| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de> | 
 |  * Copyright (C) 2015 Broadcom Corporation | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mbus.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irqchip/arm-gic-v3.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_pci.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_platform.h> | 
 | #include <linux/phy/phy.h> | 
 |  | 
 | #include "pcie-iproc.h" | 
 |  | 
 | #define EP_PERST_SOURCE_SELECT_SHIFT	2 | 
 | #define EP_PERST_SOURCE_SELECT		BIT(EP_PERST_SOURCE_SELECT_SHIFT) | 
 | #define EP_MODE_SURVIVE_PERST_SHIFT	1 | 
 | #define EP_MODE_SURVIVE_PERST		BIT(EP_MODE_SURVIVE_PERST_SHIFT) | 
 | #define RC_PCIE_RST_OUTPUT_SHIFT	0 | 
 | #define RC_PCIE_RST_OUTPUT		BIT(RC_PCIE_RST_OUTPUT_SHIFT) | 
 | #define PAXC_RESET_MASK			0x7f | 
 |  | 
 | #define GIC_V3_CFG_SHIFT		0 | 
 | #define GIC_V3_CFG			BIT(GIC_V3_CFG_SHIFT) | 
 |  | 
 | #define MSI_ENABLE_CFG_SHIFT		0 | 
 | #define MSI_ENABLE_CFG			BIT(MSI_ENABLE_CFG_SHIFT) | 
 |  | 
 | #define CFG_IND_ADDR_MASK		0x00001ffc | 
 |  | 
 | #define CFG_ADDR_BUS_NUM_SHIFT		20 | 
 | #define CFG_ADDR_BUS_NUM_MASK		0x0ff00000 | 
 | #define CFG_ADDR_DEV_NUM_SHIFT		15 | 
 | #define CFG_ADDR_DEV_NUM_MASK		0x000f8000 | 
 | #define CFG_ADDR_FUNC_NUM_SHIFT		12 | 
 | #define CFG_ADDR_FUNC_NUM_MASK		0x00007000 | 
 | #define CFG_ADDR_REG_NUM_SHIFT		2 | 
 | #define CFG_ADDR_REG_NUM_MASK		0x00000ffc | 
 | #define CFG_ADDR_CFG_TYPE_SHIFT		0 | 
 | #define CFG_ADDR_CFG_TYPE_MASK		0x00000003 | 
 |  | 
 | #define SYS_RC_INTX_MASK		0xf | 
 |  | 
 | #define PCIE_PHYLINKUP_SHIFT		3 | 
 | #define PCIE_PHYLINKUP			BIT(PCIE_PHYLINKUP_SHIFT) | 
 | #define PCIE_DL_ACTIVE_SHIFT		2 | 
 | #define PCIE_DL_ACTIVE			BIT(PCIE_DL_ACTIVE_SHIFT) | 
 |  | 
 | #define APB_ERR_EN_SHIFT		0 | 
 | #define APB_ERR_EN			BIT(APB_ERR_EN_SHIFT) | 
 |  | 
 | #define CFG_RETRY_STATUS		0xffff0001 | 
 | #define CFG_RETRY_STATUS_TIMEOUT_US	500000 /* 500 milliseconds */ | 
 |  | 
 | /* derive the enum index of the outbound/inbound mapping registers */ | 
 | #define MAP_REG(base_reg, index)	((base_reg) + (index) * 2) | 
 |  | 
 | /* | 
 |  * Maximum number of outbound mapping window sizes that can be supported by any | 
 |  * OARR/OMAP mapping pair | 
 |  */ | 
 | #define MAX_NUM_OB_WINDOW_SIZES		4 | 
 |  | 
 | #define OARR_VALID_SHIFT		0 | 
 | #define OARR_VALID			BIT(OARR_VALID_SHIFT) | 
 | #define OARR_SIZE_CFG_SHIFT		1 | 
 |  | 
 | /* | 
 |  * Maximum number of inbound mapping region sizes that can be supported by an | 
 |  * IARR | 
 |  */ | 
 | #define MAX_NUM_IB_REGION_SIZES		9 | 
 |  | 
 | #define IMAP_VALID_SHIFT		0 | 
 | #define IMAP_VALID			BIT(IMAP_VALID_SHIFT) | 
 |  | 
 | #define IPROC_PCI_PM_CAP		0x48 | 
 | #define IPROC_PCI_PM_CAP_MASK		0xffff | 
 | #define IPROC_PCI_EXP_CAP		0xac | 
 |  | 
 | #define IPROC_PCIE_REG_INVALID		0xffff | 
 |  | 
 | /** | 
 |  * iProc PCIe outbound mapping controller specific parameters | 
 |  * | 
 |  * @window_sizes: list of supported outbound mapping window sizes in MB | 
 |  * @nr_sizes: number of supported outbound mapping window sizes | 
 |  */ | 
 | struct iproc_pcie_ob_map { | 
 | 	resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; | 
 | 	unsigned int nr_sizes; | 
 | }; | 
 |  | 
 | static const struct iproc_pcie_ob_map paxb_ob_map[] = { | 
 | 	{ | 
 | 		/* OARR0/OMAP0 */ | 
 | 		.window_sizes = { 128, 256 }, | 
 | 		.nr_sizes = 2, | 
 | 	}, | 
 | 	{ | 
 | 		/* OARR1/OMAP1 */ | 
 | 		.window_sizes = { 128, 256 }, | 
 | 		.nr_sizes = 2, | 
 | 	}, | 
 | }; | 
 |  | 
 | static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { | 
 | 	{ | 
 | 		/* OARR0/OMAP0 */ | 
 | 		.window_sizes = { 128, 256 }, | 
 | 		.nr_sizes = 2, | 
 | 	}, | 
 | 	{ | 
 | 		/* OARR1/OMAP1 */ | 
 | 		.window_sizes = { 128, 256 }, | 
 | 		.nr_sizes = 2, | 
 | 	}, | 
 | 	{ | 
 | 		/* OARR2/OMAP2 */ | 
 | 		.window_sizes = { 128, 256, 512, 1024 }, | 
 | 		.nr_sizes = 4, | 
 | 	}, | 
 | 	{ | 
 | 		/* OARR3/OMAP3 */ | 
 | 		.window_sizes = { 128, 256, 512, 1024 }, | 
 | 		.nr_sizes = 4, | 
 | 	}, | 
 | }; | 
 |  | 
 | /** | 
 |  * iProc PCIe inbound mapping type | 
 |  */ | 
 | enum iproc_pcie_ib_map_type { | 
 | 	/* for DDR memory */ | 
 | 	IPROC_PCIE_IB_MAP_MEM = 0, | 
 |  | 
 | 	/* for device I/O memory */ | 
 | 	IPROC_PCIE_IB_MAP_IO, | 
 |  | 
 | 	/* invalid or unused */ | 
 | 	IPROC_PCIE_IB_MAP_INVALID | 
 | }; | 
 |  | 
 | /** | 
 |  * iProc PCIe inbound mapping controller specific parameters | 
 |  * | 
 |  * @type: inbound mapping region type | 
 |  * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or | 
 |  * SZ_1G | 
 |  * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or | 
 |  * GB, depedning on the size unit | 
 |  * @nr_sizes: number of supported inbound mapping region sizes | 
 |  * @nr_windows: number of supported inbound mapping windows for the region | 
 |  * @imap_addr_offset: register offset between the upper and lower 32-bit | 
 |  * IMAP address registers | 
 |  * @imap_window_offset: register offset between each IMAP window | 
 |  */ | 
 | struct iproc_pcie_ib_map { | 
 | 	enum iproc_pcie_ib_map_type type; | 
 | 	unsigned int size_unit; | 
 | 	resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; | 
 | 	unsigned int nr_sizes; | 
 | 	unsigned int nr_windows; | 
 | 	u16 imap_addr_offset; | 
 | 	u16 imap_window_offset; | 
 | }; | 
 |  | 
 | static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { | 
 | 	{ | 
 | 		/* IARR0/IMAP0 */ | 
 | 		.type = IPROC_PCIE_IB_MAP_IO, | 
 | 		.size_unit = SZ_1K, | 
 | 		.region_sizes = { 32 }, | 
 | 		.nr_sizes = 1, | 
 | 		.nr_windows = 8, | 
 | 		.imap_addr_offset = 0x40, | 
 | 		.imap_window_offset = 0x4, | 
 | 	}, | 
 | 	{ | 
 | 		/* IARR1/IMAP1 (currently unused) */ | 
 | 		.type = IPROC_PCIE_IB_MAP_INVALID, | 
 | 	}, | 
 | 	{ | 
 | 		/* IARR2/IMAP2 */ | 
 | 		.type = IPROC_PCIE_IB_MAP_MEM, | 
 | 		.size_unit = SZ_1M, | 
 | 		.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, | 
 | 				  16384 }, | 
