| /* Large capacity key type | 
 |  * | 
 |  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. | 
 |  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells (dhowells@redhat.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public Licence | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the Licence, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "big_key: "fmt | 
 | #include <linux/init.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/file.h> | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/err.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/random.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <keys/user-type.h> | 
 | #include <keys/big_key-type.h> | 
 | #include <crypto/aead.h> | 
 | #include <crypto/gcm.h> | 
 |  | 
 | struct big_key_buf { | 
 | 	unsigned int		nr_pages; | 
 | 	void			*virt; | 
 | 	struct scatterlist	*sg; | 
 | 	struct page		*pages[]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Layout of key payload words. | 
 |  */ | 
 | enum { | 
 | 	big_key_data, | 
 | 	big_key_path, | 
 | 	big_key_path_2nd_part, | 
 | 	big_key_len, | 
 | }; | 
 |  | 
 | /* | 
 |  * Crypto operation with big_key data | 
 |  */ | 
 | enum big_key_op { | 
 | 	BIG_KEY_ENC, | 
 | 	BIG_KEY_DEC, | 
 | }; | 
 |  | 
 | /* | 
 |  * If the data is under this limit, there's no point creating a shm file to | 
 |  * hold it as the permanently resident metadata for the shmem fs will be at | 
 |  * least as large as the data. | 
 |  */ | 
 | #define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry)) | 
 |  | 
 | /* | 
 |  * Key size for big_key data encryption | 
 |  */ | 
 | #define ENC_KEY_SIZE 32 | 
 |  | 
 | /* | 
 |  * Authentication tag length | 
 |  */ | 
 | #define ENC_AUTHTAG_SIZE 16 | 
 |  | 
 | /* | 
 |  * big_key defined keys take an arbitrary string as the description and an | 
 |  * arbitrary blob of data as the payload | 
 |  */ | 
 | struct key_type key_type_big_key = { | 
 | 	.name			= "big_key", | 
 | 	.preparse		= big_key_preparse, | 
 | 	.free_preparse		= big_key_free_preparse, | 
 | 	.instantiate		= generic_key_instantiate, | 
 | 	.revoke			= big_key_revoke, | 
 | 	.destroy		= big_key_destroy, | 
 | 	.describe		= big_key_describe, | 
 | 	.read			= big_key_read, | 
 | 	/* no ->update(); don't add it without changing big_key_crypt() nonce */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Crypto names for big_key data authenticated encryption | 
 |  */ | 
 | static const char big_key_alg_name[] = "gcm(aes)"; | 
 | #define BIG_KEY_IV_SIZE		GCM_AES_IV_SIZE | 
 |  | 
 | /* | 
 |  * Crypto algorithms for big_key data authenticated encryption | 
 |  */ | 
 | static struct crypto_aead *big_key_aead; | 
 |  | 
 | /* | 
 |  * Since changing the key affects the entire object, we need a mutex. | 
 |  */ | 
 | static DEFINE_MUTEX(big_key_aead_lock); | 
 |  | 
 | /* | 
 |  * Encrypt/decrypt big_key data | 
 |  */ | 
 | static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key) | 
 | { | 
 | 	int ret; | 
 | 	struct aead_request *aead_req; | 
 | 	/* We always use a zero nonce. The reason we can get away with this is | 
 | 	 * because we're using a different randomly generated key for every | 
 | 	 * different encryption. Notably, too, key_type_big_key doesn't define | 
 | 	 * an .update function, so there's no chance we'll wind up reusing the | 
 | 	 * key to encrypt updated data. Simply put: one key, one encryption. | 
 | 	 */ | 
 | 	u8 zero_nonce[BIG_KEY_IV_SIZE]; | 
 |  | 
 | 	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL); | 
 | 	if (!aead_req) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset(zero_nonce, 0, sizeof(zero_nonce)); | 
 | 	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce); | 
 | 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); | 
 | 	aead_request_set_ad(aead_req, 0); | 
 |  | 
 | 	mutex_lock(&big_key_aead_lock); | 
 | 	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) { | 
 | 		ret = -EAGAIN; | 
 | 		goto error; | 
 | 	} | 
 | 	if (op == BIG_KEY_ENC) | 
 | 		ret = crypto_aead_encrypt(aead_req); | 
 | 	else | 
 | 		ret = crypto_aead_decrypt(aead_req); | 
 | error: | 
 | 	mutex_unlock(&big_key_aead_lock); | 
 | 	aead_request_free(aead_req); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Free up the buffer. | 
 |  */ | 
