| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * KVM/MIPS: Support for hardware virtualization extensions | 
 |  * | 
 |  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved. | 
 |  * Authors: Yann Le Du <ledu@kymasys.com> | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/module.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/cacheops.h> | 
 | #include <asm/cmpxchg.h> | 
 | #include <asm/fpu.h> | 
 | #include <asm/hazards.h> | 
 | #include <asm/inst.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/r4kcache.h> | 
 | #include <asm/time.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbex.h> | 
 |  | 
 | #include <linux/kvm_host.h> | 
 |  | 
 | #include "interrupt.h" | 
 |  | 
 | #include "trace.h" | 
 |  | 
 | /* Pointers to last VCPU loaded on each physical CPU */ | 
 | static struct kvm_vcpu *last_vcpu[NR_CPUS]; | 
 | /* Pointers to last VCPU executed on each physical CPU */ | 
 | static struct kvm_vcpu *last_exec_vcpu[NR_CPUS]; | 
 |  | 
 | /* | 
 |  * Number of guest VTLB entries to use, so we can catch inconsistency between | 
 |  * CPUs. | 
 |  */ | 
 | static unsigned int kvm_vz_guest_vtlb_size; | 
 |  | 
 | static inline long kvm_vz_read_gc0_ebase(void) | 
 | { | 
 | 	if (sizeof(long) == 8 && cpu_has_ebase_wg) | 
 | 		return read_gc0_ebase_64(); | 
 | 	else | 
 | 		return read_gc0_ebase(); | 
 | } | 
 |  | 
 | static inline void kvm_vz_write_gc0_ebase(long v) | 
 | { | 
 | 	/* | 
 | 	 * First write with WG=1 to write upper bits, then write again in case | 
 | 	 * WG should be left at 0. | 
 | 	 * write_gc0_ebase_64() is no longer UNDEFINED since R6. | 
 | 	 */ | 
 | 	if (sizeof(long) == 8 && | 
 | 	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) { | 
 | 		write_gc0_ebase_64(v | MIPS_EBASE_WG); | 
 | 		write_gc0_ebase_64(v); | 
 | 	} else { | 
 | 		write_gc0_ebase(v | MIPS_EBASE_WG); | 
 | 		write_gc0_ebase(v); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * These Config bits may be writable by the guest: | 
 |  * Config:	[K23, KU] (!TLB), K0 | 
 |  * Config1:	(none) | 
 |  * Config2:	[TU, SU] (impl) | 
 |  * Config3:	ISAOnExc | 
 |  * Config4:	FTLBPageSize | 
 |  * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR | 
 |  */ | 
 |  | 
 | static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return CONF_CM_CMASK; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return MIPS_CONF3_ISA_OE; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* no need to be exact */ | 
 | 	return MIPS_CONF4_VFTLBPAGESIZE; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI; | 
 |  | 
 | 	/* Permit MSAEn changes if MSA supported and enabled */ | 
 | 	if (kvm_mips_guest_has_msa(&vcpu->arch)) | 
 | 		mask |= MIPS_CONF5_MSAEN; | 
 |  | 
 | 	/* | 
 | 	 * Permit guest FPU mode changes if FPU is enabled and the relevant | 
 | 	 * feature exists according to FIR register. | 
 | 	 */ | 
 | 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) { | 
 | 		if (cpu_has_ufr) | 
 | 			mask |= MIPS_CONF5_UFR; | 
 | 		if (cpu_has_fre) | 
 | 			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE; | 
 | 	} | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | /* | 
 |  * VZ optionally allows these additional Config bits to be written by root: | 
 |  * Config:	M, [MT] | 
 |  * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP | 
 |  * Config2:	M | 
 |  * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC, | 
 |  *		VInt, SP, CDMM, MT, SM, TL] | 
 |  * Config4:	M, [VTLBSizeExt, MMUSizeExt] | 
 |  * Config5:	MRP | 
 |  */ | 
 |  | 