 | 		.nr_sizes = 9, | 
 | 		.nr_windows = 1, | 
 | 		.imap_addr_offset = 0x4, | 
 | 		.imap_window_offset = 0x8, | 
 | 	}, | 
 | 	{ | 
 | 		/* IARR3/IMAP3 */ | 
 | 		.type = IPROC_PCIE_IB_MAP_MEM, | 
 | 		.size_unit = SZ_1G, | 
 | 		.region_sizes = { 1, 2, 4, 8, 16, 32 }, | 
 | 		.nr_sizes = 6, | 
 | 		.nr_windows = 8, | 
 | 		.imap_addr_offset = 0x4, | 
 | 		.imap_window_offset = 0x8, | 
 | 	}, | 
 | 	{ | 
 | 		/* IARR4/IMAP4 */ | 
 | 		.type = IPROC_PCIE_IB_MAP_MEM, | 
 | 		.size_unit = SZ_1G, | 
 | 		.region_sizes = { 32, 64, 128, 256, 512 }, | 
 | 		.nr_sizes = 5, | 
 | 		.nr_windows = 8, | 
 | 		.imap_addr_offset = 0x4, | 
 | 		.imap_window_offset = 0x8, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* | 
 |  * iProc PCIe host registers | 
 |  */ | 
 | enum iproc_pcie_reg { | 
 | 	/* clock/reset signal control */ | 
 | 	IPROC_PCIE_CLK_CTRL = 0, | 
 |  | 
 | 	/* | 
 | 	 * To allow MSI to be steered to an external MSI controller (e.g., ARM | 
 | 	 * GICv3 ITS) | 
 | 	 */ | 
 | 	IPROC_PCIE_MSI_GIC_MODE, | 
 |  | 
 | 	/* | 
 | 	 * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the | 
 | 	 * window where the MSI posted writes are written, for the writes to be | 
 | 	 * interpreted as MSI writes. | 
 | 	 */ | 
 | 	IPROC_PCIE_MSI_BASE_ADDR, | 
 | 	IPROC_PCIE_MSI_WINDOW_SIZE, | 
 |  | 
 | 	/* | 
 | 	 * To hold the address of the register where the MSI writes are | 
 | 	 * programed.  When ARM GICv3 ITS is used, this should be programmed | 
 | 	 * with the address of the GITS_TRANSLATER register. | 
 | 	 */ | 
 | 	IPROC_PCIE_MSI_ADDR_LO, | 
 | 	IPROC_PCIE_MSI_ADDR_HI, | 
 |  | 
 | 	/* enable MSI */ | 
 | 	IPROC_PCIE_MSI_EN_CFG, | 
 |  | 
 | 	/* allow access to root complex configuration space */ | 
 | 	IPROC_PCIE_CFG_IND_ADDR, | 
 | 	IPROC_PCIE_CFG_IND_DATA, | 
 |  | 
 | 	/* allow access to device configuration space */ | 
 | 	IPROC_PCIE_CFG_ADDR, | 
 | 	IPROC_PCIE_CFG_DATA, | 
 |  | 
 | 	/* enable INTx */ | 
 | 	IPROC_PCIE_INTX_EN, | 
 |  | 
 | 	/* outbound address mapping */ | 
 | 	IPROC_PCIE_OARR0, | 
 | 	IPROC_PCIE_OMAP0, | 
 | 	IPROC_PCIE_OARR1, | 
 | 	IPROC_PCIE_OMAP1, | 
 | 	IPROC_PCIE_OARR2, | 
 | 	IPROC_PCIE_OMAP2, | 
 | 	IPROC_PCIE_OARR3, | 
 | 	IPROC_PCIE_OMAP3, | 
 |  | 
 | 	/* inbound address mapping */ | 
 | 	IPROC_PCIE_IARR0, | 
 | 	IPROC_PCIE_IMAP0, | 
 | 	IPROC_PCIE_IARR1, | 
 | 	IPROC_PCIE_IMAP1, | 
 | 	IPROC_PCIE_IARR2, | 
 | 	IPROC_PCIE_IMAP2, | 
 | 	IPROC_PCIE_IARR3, | 
 | 	IPROC_PCIE_IMAP3, | 
 | 	IPROC_PCIE_IARR4, | 
 | 	IPROC_PCIE_IMAP4, | 
 |  | 
 | 	/* link status */ | 
 | 	IPROC_PCIE_LINK_STATUS, | 
 |  | 
 | 	/* enable APB error for unsupported requests */ | 
 | 	IPROC_PCIE_APB_ERR_EN, | 
 |  | 
 | 	/* total number of core registers */ | 
 | 	IPROC_PCIE_MAX_NUM_REG, | 
 | }; | 
 |  | 
 | /* iProc PCIe PAXB BCMA registers */ | 
 | static const u16 iproc_pcie_reg_paxb_bcma[] = { | 
 | 	[IPROC_PCIE_CLK_CTRL]		= 0x000, | 
 | 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120, | 
 | 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124, | 
 | 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8, | 
 | 	[IPROC_PCIE_CFG_DATA]		= 0x1fc, | 
 | 	[IPROC_PCIE_INTX_EN]		= 0x330, | 
 | 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c, | 
 | }; | 
 |  | 
 | /* iProc PCIe PAXB registers */ | 
 | static const u16 iproc_pcie_reg_paxb[] = { | 
 | 	[IPROC_PCIE_CLK_CTRL]		= 0x000, | 
 | 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120, | 
 | 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124, | 
 | 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8, | 
 | 	[IPROC_PCIE_CFG_DATA]		= 0x1fc, | 
 | 	[IPROC_PCIE_INTX_EN]		= 0x330, | 
 | 	[IPROC_PCIE_OARR0]		= 0xd20, | 
 | 	[IPROC_PCIE_OMAP0]		= 0xd40, | 
 | 	[IPROC_PCIE_OARR1]		= 0xd28, | 
 | 	[IPROC_PCIE_OMAP1]		= 0xd48, | 
 | 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c, | 
 | 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40, | 
 | }; | 
 |  | 
 | /* iProc PCIe PAXB v2 registers */ | 
 | static const u16 iproc_pcie_reg_paxb_v2[] = { | 
 | 	[IPROC_PCIE_CLK_CTRL]		= 0x000, | 
 | 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x120, | 
 | 	[IPROC_PCIE_CFG_IND_DATA]	= 0x124, | 
 | 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8, | 
 | 	[IPROC_PCIE_CFG_DATA]		= 0x1fc, | 
 | 	[IPROC_PCIE_INTX_EN]		= 0x330, | 
 | 	[IPROC_PCIE_OARR0]		= 0xd20, | 
 | 	[IPROC_PCIE_OMAP0]		= 0xd40, | 
 | 	[IPROC_PCIE_OARR1]		= 0xd28, | 
 | 	[IPROC_PCIE_OMAP1]		= 0xd48, | 
 | 	[IPROC_PCIE_OARR2]		= 0xd60, | 
 | 	[IPROC_PCIE_OMAP2]		= 0xd68, | 
 | 	[IPROC_PCIE_OARR3]		= 0xdf0, | 
 | 	[IPROC_PCIE_OMAP3]		= 0xdf8, | 
 | 	[IPROC_PCIE_IARR0]		= 0xd00, | 
 | 	[IPROC_PCIE_IMAP0]		= 0xc00, | 
 | 	[IPROC_PCIE_IARR2]		= 0xd10, | 
 | 	[IPROC_PCIE_IMAP2]		= 0xcc0, | 
 | 	[IPROC_PCIE_IARR3]		= 0xe00, | 
 | 	[IPROC_PCIE_IMAP3]		= 0xe08, | 
 | 	[IPROC_PCIE_IARR4]		= 0xe68, | 
 | 	[IPROC_PCIE_IMAP4]		= 0xe70, | 
 | 	[IPROC_PCIE_LINK_STATUS]	= 0xf0c, | 
 | 	[IPROC_PCIE_APB_ERR_EN]		= 0xf40, | 
 | }; | 
 |  | 
 | /* iProc PCIe PAXC v1 registers */ | 
 | static const u16 iproc_pcie_reg_paxc[] = { | 
 | 	[IPROC_PCIE_CLK_CTRL]		= 0x000, | 
 | 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0, | 
 | 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4, | 
 | 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8, | 
 | 	[IPROC_PCIE_CFG_DATA]		= 0x1fc, | 
 | }; | 
 |  | 
 | /* iProc PCIe PAXC v2 registers */ | 
 | static const u16 iproc_pcie_reg_paxc_v2[] = { | 
 | 	[IPROC_PCIE_MSI_GIC_MODE]	= 0x050, | 
 | 	[IPROC_PCIE_MSI_BASE_ADDR]	= 0x074, | 
 | 	[IPROC_PCIE_MSI_WINDOW_SIZE]	= 0x078, | 
 | 	[IPROC_PCIE_MSI_ADDR_LO]	= 0x07c, | 
 | 	[IPROC_PCIE_MSI_ADDR_HI]	= 0x080, | 
 | 	[IPROC_PCIE_MSI_EN_CFG]		= 0x09c, | 
 | 	[IPROC_PCIE_CFG_IND_ADDR]	= 0x1f0, | 
 | 	[IPROC_PCIE_CFG_IND_DATA]	= 0x1f4, | 
 | 	[IPROC_PCIE_CFG_ADDR]		= 0x1f8, | 
 | 	[IPROC_PCIE_CFG_DATA]		= 0x1fc, | 
 | }; | 
 |  | 
 | /* | 
 |  * List of device IDs of controllers that have corrupted capability list that | 