 | static void big_key_free_buffer(struct big_key_buf *buf) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (buf->virt) { | 
 | 		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE); | 
 | 		vunmap(buf->virt); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < buf->nr_pages; i++) | 
 | 		if (buf->pages[i]) | 
 | 			__free_page(buf->pages[i]); | 
 |  | 
 | 	kfree(buf); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a buffer consisting of a set of pages with a virtual mapping | 
 |  * applied over them. | 
 |  */ | 
 | static void *big_key_alloc_buffer(size_t len) | 
 | { | 
 | 	struct big_key_buf *buf; | 
 | 	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	unsigned int i, l; | 
 |  | 
 | 	buf = kzalloc(sizeof(struct big_key_buf) + | 
 | 		      sizeof(struct page) * npg + | 
 | 		      sizeof(struct scatterlist) * npg, | 
 | 		      GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		return NULL; | 
 |  | 
 | 	buf->nr_pages = npg; | 
 | 	buf->sg = (void *)(buf->pages + npg); | 
 | 	sg_init_table(buf->sg, npg); | 
 |  | 
 | 	for (i = 0; i < buf->nr_pages; i++) { | 
 | 		buf->pages[i] = alloc_page(GFP_KERNEL); | 
 | 		if (!buf->pages[i]) | 
 | 			goto nomem; | 
 |  | 
 | 		l = min_t(size_t, len, PAGE_SIZE); | 
 | 		sg_set_page(&buf->sg[i], buf->pages[i], l, 0); | 
 | 		len -= l; | 
 | 	} | 
 |  | 
 | 	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL); | 
 | 	if (!buf->virt) | 
 | 		goto nomem; | 
 |  | 
 | 	return buf; | 
 |  | 
 | nomem: | 
 | 	big_key_free_buffer(buf); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Preparse a big key | 
 |  */ | 
 | int big_key_preparse(struct key_preparsed_payload *prep) | 
 | { | 
 | 	struct big_key_buf *buf; | 
 | 	struct path *path = (struct path *)&prep->payload.data[big_key_path]; | 
 | 	struct file *file; | 
 | 	u8 *enckey; | 
 | 	ssize_t written; | 
 | 	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE; | 
 | 	int ret; | 
 |  | 
 | 	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Set an arbitrary quota */ | 
 | 	prep->quotalen = 16; | 
 |  | 
 | 	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen; | 
 |  | 
 | 	if (datalen > BIG_KEY_FILE_THRESHOLD) { | 
 | 		/* Create a shmem file to store the data in.  This will permit the data | 
 | 		 * to be swapped out if needed. | 
 | 		 * | 
 | 		 * File content is stored encrypted with randomly generated key. | 
 | 		 */ | 
 | 		loff_t pos = 0; | 
 |  | 
 | 		buf = big_key_alloc_buffer(enclen); | 
 | 		if (!buf) | 
 | 			return -ENOMEM; | 
 | 		memcpy(buf->virt, prep->data, datalen); | 
 |  | 
 | 		/* generate random key */ | 
 | 		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); | 
 | 		if (!enckey) { | 
 | 			ret = -ENOMEM; | 
 | 			goto error; | 
 | 		} | 
 | 		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE); | 
 | 		if (unlikely(ret)) | 
 | 			goto err_enckey; | 
 |  | 
 | 		/* encrypt aligned data */ | 
 | 		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey); | 
 | 		if (ret) | 
 | 			goto err_enckey; | 
 |  | 
 | 		/* save aligned data to file */ | 
 | 		file = shmem_kernel_file_setup("", enclen, 0); | 
 | 		if (IS_ERR(file)) { | 
 | 			ret = PTR_ERR(file); | 
 | 			goto err_enckey; | 
 | 		} | 
 |  | 
 | 		written = kernel_write(file, buf->virt, enclen, &pos); | 
 | 		if (written != enclen) { | 
 | 			ret = written; | 
 | 			if (written >= 0) | 
 | 				ret = -ENOMEM; | 
 | 			goto err_fput; | 
 | 		} | 
 |  | 
 | 		/* Pin the mount and dentry to the key so that we can open it again | 
 | 		 * later | 
 | 		 */ | 
 | 		prep->payload.data[big_key_data] = enckey; | 
 | 		*path = file->f_path; | 
 | 		path_get(path); | 
 | 		fput(file); | 
 | 		big_key_free_buffer(buf); | 
 | 	} else { | 
 | 		/* Just store the data in a buffer */ | 
 | 		void *data = kmalloc(datalen, GFP_KERNEL); | 
 |  | 
 | 		if (!data) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		prep->payload.data[big_key_data] = data; | 
 | 		memcpy(data, prep->data, prep->datalen); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | err_fput: | 
 | 	fput(file); | 
 | err_enckey: | 
 | 	kzfree(enckey); | 
 | error: | 
 | 	big_key_free_buffer(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear preparsement. | 
 |  */ | 
 | void big_key_free_preparse(struct key_preparsed_payload *prep) | 
 | { | 
 | 	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) { | 
