msg_buf.tx_stat, 0, stat_len); | 
 | 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_aead_req() - Submit a SPU request message for the next chunk of the | 
 |  * current AEAD request. | 
 |  * @rctx:  Crypto request context | 
 |  * | 
 |  * Unlike other operation types, we assume the length of the request fits in | 
 |  * a single SPU request message. aead_enqueue() makes sure this is true. | 
 |  * Comments for other op types regarding threads applies here as well. | 
 |  * | 
 |  * Unlike incremental hash ops, where the spu returns the entire hash for | 
 |  * truncated algs like sha-224, the SPU returns just the truncated hash in | 
 |  * response to aead requests. So digestsize is always ctx->digestsize here. | 
 |  * | 
 |  * Return: -EINPROGRESS: crypto request has been accepted and result will be | 
 |  *			 returned asynchronously | 
 |  *         Any other value indicates an error | 
 |  */ | 
 | static int handle_aead_req(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct aead_request *req = container_of(areq, | 
 | 						struct aead_request, base); | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	int err; | 
 | 	unsigned int chunksize; | 
 | 	unsigned int resp_len; | 
 | 	u32 spu_hdr_len; | 
 | 	u32 db_size; | 
 | 	u32 stat_pad_len; | 
 | 	u32 pad_len; | 
 | 	struct brcm_message *mssg;	/* mailbox message */ | 
 | 	struct spu_request_opts req_opts; | 
 | 	struct spu_cipher_parms cipher_parms; | 
 | 	struct spu_hash_parms hash_parms; | 
 | 	struct spu_aead_parms aead_parms; | 
 | 	int assoc_nents = 0; | 
 | 	bool incl_icv = false; | 
 | 	unsigned int digestsize = ctx->digestsize; | 
 |  | 
 | 	/* number of entries in src and dst sg. Always includes SPU msg header. | 
 | 	 */ | 
 | 	u8 rx_frag_num = 2;	/* and STATUS */ | 
 | 	u8 tx_frag_num = 1; | 
 |  | 
 | 	/* doing the whole thing at once */ | 
 | 	chunksize = rctx->total_todo; | 
 |  | 
 | 	flow_log("%s: chunksize %u\n", __func__, chunksize); | 
 |  | 
 | 	memset(&req_opts, 0, sizeof(req_opts)); | 
 | 	memset(&hash_parms, 0, sizeof(hash_parms)); | 
 | 	memset(&aead_parms, 0, sizeof(aead_parms)); | 
 |  | 
 | 	req_opts.is_inbound = !(rctx->is_encrypt); | 
 | 	req_opts.auth_first = ctx->auth_first; | 
 | 	req_opts.is_aead = true; | 
 | 	req_opts.is_esp = ctx->is_esp; | 
 |  | 
 | 	cipher_parms.alg = ctx->cipher.alg; | 
 | 	cipher_parms.mode = ctx->cipher.mode; | 
 | 	cipher_parms.type = ctx->cipher_type; | 
 | 	cipher_parms.key_buf = ctx->enckey; | 
 | 	cipher_parms.key_len = ctx->enckeylen; | 
 | 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; | 
 | 	cipher_parms.iv_len = rctx->iv_ctr_len; | 
 |  | 
 | 	hash_parms.alg = ctx->auth.alg; | 
 | 	hash_parms.mode = ctx->auth.mode; | 
 | 	hash_parms.type = HASH_TYPE_NONE; | 
 | 	hash_parms.key_buf = (u8 *)ctx->authkey; | 
 | 	hash_parms.key_len = ctx->authkeylen; | 
 | 	hash_parms.digestsize = digestsize; | 
 |  | 
 | 	if ((ctx->auth.alg == HASH_ALG_SHA224) && | 
 | 	    (ctx->authkeylen < SHA224_DIGEST_SIZE)) | 
 | 		hash_parms.key_len = SHA224_DIGEST_SIZE; | 
 |  | 
 | 	aead_parms.assoc_size = req->assoclen; | 
 | 	if (ctx->is_esp && !ctx->is_rfc4543) { | 
 | 		/* | 
 | 		 * 8-byte IV is included assoc data in request. SPU2 | 
 | 		 * expects AAD to include just SPI and seqno. So | 
 | 		 * subtract off the IV len. | 
 | 		 */ | 
 | 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; | 
 |  | 
 | 		if (rctx->is_encrypt) { | 
 | 			aead_parms.return_iv = true; | 
 | 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; | 
 | 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; | 
 | 		} | 
 | 	} else { | 
 | 		aead_parms.ret_iv_len = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Count number of sg entries from the crypto API request that are to | 
 | 	 * be included in this mailbox message. For dst sg, don't count space | 
 | 	 * for digest. Digest gets caught in a separate buffer and copied back | 
 | 	 * to dst sg when processing response. | 
 | 	 */ | 
 | 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); | 
 | 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); | 
 | 	if (aead_parms.assoc_size) | 
 | 		assoc_nents = spu_sg_count(rctx->assoc, 0, | 
 | 					   aead_parms.assoc_size); | 
 |  | 
 | 	mssg = &rctx->mb_mssg; | 
 |  | 
 | 	rctx->total_sent = chunksize; | 
 | 	rctx->src_sent = chunksize; | 
 | 	if (spu->spu_assoc_resp_len(ctx->cipher.mode, | 
 | 				    aead_parms.assoc_size, | 
 | 				    aead_parms.ret_iv_len, | 
 | 				    rctx->is_encrypt)) | 
 | 		rx_frag_num++; | 
 |  | 
 | 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, | 
 | 						rctx->iv_ctr_len); | 
 |  | 
 | 	if (ctx->auth.alg == HASH_ALG_AES) | 
 | 		hash_parms.type = (enum hash_type)ctx->cipher_type; | 
 |  | 
 | 	/* General case AAD padding (CCM and RFC4543 special cases below) */ | 
 | 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, | 
 | 						 aead_parms.assoc_size); | 
 |  | 
 | 	/* General case data padding (CCM decrypt special case below) */ | 
 | 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, | 
 | 							   chunksize); | 
 |  | 
 | 	if (ctx->cipher.mode == CIPHER_MODE_CCM) { | 
 | 		/* | 
 | 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be | 
 | 		 * 128-bit aligned | 
 | 		 */ | 
 | 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( | 
 | 					 ctx->cipher.mode, | 
 | 					 aead_parms.assoc_size + 2); | 
 |  | 
 | 		/* | 
 | 		 * And when decrypting CCM, need to pad without including | 
 | 		 * size of ICV which is tacked on to end of chunk | 
 | 		 */ | 
 | 		if (!rctx->is_encrypt) | 
 | 			aead_parms.data_pad_len = | 
 | 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, | 
 | 							chunksize - digestsize); | 
 |  | 
 | 		/* CCM also requires software to rewrite portions of IV: */ | 
 | 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, | 
 | 				       chunksize, rctx->is_encrypt, | 
 | 				       ctx->is_esp); | 
 | 	} | 
 |  | 
 | 	if (ctx->is_rfc4543) { | 
 | 		/* | 
 | 		 * RFC4543: data is included in AAD, so don't pad after AAD | 
 | 		 * and pad data based on both AAD + data size | 
 | 		 */ | 
 | 		aead_parms.aad_pad_len = 0; | 
 | 		if (!rctx->is_encrypt) | 
 | 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( | 
 | 					ctx->cipher.mode, | 
 | 					aead_parms.assoc_size + chunksize - | 
 | 					digestsize); | 
 | 		else | 
 | 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( | 
 | 					ctx->cipher.mode, | 
 | 					aead_parms.assoc_size + chunksize); | 
 |  | 
 | 		req_opts.is_rfc4543 = true; | 
 | 	} | 
 |  | 
 | 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { | 
 | 		incl_icv = true; | 
 | 		tx_frag_num++; | 
 | 		/* Copy ICV from end of src scatterlist to digest buf */ | 
 | 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, | 
 | 				    req->assoclen + rctx->total_sent - | 
 | 				    digestsize); | 
 | 	} | 
 |  | 
 | 	atomic64_add(chunksize, &iproc_priv.bytes_out); | 
 |  | 
 | 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); | 
 |  | 
 | 	/* Prepend SPU header with type 3 BCM header */ | 
 | 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); | 
 |  | 
 | 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + | 
 | 					      BCM_HDR_LEN, &req_opts, | 
 | 					      &cipher_parms, &hash_parms, | 
 | 					      &aead_parms, chunksize); | 
 |  | 
 | 	/* Determine total length of padding. Put all padding in one buffer. */ | 
 | 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, | 
 | 				   chunksize, aead_parms.aad_pad_len, | 
 | 				   aead_parms.data_pad_len, 0); | 
 |  | 
 | 	stat_pad_len = spu->spu_wordalign_padlen(db_size); | 
 |  | 
 | 	if (stat_pad_len) | 
 | 		rx_frag_num++; | 
 | 	pad_len = aead_parms.data_pad_len + stat_pad_len; | 
 | 	if (pad_len) { | 
 | 		tx_frag_num++; | 
 | 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, | 
 | 				     aead_parms.data_pad_len, 0, | 
 | 				     ctx->auth.alg, ctx->auth.mode, | 
 | 				     rctx->total_sent, stat_pad_len); | 
 | 	} | 
 |  | 
 | 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, | 
 | 			      spu_hdr_len); | 
 | 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size); | 
 | 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); | 
 | 	packet_log("BD:\n"); | 
 | 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize); | 
 | 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len); | 
 |  | 
 | 	/* | 
 | 	 * Build mailbox message containing SPU request msg and rx buffers | 
 | 	 * to catch response message | 
 | 	 */ | 
 | 	memset(mssg, 0, sizeof(*mssg)); | 
 | 	mssg->type = BRCM_MESSAGE_SPU; | 
 | 	mssg->ctx = rctx;	/* Will be returned in response */ | 
 |  | 
 | 	/* Create rx scatterlist to catch result */ | 
 | 	rx_frag_num += rctx->dst_nents; | 
 | 	resp_len = chunksize; | 
 |  | 
 | 	/* | 
 | 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of | 
 | 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU | 
 | 	 * sends entire digest back. | 
 | 	 */ | 
 | 	rx_frag_num++; | 
 |  | 
 | 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) || | 
 | 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { | 
 | 		/* | 
 | 		 * Input is ciphertxt plus ICV, but ICV not incl | 
 | 		 * in output. | 
 | 		 */ | 
 | 		resp_len -= ctx->digestsize; | 
 | 		if (resp_len == 0) | 
 | 			/* no rx frags to catch output data */ | 
 | 			rx_frag_num -= rctx->dst_nents; | 
 | 	} | 
 |  | 
 | 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, | 
 | 				    aead_parms.assoc_size, | 
 | 				    aead_parms.ret_iv_len, resp_len, digestsize, | 
 | 				    stat_pad_len); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Create tx scatterlist containing SPU request message */ | 
 | 	tx_frag_num += rctx->src_nents; | 
 | 	tx_frag_num += assoc_nents; | 
 | 	if (aead_parms.aad_pad_len) | 
 | 		tx_frag_num++; | 
 | 	if (aead_parms.iv_len) | 
 | 		tx_frag_num++; | 
 | 	if (spu->spu_tx_status_len()) | 
 | 		tx_frag_num++; | 
 | 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, | 
 | 				    rctx->assoc, aead_parms.assoc_size, | 
 | 				    assoc_nents, aead_parms.iv_len, chunksize, | 
 | 				    aead_parms.aad_pad_len, pad_len, incl_icv); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); | 
 | 	if (unlikely(err < 0)) | 
 | 		return err; | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | /** | 
 |  * handle_aead_resp() - Process a SPU response message for an AEAD request. | 
 |  * @rctx:  Crypto request context | 
 |  */ | 
 | static void handle_aead_resp(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 | 	struct aead_request *req = container_of(areq, | 
 | 						struct aead_request, base); | 
 | 	struct iproc_ctx_s *ctx = rctx->ctx; | 
 | 	u32 payload_len; | 
 | 	unsigned int icv_offset; | 
 | 	u32 result_len; | 
 |  | 
 | 	/* See how much data was returned */ | 
 | 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); | 
 | 	flow_log("payload_len %u\n", payload_len); | 
 |  | 
 | 	/* only count payload */ | 
 | 	atomic64_add(payload_len, &iproc_priv.bytes_in); | 
 |  | 
 | 	if (req->assoclen) | 
 | 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad, | 
 | 			    req->assoclen); | 
 |  | 
 | 	/* | 
 | 	 * Copy the ICV back to the destination | 
 | 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto | 
 | 	 * API doesn't expect ICV in dst buffer. | 
 | 	 */ | 
 | 	result_len = req->cryptlen; | 
 | 	if (rctx->is_encrypt) { | 
 | 		icv_offset = req->assoclen + rctx->total_sent; | 
 | 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize); | 
 | 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset); | 
 | 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, | 
 | 				      ctx->digestsize, icv_offset); | 
 | 		result_len += ctx->digestsize; | 
 | 	} | 
 |  | 
 | 	packet_log("response data:  "); | 
 | 	dump_sg(req->dst, req->assoclen, result_len); | 
 |  | 
 | 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); | 