 |  * require SW fixup | 
 |  */ | 
 | static const u16 iproc_pcie_corrupt_cap_did[] = { | 
 | 	0x16cd, | 
 | 	0x16f0, | 
 | 	0xd802, | 
 | 	0xd804 | 
 | }; | 
 |  | 
 | static inline struct iproc_pcie *iproc_data(struct pci_bus *bus) | 
 | { | 
 | 	struct iproc_pcie *pcie = bus->sysdata; | 
 | 	return pcie; | 
 | } | 
 |  | 
 | static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) | 
 | { | 
 | 	return !!(reg_offset == IPROC_PCIE_REG_INVALID); | 
 | } | 
 |  | 
 | static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, | 
 | 					enum iproc_pcie_reg reg) | 
 | { | 
 | 	return pcie->reg_offsets[reg]; | 
 | } | 
 |  | 
 | static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, | 
 | 				      enum iproc_pcie_reg reg) | 
 | { | 
 | 	u16 offset = iproc_pcie_reg_offset(pcie, reg); | 
 |  | 
 | 	if (iproc_pcie_reg_is_invalid(offset)) | 
 | 		return 0; | 
 |  | 
 | 	return readl(pcie->base + offset); | 
 | } | 
 |  | 
 | static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, | 
 | 					enum iproc_pcie_reg reg, u32 val) | 
 | { | 
 | 	u16 offset = iproc_pcie_reg_offset(pcie, reg); | 
 |  | 
 | 	if (iproc_pcie_reg_is_invalid(offset)) | 
 | 		return; | 
 |  | 
 | 	writel(val, pcie->base + offset); | 
 | } | 
 |  | 
 | /** | 
 |  * APB error forwarding can be disabled during access of configuration | 
 |  * registers of the endpoint device, to prevent unsupported requests | 
 |  * (typically seen during enumeration with multi-function devices) from | 
 |  * triggering a system exception. | 
 |  */ | 
 | static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus, | 
 | 					      bool disable) | 
 | { | 
 | 	struct iproc_pcie *pcie = iproc_data(bus); | 
 | 	u32 val; | 
 |  | 
 | 	if (bus->number && pcie->has_apb_err_disable) { | 
 | 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); | 
 | 		if (disable) | 
 | 			val &= ~APB_ERR_EN; | 
 | 		else | 
 | 			val |= APB_ERR_EN; | 
 | 		iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); | 
 | 	} | 
 | } | 
 |  | 
 | static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie, | 
 | 					       unsigned int busno, | 
 | 					       unsigned int slot, | 
 | 					       unsigned int fn, | 
 | 					       int where) | 
 | { | 
 | 	u16 offset; | 
 | 	u32 val; | 
 |  | 
 | 	/* EP device access */ | 
 | 	val = (busno << CFG_ADDR_BUS_NUM_SHIFT) | | 
 | 		(slot << CFG_ADDR_DEV_NUM_SHIFT) | | 
 | 		(fn << CFG_ADDR_FUNC_NUM_SHIFT) | | 
 | 		(where & CFG_ADDR_REG_NUM_MASK) | | 
 | 		(1 & CFG_ADDR_CFG_TYPE_MASK); | 
 |  | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); | 
 | 	offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); | 
 |  | 
 | 	if (iproc_pcie_reg_is_invalid(offset)) | 
 | 		return NULL; | 
 |  | 
 | 	return (pcie->base + offset); | 
 | } | 
 |  | 
 | static unsigned int iproc_pcie_cfg_retry(void __iomem *cfg_data_p) | 
 | { | 
 | 	int timeout = CFG_RETRY_STATUS_TIMEOUT_US; | 
 | 	unsigned int data; | 
 |  | 
 | 	/* | 
 | 	 * As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only | 
 | 	 * affects config reads of the Vendor ID.  For config writes or any | 
 | 	 * other config reads, the Root may automatically reissue the | 
 | 	 * configuration request again as a new request. | 
 | 	 * | 
 | 	 * For config reads, this hardware returns CFG_RETRY_STATUS data | 
 | 	 * when it receives a CRS completion, regardless of the address of | 
 | 	 * the read or the CRS Software Visibility Enable bit.  As a | 
 | 	 * partial workaround for this, we retry in software any read that | 
 | 	 * returns CFG_RETRY_STATUS. | 
 | 	 * | 
 | 	 * Note that a non-Vendor ID config register may have a value of | 
 | 	 * CFG_RETRY_STATUS.  If we read that, we can't distinguish it from | 
 | 	 * a CRS completion, so we will incorrectly retry the read and | 
 | 	 * eventually return the wrong data (0xffffffff). | 
 | 	 */ | 
 | 	data = readl(cfg_data_p); | 
 | 	while (data == CFG_RETRY_STATUS && timeout--) { | 
 | 		udelay(1); | 
 | 		data = readl(cfg_data_p); | 
 | 	} | 
 |  | 
 | 	if (data == CFG_RETRY_STATUS) | 
 | 		data = 0xffffffff; | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val) | 
 | { | 
 | 	u32 i, dev_id; | 
 |  | 
 | 	switch (where & ~0x3) { | 
 | 	case PCI_VENDOR_ID: | 
 | 		dev_id = *val >> 16; | 
 |  | 
 | 		/* | 
 | 		 * Activate fixup for those controllers that have corrupted | 
 | 		 * capability list registers | 
 | 		 */ | 
 | 		for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) | 
 | 			if (dev_id == iproc_pcie_corrupt_cap_did[i]) | 
 | 				pcie->fix_paxc_cap = true; | 
 | 		break; | 
 |  | 
 | 	case IPROC_PCI_PM_CAP: | 
 | 		if (pcie->fix_paxc_cap) { | 
 | 			/* advertise PM, force next capability to PCIe */ | 
 | 			*val &= ~IPROC_PCI_PM_CAP_MASK; | 
 | 			*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case IPROC_PCI_EXP_CAP: | 
 | 		if (pcie->fix_paxc_cap) { | 
 | 			/* advertise root port, version 2, terminate here */ | 
 | 			*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | | 
 | 				PCI_CAP_ID_EXP; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: | 
 | 		/* Don't advertise CRS SV support */ | 
 | 		*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn, | 
 | 				  int where, int size, u32 *val) | 
 | { | 
 | 	struct iproc_pcie *pcie = iproc_data(bus); | 
 | 	unsigned int slot = PCI_SLOT(devfn); | 
 | 	unsigned int fn = PCI_FUNC(devfn); | 
 | 	unsigned int busno = bus->number; | 
 | 	void __iomem *cfg_data_p; | 
 | 	unsigned int data; | 
 | 	int ret; | 
 |  | 
 | 	/* root complex access */ | 
 | 	if (busno == 0) { | 
 | 		ret = pci_generic_config_read32(bus, devfn, where, size, val); | 
 | 		if (ret == PCIBIOS_SUCCESSFUL) | 
 | 			iproc_pcie_fix_cap(pcie, where, val); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); | 
 |  | 
 | 	if (!cfg_data_p) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	data = iproc_pcie_cfg_retry(cfg_data_p); | 
 |  | 
 | 	*val = data; | 
 | 	if (size <= 2) | 
 | 		*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); | 