 | static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M; | 
 |  | 
 | 	/* Permit FPU to be present if FPU is supported */ | 
 | 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) | 
 | 		mask |= MIPS_CONF1_FP; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M | | 
 | 		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC; | 
 |  | 
 | 	/* Permit MSA to be present if MSA is supported */ | 
 | 	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) | 
 | 		mask |= MIPS_CONF3_MSA; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M; | 
 | } | 
 |  | 
 | static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP; | 
 | } | 
 |  | 
 | static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva) | 
 | { | 
 | 	/* VZ guest has already converted gva to gpa */ | 
 | 	return gva; | 
 | } | 
 |  | 
 | static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority) | 
 | { | 
 | 	set_bit(priority, &vcpu->arch.pending_exceptions); | 
 | 	clear_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
 | } | 
 |  | 
 | static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority) | 
 | { | 
 | 	clear_bit(priority, &vcpu->arch.pending_exceptions); | 
 | 	set_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
 | } | 
 |  | 
 | static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * timer expiry is asynchronous to vcpu execution therefore defer guest | 
 | 	 * cp0 accesses | 
 | 	 */ | 
 | 	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
 | } | 
 |  | 
 | static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * timer expiry is asynchronous to vcpu execution therefore defer guest | 
 | 	 * cp0 accesses | 
 | 	 */ | 
 | 	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
 | } | 
 |  | 
 | static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu, | 
 | 				   struct kvm_mips_interrupt *irq) | 
 | { | 
 | 	int intr = (int)irq->irq; | 
 |  | 
 | 	/* | 
 | 	 * interrupts are asynchronous to vcpu execution therefore defer guest | 
 | 	 * cp0 accesses | 
 | 	 */ | 
 | 	switch (intr) { | 
 | 	case 2: | 
 | 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO); | 
 | 		break; | 
 |  | 
 | 	case 3: | 
 | 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1); | 
 | 		break; | 
 |  | 
 | 	case 4: | 
 | 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_mips_interrupt *irq) | 
 | { | 
 | 	int intr = (int)irq->irq; | 
 |  | 
 | 	/* | 
 | 	 * interrupts are asynchronous to vcpu execution therefore defer guest | 
 | 	 * cp0 accesses | 
 | 	 */ | 
 | 	switch (intr) { | 
 | 	case -2: | 
 | 		kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO); | 
 | 		break; | 
 |  | 
 | 	case -3: | 
 | 		kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1); | 
 | 		break; | 
 |  | 
 | 	case -4: | 
 | 		kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = { | 
 | 	[MIPS_EXC_INT_TIMER] = C_IRQ5, | 
 | 	[MIPS_EXC_INT_IO]    = C_IRQ0, | 
 | 	[MIPS_EXC_INT_IPI_1] = C_IRQ1, | 
 | 	[MIPS_EXC_INT_IPI_2] = C_IRQ2, | 
 | }; | 
 |  | 
 | static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority, | 
 | 				 u32 cause) | 
 | { | 
 | 	u32 irq = (priority < MIPS_EXC_MAX) ? | 
 | 		kvm_vz_priority_to_irq[priority] : 0; | 
 |  | 
 | 	switch (priority) { | 
 | 	case MIPS_EXC_INT_TIMER: | 
 | 		set_gc0_cause(C_TI); | 
 | 		break; | 
 |  | 
 | 	case MIPS_EXC_INT_IO: | 
 | 	case MIPS_EXC_INT_IPI_1: | 
 | 	case MIPS_EXC_INT_IPI_2: | 
 | 		if (cpu_has_guestctl2) | 
 | 			set_c0_guestctl2(irq); | 
 | 		else | 