 | 	if (ctx->cipher.alg == CIPHER_ALG_AES) { | 
 | 		if (ctx->cipher.mode == CIPHER_MODE_CCM) | 
 | 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); | 
 | 		else if (ctx->cipher.mode == CIPHER_MODE_GCM) | 
 | 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); | 
 | 		else | 
 | 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); | 
 | 	} else { | 
 | 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request | 
 |  * @rctx:  request context | 
 |  * | 
 |  * Mailbox scatterlists are allocated for each chunk. So free them after | 
 |  * processing each chunk. | 
 |  */ | 
 | static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) | 
 | { | 
 | 	/* mailbox message used to tx request */ | 
 | 	struct brcm_message *mssg = &rctx->mb_mssg; | 
 |  | 
 | 	kfree(mssg->spu.src); | 
 | 	kfree(mssg->spu.dst); | 
 | 	memset(mssg, 0, sizeof(struct brcm_message)); | 
 | } | 
 |  | 
 | /** | 
 |  * finish_req() - Used to invoke the complete callback from the requester when | 
 |  * a request has been handled asynchronously. | 
 |  * @rctx:  Request context | 
 |  * @err:   Indicates whether the request was successful or not | 
 |  * | 
 |  * Ensures that cleanup has been done for request | 
 |  */ | 
 | static void finish_req(struct iproc_reqctx_s *rctx, int err) | 
 | { | 
 | 	struct crypto_async_request *areq = rctx->parent; | 
 |  | 
 | 	flow_log("%s() err:%d\n\n", __func__, err); | 
 |  | 
 | 	/* No harm done if already called */ | 
 | 	spu_chunk_cleanup(rctx); | 
 |  | 
 | 	if (areq) | 
 | 		areq->complete(areq, err); | 
 | } | 
 |  | 
 | /** | 
 |  * spu_rx_callback() - Callback from mailbox framework with a SPU response. | 
 |  * @cl:		mailbox client structure for SPU driver | 
 |  * @msg:	mailbox message containing SPU response | 
 |  */ | 
 | static void spu_rx_callback(struct mbox_client *cl, void *msg) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct brcm_message *mssg = msg; | 
 | 	struct iproc_reqctx_s *rctx; | 
 | 	struct iproc_ctx_s *ctx; | 
 | 	struct crypto_async_request *areq; | 
 | 	int err = 0; | 
 |  | 
 | 	rctx = mssg->ctx; | 
 | 	if (unlikely(!rctx)) { | 
 | 		/* This is fatal */ | 
 | 		pr_err("%s(): no request context", __func__); | 
 | 		err = -EFAULT; | 
 | 		goto cb_finish; | 
 | 	} | 
 | 	areq = rctx->parent; | 
 | 	ctx = rctx->ctx; | 
 |  | 
 | 	/* process the SPU status */ | 
 | 	err = spu->spu_status_process(rctx->msg_buf.rx_stat); | 
 | 	if (err != 0) { | 
 | 		if (err == SPU_INVALID_ICV) | 
 | 			atomic_inc(&iproc_priv.bad_icv); | 
 | 		err = -EBADMSG; | 
 | 		goto cb_finish; | 
 | 	} | 
 |  | 
 | 	/* Process the SPU response message */ | 
 | 	switch (rctx->ctx->alg->type) { | 
 | 	case CRYPTO_ALG_TYPE_ABLKCIPHER: | 
 | 		handle_ablkcipher_resp(rctx); | 
 | 		break; | 
 | 	case CRYPTO_ALG_TYPE_AHASH: | 
 | 		handle_ahash_resp(rctx); | 
 | 		break; | 
 | 	case CRYPTO_ALG_TYPE_AEAD: | 
 | 		handle_aead_resp(rctx); | 
 | 		break; | 
 | 	default: | 
 | 		err = -EINVAL; | 
 | 		goto cb_finish; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this response does not complete the request, then send the next | 
 | 	 * request chunk. | 
 | 	 */ | 
 | 	if (rctx->total_sent < rctx->total_todo) { | 
 | 		/* Deallocate anything specific to previous chunk */ | 
 | 		spu_chunk_cleanup(rctx); | 
 |  | 
 | 		switch (rctx->ctx->alg->type) { | 
 | 		case CRYPTO_ALG_TYPE_ABLKCIPHER: | 
 | 			err = handle_ablkcipher_req(rctx); | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AHASH: | 
 | 			err = handle_ahash_req(rctx); | 
 | 			if (err == -EAGAIN) | 
 | 				/* | 
 | 				 * we saved data in hash carry, but tell crypto | 
 | 				 * API we successfully completed request. | 
 | 				 */ | 
 | 				err = 0; | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AEAD: | 
 | 			err = handle_aead_req(rctx); | 
 | 			break; | 
 | 		default: | 
 | 			err = -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (err == -EINPROGRESS) | 
 | 			/* Successfully submitted request for next chunk */ | 
 | 			return; | 
 | 	} | 
 |  | 
 | cb_finish: | 
 | 	finish_req(rctx, err); | 
 | } | 
 |  | 
 | /* ==================== Kernel Cryptographic API ==================== */ | 
 |  | 
 | /** | 
 |  * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. | 
 |  * @req:	Crypto API request | 
 |  * @encrypt:	true if encrypting; false if decrypting | 
 |  * | 
 |  * Return: -EINPROGRESS if request accepted and result will be returned | 
 |  *			asynchronously | 
 |  *	   < 0 if an error | 
 |  */ | 
 | static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); | 
 | 	struct iproc_ctx_s *ctx = | 
 | 	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); | 
 | 	int err; | 
 |  | 
 | 	flow_log("%s() enc:%u\n", __func__, encrypt); | 
 |  | 
 | 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 	rctx->parent = &req->base; | 
 | 	rctx->is_encrypt = encrypt; | 
 | 	rctx->bd_suppress = false; | 
 | 	rctx->total_todo = req->nbytes; | 
 | 	rctx->src_sent = 0; | 
 | 	rctx->total_sent = 0; | 
 | 	rctx->total_received = 0; | 
 | 	rctx->ctx = ctx; | 
 |  | 
 | 	/* Initialize current position in src and dst scatterlists */ | 
 | 	rctx->src_sg = req->src; | 
 | 	rctx->src_nents = 0; | 
 | 	rctx->src_skip = 0; | 
 | 	rctx->dst_sg = req->dst; | 
 | 	rctx->dst_nents = 0; | 
 | 	rctx->dst_skip = 0; | 
 |  | 
 | 	if (ctx->cipher.mode == CIPHER_MODE_CBC || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_CTR || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_OFB || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_XTS || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_GCM || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_CCM) { | 
 | 		rctx->iv_ctr_len = | 
 | 		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); | 
 | 		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); | 
 | 	} else { | 
 | 		rctx->iv_ctr_len = 0; | 
 | 	} | 
 |  | 
 | 	/* Choose a SPU to process this request */ | 
 | 	rctx->chan_idx = select_channel(); | 
 | 	err = handle_ablkcipher_req(rctx); | 
 | 	if (err != -EINPROGRESS) | 
 | 		/* synchronous result */ | 
 | 		spu_chunk_cleanup(rctx); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 		      unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); | 
 | 	u32 tmp[DES_EXPKEY_WORDS]; | 
 |  | 
 | 	if (keylen == DES_KEY_SIZE) { | 
 | 		if (des_ekey(tmp, key) == 0) { | 
 | 			if (crypto_ablkcipher_get_flags(cipher) & | 
 | 			    CRYPTO_TFM_REQ_WEAK_KEY) { | 
 | 				u32 flags = CRYPTO_TFM_RES_WEAK_KEY; | 
 |  | 
 | 				crypto_ablkcipher_set_flags(cipher, flags); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ctx->cipher_type = CIPHER_TYPE_DES; | 
 | 	} else { | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			   unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); | 
 |  | 
 | 	if (keylen == (DES_KEY_SIZE * 3)) { | 
 | 		const u32 *K = (const u32 *)key; | 
 | 		u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; | 
 |  | 
 | 		if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || | 
 | 		    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { | 
 | 			crypto_ablkcipher_set_flags(cipher, flags); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		ctx->cipher_type = CIPHER_TYPE_3DES; | 
 | 	} else { | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 		      unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); | 
 |  | 
 | 	if (ctx->cipher.mode == CIPHER_MODE_XTS) | 
 | 		/* XTS includes two keys of equal length */ | 
 | 		keylen = keylen / 2; | 
 |  | 
 | 	switch (keylen) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES128; | 
 | 		break; | 
 | 	case AES_KEYSIZE_192: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES192; | 
 | 		break; | 
 | 	case AES_KEYSIZE_256: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES256; | 
 | 		break; | 
 | 	default: | 
 | 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && | 
 | 		((ctx->max_payload % AES_BLOCK_SIZE) != 0)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 		      unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); | 
 | 	int i; | 
 |  | 
 | 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; | 
 |  | 
 | 	ctx->enckey[0] = 0x00;	/* 0x00 */ | 
 | 	ctx->enckey[1] = 0x00;	/* i    */ | 
 | 	ctx->enckey[2] = 0x00;	/* 0x00 */ | 
 | 	ctx->enckey[3] = 0x00;	/* j    */ | 
 | 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) | 
 | 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; | 
 |  | 
 | 	ctx->cipher_type = CIPHER_TYPE_INIT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, | 
 | 			     unsigned int keylen) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); | 
 | 	struct spu_cipher_parms cipher_parms; | 
 | 	u32 alloc_len = 0; | 
 | 	int err; | 
 |  | 
 | 	flow_log("ablkcipher_setkey() keylen: %d\n", keylen); | 
 | 	flow_dump("  key: ", key, keylen); | 
 |  | 
 | 	switch (ctx->cipher.alg) { | 
 | 	case CIPHER_ALG_DES: | 
 | 		err = des_setkey(cipher, key, keylen); | 
 | 		break; | 
 | 	case CIPHER_ALG_3DES: | 
 | 		err = threedes_setkey(cipher, key, keylen); | 
 | 		break; | 
 | 	case CIPHER_ALG_AES: | 
 | 		err = aes_setkey(cipher, key, keylen); | 
 | 		break; | 
 | 	case CIPHER_ALG_RC4: | 
 | 		err = rc4_setkey(cipher, key, keylen); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("%s() Error: unknown cipher alg\n", __func__); | 
 | 		err = -EINVAL; | 
 | 	} | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* RC4 already populated ctx->enkey */ | 
 | 	if (ctx->cipher.alg != CIPHER_ALG_RC4) { | 
 | 		memcpy(ctx->enckey, key, keylen); | 
 | 		ctx->enckeylen = keylen; | 
 | 	} | 
 | 	/* SPU needs XTS keys in the reverse order the crypto API presents */ | 
 | 	if ((ctx->cipher.alg == CIPHER_ALG_AES) && | 
 | 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) { | 
 | 		unsigned int xts_keylen = keylen / 2; | 
 |  | 
 | 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen); | 
 | 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen); | 
 | 	} | 
 |  | 
 | 	if (spu->spu_type == SPU_TYPE_SPUM) | 
 | 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; | 
 | 	else if (spu->spu_type == SPU_TYPE_SPU2) | 
 | 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; | 
 | 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len); | 
 | 	cipher_parms.iv_buf = NULL; | 
 | 	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); | 
 | 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); | 
 |  | 
 | 	cipher_parms.alg = ctx->cipher.alg; | 
 | 	cipher_parms.mode = ctx->cipher.mode; | 
 | 	cipher_parms.type = ctx->cipher_type; | 
 | 	cipher_parms.key_buf = ctx->enckey; | 
 | 	cipher_parms.key_len = ctx->enckeylen; | 
 |  | 
 | 	/* Prepend SPU request message with BCM header */ | 
 | 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); | 
 | 	ctx->spu_req_hdr_len = | 
 | 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, | 
 | 				     &cipher_parms); | 
 |  | 
 | 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, | 
 | 							  ctx->enckeylen, | 
 | 							  false); | 
 |  | 
 | 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ablkcipher_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	return ablkcipher_enqueue(req, true); | 
 | } | 
 |  | 
 | static int ablkcipher_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); | 
 | 	return ablkcipher_enqueue(req, false); | 
 | } | 
 |  | 
 | static int ahash_enqueue(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	int err = 0; | 
 | 	const char *alg_name; | 
 |  | 
 | 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 	rctx->parent = &req->base; | 
 | 	rctx->ctx = ctx; | 
 | 	rctx->bd_suppress = true; | 
 | 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); | 
 |  | 
 | 	/* Initialize position in src scatterlist */ | 
 | 	rctx->src_sg = req->src; | 
 | 	rctx->src_skip = 0; | 
 | 	rctx->src_nents = 0; | 
 | 	rctx->dst_sg = NULL; | 
 | 	rctx->dst_skip = 0; | 