 |  | 
 | 	/* | 
 | 	 * For PAXC and PAXCv2, the total number of PFs that one can enumerate | 
 | 	 * depends on the firmware configuration. Unfortunately, due to an ASIC | 
 | 	 * bug, unconfigured PFs cannot be properly hidden from the root | 
 | 	 * complex. As a result, write access to these PFs will cause bus lock | 
 | 	 * up on the embedded processor | 
 | 	 * | 
 | 	 * Since all unconfigured PFs are left with an incorrect, staled device | 
 | 	 * ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access | 
 | 	 * early here and reject them all | 
 | 	 */ | 
 | #define DEVICE_ID_MASK     0xffff0000 | 
 | #define DEVICE_ID_SHIFT    16 | 
 | 	if (pcie->rej_unconfig_pf && | 
 | 	    (where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID) | 
 | 		if ((*val & DEVICE_ID_MASK) == | 
 | 		    (PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT)) | 
 | 			return PCIBIOS_FUNC_NOT_SUPPORTED; | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 |  | 
 | /** | 
 |  * Note access to the configuration registers are protected at the higher layer | 
 |  * by 'pci_lock' in drivers/pci/access.c | 
 |  */ | 
 | static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie, | 
 | 					    int busno, unsigned int devfn, | 
 | 					    int where) | 
 | { | 
 | 	unsigned slot = PCI_SLOT(devfn); | 
 | 	unsigned fn = PCI_FUNC(devfn); | 
 | 	u16 offset; | 
 |  | 
 | 	/* root complex access */ | 
 | 	if (busno == 0) { | 
 | 		if (slot > 0 || fn > 0) | 
 | 			return NULL; | 
 |  | 
 | 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, | 
 | 				     where & CFG_IND_ADDR_MASK); | 
 | 		offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); | 
 | 		if (iproc_pcie_reg_is_invalid(offset)) | 
 | 			return NULL; | 
 | 		else | 
 | 			return (pcie->base + offset); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * PAXC is connected to an internally emulated EP within the SoC.  It | 
 | 	 * allows only one device. | 
 | 	 */ | 
 | 	if (pcie->ep_is_internal) | 
 | 		if (slot > 0) | 
 | 			return NULL; | 
 |  | 
 | 	return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where); | 
 | } | 
 |  | 
 | static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus, | 
 | 						unsigned int devfn, | 
 | 						int where) | 
 | { | 
 | 	return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn, | 
 | 				      where); | 
 | } | 
 |  | 
 | static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, | 
 | 				       unsigned int devfn, int where, | 
 | 				       int size, u32 *val) | 
 | { | 
 | 	void __iomem *addr; | 
 |  | 
 | 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); | 
 | 	if (!addr) { | 
 | 		*val = ~0; | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 | 	} | 
 |  | 
 | 	*val = readl(addr); | 
 |  | 
 | 	if (size <= 2) | 
 | 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 |  | 
 | static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, | 
 | 					unsigned int devfn, int where, | 
 | 					int size, u32 val) | 
 | { | 
 | 	void __iomem *addr; | 
 | 	u32 mask, tmp; | 
 |  | 
 | 	addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3); | 
 | 	if (!addr) | 
 | 		return PCIBIOS_DEVICE_NOT_FOUND; | 
 |  | 
 | 	if (size == 4) { | 
 | 		writel(val, addr); | 
 | 		return PCIBIOS_SUCCESSFUL; | 
 | 	} | 
 |  | 
 | 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); | 
 | 	tmp = readl(addr) & mask; | 
 | 	tmp |= val << ((where & 0x3) * 8); | 
 | 	writel(tmp, addr); | 
 |  | 
 | 	return PCIBIOS_SUCCESSFUL; | 
 | } | 
 |  | 
 | static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, | 
 | 				    int where, int size, u32 *val) | 
 | { | 
 | 	int ret; | 
 | 	struct iproc_pcie *pcie = iproc_data(bus); | 
 |  | 
 | 	iproc_pcie_apb_err_disable(bus, true); | 
 | 	if (pcie->iproc_cfg_read) | 
 | 		ret = iproc_pcie_config_read(bus, devfn, where, size, val); | 
 | 	else | 
 | 		ret = pci_generic_config_read32(bus, devfn, where, size, val); | 
 | 	iproc_pcie_apb_err_disable(bus, false); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn, | 
 | 				     int where, int size, u32 val) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	iproc_pcie_apb_err_disable(bus, true); | 
 | 	ret = pci_generic_config_write32(bus, devfn, where, size, val); | 
 | 	iproc_pcie_apb_err_disable(bus, false); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct pci_ops iproc_pcie_ops = { | 
 | 	.map_bus = iproc_pcie_bus_map_cfg_bus, | 
 | 	.read = iproc_pcie_config_read32, | 
 | 	.write = iproc_pcie_config_write32, | 
 | }; | 
 |  | 
 | static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	/* | 
 | 	 * PAXC and the internal emulated endpoint device downstream should not | 
 | 	 * be reset.  If firmware has been loaded on the endpoint device at an | 
 | 	 * earlier boot stage, reset here causes issues. | 
 | 	 */ | 
 | 	if (pcie->ep_is_internal) | 
 | 		return; | 
 |  | 
 | 	if (assert) { | 
 | 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); | 
 | 		val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & | 
 | 			~RC_PCIE_RST_OUTPUT; | 
 | 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); | 
 | 		udelay(250); | 
 | 	} else { | 
 | 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); | 
 | 		val |= RC_PCIE_RST_OUTPUT; | 
 | 		iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); | 
 | 		msleep(100); | 
 | 	} | 
 | } | 
 |  | 
 | int iproc_pcie_shutdown(struct iproc_pcie *pcie) | 
 | { | 
 | 	iproc_pcie_perst_ctrl(pcie, true); | 
 | 	msleep(500); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(iproc_pcie_shutdown); | 
 |  | 
 | static int iproc_pcie_check_link(struct iproc_pcie *pcie) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	u32 hdr_type, link_ctrl, link_status, class, val; | 
 | 	bool link_is_active = false; | 
 |  | 
 | 	/* | 
 | 	 * PAXC connects to emulated endpoint devices directly and does not | 
 | 	 * have a Serdes.  Therefore skip the link detection logic here. | 
 | 	 */ | 