 | 			set_gc0_cause(irq); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	clear_bit(priority, &vcpu->arch.pending_exceptions); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority, | 
 | 			       u32 cause) | 
 | { | 
 | 	u32 irq = (priority < MIPS_EXC_MAX) ? | 
 | 		kvm_vz_priority_to_irq[priority] : 0; | 
 |  | 
 | 	switch (priority) { | 
 | 	case MIPS_EXC_INT_TIMER: | 
 | 		/* | 
 | 		 * Call to kvm_write_c0_guest_compare() clears Cause.TI in | 
 | 		 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with | 
 | 		 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not | 
 | 		 * supported or if not using GuestCtl2 Hardware Clear. | 
 | 		 */ | 
 | 		if (cpu_has_guestctl2) { | 
 | 			if (!(read_c0_guestctl2() & (irq << 14))) | 
 | 				clear_c0_guestctl2(irq); | 
 | 		} else { | 
 | 			clear_gc0_cause(irq); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case MIPS_EXC_INT_IO: | 
 | 	case MIPS_EXC_INT_IPI_1: | 
 | 	case MIPS_EXC_INT_IPI_2: | 
 | 		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */ | 
 | 		if (cpu_has_guestctl2) { | 
 | 			if (!(read_c0_guestctl2() & (irq << 14))) | 
 | 				clear_c0_guestctl2(irq); | 
 | 		} else { | 
 | 			clear_gc0_cause(irq); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	clear_bit(priority, &vcpu->arch.pending_exceptions_clr); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * VZ guest timer handling. | 
 |  */ | 
 |  | 
 | /** | 
 |  * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * | 
 |  * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used | 
 |  *		instead of software emulation of guest timer. | 
 |  *		false otherwise. | 
 |  */ | 
 | static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_mips_count_disabled(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	/* Chosen frequency must match real frequency */ | 
 | 	if (mips_hpt_frequency != vcpu->arch.count_hz) | 
 | 		return false; | 
 |  | 
 | 	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */ | 
 | 	if (current_cpu_data.gtoffset_mask != 0xffffffff) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * _kvm_vz_restore_stimer() - Restore soft timer state. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * @compare:	CP0_Compare register value, restored by caller. | 
 |  * @cause:	CP0_Cause register to restore. | 
 |  * | 
 |  * Restore VZ state relating to the soft timer. The hard timer can be enabled | 
 |  * later. | 
 |  */ | 
 | static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare, | 
 | 				   u32 cause) | 
 | { | 
 | 	/* | 
 | 	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just | 
 | 	 * after Guest CP0_Compare. | 
 | 	 */ | 
 | 	write_c0_gtoffset(compare - read_c0_count()); | 
 |  | 
 | 	back_to_back_c0_hazard(); | 
 | 	write_gc0_cause(cause); | 
 | } | 
 |  | 
 | /** | 
 |  * _kvm_vz_restore_htimer() - Restore hard timer state. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * @compare:	CP0_Compare register value, restored by caller. | 
 |  * @cause:	CP0_Cause register to restore. | 
 |  * | 
 |  * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the | 
 |  * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause. | 
 |  */ | 
 | static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu, | 
 | 				   u32 compare, u32 cause) | 
 | { | 
 | 	u32 start_count, after_count; | 
 | 	ktime_t freeze_time; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do | 
 | 	 * this with interrupts disabled to avoid latency. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count); | 