 | 	rctx->dst_nents = 0; | 
 |  | 
 | 	/* SPU2 hardware does not compute hash of zero length data */ | 
 | 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) && | 
 | 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { | 
 | 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); | 
 | 		flow_log("Doing %sfinal %s zero-len hash request in software\n", | 
 | 			 rctx->is_final ? "" : "non-", alg_name); | 
 | 		err = do_shash((unsigned char *)alg_name, req->result, | 
 | 			       NULL, 0, NULL, 0, ctx->authkey, | 
 | 			       ctx->authkeylen); | 
 | 		if (err < 0) | 
 | 			flow_log("Hash request failed with error %d\n", err); | 
 | 		return err; | 
 | 	} | 
 | 	/* Choose a SPU to process this request */ | 
 | 	rctx->chan_idx = select_channel(); | 
 |  | 
 | 	err = handle_ahash_req(rctx); | 
 | 	if (err != -EINPROGRESS) | 
 | 		/* synchronous result */ | 
 | 		spu_chunk_cleanup(rctx); | 
 |  | 
 | 	if (err == -EAGAIN) | 
 | 		/* | 
 | 		 * we saved data in hash carry, but tell crypto API | 
 | 		 * we successfully completed request. | 
 | 		 */ | 
 | 		err = 0; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __ahash_init(struct ahash_request *req) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 |  | 
 | 	flow_log("%s()\n", __func__); | 
 |  | 
 | 	/* Initialize the context */ | 
 | 	rctx->hash_carry_len = 0; | 
 | 	rctx->is_final = 0; | 
 |  | 
 | 	rctx->total_todo = 0; | 
 | 	rctx->src_sent = 0; | 
 | 	rctx->total_sent = 0; | 
 | 	rctx->total_received = 0; | 
 |  | 
 | 	ctx->digestsize = crypto_ahash_digestsize(tfm); | 
 | 	/* If we add a hash whose digest is larger, catch it here. */ | 
 | 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); | 
 |  | 
 | 	rctx->is_sw_hmac = false; | 
 |  | 
 | 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, | 
 | 							  true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * spu_no_incr_hash() - Determine whether incremental hashing is supported. | 
 |  * @ctx:  Crypto session context | 
 |  * | 
 |  * SPU-2 does not support incremental hashing (we'll have to revisit and | 
 |  * condition based on chip revision or device tree entry if future versions do | 
 |  * support incremental hash) | 
 |  * | 
 |  * SPU-M also doesn't support incremental hashing of AES-XCBC | 
 |  * | 
 |  * Return: true if incremental hashing is not supported | 
 |  *         false otherwise | 
 |  */ | 
 | bool spu_no_incr_hash(struct iproc_ctx_s *ctx) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 |  | 
 | 	if (spu->spu_type == SPU_TYPE_SPU2) | 
 | 		return true; | 
 |  | 
 | 	if ((ctx->auth.alg == HASH_ALG_AES) && | 
 | 	    (ctx->auth.mode == HASH_MODE_XCBC)) | 
 | 		return true; | 
 |  | 
 | 	/* Otherwise, incremental hashing is supported */ | 
 | 	return false; | 
 | } | 
 |  | 
 | static int ahash_init(struct ahash_request *req) | 
 | { | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	const char *alg_name; | 
 | 	struct crypto_shash *hash; | 
 | 	int ret; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	if (spu_no_incr_hash(ctx)) { | 
 | 		/* | 
 | 		 * If we get an incremental hashing request and it's not | 
 | 		 * supported by the hardware, we need to handle it in software | 
 | 		 * by calling synchronous hash functions. | 
 | 		 */ | 
 | 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); | 
 | 		hash = crypto_alloc_shash(alg_name, 0, 0); | 
 | 		if (IS_ERR(hash)) { | 
 | 			ret = PTR_ERR(hash); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 		ctx->shash = kmalloc(sizeof(*ctx->shash) + | 
 | 				     crypto_shash_descsize(hash), gfp); | 
 | 		if (!ctx->shash) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err_hash; | 
 | 		} | 
 | 		ctx->shash->tfm = hash; | 
 | 		ctx->shash->flags = 0; | 
 |  | 
 | 		/* Set the key using data we already have from setkey */ | 
 | 		if (ctx->authkeylen > 0) { | 
 | 			ret = crypto_shash_setkey(hash, ctx->authkey, | 
 | 						  ctx->authkeylen); | 
 | 			if (ret) | 
 | 				goto err_shash; | 
 | 		} | 
 |  | 
 | 		/* Initialize hash w/ this key and other params */ | 
 | 		ret = crypto_shash_init(ctx->shash); | 
 | 		if (ret) | 
 | 			goto err_shash; | 
 | 	} else { | 
 | 		/* Otherwise call the internal function which uses SPU hw */ | 
 | 		ret = __ahash_init(req); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 |  | 
 | err_shash: | 
 | 	kfree(ctx->shash); | 
 | err_hash: | 
 | 	crypto_free_shash(hash); | 
 | err: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __ahash_update(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 |  | 
 | 	flow_log("ahash_update() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	if (!req->nbytes) | 
 | 		return 0; | 
 | 	rctx->total_todo += req->nbytes; | 
 | 	rctx->src_sent = 0; | 
 |  | 
 | 	return ahash_enqueue(req); | 
 | } | 
 |  | 
 | static int ahash_update(struct ahash_request *req) | 
 | { | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	u8 *tmpbuf; | 
 | 	int ret; | 
 | 	int nents; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	if (spu_no_incr_hash(ctx)) { | 
 | 		/* | 
 | 		 * If we get an incremental hashing request and it's not | 
 | 		 * supported by the hardware, we need to handle it in software | 
 | 		 * by calling synchronous hash functions. | 
 | 		 */ | 
 | 		if (req->src) | 
 | 			nents = sg_nents(req->src); | 
 | 		else | 
 | 			return -EINVAL; | 
 |  | 
 | 		/* Copy data from req scatterlist to tmp buffer */ | 
 | 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 		tmpbuf = kmalloc(req->nbytes, gfp); | 
 | 		if (!tmpbuf) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != | 
 | 				req->nbytes) { | 
 | 			kfree(tmpbuf); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* Call synchronous update */ | 
 | 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); | 
 | 		kfree(tmpbuf); | 
 | 	} else { | 
 | 		/* Otherwise call the internal function which uses SPU hw */ | 
 | 		ret = __ahash_update(req); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __ahash_final(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 |  | 
 | 	flow_log("ahash_final() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	rctx->is_final = 1; | 
 |  | 
 | 	return ahash_enqueue(req); | 
 | } | 
 |  | 
 | static int ahash_final(struct ahash_request *req) | 
 | { | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	int ret; | 
 |  | 
 | 	if (spu_no_incr_hash(ctx)) { | 
 | 		/* | 
 | 		 * If we get an incremental hashing request and it's not | 
 | 		 * supported by the hardware, we need to handle it in software | 
 | 		 * by calling synchronous hash functions. | 
 | 		 */ | 
 | 		ret = crypto_shash_final(ctx->shash, req->result); | 
 |  | 
 | 		/* Done with hash, can deallocate it now */ | 
 | 		crypto_free_shash(ctx->shash->tfm); | 
 | 		kfree(ctx->shash); | 
 |  | 
 | 	} else { | 
 | 		/* Otherwise call the internal function which uses SPU hw */ | 
 | 		ret = __ahash_final(req); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __ahash_finup(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 |  | 
 | 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	rctx->total_todo += req->nbytes; | 
 | 	rctx->src_sent = 0; | 
 | 	rctx->is_final = 1; | 
 |  | 
 | 	return ahash_enqueue(req); | 
 | } | 
 |  | 
 | static int ahash_finup(struct ahash_request *req) | 
 | { | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	u8 *tmpbuf; | 
 | 	int ret; | 
 | 	int nents; | 
 | 	gfp_t gfp; | 
 |  | 
 | 	if (spu_no_incr_hash(ctx)) { | 
 | 		/* | 
 | 		 * If we get an incremental hashing request and it's not | 
 | 		 * supported by the hardware, we need to handle it in software | 
 | 		 * by calling synchronous hash functions. | 
 | 		 */ | 
 | 		if (req->src) { | 
 | 			nents = sg_nents(req->src); | 
 | 		} else { | 
 | 			ret = -EINVAL; | 
 | 			goto ahash_finup_exit; | 
 | 		} | 
 |  | 
 | 		/* Copy data from req scatterlist to tmp buffer */ | 
 | 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 		tmpbuf = kmalloc(req->nbytes, gfp); | 
 | 		if (!tmpbuf) { | 
 | 			ret = -ENOMEM; | 
 | 			goto ahash_finup_exit; | 
 | 		} | 
 |  | 
 | 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != | 
 | 				req->nbytes) { | 
 | 			ret = -EINVAL; | 
 | 			goto ahash_finup_free; | 
 | 		} | 
 |  | 
 | 		/* Call synchronous update */ | 
 | 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, | 
 | 					 req->result); | 
 | 	} else { | 
 | 		/* Otherwise call the internal function which uses SPU hw */ | 
 | 		return __ahash_finup(req); | 
 | 	} | 
 | ahash_finup_free: | 
 | 	kfree(tmpbuf); | 
 |  | 
 | ahash_finup_exit: | 
 | 	/* Done with hash, can deallocate it now */ | 
 | 	crypto_free_shash(ctx->shash->tfm); | 
 | 	kfree(ctx->shash); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ahash_digest(struct ahash_request *req) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	/* whole thing at once */ | 
 | 	err = __ahash_init(req); | 
 | 	if (!err) | 
 | 		err = __ahash_finup(req); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, | 
 | 			unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); | 
 |  | 
 | 	flow_log("%s() ahash:%p key:%p keylen:%u\n", | 
 | 		 __func__, ahash, key, keylen); | 
 | 	flow_dump("  key: ", key, keylen); | 
 |  | 
 | 	if (ctx->auth.alg == HASH_ALG_AES) { | 
 | 		switch (keylen) { | 
 | 		case AES_KEYSIZE_128: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES128; | 
 | 			break; | 
 | 		case AES_KEYSIZE_192: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES192; | 
 | 			break; | 
 | 		case AES_KEYSIZE_256: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES256; | 
 | 			break; | 
 | 		default: | 
 | 			pr_err("%s() Error: Invalid key length\n", __func__); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		pr_err("%s() Error: unknown hash alg\n", __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	memcpy(ctx->authkey, key, keylen); | 
 | 	ctx->authkeylen = keylen; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahash_export(struct ahash_request *req, void *out) | 
 | { | 
 | 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; | 
 |  | 
 | 	spu_exp->total_todo = rctx->total_todo; | 
 | 	spu_exp->total_sent = rctx->total_sent; | 
 | 	spu_exp->is_sw_hmac = rctx->is_sw_hmac; | 
 | 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); | 
 | 	spu_exp->hash_carry_len = rctx->hash_carry_len; | 
 | 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahash_import(struct ahash_request *req, const void *in) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; | 
 |  | 
 | 	rctx->total_todo = spu_exp->total_todo; | 
 | 	rctx->total_sent = spu_exp->total_sent; | 
 | 	rctx->is_sw_hmac = spu_exp->is_sw_hmac; | 
 | 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); | 
 | 	rctx->hash_carry_len = spu_exp->hash_carry_len; | 
 | 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, | 
 | 			     unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); | 
 | 	unsigned int blocksize = | 
 | 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); | 
 | 	unsigned int digestsize = crypto_ahash_digestsize(ahash); | 
 | 	unsigned int index; | 
 | 	int rc; | 
 |  | 
 | 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", | 
 | 		 __func__, ahash, key, keylen, blocksize, digestsize); | 
 | 	flow_dump("  key: ", key, keylen); | 
 |  | 
 | 	if (keylen > blocksize) { | 
 | 		switch (ctx->auth.alg) { | 
 | 		case HASH_ALG_MD5: | 
 | 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA1: | 
 | 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA224: | 
 | 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA256: | 
 | 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA384: | 
 | 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA512: | 
 | 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, | 
 | 				      0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA3_224: | 
 | 			rc = do_shash("sha3-224", ctx->authkey, key, keylen, | 