 | 	if (pcie->ep_is_internal) | 
 | 		return 0; | 
 |  | 
 | 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); | 
 | 	if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) { | 
 | 		dev_err(dev, "PHY or data link is INACTIVE!\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* make sure we are not in EP mode */ | 
 | 	iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type); | 
 | 	if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) { | 
 | 		dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */ | 
 | #define PCI_BRIDGE_CTRL_REG_OFFSET	0x43c | 
 | #define PCI_CLASS_BRIDGE_MASK		0xffff00 | 
 | #define PCI_CLASS_BRIDGE_SHIFT		8 | 
 | 	iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, | 
 | 				    4, &class); | 
 | 	class &= ~PCI_CLASS_BRIDGE_MASK; | 
 | 	class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT); | 
 | 	iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, | 
 | 				     4, class); | 
 |  | 
 | 	/* check link status to see if link is active */ | 
 | 	iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, | 
 | 				    2, &link_status); | 
 | 	if (link_status & PCI_EXP_LNKSTA_NLW) | 
 | 		link_is_active = true; | 
 |  | 
 | 	if (!link_is_active) { | 
 | 		/* try GEN 1 link speed */ | 
 | #define PCI_TARGET_LINK_SPEED_MASK	0xf | 
 | #define PCI_TARGET_LINK_SPEED_GEN2	0x2 | 
 | #define PCI_TARGET_LINK_SPEED_GEN1	0x1 | 
 | 		iproc_pci_raw_config_read32(pcie, 0, | 
 | 					    IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, | 
 | 					    4, &link_ctrl); | 
 | 		if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) == | 
 | 		    PCI_TARGET_LINK_SPEED_GEN2) { | 
 | 			link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK; | 
 | 			link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1; | 
 | 			iproc_pci_raw_config_write32(pcie, 0, | 
 | 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2, | 
 | 					4, link_ctrl); | 
 | 			msleep(100); | 
 |  | 
 | 			iproc_pci_raw_config_read32(pcie, 0, | 
 | 					IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, | 
 | 					2, &link_status); | 
 | 			if (link_status & PCI_EXP_LNKSTA_NLW) | 
 | 				link_is_active = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN"); | 
 |  | 
 | 	return link_is_active ? 0 : -ENODEV; | 
 | } | 
 |  | 
 | static void iproc_pcie_enable(struct iproc_pcie *pcie) | 
 | { | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK); | 
 | } | 
 |  | 
 | static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, | 
 | 					  int window_idx) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); | 
 |  | 
 | 	return !!(val & OARR_VALID); | 
 | } | 
 |  | 
 | static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, | 
 | 				      int size_idx, u64 axi_addr, u64 pci_addr) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	u16 oarr_offset, omap_offset; | 
 |  | 
 | 	/* | 
 | 	 * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based | 
 | 	 * on window index. | 
 | 	 */ | 
 | 	oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, | 
 | 							  window_idx)); | 
 | 	omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, | 
 | 							  window_idx)); | 
 | 	if (iproc_pcie_reg_is_invalid(oarr_offset) || | 
 | 	    iproc_pcie_reg_is_invalid(omap_offset)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Program the OARR registers.  The upper 32-bit OARR register is | 
 | 	 * always right after the lower 32-bit OARR register. | 
 | 	 */ | 
 | 	writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | | 
 | 	       OARR_VALID, pcie->base + oarr_offset); | 
 | 	writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); | 
 |  | 
 | 	/* now program the OMAP registers */ | 
 | 	writel(lower_32_bits(pci_addr), pcie->base + omap_offset); | 
 | 	writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); | 
 |  | 
 | 	dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n", | 
 | 		window_idx, oarr_offset, &axi_addr, &pci_addr); | 
 | 	dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n", | 
 | 		readl(pcie->base + oarr_offset), | 
 | 		readl(pcie->base + oarr_offset + 4)); | 
 | 	dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n", | 
 | 		readl(pcie->base + omap_offset), | 
 | 		readl(pcie->base + omap_offset + 4)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Some iProc SoCs require the SW to configure the outbound address mapping | 
 |  * | 
 |  * Outbound address translation: | 
 |  * | 
 |  * iproc_pcie_address = axi_address - axi_offset | 
 |  * OARR = iproc_pcie_address | 
 |  * OMAP = pci_addr | 
 |  * | 
 |  * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address | 
 |  */ | 
 | static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, | 
 | 			       u64 pci_addr, resource_size_t size) | 
 | { | 
 | 	struct iproc_pcie_ob *ob = &pcie->ob; | 
 | 	struct device *dev = pcie->dev; | 
 | 	int ret = -EINVAL, window_idx, size_idx; | 
 |  | 
 | 	if (axi_addr < ob->axi_offset) { | 
 | 		dev_err(dev, "axi address %pap less than offset %pap\n", | 
 | 			&axi_addr, &ob->axi_offset); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Translate the AXI address to the internal address used by the iProc | 
 | 	 * PCIe core before programming the OARR | 
 | 	 */ | 
 | 	axi_addr -= ob->axi_offset; | 
 |  | 
 | 	/* iterate through all OARR/OMAP mapping windows */ | 
 | 	for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { | 
 | 		const struct iproc_pcie_ob_map *ob_map = | 
 | 			&pcie->ob_map[window_idx]; | 
 |  | 
 | 		/* | 
 | 		 * If current outbound window is already in use, move on to the | 
 | 		 * next one. | 
 | 		 */ | 
 | 		if (iproc_pcie_ob_is_valid(pcie, window_idx)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Iterate through all supported window sizes within the | 
 | 		 * OARR/OMAP pair to find a match.  Go through the window sizes | 
 | 		 * in a descending order. | 
 | 		 */ | 
 | 		for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; | 
 | 		     size_idx--) { | 
 | 			resource_size_t window_size = | 