 | 	write_c0_gtoffset(start_count - read_c0_count()); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	/* restore guest CP0_Cause, as TI may already be set */ | 
 | 	back_to_back_c0_hazard(); | 
 | 	write_gc0_cause(cause); | 
 |  | 
 | 	/* | 
 | 	 * The above sequence isn't atomic and would result in lost timer | 
 | 	 * interrupts if we're not careful. Detect if a timer interrupt is due | 
 | 	 * and assert it. | 
 | 	 */ | 
 | 	back_to_back_c0_hazard(); | 
 | 	after_count = read_gc0_count(); | 
 | 	if (after_count - start_count > compare - start_count - 1) | 
 | 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_restore_timer() - Restore timer state. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * | 
 |  * Restore soft timer state from saved context. | 
 |  */ | 
 | static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	u32 cause, compare; | 
 |  | 
 | 	compare = kvm_read_sw_gc0_compare(cop0); | 
 | 	cause = kvm_read_sw_gc0_cause(cop0); | 
 |  | 
 | 	write_gc0_compare(compare); | 
 | 	_kvm_vz_restore_stimer(vcpu, compare, cause); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_acquire_htimer() - Switch to hard timer state. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * | 
 |  * Restore hard timer state on top of existing soft timer state if possible. | 
 |  * | 
 |  * Since hard timer won't remain active over preemption, preemption should be | 
 |  * disabled by the caller. | 
 |  */ | 
 | void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 gctl0; | 
 |  | 
 | 	gctl0 = read_c0_guestctl0(); | 
 | 	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) { | 
 | 		/* enable guest access to hard timer */ | 
 | 		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT); | 
 |  | 
 | 		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(), | 
 | 				       read_gc0_cause()); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * _kvm_vz_save_htimer() - Switch to software emulation of guest timer. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * @compare:	Pointer to write compare value to. | 
 |  * @cause:	Pointer to write cause value to. | 
 |  * | 
 |  * Save VZ guest timer state and switch to software emulation of guest CP0 | 
 |  * timer. The hard timer must already be in use, so preemption should be | 
 |  * disabled. | 
 |  */ | 
 | static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu, | 
 | 				u32 *out_compare, u32 *out_cause) | 
 | { | 
 | 	u32 cause, compare, before_count, end_count; | 
 | 	ktime_t before_time; | 
 |  | 
 | 	compare = read_gc0_compare(); | 
 | 	*out_compare = compare; | 
 |  | 
 | 	before_time = ktime_get(); | 
 |  | 
 | 	/* | 
 | 	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time | 
 | 	 * at which no pending timer interrupt is missing. | 
 | 	 */ | 
 | 	before_count = read_gc0_count(); | 
 | 	back_to_back_c0_hazard(); | 
 | 	cause = read_gc0_cause(); | 
 | 	*out_cause = cause; | 
 |  | 
 | 	/* | 
 | 	 * Record a final CP0_Count which we will transfer to the soft-timer. | 
 | 	 * This is recorded *after* saving CP0_Cause, so we don't get any timer | 
 | 	 * interrupts from just after the final CP0_Count point. | 
 | 	 */ | 
 | 	back_to_back_c0_hazard(); | 
 | 	end_count = read_gc0_count(); | 
 |  | 
 | 	/* | 
 | 	 * The above sequence isn't atomic, so we could miss a timer interrupt | 
 | 	 * between reading CP0_Cause and end_count. Detect and record any timer | 
 | 	 * interrupt due between before_count and end_count. | 
 | 	 */ | 
 | 	if (end_count - before_count > compare - before_count - 1) | 
 | 		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER); | 