 | 				      NULL, 0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA3_256: | 
 | 			rc = do_shash("sha3-256", ctx->authkey, key, keylen, | 
 | 				      NULL, 0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA3_384: | 
 | 			rc = do_shash("sha3-384", ctx->authkey, key, keylen, | 
 | 				      NULL, 0, NULL, 0); | 
 | 			break; | 
 | 		case HASH_ALG_SHA3_512: | 
 | 			rc = do_shash("sha3-512", ctx->authkey, key, keylen, | 
 | 				      NULL, 0, NULL, 0); | 
 | 			break; | 
 | 		default: | 
 | 			pr_err("%s() Error: unknown hash alg\n", __func__); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (rc < 0) { | 
 | 			pr_err("%s() Error %d computing shash for %s\n", | 
 | 			       __func__, rc, hash_alg_name[ctx->auth.alg]); | 
 | 			return rc; | 
 | 		} | 
 | 		ctx->authkeylen = digestsize; | 
 |  | 
 | 		flow_log("  keylen > digestsize... hashed\n"); | 
 | 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen); | 
 | 	} else { | 
 | 		memcpy(ctx->authkey, key, keylen); | 
 | 		ctx->authkeylen = keylen; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Full HMAC operation in SPUM is not verified, | 
 | 	 * So keeping the generation of IPAD, OPAD and | 
 | 	 * outer hashing in software. | 
 | 	 */ | 
 | 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { | 
 | 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); | 
 | 		memset(ctx->ipad + ctx->authkeylen, 0, | 
 | 		       blocksize - ctx->authkeylen); | 
 | 		ctx->authkeylen = 0; | 
 | 		memcpy(ctx->opad, ctx->ipad, blocksize); | 
 |  | 
 | 		for (index = 0; index < blocksize; index++) { | 
 | 			ctx->ipad[index] ^= HMAC_IPAD_VALUE; | 
 | 			ctx->opad[index] ^= HMAC_OPAD_VALUE; | 
 | 		} | 
 |  | 
 | 		flow_dump("  ipad: ", ctx->ipad, blocksize); | 
 | 		flow_dump("  opad: ", ctx->opad, blocksize); | 
 | 	} | 
 | 	ctx->digestsize = digestsize; | 
 | 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahash_hmac_init(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	unsigned int blocksize = | 
 | 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); | 
 |  | 
 | 	flow_log("ahash_hmac_init()\n"); | 
 |  | 
 | 	/* init the context as a hash */ | 
 | 	ahash_init(req); | 
 |  | 
 | 	if (!spu_no_incr_hash(ctx)) { | 
 | 		/* SPU-M can do incr hashing but needs sw for outer HMAC */ | 
 | 		rctx->is_sw_hmac = true; | 
 | 		ctx->auth.mode = HASH_MODE_HASH; | 
 | 		/* start with a prepended ipad */ | 
 | 		memcpy(rctx->hash_carry, ctx->ipad, blocksize); | 
 | 		rctx->hash_carry_len = blocksize; | 
 | 		rctx->total_todo += blocksize; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ahash_hmac_update(struct ahash_request *req) | 
 | { | 
 | 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	if (!req->nbytes) | 
 | 		return 0; | 
 |  | 
 | 	return ahash_update(req); | 
 | } | 
 |  | 
 | static int ahash_hmac_final(struct ahash_request *req) | 
 | { | 
 | 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	return ahash_final(req); | 
 | } | 
 |  | 
 | static int ahash_hmac_finup(struct ahash_request *req) | 
 | { | 
 | 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	return ahash_finup(req); | 
 | } | 
 |  | 
 | static int ahash_hmac_digest(struct ahash_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req); | 
 | 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); | 
 | 	unsigned int blocksize = | 
 | 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); | 
 |  | 
 | 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); | 
 |  | 
 | 	/* Perform initialization and then call finup */ | 
 | 	__ahash_init(req); | 
 |  | 
 | 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { | 
 | 		/* | 
 | 		 * SPU2 supports full HMAC implementation in the | 
 | 		 * hardware, need not to generate IPAD, OPAD and | 
 | 		 * outer hash in software. | 
 | 		 * Only for hash key len > hash block size, SPU2 | 
 | 		 * expects to perform hashing on the key, shorten | 
 | 		 * it to digest size and feed it as hash key. | 
 | 		 */ | 
 | 		rctx->is_sw_hmac = false; | 
 | 		ctx->auth.mode = HASH_MODE_HMAC; | 
 | 	} else { | 
 | 		rctx->is_sw_hmac = true; | 
 | 		ctx->auth.mode = HASH_MODE_HASH; | 
 | 		/* start with a prepended ipad */ | 
 | 		memcpy(rctx->hash_carry, ctx->ipad, blocksize); | 
 | 		rctx->hash_carry_len = blocksize; | 
 | 		rctx->total_todo += blocksize; | 
 | 	} | 
 |  | 
 | 	return __ahash_finup(req); | 
 | } | 
 |  | 
 | /* aead helpers */ | 
 |  | 
 | static int aead_need_fallback(struct aead_request *req) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = aead_request_ctx(req); | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); | 
 | 	u32 payload_len; | 
 |  | 
 | 	/* | 
 | 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext | 
 | 	 * and AAD are both 0 bytes long. So use fallback in this case. | 
 | 	 */ | 
 | 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) || | 
 | 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && | 
 | 	    (req->assoclen == 0)) { | 
 | 		if ((rctx->is_encrypt && (req->cryptlen == 0)) || | 
 | 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { | 
 | 			flow_log("AES GCM/CCM needs fallback for 0 len req\n"); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) && | 
 | 	    (spu->spu_type == SPU_TYPE_SPUM) && | 
 | 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) && | 
 | 	    (ctx->digestsize != 16)) { | 
 | 		flow_log("%s() AES CCM needs fallback for digest size %d\n", | 
 | 			 __func__, ctx->digestsize); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct | 
 | 	 * when AAD size is 0 | 
 | 	 */ | 
 | 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) && | 
 | 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && | 
 | 	    (req->assoclen == 0)) { | 
 | 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", | 
 | 			 __func__); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	payload_len = req->cryptlen; | 
 | 	if (spu->spu_type == SPU_TYPE_SPUM) | 
 | 		payload_len += req->assoclen; | 
 |  | 
 | 	flow_log("%s() payload len: %u\n", __func__, payload_len); | 
 |  | 
 | 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) | 
 | 		return 0; | 
 | 	else | 
 | 		return payload_len > ctx->max_payload; | 
 | } | 
 |  | 
 | static void aead_complete(struct crypto_async_request *areq, int err) | 
 | { | 
 | 	struct aead_request *req = | 
 | 	    container_of(areq, struct aead_request, base); | 
 | 	struct iproc_reqctx_s *rctx = aead_request_ctx(req); | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 |  | 
 | 	flow_log("%s() err:%d\n", __func__, err); | 
 |  | 
 | 	areq->tfm = crypto_aead_tfm(aead); | 
 |  | 
 | 	areq->complete = rctx->old_complete; | 
 | 	areq->data = rctx->old_data; | 
 |  | 
 | 	areq->complete(areq, err); | 
 | } | 
 |  | 
 | static int aead_do_fallback(struct aead_request *req, bool is_encrypt) | 
 | { | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct crypto_tfm *tfm = crypto_aead_tfm(aead); | 
 | 	struct iproc_reqctx_s *rctx = aead_request_ctx(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); | 
 | 	int err; | 
 | 	u32 req_flags; | 
 |  | 
 | 	flow_log("%s() enc:%u\n", __func__, is_encrypt); | 
 |  | 
 | 	if (ctx->fallback_cipher) { | 
 | 		/* Store the cipher tfm and then use the fallback tfm */ | 
 | 		rctx->old_tfm = tfm; | 
 | 		aead_request_set_tfm(req, ctx->fallback_cipher); | 
 | 		/* | 
 | 		 * Save the callback and chain ourselves in, so we can restore | 
 | 		 * the tfm | 
 | 		 */ | 
 | 		rctx->old_complete = req->base.complete; | 
 | 		rctx->old_data = req->base.data; | 
 | 		req_flags = aead_request_flags(req); | 
 | 		aead_request_set_callback(req, req_flags, aead_complete, req); | 
 | 		err = is_encrypt ? crypto_aead_encrypt(req) : | 
 | 		    crypto_aead_decrypt(req); | 
 |  | 
 | 		if (err == 0) { | 
 | 			/* | 
 | 			 * fallback was synchronous (did not return | 
 | 			 * -EINPROGRESS). So restore request state here. | 
 | 			 */ | 
 | 			aead_request_set_callback(req, req_flags, | 
 | 						  rctx->old_complete, req); | 
 | 			req->base.data = rctx->old_data; | 
 | 			aead_request_set_tfm(req, aead); | 
 | 			flow_log("%s() fallback completed successfully\n\n", | 
 | 				 __func__); | 
 | 		} | 
 | 	} else { | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int aead_enqueue(struct aead_request *req, bool is_encrypt) | 
 | { | 
 | 	struct iproc_reqctx_s *rctx = aead_request_ctx(req); | 
 | 	struct crypto_aead *aead = crypto_aead_reqtfm(req); | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); | 
 | 	int err; | 
 |  | 
 | 	flow_log("%s() enc:%u\n", __func__, is_encrypt); | 
 |  | 
 | 	if (req->assoclen > MAX_ASSOC_SIZE) { | 
 | 		pr_err | 
 | 		    ("%s() Error: associated data too long. (%u > %u bytes)\n", | 
 | 		     __func__, req->assoclen, MAX_ASSOC_SIZE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; | 
 | 	rctx->parent = &req->base; | 
 | 	rctx->is_encrypt = is_encrypt; | 
 | 	rctx->bd_suppress = false; | 
 | 	rctx->total_todo = req->cryptlen; | 
 | 	rctx->src_sent = 0; | 
 | 	rctx->total_sent = 0; | 
 | 	rctx->total_received = 0; | 
 | 	rctx->is_sw_hmac = false; | 
 | 	rctx->ctx = ctx; | 
 | 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); | 
 |  | 
 | 	/* assoc data is at start of src sg */ | 
 | 	rctx->assoc = req->src; | 
 |  | 
 | 	/* | 
 | 	 * Init current position in src scatterlist to be after assoc data. | 
 | 	 * src_skip set to buffer offset where data begins. (Assoc data could | 
 | 	 * end in the middle of a buffer.) | 
 | 	 */ | 
 | 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, | 
 | 			     &rctx->src_skip) < 0) { | 
 | 		pr_err("%s() Error: Unable to find start of src data\n", | 
 | 		       __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rctx->src_nents = 0; | 
 | 	rctx->dst_nents = 0; | 
 | 	if (req->dst == req->src) { | 
 | 		rctx->dst_sg = rctx->src_sg; | 
 | 		rctx->dst_skip = rctx->src_skip; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Expect req->dst to have room for assoc data followed by | 
 | 		 * output data and ICV, if encrypt. So initialize dst_sg | 
 | 		 * to point beyond assoc len offset. | 
 | 		 */ | 
 | 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, | 
 | 				     &rctx->dst_skip) < 0) { | 
 | 			pr_err("%s() Error: Unable to find start of dst data\n", | 
 | 			       __func__); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ctx->cipher.mode == CIPHER_MODE_CBC || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_CTR || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_OFB || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_XTS || | 
 | 	    ctx->cipher.mode == CIPHER_MODE_GCM) { | 
 | 		rctx->iv_ctr_len = | 
 | 			ctx->salt_len + | 
 | 			crypto_aead_ivsize(crypto_aead_reqtfm(req)); | 
 | 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) { | 
 | 		rctx->iv_ctr_len = CCM_AES_IV_SIZE; | 
 | 	} else { | 
 | 		rctx->iv_ctr_len = 0; | 
 | 	} | 
 |  | 
 | 	rctx->hash_carry_len = 0; | 
 |  | 
 | 	flow_log("  src sg: %p\n", req->src); | 
 | 	flow_log("  rctx->src_sg: %p, src_skip %u\n", | 
 | 		 rctx->src_sg, rctx->src_skip); | 
 | 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen); | 
 | 	flow_log("  dst sg: %p\n", req->dst); | 
 | 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n", | 
 | 		 rctx->dst_sg, rctx->dst_skip); | 
 | 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len); | 
 | 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len); | 
 | 	flow_log("  authkeylen:%u\n", ctx->authkeylen); | 
 | 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no"); | 
 |  | 
 | 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) | 
 | 		flow_log("  max_payload infinite"); | 
 | 	else | 
 | 		flow_log("  max_payload: %u\n", ctx->max_payload); | 
 |  | 
 | 	if (unlikely(aead_need_fallback(req))) | 
 | 		return aead_do_fallback(req, is_encrypt); | 
 |  | 
 | 	/* | 