 | 				ob_map->window_sizes[size_idx] * SZ_1M; | 
 |  | 
 | 			if (size < window_size) | 
 | 				continue; | 
 |  | 
 | 			if (!IS_ALIGNED(axi_addr, window_size) || | 
 | 			    !IS_ALIGNED(pci_addr, window_size)) { | 
 | 				dev_err(dev, | 
 | 					"axi %pap or pci %pap not aligned\n", | 
 | 					&axi_addr, &pci_addr); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Match found!  Program both OARR and OMAP and mark | 
 | 			 * them as a valid entry. | 
 | 			 */ | 
 | 			ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, | 
 | 						  axi_addr, pci_addr); | 
 | 			if (ret) | 
 | 				goto err_ob; | 
 |  | 
 | 			size -= window_size; | 
 | 			if (size == 0) | 
 | 				return 0; | 
 |  | 
 | 			/* | 
 | 			 * If we are here, we are done with the current window, | 
 | 			 * but not yet finished all mappings.  Need to move on | 
 | 			 * to the next window. | 
 | 			 */ | 
 | 			axi_addr += window_size; | 
 | 			pci_addr += window_size; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | err_ob: | 
 | 	dev_err(dev, "unable to configure outbound mapping\n"); | 
 | 	dev_err(dev, | 
 | 		"axi %pap, axi offset %pap, pci %pap, res size %pap\n", | 
 | 		&axi_addr, &ob->axi_offset, &pci_addr, &size); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iproc_pcie_map_ranges(struct iproc_pcie *pcie, | 
 | 				 struct list_head *resources) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	struct resource_entry *window; | 
 | 	int ret; | 
 |  | 
 | 	resource_list_for_each_entry(window, resources) { | 
 | 		struct resource *res = window->res; | 
 | 		u64 res_type = resource_type(res); | 
 |  | 
 | 		switch (res_type) { | 
 | 		case IORESOURCE_IO: | 
 | 		case IORESOURCE_BUS: | 
 | 			break; | 
 | 		case IORESOURCE_MEM: | 
 | 			ret = iproc_pcie_setup_ob(pcie, res->start, | 
 | 						  res->start - window->offset, | 
 | 						  resource_size(res)); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 			break; | 
 | 		default: | 
 | 			dev_err(dev, "invalid resource %pR\n", res); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, | 
 | 					   int region_idx) | 
 | { | 
 | 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; | 
 | 	u32 val; | 
 |  | 
 | 	val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); | 
 |  | 
 | 	return !!(val & (BIT(ib_map->nr_sizes) - 1)); | 
 | } | 
 |  | 
 | static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, | 
 | 					    enum iproc_pcie_ib_map_type type) | 
 | { | 
 | 	return !!(ib_map->type == type); | 
 | } | 
 |  | 
 | static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, | 
 | 			       int size_idx, int nr_windows, u64 axi_addr, | 
 | 			       u64 pci_addr, resource_size_t size) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; | 
 | 	u16 iarr_offset, imap_offset; | 
 | 	u32 val; | 
 | 	int window_idx; | 
 |  | 
 | 	iarr_offset = iproc_pcie_reg_offset(pcie, | 
 | 				MAP_REG(IPROC_PCIE_IARR0, region_idx)); | 
 | 	imap_offset = iproc_pcie_reg_offset(pcie, | 
 | 				MAP_REG(IPROC_PCIE_IMAP0, region_idx)); | 
 | 	if (iproc_pcie_reg_is_invalid(iarr_offset) || | 
 | 	    iproc_pcie_reg_is_invalid(imap_offset)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n", | 
 | 		region_idx, iarr_offset, &axi_addr, &pci_addr); | 
 |  | 
 | 	/* | 
 | 	 * Program the IARR registers.  The upper 32-bit IARR register is | 
 | 	 * always right after the lower 32-bit IARR register. | 
 | 	 */ | 
 | 	writel(lower_32_bits(pci_addr) | BIT(size_idx), | 
 | 	       pcie->base + iarr_offset); | 
 | 	writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); | 
 |  | 
 | 	dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n", | 
 | 		readl(pcie->base + iarr_offset), | 
 | 		readl(pcie->base + iarr_offset + 4)); | 
 |  | 
 | 	/* | 
 | 	 * Now program the IMAP registers.  Each IARR region may have one or | 
 | 	 * more IMAP windows. | 
 | 	 */ | 
 | 	size >>= ilog2(nr_windows); | 
 | 	for (window_idx = 0; window_idx < nr_windows; window_idx++) { | 
 | 		val = readl(pcie->base + imap_offset); | 
 | 		val |= lower_32_bits(axi_addr) | IMAP_VALID; | 
 | 		writel(val, pcie->base + imap_offset); | 
 | 		writel(upper_32_bits(axi_addr), | 
 | 		       pcie->base + imap_offset + ib_map->imap_addr_offset); | 
 |  | 
 | 		dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n", | 
 | 			window_idx, readl(pcie->base + imap_offset), | 
 | 			readl(pcie->base + imap_offset + | 
 | 			      ib_map->imap_addr_offset)); | 
 |  | 
 | 		imap_offset += ib_map->imap_window_offset; | 
 | 		axi_addr += size; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, | 
 | 			       struct of_pci_range *range, | 
 | 			       enum iproc_pcie_ib_map_type type) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	struct iproc_pcie_ib *ib = &pcie->ib; | 
 | 	int ret; | 
 | 	unsigned int region_idx, size_idx; | 
 | 	u64 axi_addr = range->cpu_addr, pci_addr = range->pci_addr; | 
 | 	resource_size_t size = range->size; | 
 |  | 
 | 	/* iterate through all IARR mapping regions */ | 
 | 	for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { | 
 | 		const struct iproc_pcie_ib_map *ib_map = | 
 | 			&pcie->ib_map[region_idx]; | 
 |  | 
 | 		/* | 
 | 		 * If current inbound region is already in use or not a | 
 | 		 * compatible type, move on to the next. | 
 | 		 */ | 
 | 		if (iproc_pcie_ib_is_in_use(pcie, region_idx) || | 
 | 		    !iproc_pcie_ib_check_type(ib_map, type)) | 
 | 			continue; | 
 |  | 
 | 		/* iterate through all supported region sizes to find a match */ | 
 | 		for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { | 
 | 			resource_size_t region_size = | 
 | 			ib_map->region_sizes[size_idx] * ib_map->size_unit; | 
 |  | 
 | 			if (size != region_size) | 
 | 				continue; | 
 |  | 
 | 			if (!IS_ALIGNED(axi_addr, region_size) || | 
 | 			    !IS_ALIGNED(pci_addr, region_size)) { | 
 | 				dev_err(dev, | 
 | 					"axi %pap or pci %pap not aligned\n", | 
 | 					&axi_addr, &pci_addr); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			/* Match found!  Program IARR and all IMAP windows. */ | 