 |  | 
 | 	/* | 
 | 	 * Restore soft-timer, ignoring a small amount of negative drift due to | 
 | 	 * delay between freeze_hrtimer and setting CP0_GTOffset. | 
 | 	 */ | 
 | 	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_save_timer() - Save guest timer state. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * | 
 |  * Save VZ guest timer state and switch to soft guest timer if hard timer was in | 
 |  * use. | 
 |  */ | 
 | static void kvm_vz_save_timer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	u32 gctl0, compare, cause; | 
 |  | 
 | 	gctl0 = read_c0_guestctl0(); | 
 | 	if (gctl0 & MIPS_GCTL0_GT) { | 
 | 		/* disable guest use of hard timer */ | 
 | 		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); | 
 |  | 
 | 		/* save hard timer state */ | 
 | 		_kvm_vz_save_htimer(vcpu, &compare, &cause); | 
 | 	} else { | 
 | 		compare = read_gc0_compare(); | 
 | 		cause = read_gc0_cause(); | 
 | 	} | 
 |  | 
 | 	/* save timer-related state to VCPU context */ | 
 | 	kvm_write_sw_gc0_cause(cop0, cause); | 
 | 	kvm_write_sw_gc0_compare(cop0, compare); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use. | 
 |  * @vcpu:	Virtual CPU. | 
 |  * | 
 |  * Transfers the state of the hard guest timer to the soft guest timer, leaving | 
 |  * guest state intact so it can continue to be used with the soft timer. | 
 |  */ | 
 | void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 gctl0, compare, cause; | 
 |  | 
 | 	preempt_disable(); | 
 | 	gctl0 = read_c0_guestctl0(); | 
 | 	if (gctl0 & MIPS_GCTL0_GT) { | 
 | 		/* disable guest use of timer */ | 
 | 		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT); | 
 |  | 
 | 		/* switch to soft timer */ | 
 | 		_kvm_vz_save_htimer(vcpu, &compare, &cause); | 
 |  | 
 | 		/* leave soft timer in usable state */ | 
 | 		_kvm_vz_restore_stimer(vcpu, compare, cause); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /** | 
 |  * is_eva_access() - Find whether an instruction is an EVA memory accessor. | 
 |  * @inst:	32-bit instruction encoding. | 
 |  * | 
 |  * Finds whether @inst encodes an EVA memory access instruction, which would | 
 |  * indicate that emulation of it should access the user mode address space | 
 |  * instead of the kernel mode address space. This matters for MUSUK segments | 
 |  * which are TLB mapped for user mode but unmapped for kernel mode. | 
 |  * | 
 |  * Returns:	Whether @inst encodes an EVA accessor instruction. | 
 |  */ | 
 | static bool is_eva_access(union mips_instruction inst) | 
 | { | 
 | 	if (inst.spec3_format.opcode != spec3_op) | 
 | 		return false; | 
 |  | 
 | 	switch (inst.spec3_format.func) { | 
 | 	case lwle_op: | 
 | 	case lwre_op: | 
 | 	case cachee_op: | 
 | 	case sbe_op: | 
 | 	case she_op: | 
 | 	case sce_op: | 
 | 	case swe_op: | 
 | 	case swle_op: | 
 | 	case swre_op: | 
 | 	case prefe_op: | 
 | 	case lbue_op: | 
 | 	case lhue_op: | 
 | 	case lbe_op: | 
 | 	case lhe_op: | 
 | 	case lle_op: | 
 | 	case lwe_op: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * is_eva_am_mapped() - Find whether an access mode is mapped. | 
 |  * @vcpu:	KVM VCPU state. | 
 |  * @am:		3-bit encoded access mode. | 
 |  * @eu:		Segment becomes unmapped and uncached when Status.ERL=1. | 
 |  * | 
 |  * Decode @am to find whether it encodes a mapped segment for the current VCPU | 
 |  * state. Where necessary @eu and the actual instruction causing the fault are | 
 |  * taken into account to make the decision. | 
 |  * | 
 |  * Returns:	Whether the VCPU faulted on a TLB mapped address. | 