 | 	 * Do memory allocations for request after fallback check, because if we | 
 | 	 * do fallback, we won't call finish_req() to dealloc. | 
 | 	 */ | 
 | 	if (rctx->iv_ctr_len) { | 
 | 		if (ctx->salt_len) | 
 | 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, | 
 | 			       ctx->salt, ctx->salt_len); | 
 | 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, | 
 | 		       req->iv, | 
 | 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); | 
 | 	} | 
 |  | 
 | 	rctx->chan_idx = select_channel(); | 
 | 	err = handle_aead_req(rctx); | 
 | 	if (err != -EINPROGRESS) | 
 | 		/* synchronous result */ | 
 | 		spu_chunk_cleanup(rctx); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int aead_authenc_setkey(struct crypto_aead *cipher, | 
 | 			       const u8 *key, unsigned int keylen) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 | 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher); | 
 | 	struct crypto_authenc_keys keys; | 
 | 	int ret; | 
 |  | 
 | 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, | 
 | 		 keylen); | 
 | 	flow_dump("  key: ", key, keylen); | 
 |  | 
 | 	ret = crypto_authenc_extractkeys(&keys, key, keylen); | 
 | 	if (ret) | 
 | 		goto badkey; | 
 |  | 
 | 	if (keys.enckeylen > MAX_KEY_SIZE || | 
 | 	    keys.authkeylen > MAX_KEY_SIZE) | 
 | 		goto badkey; | 
 |  | 
 | 	ctx->enckeylen = keys.enckeylen; | 
 | 	ctx->authkeylen = keys.authkeylen; | 
 |  | 
 | 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen); | 
 | 	/* May end up padding auth key. So make sure it's zeroed. */ | 
 | 	memset(ctx->authkey, 0, sizeof(ctx->authkey)); | 
 | 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen); | 
 |  | 
 | 	switch (ctx->alg->cipher_info.alg) { | 
 | 	case CIPHER_ALG_DES: | 
 | 		if (ctx->enckeylen == DES_KEY_SIZE) { | 
 | 			u32 tmp[DES_EXPKEY_WORDS]; | 
 | 			u32 flags = CRYPTO_TFM_RES_WEAK_KEY; | 
 |  | 
 | 			if (des_ekey(tmp, keys.enckey) == 0) { | 
 | 				if (crypto_aead_get_flags(cipher) & | 
 | 				    CRYPTO_TFM_REQ_WEAK_KEY) { | 
 | 					crypto_aead_set_flags(cipher, flags); | 
 | 					return -EINVAL; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			ctx->cipher_type = CIPHER_TYPE_DES; | 
 | 		} else { | 
 | 			goto badkey; | 
 | 		} | 
 | 		break; | 
 | 	case CIPHER_ALG_3DES: | 
 | 		if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { | 
 | 			const u32 *K = (const u32 *)keys.enckey; | 
 | 			u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; | 
 |  | 
 | 			if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || | 
 | 			    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { | 
 | 				crypto_aead_set_flags(cipher, flags); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			ctx->cipher_type = CIPHER_TYPE_3DES; | 
 | 		} else { | 
 | 			crypto_aead_set_flags(cipher, | 
 | 					      CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case CIPHER_ALG_AES: | 
 | 		switch (ctx->enckeylen) { | 
 | 		case AES_KEYSIZE_128: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES128; | 
 | 			break; | 
 | 		case AES_KEYSIZE_192: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES192; | 
 | 			break; | 
 | 		case AES_KEYSIZE_256: | 
 | 			ctx->cipher_type = CIPHER_TYPE_AES256; | 
 | 			break; | 
 | 		default: | 
 | 			goto badkey; | 
 | 		} | 
 | 		break; | 
 | 	case CIPHER_ALG_RC4: | 
 | 		ctx->cipher_type = CIPHER_TYPE_INIT; | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("%s() Error: Unknown cipher alg\n", __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen, | 
 | 		 ctx->authkeylen); | 
 | 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen); | 
 | 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen); | 
 |  | 
 | 	/* setkey the fallback just in case we needto use it */ | 
 | 	if (ctx->fallback_cipher) { | 
 | 		flow_log("  running fallback setkey()\n"); | 
 |  | 
 | 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; | 
 | 		ctx->fallback_cipher->base.crt_flags |= | 
 | 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK; | 
 | 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); | 
 | 		if (ret) { | 
 | 			flow_log("  fallback setkey() returned:%d\n", ret); | 
 | 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; | 
 | 			tfm->crt_flags |= | 
 | 			    (ctx->fallback_cipher->base.crt_flags & | 
 | 			     CRYPTO_TFM_RES_MASK); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, | 
 | 							  ctx->enckeylen, | 
 | 							  false); | 
 |  | 
 | 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); | 
 |  | 
 | 	return ret; | 
 |  | 
 | badkey: | 
 | 	ctx->enckeylen = 0; | 
 | 	ctx->authkeylen = 0; | 
 | 	ctx->digestsize = 0; | 
 |  | 
 | 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, | 
 | 			       const u8 *key, unsigned int keylen) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 | 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher); | 
 |  | 
 | 	int ret = 0; | 
 |  | 
 | 	flow_log("%s() keylen:%u\n", __func__, keylen); | 
 | 	flow_dump("  key: ", key, keylen); | 
 |  | 
 | 	if (!ctx->is_esp) | 
 | 		ctx->digestsize = keylen; | 
 |  | 
 | 	ctx->enckeylen = keylen; | 
 | 	ctx->authkeylen = 0; | 
 | 	memcpy(ctx->enckey, key, ctx->enckeylen); | 
 |  | 
 | 	switch (ctx->enckeylen) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES128; | 
 | 		break; | 
 | 	case AES_KEYSIZE_192: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES192; | 
 | 		break; | 
 | 	case AES_KEYSIZE_256: | 
 | 		ctx->cipher_type = CIPHER_TYPE_AES256; | 
 | 		break; | 
 | 	default: | 
 | 		goto badkey; | 
 | 	} | 
 |  | 
 | 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen, | 
 | 		 ctx->authkeylen); | 
 | 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen); | 
 | 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen); | 
 |  | 
 | 	/* setkey the fallback just in case we need to use it */ | 
 | 	if (ctx->fallback_cipher) { | 
 | 		flow_log("  running fallback setkey()\n"); | 
 |  | 
 | 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; | 
 | 		ctx->fallback_cipher->base.crt_flags |= | 
 | 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK; | 
 | 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, | 
 | 					 keylen + ctx->salt_len); | 
 | 		if (ret) { | 
 | 			flow_log("  fallback setkey() returned:%d\n", ret); | 
 | 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; | 
 | 			tfm->crt_flags |= | 
 | 			    (ctx->fallback_cipher->base.crt_flags & | 
 | 			     CRYPTO_TFM_RES_MASK); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, | 
 | 							  ctx->enckeylen, | 
 | 							  false); | 
 |  | 
 | 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); | 
 |  | 
 | 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen, | 
 | 		 ctx->authkeylen); | 
 |  | 
 | 	return ret; | 
 |  | 
 | badkey: | 
 | 	ctx->enckeylen = 0; | 
 | 	ctx->authkeylen = 0; | 
 | 	ctx->digestsize = 0; | 
 |  | 
 | 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /** | 
 |  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. | 
 |  * @cipher: AEAD structure | 
 |  * @key:    Key followed by 4 bytes of salt | 
 |  * @keylen: Length of key plus salt, in bytes | 
 |  * | 
 |  * Extracts salt from key and stores it to be prepended to IV on each request. | 
 |  * Digest is always 16 bytes | 
 |  * | 
 |  * Return: Value from generic gcm setkey. | 
 |  */ | 
 | static int aead_gcm_esp_setkey(struct crypto_aead *cipher, | 
 | 			       const u8 *key, unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 |  | 
 | 	flow_log("%s\n", __func__); | 
 | 	ctx->salt_len = GCM_ESP_SALT_SIZE; | 
 | 	ctx->salt_offset = GCM_ESP_SALT_OFFSET; | 
 | 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); | 
 | 	keylen -= GCM_ESP_SALT_SIZE; | 
 | 	ctx->digestsize = GCM_ESP_DIGESTSIZE; | 
 | 	ctx->is_esp = true; | 
 | 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); | 
 |  | 
 | 	return aead_gcm_ccm_setkey(cipher, key, keylen); | 
 | } | 
 |  | 
 | /** | 
 |  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. | 
 |  * cipher: AEAD structure | 
 |  * key:    Key followed by 4 bytes of salt | 
 |  * keylen: Length of key plus salt, in bytes | 
 |  * | 
 |  * Extracts salt from key and stores it to be prepended to IV on each request. | 
 |  * Digest is always 16 bytes | 
 |  * | 
 |  * Return: Value from generic gcm setkey. | 
 |  */ | 
 | static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, | 
 | 				  const u8 *key, unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 |  | 
 | 	flow_log("%s\n", __func__); | 
 | 	ctx->salt_len = GCM_ESP_SALT_SIZE; | 
 | 	ctx->salt_offset = GCM_ESP_SALT_OFFSET; | 
 | 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); | 
 | 	keylen -= GCM_ESP_SALT_SIZE; | 
 | 	ctx->digestsize = GCM_ESP_DIGESTSIZE; | 
 | 	ctx->is_esp = true; | 
 | 	ctx->is_rfc4543 = true; | 
 | 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); | 
 |  | 
 | 	return aead_gcm_ccm_setkey(cipher, key, keylen); | 
 | } | 
 |  | 
 | /** | 
 |  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. | 
 |  * @cipher: AEAD structure | 
 |  * @key:    Key followed by 4 bytes of salt | 
 |  * @keylen: Length of key plus salt, in bytes | 
 |  * | 
 |  * Extracts salt from key and stores it to be prepended to IV on each request. | 
 |  * Digest is always 16 bytes | 
 |  * | 
 |  * Return: Value from generic ccm setkey. | 
 |  */ | 
 | static int aead_ccm_esp_setkey(struct crypto_aead *cipher, | 
 | 			       const u8 *key, unsigned int keylen) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 |  | 
 | 	flow_log("%s\n", __func__); | 
 | 	ctx->salt_len = CCM_ESP_SALT_SIZE; | 
 | 	ctx->salt_offset = CCM_ESP_SALT_OFFSET; | 
 | 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); | 
 | 	keylen -= CCM_ESP_SALT_SIZE; | 
 | 	ctx->is_esp = true; | 
 | 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); | 
 |  | 
 | 	return aead_gcm_ccm_setkey(cipher, key, keylen); | 
 | } | 
 |  | 
 | static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) | 
 | { | 
 | 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); | 
 | 	int ret = 0; | 
 |  | 
 | 	flow_log("%s() authkeylen:%u authsize:%u\n", | 
 | 		 __func__, ctx->authkeylen, authsize); | 
 |  | 
 | 	ctx->digestsize = authsize; | 
 |  | 
 | 	/* setkey the fallback just in case we needto use it */ | 
 | 	if (ctx->fallback_cipher) { | 
 | 		flow_log("  running fallback setauth()\n"); | 
 |  | 
 | 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); | 
 | 		if (ret) | 
 | 			flow_log("  fallback setauth() returned:%d\n", ret); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int aead_encrypt(struct aead_request *req) | 
 | { | 
 | 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, | 
 | 		 req->cryptlen); | 
 | 	dump_sg(req->src, 0, req->cryptlen + req->assoclen); | 
 | 	flow_log("  assoc_len:%u\n", req->assoclen); | 
 |  | 
 | 	return aead_enqueue(req, true); | 
 | } | 
 |  | 
 | static int aead_decrypt(struct aead_request *req) | 
 | { | 
 | 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); | 
 | 	dump_sg(req->src, 0, req->cryptlen + req->assoclen); | 
 | 	flow_log("  assoc_len:%u\n", req->assoclen); | 
 |  | 
 | 	return aead_enqueue(req, false); | 
 | } | 
 |  | 
 | /* ==================== Supported Cipher Algorithms ==================== */ | 
 |  | 
 | static struct iproc_alg_s driver_algs[] = { | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "gcm(aes)", | 
 | 			.cra_driver_name = "gcm-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | 
 | 		 }, | 
 | 		 .setkey = aead_gcm_ccm_setkey, | 
 | 		 .ivsize = GCM_AES_IV_SIZE, | 
 | 		.maxauthsize = AES_BLOCK_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_GCM, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_GCM, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "ccm(aes)", | 
 | 			.cra_driver_name = "ccm-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | 
 | 		 }, | 
 | 		 .setkey = aead_gcm_ccm_setkey, | 