 | 		struct path *path = (struct path *)&prep->payload.data[big_key_path]; | 
 |  | 
 | 		path_put(path); | 
 | 	} | 
 | 	kzfree(prep->payload.data[big_key_data]); | 
 | } | 
 |  | 
 | /* | 
 |  * dispose of the links from a revoked keyring | 
 |  * - called with the key sem write-locked | 
 |  */ | 
 | void big_key_revoke(struct key *key) | 
 | { | 
 | 	struct path *path = (struct path *)&key->payload.data[big_key_path]; | 
 |  | 
 | 	/* clear the quota */ | 
 | 	key_payload_reserve(key, 0); | 
 | 	if (key_is_positive(key) && | 
 | 	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD) | 
 | 		vfs_truncate(path, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * dispose of the data dangling from the corpse of a big_key key | 
 |  */ | 
 | void big_key_destroy(struct key *key) | 
 | { | 
 | 	size_t datalen = (size_t)key->payload.data[big_key_len]; | 
 |  | 
 | 	if (datalen > BIG_KEY_FILE_THRESHOLD) { | 
 | 		struct path *path = (struct path *)&key->payload.data[big_key_path]; | 
 |  | 
 | 		path_put(path); | 
 | 		path->mnt = NULL; | 
 | 		path->dentry = NULL; | 
 | 	} | 
 | 	kzfree(key->payload.data[big_key_data]); | 
 | 	key->payload.data[big_key_data] = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * describe the big_key key | 
 |  */ | 
 | void big_key_describe(const struct key *key, struct seq_file *m) | 
 | { | 
 | 	size_t datalen = (size_t)key->payload.data[big_key_len]; | 
 |  | 
 | 	seq_puts(m, key->description); | 
 |  | 
 | 	if (key_is_positive(key)) | 
 | 		seq_printf(m, ": %zu [%s]", | 
 | 			   datalen, | 
 | 			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff"); | 
 | } | 
 |  | 
 | /* | 
 |  * read the key data | 
 |  * - the key's semaphore is read-locked | 
 |  */ | 
 | long big_key_read(const struct key *key, char __user *buffer, size_t buflen) | 
 | { | 
 | 	size_t datalen = (size_t)key->payload.data[big_key_len]; | 
 | 	long ret; | 
 |  | 
 | 	if (!buffer || buflen < datalen) | 
 | 		return datalen; | 
 |  | 
 | 	if (datalen > BIG_KEY_FILE_THRESHOLD) { | 
 | 		struct big_key_buf *buf; | 
 | 		struct path *path = (struct path *)&key->payload.data[big_key_path]; | 
 | 		struct file *file; | 
 | 		u8 *enckey = (u8 *)key->payload.data[big_key_data]; | 
 | 		size_t enclen = datalen + ENC_AUTHTAG_SIZE; | 
 | 		loff_t pos = 0; | 
 |  | 
 | 		buf = big_key_alloc_buffer(enclen); | 
 | 		if (!buf) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		file = dentry_open(path, O_RDONLY, current_cred()); | 
 | 		if (IS_ERR(file)) { | 
 | 			ret = PTR_ERR(file); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		/* read file to kernel and decrypt */ | 
 | 		ret = kernel_read(file, buf->virt, enclen, &pos); | 
 | 		if (ret >= 0 && ret != enclen) { | 
 | 			ret = -EIO; | 
 | 			goto err_fput; | 
 | 		} | 
 |  | 
 | 		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey); | 
 | 		if (ret) | 
 | 			goto err_fput; | 
 |  | 
 | 		ret = datalen; | 
 |  | 
 | 		/* copy decrypted data to user */ | 
 | 		if (copy_to_user(buffer, buf->virt, datalen) != 0) | 
 | 			ret = -EFAULT; | 
 |  | 
 | err_fput: | 
 | 		fput(file); | 
 | error: | 
 | 		big_key_free_buffer(buf); | 
 | 	} else { | 
 | 		ret = datalen; | 
 | 		if (copy_to_user(buffer, key->payload.data[big_key_data], | 
 | 				 datalen) != 0) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Register key type | 
 |  */ | 
 | static int __init big_key_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* init block cipher */ | 
 | 	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); | 
 | 	if (IS_ERR(big_key_aead)) { | 
 | 		ret = PTR_ERR(big_key_aead); | 
 | 		pr_err("Can't alloc crypto: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) { | 
 | 		WARN(1, "big key algorithm changed?"); | 
 | 		ret = -EINVAL; | 
 | 		goto free_aead; | 
 | 	} | 
 |  | 
 | 	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE); | 
 | 	if (ret < 0) { | 
 | 		pr_err("Can't set crypto auth tag len: %d\n", ret); | 
 | 		goto free_aead; | 
 | 	} | 
 |  | 
 | 	ret = register_key_type(&key_type_big_key); | 
 | 	if (ret < 0) { | 
 | 		pr_err("Can't register type: %d\n", ret); | 
 | 		goto free_aead; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_aead: | 
 | 	crypto_free_aead(big_key_aead); | 
 | 	return ret; | 
 | } | 
 |  | 
 | late_initcall(big_key_init); |