 | 			ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, | 
 | 						  ib_map->nr_windows, axi_addr, | 
 | 						  pci_addr, size); | 
 | 			if (ret) | 
 | 				goto err_ib; | 
 | 			else | 
 | 				return 0; | 
 |  | 
 | 		} | 
 | 	} | 
 | 	ret = -EINVAL; | 
 |  | 
 | err_ib: | 
 | 	dev_err(dev, "unable to configure inbound mapping\n"); | 
 | 	dev_err(dev, "axi %pap, pci %pap, res size %pap\n", | 
 | 		&axi_addr, &pci_addr, &size); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) | 
 | { | 
 | 	struct of_pci_range range; | 
 | 	struct of_pci_range_parser parser; | 
 | 	int ret; | 
 |  | 
 | 	/* Get the dma-ranges from DT */ | 
 | 	ret = of_pci_dma_range_parser_init(&parser, pcie->dev->of_node); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for_each_of_pci_range(&parser, &range) { | 
 | 		/* Each range entry corresponds to an inbound mapping region */ | 
 | 		ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_MEM); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iproce_pcie_get_msi(struct iproc_pcie *pcie, | 
 | 			       struct device_node *msi_node, | 
 | 			       u64 *msi_addr) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	int ret; | 
 | 	struct resource res; | 
 |  | 
 | 	/* | 
 | 	 * Check if 'msi-map' points to ARM GICv3 ITS, which is the only | 
 | 	 * supported external MSI controller that requires steering. | 
 | 	 */ | 
 | 	if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) { | 
 | 		dev_err(dev, "unable to find compatible MSI controller\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* derive GITS_TRANSLATER address from GICv3 */ | 
 | 	ret = of_address_to_resource(msi_node, 0, &res); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "unable to obtain MSI controller resources\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*msi_addr = res.start + GITS_TRANSLATER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr) | 
 | { | 
 | 	int ret; | 
 | 	struct of_pci_range range; | 
 |  | 
 | 	memset(&range, 0, sizeof(range)); | 
 | 	range.size = SZ_32K; | 
 | 	range.pci_addr = range.cpu_addr = msi_addr & ~(range.size - 1); | 
 |  | 
 | 	ret = iproc_pcie_setup_ib(pcie, &range, IPROC_PCIE_IB_MAP_IO); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr, | 
 | 					 bool enable) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (!enable) { | 
 | 		/* | 
 | 		 * Disable PAXC MSI steering. All write transfers will be | 
 | 		 * treated as non-MSI transfers | 
 | 		 */ | 
 | 		val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); | 
 | 		val &= ~MSI_ENABLE_CFG; | 
 | 		iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program bits [43:13] of address of GITS_TRANSLATER register into | 
 | 	 * bits [30:0] of the MSI base address register.  In fact, in all iProc | 
 | 	 * based SoCs, all I/O register bases are well below the 32-bit | 
 | 	 * boundary, so we can safely assume bits [43:32] are always zeros. | 
 | 	 */ | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR, | 
 | 			     (u32)(msi_addr >> 13)); | 
 |  | 
 | 	/* use a default 8K window size */ | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0); | 
 |  | 
 | 	/* steering MSI to GICv3 ITS */ | 
 | 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE); | 
 | 	val |= GIC_V3_CFG; | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val); | 
 |  | 
 | 	/* | 
 | 	 * Program bits [43:2] of address of GITS_TRANSLATER register into the | 
 | 	 * iProc MSI address registers. | 
 | 	 */ | 
 | 	msi_addr >>= 2; | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI, | 
 | 			     upper_32_bits(msi_addr)); | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO, | 
 | 			     lower_32_bits(msi_addr)); | 
 |  | 
 | 	/* enable MSI */ | 
 | 	val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG); | 
 | 	val |= MSI_ENABLE_CFG; | 
 | 	iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val); | 
 | } | 
 |  | 
 | static int iproc_pcie_msi_steer(struct iproc_pcie *pcie, | 
 | 				struct device_node *msi_node) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	int ret; | 
 | 	u64 msi_addr; | 
 |  | 
 | 	ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "msi steering failed\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	switch (pcie->type) { | 
 | 	case IPROC_PCIE_PAXB_V2: | 
 | 		ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXC_V2: | 
 | 		iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true); | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int iproc_pcie_msi_enable(struct iproc_pcie *pcie) | 
 | { | 
 | 	struct device_node *msi_node; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Either the "msi-parent" or the "msi-map" phandle needs to exist | 
 | 	 * for us to obtain the MSI node. | 
 | 	 */ | 
 |  | 
 | 	msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0); | 
 | 	if (!msi_node) { | 
 | 		const __be32 *msi_map = NULL; | 
 | 		int len; | 
 | 		u32 phandle; | 
 |  | 
 | 		msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len); | 
 | 		if (!msi_map) | 
 | 			return -ENODEV; | 
 |  | 
 | 		phandle = be32_to_cpup(msi_map + 1); | 
 | 		msi_node = of_find_node_by_phandle(phandle); | 
 | 		if (!msi_node) | 
 | 			return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Certain revisions of the iProc PCIe controller require additional | 
 | 	 * configurations to steer the MSI writes towards an external MSI | 
 | 	 * controller. | 
 | 	 */ | 
 | 	if (pcie->need_msi_steer) { | 
 | 		ret = iproc_pcie_msi_steer(pcie, msi_node); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If another MSI controller is being used, the call below should fail | 
 | 	 * but that is okay | 
 | 	 */ | 
 | 	return iproc_msi_init(pcie, msi_node); | 
 | } | 
 |  | 
 | static void iproc_pcie_msi_disable(struct iproc_pcie *pcie) | 
 | { | 
 | 	iproc_msi_exit(pcie); | 
 | } | 
 |  | 
 | static int iproc_pcie_rev_init(struct iproc_pcie *pcie) | 
 | { | 