 | 		 .ivsize = CCM_AES_IV_SIZE, | 
 | 		.maxauthsize = AES_BLOCK_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CCM, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_CCM, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "rfc4106(gcm(aes))", | 
 | 			.cra_driver_name = "gcm-aes-esp-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | 
 | 		 }, | 
 | 		 .setkey = aead_gcm_esp_setkey, | 
 | 		 .ivsize = GCM_RFC4106_IV_SIZE, | 
 | 		 .maxauthsize = AES_BLOCK_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_GCM, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_GCM, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "rfc4309(ccm(aes))", | 
 | 			.cra_driver_name = "ccm-aes-esp-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | 
 | 		 }, | 
 | 		 .setkey = aead_ccm_esp_setkey, | 
 | 		 .ivsize = CCM_AES_IV_SIZE, | 
 | 		 .maxauthsize = AES_BLOCK_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CCM, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_CCM, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "rfc4543(gcm(aes))", | 
 | 			.cra_driver_name = "gmac-aes-esp-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | 
 | 		 }, | 
 | 		 .setkey = rfc4543_gcm_esp_setkey, | 
 | 		 .ivsize = GCM_RFC4106_IV_SIZE, | 
 | 		 .maxauthsize = AES_BLOCK_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_GCM, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_GCM, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(md5),cbc(aes))", | 
 | 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		.ivsize = AES_BLOCK_SIZE, | 
 | 		.maxauthsize = MD5_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_MD5, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha1),cbc(aes))", | 
 | 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = AES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA1_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA1, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha256),cbc(aes))", | 
 | 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = AES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA256_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA256, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(md5),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = MD5_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_MD5, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha1),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA1_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA1, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha224),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA224_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA224, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha256),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA256_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA256, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha384),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA384_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA384, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha512),cbc(des))", | 
 | 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA512_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA512, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = MD5_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_MD5, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA1_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA1, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA224_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA224, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA256_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA256, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA384_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA384, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AEAD, | 
 | 	 .alg.aead = { | 
 | 		 .base = { | 
 | 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))", | 
 | 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | 
 | 		 }, | 
 | 		 .setkey = aead_authenc_setkey, | 
 | 		 .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 		 .maxauthsize = SHA512_DIGEST_SIZE, | 
 | 	 }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA512, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 .auth_first = 0, | 
 | 	 }, | 
 |  | 
 | /* ABLKCIPHER algorithms. */ | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ecb(arc4)", | 
 | 			.cra_driver_name = "ecb-arc4-iproc", | 
 | 			.cra_blocksize = ARC4_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = ARC4_MIN_KEY_SIZE, | 
 | 					   .max_keysize = ARC4_MAX_KEY_SIZE, | 
 | 					   .ivsize = 0, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_RC4, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ofb(des)", | 
 | 			.cra_driver_name = "ofb-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES_KEY_SIZE, | 
 | 					   .max_keysize = DES_KEY_SIZE, | 
 | 					   .ivsize = DES_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_OFB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "cbc(des)", | 
 | 			.cra_driver_name = "cbc-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES_KEY_SIZE, | 
 | 					   .max_keysize = DES_KEY_SIZE, | 
 | 					   .ivsize = DES_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ecb(des)", | 
 | 			.cra_driver_name = "ecb-des-iproc", | 
 | 			.cra_blocksize = DES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES_KEY_SIZE, | 
 | 					   .max_keysize = DES_KEY_SIZE, | 
 | 					   .ivsize = 0, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_DES, | 
 | 			 .mode = CIPHER_MODE_ECB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ofb(des3_ede)", | 
 | 			.cra_driver_name = "ofb-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .max_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_OFB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "cbc(des3_ede)", | 
 | 			.cra_driver_name = "cbc-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .max_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .ivsize = DES3_EDE_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ecb(des3_ede)", | 
 | 			.cra_driver_name = "ecb-des3-iproc", | 
 | 			.cra_blocksize = DES3_EDE_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .max_keysize = DES3_EDE_KEY_SIZE, | 
 | 					   .ivsize = 0, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_3DES, | 
 | 			 .mode = CIPHER_MODE_ECB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ofb(aes)", | 
 | 			.cra_driver_name = "ofb-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = AES_MIN_KEY_SIZE, | 
 | 					   .max_keysize = AES_MAX_KEY_SIZE, | 
 | 					   .ivsize = AES_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_OFB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "cbc(aes)", | 
 | 			.cra_driver_name = "cbc-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = AES_MIN_KEY_SIZE, | 
 | 					   .max_keysize = AES_MAX_KEY_SIZE, | 
 | 					   .ivsize = AES_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CBC, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ecb(aes)", | 
 | 			.cra_driver_name = "ecb-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   .min_keysize = AES_MIN_KEY_SIZE, | 
 | 					   .max_keysize = AES_MAX_KEY_SIZE, | 
 | 					   .ivsize = 0, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_ECB, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "ctr(aes)", | 
 | 			.cra_driver_name = "ctr-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 					   /* .geniv = "chainiv", */ | 
 | 					   .min_keysize = AES_MIN_KEY_SIZE, | 
 | 					   .max_keysize = AES_MAX_KEY_SIZE, | 
 | 					   .ivsize = AES_BLOCK_SIZE, | 
 | 					} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_CTR, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 | { | 
 | 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, | 
 | 	 .alg.crypto = { | 
 | 			.cra_name = "xts(aes)", | 
 | 			.cra_driver_name = "xts-aes-iproc", | 
 | 			.cra_blocksize = AES_BLOCK_SIZE, | 
 | 			.cra_ablkcipher = { | 
 | 				.min_keysize = 2 * AES_MIN_KEY_SIZE, | 
 | 				.max_keysize = 2 * AES_MAX_KEY_SIZE, | 
 | 				.ivsize = AES_BLOCK_SIZE, | 
 | 				} | 
 | 			}, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_AES, | 
 | 			 .mode = CIPHER_MODE_XTS, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_NONE, | 
 | 		       .mode = HASH_MODE_NONE, | 
 | 		       }, | 
 | 	 }, | 
 |  | 
 | /* AHASH algorithms. */ | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = MD5_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "md5", | 
 | 				    .cra_driver_name = "md5-iproc", | 
 | 				    .cra_blocksize = MD5_BLOCK_WORDS * 4, | 
 | 				    .cra_flags = CRYPTO_ALG_ASYNC, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_MD5, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = MD5_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(md5)", | 
 | 				    .cra_driver_name = "hmac-md5-iproc", | 
 | 				    .cra_blocksize = MD5_BLOCK_WORDS * 4, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_MD5, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA1_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha1", | 
 | 				    .cra_driver_name = "sha1-iproc", | 
 | 				    .cra_blocksize = SHA1_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA1, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA1_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha1)", | 
 | 				    .cra_driver_name = "hmac-sha1-iproc", | 
 | 				    .cra_blocksize = SHA1_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA1, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 			.halg.digestsize = SHA224_DIGEST_SIZE, | 
 | 			.halg.base = { | 
 | 				    .cra_name = "sha224", | 
 | 				    .cra_driver_name = "sha224-iproc", | 
 | 				    .cra_blocksize = SHA224_BLOCK_SIZE, | 
 | 			} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA224, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA224_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha224)", | 
 | 				    .cra_driver_name = "hmac-sha224-iproc", | 
 | 				    .cra_blocksize = SHA224_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA224, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA256_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha256", | 
 | 				    .cra_driver_name = "sha256-iproc", | 
 | 				    .cra_blocksize = SHA256_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA256, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA256_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha256)", | 
 | 				    .cra_driver_name = "hmac-sha256-iproc", | 
 | 				    .cra_blocksize = SHA256_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA256, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	.type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA384_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha384", | 
 | 				    .cra_driver_name = "sha384-iproc", | 
 | 				    .cra_blocksize = SHA384_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA384, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA384_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha384)", | 
 | 				    .cra_driver_name = "hmac-sha384-iproc", | 
 | 				    .cra_blocksize = SHA384_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA384, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA512_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha512", | 
 | 				    .cra_driver_name = "sha512-iproc", | 
 | 				    .cra_blocksize = SHA512_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA512, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA512_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha512)", | 
 | 				    .cra_driver_name = "hmac-sha512-iproc", | 
 | 				    .cra_blocksize = SHA512_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA512, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_224_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha3-224", | 