 |  */ | 
 | static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu) | 
 | { | 
 | 	u32 am_lookup; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Interpret access control mode. We assume address errors will already | 
 | 	 * have been caught by the guest, leaving us with: | 
 | 	 *      AM      UM  SM  KM  31..24 23..16 | 
 | 	 * UK    0 000          Unm   0      0 | 
 | 	 * MK    1 001          TLB   1 | 
 | 	 * MSK   2 010      TLB TLB   1 | 
 | 	 * MUSK  3 011  TLB TLB TLB   1 | 
 | 	 * MUSUK 4 100  TLB TLB Unm   0      1 | 
 | 	 * USK   5 101      Unm Unm   0      0 | 
 | 	 * -     6 110                0      0 | 
 | 	 * UUSK  7 111  Unm Unm Unm   0      0 | 
 | 	 * | 
 | 	 * We shift a magic value by AM across the sign bit to find if always | 
 | 	 * TLB mapped, and if not shift by 8 again to find if it depends on KM. | 
 | 	 */ | 
 | 	am_lookup = 0x70080000 << am; | 
 | 	if ((s32)am_lookup < 0) { | 
 | 		/* | 
 | 		 * MK, MSK, MUSK | 
 | 		 * Always TLB mapped, unless SegCtl.EU && ERL | 
 | 		 */ | 
 | 		if (!eu || !(read_gc0_status() & ST0_ERL)) | 
 | 			return true; | 
 | 	} else { | 
 | 		am_lookup <<= 8; | 
 | 		if ((s32)am_lookup < 0) { | 
 | 			union mips_instruction inst; | 
 | 			unsigned int status; | 
 | 			u32 *opc; | 
 |  | 
 | 			/* | 
 | 			 * MUSUK | 
 | 			 * TLB mapped if not in kernel mode | 
 | 			 */ | 
 | 			status = read_gc0_status(); | 
 | 			if (!(status & (ST0_EXL | ST0_ERL)) && | 
 | 			    (status & ST0_KSU)) | 
 | 				return true; | 
 | 			/* | 
 | 			 * EVA access instructions in kernel | 
 | 			 * mode access user address space. | 
 | 			 */ | 
 | 			opc = (u32 *)vcpu->arch.pc; | 
 | 			if (vcpu->arch.host_cp0_cause & CAUSEF_BD) | 
 | 				opc += 1; | 
 | 			err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 			if (!err && is_eva_access(inst)) | 
 | 				return true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA. | 
 |  * @vcpu:	KVM VCPU state. | 
 |  * @gva:	Guest virtual address to convert. | 
 |  * @gpa:	Output guest physical address. | 
 |  * | 
 |  * Convert a guest virtual address (GVA) which is valid according to the guest | 
 |  * context, to a guest physical address (GPA). | 
 |  * | 
 |  * Returns:	0 on success. | 
 |  *		-errno on failure. | 
 |  */ | 
 | static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 
 | 			     unsigned long *gpa) | 
 | { | 
 | 	u32 gva32 = gva; | 
 | 	unsigned long segctl; | 
 |  | 
 | 	if ((long)gva == (s32)gva32) { | 
 | 		/* Handle canonical 32-bit virtual address */ | 
 | 		if (cpu_guest_has_segments) { | 
 | 			unsigned long mask, pa; | 
 |  | 
 | 			switch (gva32 >> 29) { | 
 | 			case 0: | 
 | 			case 1: /* CFG5 (1GB) */ | 
 | 				segctl = read_gc0_segctl2() >> 16; | 
 | 				mask = (unsigned long)0xfc0000000ull; | 
 | 				break; | 
 | 			case 2: | 
 | 			case 3: /* CFG4 (1GB) */ | 
 | 				segctl = read_gc0_segctl2(); | 
 | 				mask = (unsigned long)0xfc0000000ull; | 
 | 				break; | 
 | 			case 4: /* CFG3 (512MB) */ | 
 | 				segctl = read_gc0_segctl1() >> 16; | 
 | 				mask = (unsigned long)0xfe0000000ull; | 
 | 				break; | 
 | 			case 5: /* CFG2 (512MB) */ | 
 | 				segctl = read_gc0_segctl1(); | 
 | 				mask = (unsigned long)0xfe0000000ull; | 
 | 				break; | 
 | 			case 6: /* CFG1 (512MB) */ | 
 | 				segctl = read_gc0_segctl0() >> 16; | 
 | 				mask = (unsigned long)0xfe0000000ull; | 
 | 				break; | 
 | 			case 7: /* CFG0 (512MB) */ | 
 | 				segctl = read_gc0_segctl0(); | 
 | 				mask = (unsigned long)0xfe0000000ull; | 
 | 				break; | 