 | 	struct device *dev = pcie->dev; | 
 | 	unsigned int reg_idx; | 
 | 	const u16 *regs; | 
 |  | 
 | 	switch (pcie->type) { | 
 | 	case IPROC_PCIE_PAXB_BCMA: | 
 | 		regs = iproc_pcie_reg_paxb_bcma; | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXB: | 
 | 		regs = iproc_pcie_reg_paxb; | 
 | 		pcie->iproc_cfg_read = true; | 
 | 		pcie->has_apb_err_disable = true; | 
 | 		if (pcie->need_ob_cfg) { | 
 | 			pcie->ob_map = paxb_ob_map; | 
 | 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map); | 
 | 		} | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXB_V2: | 
 | 		regs = iproc_pcie_reg_paxb_v2; | 
 | 		pcie->has_apb_err_disable = true; | 
 | 		if (pcie->need_ob_cfg) { | 
 | 			pcie->ob_map = paxb_v2_ob_map; | 
 | 			pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); | 
 | 		} | 
 | 		pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); | 
 | 		pcie->ib_map = paxb_v2_ib_map; | 
 | 		pcie->need_msi_steer = true; | 
 | 		dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n", | 
 | 			 CFG_RETRY_STATUS); | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXC: | 
 | 		regs = iproc_pcie_reg_paxc; | 
 | 		pcie->ep_is_internal = true; | 
 | 		pcie->iproc_cfg_read = true; | 
 | 		pcie->rej_unconfig_pf = true; | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXC_V2: | 
 | 		regs = iproc_pcie_reg_paxc_v2; | 
 | 		pcie->ep_is_internal = true; | 
 | 		pcie->iproc_cfg_read = true; | 
 | 		pcie->rej_unconfig_pf = true; | 
 | 		pcie->need_msi_steer = true; | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(dev, "incompatible iProc PCIe interface\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG, | 
 | 					 sizeof(*pcie->reg_offsets), | 
 | 					 GFP_KERNEL); | 
 | 	if (!pcie->reg_offsets) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* go through the register table and populate all valid registers */ | 
 | 	pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? | 
 | 		IPROC_PCIE_REG_INVALID : regs[0]; | 
 | 	for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++) | 
 | 		pcie->reg_offsets[reg_idx] = regs[reg_idx] ? | 
 | 			regs[reg_idx] : IPROC_PCIE_REG_INVALID; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res) | 
 | { | 
 | 	struct device *dev; | 
 | 	int ret; | 
 | 	struct pci_bus *child; | 
 | 	struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); | 
 |  | 
 | 	dev = pcie->dev; | 
 |  | 
 | 	ret = iproc_pcie_rev_init(pcie); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "unable to initialize controller parameters\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = devm_request_pci_bus_resources(dev, res); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = phy_init(pcie->phy); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "unable to initialize PCIe PHY\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = phy_power_on(pcie->phy); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "unable to power on PCIe PHY\n"); | 
 | 		goto err_exit_phy; | 
 | 	} | 
 |  | 
 | 	iproc_pcie_perst_ctrl(pcie, true); | 
 | 	iproc_pcie_perst_ctrl(pcie, false); | 
 |  | 
 | 	if (pcie->need_ob_cfg) { | 
 | 		ret = iproc_pcie_map_ranges(pcie, res); | 
 | 		if (ret) { | 
 | 			dev_err(dev, "map failed\n"); | 
 | 			goto err_power_off_phy; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (pcie->need_ib_cfg) { | 
 | 		ret = iproc_pcie_map_dma_ranges(pcie); | 
 | 		if (ret && ret != -ENOENT) | 
 | 			goto err_power_off_phy; | 
 | 	} | 
 |  | 
 | 	ret = iproc_pcie_check_link(pcie); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "no PCIe EP device detected\n"); | 
 | 		goto err_power_off_phy; | 
 | 	} | 
 |  | 
 | 	iproc_pcie_enable(pcie); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_PCI_MSI)) | 
 | 		if (iproc_pcie_msi_enable(pcie)) | 
 | 			dev_info(dev, "not using iProc MSI\n"); | 
 |  | 
 | 	list_splice_init(res, &host->windows); | 
 | 	host->busnr = 0; | 
 | 	host->dev.parent = dev; | 
 | 	host->ops = &iproc_pcie_ops; | 
 | 	host->sysdata = pcie; | 
 | 	host->map_irq = pcie->map_irq; | 
 | 	host->swizzle_irq = pci_common_swizzle; | 
 |  | 
 | 	ret = pci_scan_root_bus_bridge(host); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "failed to scan host: %d\n", ret); | 
 | 		goto err_power_off_phy; | 
 | 	} | 
 |  | 
 | 	pci_assign_unassigned_bus_resources(host->bus); | 
 |  | 
 | 	pcie->root_bus = host->bus; | 
 |  | 
 | 	list_for_each_entry(child, &host->bus->children, node) | 
 | 		pcie_bus_configure_settings(child); | 
 |  | 
 | 	pci_bus_add_devices(host->bus); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_power_off_phy: | 
 | 	phy_power_off(pcie->phy); | 
 | err_exit_phy: | 
 | 	phy_exit(pcie->phy); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(iproc_pcie_setup); | 
 |  | 
 | int iproc_pcie_remove(struct iproc_pcie *pcie) | 
 | { | 
 | 	pci_stop_root_bus(pcie->root_bus); | 
 | 	pci_remove_root_bus(pcie->root_bus); | 
 |  | 
 | 	iproc_pcie_msi_disable(pcie); | 
 |  | 
 | 	phy_power_off(pcie->phy); | 
 | 	phy_exit(pcie->phy); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(iproc_pcie_remove); | 
 |  | 
 | /* | 
 |  * The MSI parsing logic in certain revisions of Broadcom PAXC based root | 
 |  * complex does not work and needs to be disabled | 
 |  */ | 
 | static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev) | 
 | { | 
 | 	struct iproc_pcie *pcie = iproc_data(pdev->bus); | 
 |  | 
 | 	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) | 
 | 		iproc_pcie_paxc_v2_msi_steer(pcie, 0, false); | 
 | } | 
 | DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, | 
 | 			quirk_paxc_disable_msi_parsing); | 
 | DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, | 
 | 			quirk_paxc_disable_msi_parsing); | 
 | DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, | 
 | 			quirk_paxc_disable_msi_parsing); | 
 |  | 
 | MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>"); | 
 | MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver"); | 
 | MODULE_LICENSE("GPL v2"); |