 | 				    .cra_driver_name = "sha3-224-iproc", | 
 | 				    .cra_blocksize = SHA3_224_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_224, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_224_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha3-224)", | 
 | 				    .cra_driver_name = "hmac-sha3-224-iproc", | 
 | 				    .cra_blocksize = SHA3_224_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_224, | 
 | 		       .mode = HASH_MODE_HMAC | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_256_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha3-256", | 
 | 				    .cra_driver_name = "sha3-256-iproc", | 
 | 				    .cra_blocksize = SHA3_256_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_256, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_256_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha3-256)", | 
 | 				    .cra_driver_name = "hmac-sha3-256-iproc", | 
 | 				    .cra_blocksize = SHA3_256_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_256, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_384_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha3-384", | 
 | 				    .cra_driver_name = "sha3-384-iproc", | 
 | 				    .cra_blocksize = SHA3_224_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_384, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_384_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha3-384)", | 
 | 				    .cra_driver_name = "hmac-sha3-384-iproc", | 
 | 				    .cra_blocksize = SHA3_384_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_384, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_512_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "sha3-512", | 
 | 				    .cra_driver_name = "sha3-512-iproc", | 
 | 				    .cra_blocksize = SHA3_512_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_512, | 
 | 		       .mode = HASH_MODE_HASH, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = SHA3_512_DIGEST_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "hmac(sha3-512)", | 
 | 				    .cra_driver_name = "hmac-sha3-512-iproc", | 
 | 				    .cra_blocksize = SHA3_512_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_SHA3_512, | 
 | 		       .mode = HASH_MODE_HMAC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = AES_BLOCK_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "xcbc(aes)", | 
 | 				    .cra_driver_name = "xcbc-aes-iproc", | 
 | 				    .cra_blocksize = AES_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_XCBC, | 
 | 		       }, | 
 | 	 }, | 
 | 	{ | 
 | 	 .type = CRYPTO_ALG_TYPE_AHASH, | 
 | 	 .alg.hash = { | 
 | 		      .halg.digestsize = AES_BLOCK_SIZE, | 
 | 		      .halg.base = { | 
 | 				    .cra_name = "cmac(aes)", | 
 | 				    .cra_driver_name = "cmac-aes-iproc", | 
 | 				    .cra_blocksize = AES_BLOCK_SIZE, | 
 | 				} | 
 | 		      }, | 
 | 	 .cipher_info = { | 
 | 			 .alg = CIPHER_ALG_NONE, | 
 | 			 .mode = CIPHER_MODE_NONE, | 
 | 			 }, | 
 | 	 .auth_info = { | 
 | 		       .alg = HASH_ALG_AES, | 
 | 		       .mode = HASH_MODE_CMAC, | 
 | 		       }, | 
 | 	 }, | 
 | }; | 
 |  | 
 | static int generic_cra_init(struct crypto_tfm *tfm, | 
 | 			    struct iproc_alg_s *cipher_alg) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); | 
 | 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); | 
 |  | 
 | 	flow_log("%s()\n", __func__); | 
 |  | 
 | 	ctx->alg = cipher_alg; | 
 | 	ctx->cipher = cipher_alg->cipher_info; | 
 | 	ctx->auth = cipher_alg->auth_info; | 
 | 	ctx->auth_first = cipher_alg->auth_first; | 
 | 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, | 
 | 						    ctx->cipher.mode, | 
 | 						    blocksize); | 
 | 	ctx->fallback_cipher = NULL; | 
 |  | 
 | 	ctx->enckeylen = 0; | 
 | 	ctx->authkeylen = 0; | 
 |  | 
 | 	atomic_inc(&iproc_priv.stream_count); | 
 | 	atomic_inc(&iproc_priv.session_count); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ablkcipher_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 | 	struct iproc_alg_s *cipher_alg; | 
 |  | 
 | 	flow_log("%s()\n", __func__); | 
 |  | 
 | 	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); | 
 |  | 
 | 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); | 
 | 	return generic_cra_init(tfm, cipher_alg); | 
 | } | 
 |  | 
 | static int ahash_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	int err; | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 | 	struct iproc_alg_s *cipher_alg; | 
 |  | 
 | 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, | 
 | 				  alg.hash); | 
 |  | 
 | 	err = generic_cra_init(tfm, cipher_alg); | 
 | 	flow_log("%s()\n", __func__); | 
 |  | 
 | 	/* | 
 | 	 * export state size has to be < 512 bytes. So don't include msg bufs | 
 | 	 * in state size. | 
 | 	 */ | 
 | 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), | 
 | 				 sizeof(struct iproc_reqctx_s)); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int aead_cra_init(struct crypto_aead *aead) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_aead_tfm(aead); | 
 | 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct crypto_alg *alg = tfm->__crt_alg; | 
 | 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base); | 
 | 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, | 
 | 						      alg.aead); | 
 |  | 
 | 	int err = generic_cra_init(tfm, cipher_alg); | 
 |  | 
 | 	flow_log("%s()\n", __func__); | 
 |  | 
 | 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); | 
 | 	ctx->is_esp = false; | 
 | 	ctx->salt_len = 0; | 
 | 	ctx->salt_offset = 0; | 
 |  | 
 | 	/* random first IV */ | 
 | 	get_random_bytes(ctx->iv, MAX_IV_SIZE); | 
 | 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE); | 
 |  | 
 | 	if (!err) { | 
 | 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { | 
 | 			flow_log("%s() creating fallback cipher\n", __func__); | 
 |  | 
 | 			ctx->fallback_cipher = | 
 | 			    crypto_alloc_aead(alg->cra_name, 0, | 
 | 					      CRYPTO_ALG_ASYNC | | 
 | 					      CRYPTO_ALG_NEED_FALLBACK); | 
 | 			if (IS_ERR(ctx->fallback_cipher)) { | 
 | 				pr_err("%s() Error: failed to allocate fallback for %s\n", | 
 | 				       __func__, alg->cra_name); | 
 | 				return PTR_ERR(ctx->fallback_cipher); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void generic_cra_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	atomic_dec(&iproc_priv.session_count); | 
 | } | 
 |  | 
 | static void aead_cra_exit(struct crypto_aead *aead) | 
 | { | 
 | 	struct crypto_tfm *tfm = crypto_aead_tfm(aead); | 
 | 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); | 
 |  | 
 | 	generic_cra_exit(tfm); | 
 |  | 
 | 	if (ctx->fallback_cipher) { | 
 | 		crypto_free_aead(ctx->fallback_cipher); | 
 | 		ctx->fallback_cipher = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * spu_functions_register() - Specify hardware-specific SPU functions based on | 
 |  * SPU type read from device tree. | 
 |  * @dev:	device structure | 
 |  * @spu_type:	SPU hardware generation | 
 |  * @spu_subtype: SPU hardware version | 
 |  */ | 
 | static void spu_functions_register(struct device *dev, | 
 | 				   enum spu_spu_type spu_type, | 
 | 				   enum spu_spu_subtype spu_subtype) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 |  | 
 | 	if (spu_type == SPU_TYPE_SPUM) { | 
 | 		dev_dbg(dev, "Registering SPUM functions"); | 
 | 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr; | 
 | 		spu->spu_payload_length = spum_payload_length; | 
 | 		spu->spu_response_hdr_len = spum_response_hdr_len; | 
 | 		spu->spu_hash_pad_len = spum_hash_pad_len; | 
 | 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; | 
 | 		spu->spu_assoc_resp_len = spum_assoc_resp_len; | 
 | 		spu->spu_aead_ivlen = spum_aead_ivlen; | 
 | 		spu->spu_hash_type = spum_hash_type; | 
 | 		spu->spu_digest_size = spum_digest_size; | 
 | 		spu->spu_create_request = spum_create_request; | 
 | 		spu->spu_cipher_req_init = spum_cipher_req_init; | 
 | 		spu->spu_cipher_req_finish = spum_cipher_req_finish; | 
 | 		spu->spu_request_pad = spum_request_pad; | 
 | 		spu->spu_tx_status_len = spum_tx_status_len; | 
 | 		spu->spu_rx_status_len = spum_rx_status_len; | 
 | 		spu->spu_status_process = spum_status_process; | 
 | 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; | 
 | 		spu->spu_ccm_update_iv = spum_ccm_update_iv; | 
 | 		spu->spu_wordalign_padlen = spum_wordalign_padlen; | 
 | 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) | 
 | 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; | 
 | 		else | 
 | 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; | 
 | 	} else { | 
 | 		dev_dbg(dev, "Registering SPU2 functions"); | 
 | 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; | 
 | 		spu->spu_ctx_max_payload = spu2_ctx_max_payload; | 
 | 		spu->spu_payload_length = spu2_payload_length; | 
 | 		spu->spu_response_hdr_len = spu2_response_hdr_len; | 
 | 		spu->spu_hash_pad_len = spu2_hash_pad_len; | 
 | 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; | 
 | 		spu->spu_assoc_resp_len = spu2_assoc_resp_len; | 
 | 		spu->spu_aead_ivlen = spu2_aead_ivlen; | 
 | 		spu->spu_hash_type = spu2_hash_type; | 
 | 		spu->spu_digest_size = spu2_digest_size; | 
 | 		spu->spu_create_request = spu2_create_request; | 
 | 		spu->spu_cipher_req_init = spu2_cipher_req_init; | 
 | 		spu->spu_cipher_req_finish = spu2_cipher_req_finish; | 
 | 		spu->spu_request_pad = spu2_request_pad; | 
 | 		spu->spu_tx_status_len = spu2_tx_status_len; | 
 | 		spu->spu_rx_status_len = spu2_rx_status_len; | 
 | 		spu->spu_status_process = spu2_status_process; | 
 | 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; | 
 | 		spu->spu_ccm_update_iv = spu2_ccm_update_iv; | 
 | 		spu->spu_wordalign_padlen = spu2_wordalign_padlen; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox | 
 |  * channel for the SPU being probed. | 
 |  * @dev:  SPU driver device structure | 
 |  * | 
 |  * Return: 0 if successful | 
 |  *	   < 0 otherwise | 
 |  */ | 
 | static int spu_mb_init(struct device *dev) | 
 | { | 
 | 	struct mbox_client *mcl = &iproc_priv.mcl; | 
 | 	int err, i; | 
 |  | 
 | 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, | 
 | 				  sizeof(struct mbox_chan *), GFP_KERNEL); | 
 | 	if (!iproc_priv.mbox) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mcl->dev = dev; | 
 | 	mcl->tx_block = false; | 
 | 	mcl->tx_tout = 0; | 
 | 	mcl->knows_txdone = true; | 
 | 	mcl->rx_callback = spu_rx_callback; | 
 | 	mcl->tx_done = NULL; | 
 |  | 
 | 	for (i = 0; i < iproc_priv.spu.num_chan; i++) { | 
 | 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i); | 
 | 		if (IS_ERR(iproc_priv.mbox[i])) { | 
 | 			err = (int)PTR_ERR(iproc_priv.mbox[i]); | 
 | 			dev_err(dev, | 
 | 				"Mbox channel %d request failed with err %d", | 
 | 				i, err); | 
 | 			iproc_priv.mbox[i] = NULL; | 
 | 			goto free_channels; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | free_channels: | 
 | 	for (i = 0; i < iproc_priv.spu.num_chan; i++) { | 
 | 		if (iproc_priv.mbox[i]) | 
 | 			mbox_free_channel(iproc_priv.mbox[i]); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void spu_mb_release(struct platform_device *pdev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < iproc_priv.spu.num_chan; i++) | 
 | 		mbox_free_channel(iproc_priv.mbox[i]); | 
 | } | 
 |  | 
 | static void spu_counters_init(void) | 
 | { | 
 | 	int i; | 
 | 	int j; | 
 |  | 
 | 	atomic_set(&iproc_priv.session_count, 0); | 
 | 	atomic_set(&iproc_priv.stream_count, 0); | 
 | 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); | 
 | 	atomic64_set(&iproc_priv.bytes_in, 0); | 
 | 	atomic64_set(&iproc_priv.bytes_out, 0); | 
 | 	for (i = 0; i < SPU_OP_NUM; i++) { | 
 | 		atomic_set(&iproc_priv.op_counts[i], 0); | 
 | 		atomic_set(&iproc_priv.setkey_cnt[i], 0); | 
 | 	} | 
 | 	for (i = 0; i < CIPHER_ALG_LAST; i++) | 
 | 		for (j = 0; j < CIPHER_MODE_LAST; j++) | 
 | 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0); | 
 |  | 
 | 	for (i = 0; i < HASH_ALG_LAST; i++) { | 
 | 		atomic_set(&iproc_priv.hash_cnt[i], 0); | 
 | 		atomic_set(&iproc_priv.hmac_cnt[i], 0); | 
 | 	} | 
 | 	for (i = 0; i < AEAD_TYPE_LAST; i++) | 
 | 		atomic_set(&iproc_priv.aead_cnt[i], 0); | 
 |  | 
 | 	atomic_set(&iproc_priv.mb_no_spc, 0); | 
 | 	atomic_set(&iproc_priv.mb_send_fail, 0); | 
 | 	atomic_set(&iproc_priv.bad_icv, 0); | 
 | } | 
 |  | 
 | static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct crypto_alg *crypto = &driver_alg->alg.crypto; | 
 | 	int err; | 
 |  | 
 | 	/* SPU2 does not support RC4 */ | 
 | 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && | 
 | 	    (spu->spu_type == SPU_TYPE_SPU2)) | 
 | 		return 0; | 
 |  | 
 | 	crypto->cra_module = THIS_MODULE; | 
 | 	crypto->cra_priority = cipher_pri; | 
 | 	crypto->cra_alignmask = 0; | 
 | 	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); | 
 | 	INIT_LIST_HEAD(&crypto->cra_list); | 
 |  | 
 | 	crypto->cra_init = ablkcipher_cra_init; | 
 | 	crypto->cra_exit = generic_cra_exit; | 
 | 	crypto->cra_type = &crypto_ablkcipher_type; | 
 | 	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | | 
 | 				CRYPTO_ALG_KERN_DRIVER_ONLY; | 
 |  | 
 | 	crypto->cra_ablkcipher.setkey = ablkcipher_setkey; | 
 | 	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; | 
 | 	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; | 
 |  | 
 | 	err = crypto_register_alg(crypto); | 
 | 	/* Mark alg as having been registered, if successful */ | 
 | 	if (err == 0) | 
 | 		driver_alg->registered = true; | 
 | 	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int spu_register_ahash(struct iproc_alg_s *driver_alg) | 
 | { | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct ahash_alg *hash = &driver_alg->alg.hash; | 
 | 	int err; | 
 |  | 
 | 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */ | 
 | 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) && | 
 | 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) && | 
 | 	    (spu->spu_type == SPU_TYPE_SPUM)) | 
 | 		return 0; | 
 |  | 
 | 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ | 
 | 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && | 
 | 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) | 
 | 		return 0; | 
 |  | 
 | 	hash->halg.base.cra_module = THIS_MODULE; | 
 | 	hash->halg.base.cra_priority = hash_pri; | 
 | 	hash->halg.base.cra_alignmask = 0; | 
 | 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); | 
 | 	hash->halg.base.cra_init = ahash_cra_init; | 
 | 	hash->halg.base.cra_exit = generic_cra_exit; | 
 | 	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC; | 
 | 	hash->halg.statesize = sizeof(struct spu_hash_export_s); | 
 |  | 
 | 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { | 
 | 		hash->init = ahash_init; | 
 | 		hash->update = ahash_update; | 
 | 		hash->final = ahash_final; | 
 | 		hash->finup = ahash_finup; | 
 | 		hash->digest = ahash_digest; | 
 | 		if ((driver_alg->auth_info.alg == HASH_ALG_AES) && | 
 | 		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || | 
 | 		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { | 
 | 			hash->setkey = ahash_setkey; | 
 | 		} | 
 | 	} else { | 
 | 		hash->setkey = ahash_hmac_setkey; | 
 | 		hash->init = ahash_hmac_init; | 
 | 		hash->update = ahash_hmac_update; | 
 | 		hash->final = ahash_hmac_final; | 
 | 		hash->finup = ahash_hmac_finup; | 
 | 		hash->digest = ahash_hmac_digest; | 
 | 	} | 
 | 	hash->export = ahash_export; | 
 | 	hash->import = ahash_import; | 
 |  | 
 | 	err = crypto_register_ahash(hash); | 
 | 	/* Mark alg as having been registered, if successful */ | 
 | 	if (err == 0) | 
 | 		driver_alg->registered = true; | 
 | 	pr_debug("  registered ahash %s\n", | 
 | 		 hash->halg.base.cra_driver_name); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int spu_register_aead(struct iproc_alg_s *driver_alg) | 
 | { | 
 | 	struct aead_alg *aead = &driver_alg->alg.aead; | 
 | 	int err; | 
 |  | 
 | 	aead->base.cra_module = THIS_MODULE; | 
 | 	aead->base.cra_priority = aead_pri; | 
 | 	aead->base.cra_alignmask = 0; | 
 | 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); | 
 | 	INIT_LIST_HEAD(&aead->base.cra_list); | 
 |  | 
 | 	aead->base.cra_flags |= CRYPTO_ALG_ASYNC; | 
 | 	/* setkey set in alg initialization */ | 
 | 	aead->setauthsize = aead_setauthsize; | 
 | 	aead->encrypt = aead_encrypt; | 
 | 	aead->decrypt = aead_decrypt; | 
 | 	aead->init = aead_cra_init; | 
 | 	aead->exit = aead_cra_exit; | 
 |  | 
 | 	err = crypto_register_aead(aead); | 
 | 	/* Mark alg as having been registered, if successful */ | 
 | 	if (err == 0) | 
 | 		driver_alg->registered = true; | 
 | 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* register crypto algorithms the device supports */ | 
 | static int spu_algs_register(struct device *dev) | 
 | { | 
 | 	int i, j; | 
 | 	int err; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { | 
 | 		switch (driver_algs[i].type) { | 
 | 		case CRYPTO_ALG_TYPE_ABLKCIPHER: | 
 | 			err = spu_register_ablkcipher(&driver_algs[i]); | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AHASH: | 
 | 			err = spu_register_ahash(&driver_algs[i]); | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AEAD: | 
 | 			err = spu_register_aead(&driver_algs[i]); | 
 | 			break; | 
 | 		default: | 
 | 			dev_err(dev, | 
 | 				"iproc-crypto: unknown alg type: %d", | 
 | 				driver_algs[i].type); | 
 | 			err = -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (err) { | 
 | 			dev_err(dev, "alg registration failed with error %d\n", | 
 | 				err); | 
 | 			goto err_algs; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_algs: | 
 | 	for (j = 0; j < i; j++) { | 
 | 		/* Skip any algorithm not registered */ | 
 | 		if (!driver_algs[j].registered) | 
 | 			continue; | 
 | 		switch (driver_algs[j].type) { | 
 | 		case CRYPTO_ALG_TYPE_ABLKCIPHER: | 
 | 			crypto_unregister_alg(&driver_algs[j].alg.crypto); | 
 | 			driver_algs[j].registered = false; | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AHASH: | 
 | 			crypto_unregister_ahash(&driver_algs[j].alg.hash); | 
 | 			driver_algs[j].registered = false; | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AEAD: | 
 | 			crypto_unregister_aead(&driver_algs[j].alg.aead); | 
 | 			driver_algs[j].registered = false; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* ==================== Kernel Platform API ==================== */ | 
 |  | 
 | static struct spu_type_subtype spum_ns2_types = { | 
 | 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 | 
 | }; | 
 |  | 
 | static struct spu_type_subtype spum_nsp_types = { | 
 | 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP | 
 | }; | 
 |  | 
 | static struct spu_type_subtype spu2_types = { | 
 | 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 | 
 | }; | 
 |  | 
 | static struct spu_type_subtype spu2_v2_types = { | 
 | 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 | 
 | }; | 
 |  | 
 | static const struct of_device_id bcm_spu_dt_ids[] = { | 
 | 	{ | 
 | 		.compatible = "brcm,spum-crypto", | 
 | 		.data = &spum_ns2_types, | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "brcm,spum-nsp-crypto", | 
 | 		.data = &spum_nsp_types, | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "brcm,spu2-crypto", | 
 | 		.data = &spu2_types, | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "brcm,spu2-v2-crypto", | 
 | 		.data = &spu2_v2_types, | 
 | 	}, | 
 | 	{ /* sentinel */ } | 
 | }; | 
 |  | 
 | MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); | 
 |  | 
 | static int spu_dt_read(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	struct resource *spu_ctrl_regs; | 
 | 	const struct spu_type_subtype *matched_spu_type; | 
 | 	struct device_node *dn = pdev->dev.of_node; | 
 | 	int err, i; | 
 |  | 
 | 	/* Count number of mailbox channels */ | 
 | 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); | 
 |  | 
 | 	matched_spu_type = of_device_get_match_data(dev); | 
 | 	if (!matched_spu_type) { | 
 | 		dev_err(&pdev->dev, "Failed to match device\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	spu->spu_type = matched_spu_type->type; | 
 | 	spu->spu_subtype = matched_spu_type->subtype; | 
 |  | 
 | 	i = 0; | 
 | 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = | 
 | 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { | 
 |  | 
 | 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); | 
 | 		if (IS_ERR(spu->reg_vbase[i])) { | 
 | 			err = PTR_ERR(spu->reg_vbase[i]); | 
 | 			dev_err(&pdev->dev, "Failed to map registers: %d\n", | 
 | 				err); | 
 | 			spu->reg_vbase[i] = NULL; | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 | 	spu->num_spu = i; | 
 | 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bcm_spu_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device *dev = &pdev->dev; | 
 | 	struct spu_hw *spu = &iproc_priv.spu; | 
 | 	int err = 0; | 
 |  | 
 | 	iproc_priv.pdev  = pdev; | 
 | 	platform_set_drvdata(iproc_priv.pdev, | 
 | 			     &iproc_priv); | 
 |  | 
 | 	err = spu_dt_read(pdev); | 
 | 	if (err < 0) | 
 | 		goto failure; | 
 |  | 
 | 	err = spu_mb_init(&pdev->dev); | 
 | 	if (err < 0) | 
 | 		goto failure; | 
 |  | 
 | 	if (spu->spu_type == SPU_TYPE_SPUM) | 
 | 		iproc_priv.bcm_hdr_len = 8; | 
 | 	else if (spu->spu_type == SPU_TYPE_SPU2) | 
 | 		iproc_priv.bcm_hdr_len = 0; | 
 |  | 
 | 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); | 
 |  | 
 | 	spu_counters_init(); | 
 |  | 
 | 	spu_setup_debugfs(); | 
 |  | 
 | 	err = spu_algs_register(dev); | 
 | 	if (err < 0) | 
 | 		goto fail_reg; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_reg: | 
 | 	spu_free_debugfs(); | 
 | failure: | 
 | 	spu_mb_release(pdev); | 
 | 	dev_err(dev, "%s failed with error %d.\n", __func__, err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int bcm_spu_remove(struct platform_device *pdev) | 
 | { | 
 | 	int i; | 
 | 	struct device *dev = &pdev->dev; | 
 | 	char *cdn; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { | 
 | 		/* | 
 | 		 * Not all algorithms were registered, depending on whether | 
 | 		 * hardware is SPU or SPU2.  So here we make sure to skip | 
 | 		 * those algorithms that were not previously registered. | 
 | 		 */ | 
 | 		if (!driver_algs[i].registered) | 
 | 			continue; | 
 |  | 
 | 		switch (driver_algs[i].type) { | 
 | 		case CRYPTO_ALG_TYPE_ABLKCIPHER: | 
 | 			crypto_unregister_alg(&driver_algs[i].alg.crypto); | 
 | 			dev_dbg(dev, "  unregistered cipher %s\n", | 
 | 				driver_algs[i].alg.crypto.cra_driver_name); | 
 | 			driver_algs[i].registered = false; | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AHASH: | 
 | 			crypto_unregister_ahash(&driver_algs[i].alg.hash); | 
 | 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; | 
 | 			dev_dbg(dev, "  unregistered hash %s\n", cdn); | 
 | 			driver_algs[i].registered = false; | 
 | 			break; | 
 | 		case CRYPTO_ALG_TYPE_AEAD: | 
 | 			crypto_unregister_aead(&driver_algs[i].alg.aead); | 
 | 			dev_dbg(dev, "  unregistered aead %s\n", | 
 | 				driver_algs[i].alg.aead.base.cra_driver_name); | 
 | 			driver_algs[i].registered = false; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spu_free_debugfs(); | 
 | 	spu_mb_release(pdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* ===== Kernel Module API ===== */ | 
 |  | 
 | static struct platform_driver bcm_spu_pdriver = { | 
 | 	.driver = { | 
 | 		   .name = "brcm-spu-crypto", | 
 | 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids), | 
 | 		   }, | 
 | 	.probe = bcm_spu_probe, | 
 | 	.remove = bcm_spu_remove, | 
 | }; | 
 | module_platform_driver(bcm_spu_pdriver); | 
 |  | 
 | MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); | 
 | MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); | 
 | MODULE_LICENSE("GPL v2"); |