 | 			default: | 
 | 				/* | 
 | 				 * GCC 4.9 isn't smart enough to figure out that | 
 | 				 * segctl and mask are always initialised. | 
 | 				 */ | 
 | 				unreachable(); | 
 | 			} | 
 |  | 
 | 			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7, | 
 | 					     segctl & 0x0008)) | 
 | 				goto tlb_mapped; | 
 |  | 
 | 			/* Unmapped, find guest physical address */ | 
 | 			pa = (segctl << 20) & mask; | 
 | 			pa |= gva32 & ~mask; | 
 | 			*gpa = pa; | 
 | 			return 0; | 
 | 		} else if ((s32)gva32 < (s32)0xc0000000) { | 
 | 			/* legacy unmapped KSeg0 or KSeg1 */ | 
 | 			*gpa = gva32 & 0x1fffffff; | 
 | 			return 0; | 
 | 		} | 
 | #ifdef CONFIG_64BIT | 
 | 	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) { | 
 | 		/* XKPHYS */ | 
 | 		if (cpu_guest_has_segments) { | 
 | 			/* | 
 | 			 * Each of the 8 regions can be overridden by SegCtl2.XR | 
 | 			 * to use SegCtl1.XAM. | 
 | 			 */ | 
 | 			segctl = read_gc0_segctl2(); | 
 | 			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) { | 
 | 				segctl = read_gc0_segctl1(); | 
 | 				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7, | 
 | 						     0)) | 
 | 					goto tlb_mapped; | 
 | 			} | 
 |  | 
 | 		} | 
 | 		/* | 
 | 		 * Traditionally fully unmapped. | 
 | 		 * Bits 61:59 specify the CCA, which we can just mask off here. | 
 | 		 * Bits 58:PABITS should be zero, but we shouldn't have got here | 
 | 		 * if it wasn't. | 
 | 		 */ | 
 | 		*gpa = gva & 0x07ffffffffffffff; | 
 | 		return 0; | 
 | #endif | 
 | 	} | 
 |  | 
 | tlb_mapped: | 
 | 	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA. | 
 |  * @vcpu:	KVM VCPU state. | 
 |  * @badvaddr:	Root BadVAddr. | 
 |  * @gpa:	Output guest physical address. | 
 |  * | 
 |  * VZ implementations are permitted to report guest virtual addresses (GVA) in | 
 |  * BadVAddr on a root exception during guest execution, instead of the more | 
 |  * convenient guest physical addresses (GPA). When we get a GVA, this function | 
 |  * converts it to a GPA, taking into account guest segmentation and guest TLB | 
 |  * state. | 
 |  * | 
 |  * Returns:	0 on success. | 
 |  *		-errno on failure. | 
 |  */ | 
 | static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr, | 
 | 				  unsigned long *gpa) | 
 | { | 
 | 	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 & | 
 | 				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; | 
 |  | 
 | 	/* If BadVAddr is GPA, then all is well in the world */ | 
 | 	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) { | 
 | 		*gpa = badvaddr; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Otherwise we'd expect it to be GVA ... */ | 
 | 	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA, | 
 | 		 "Unexpected gexccode %#x\n", gexccode)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* ... and we need to perform the GVA->GPA translation in software */ | 
 | 	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa); | 
 | } | 
 |  | 
 | static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 *opc = (u32 *) vcpu->arch.pc; | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | 
 | 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; | 
 | 	u32 inst = 0; | 
 |  | 
 | 	/* | 
 | 	 *  Fetch the instruction. | 
 | 	 */ | 
 | 	if (cause & CAUSEF_BD) | 
 | 		opc += 1; | 
 | 	kvm_get_badinstr(opc, vcpu, &inst); | 
 |  | 
 | 	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n", | 
 | 		exccode, opc, inst, badvaddr, | 
 | 		read_gc0_status()); | 
 | 	kvm_arch_vcpu_dump_regs(vcpu); | 
 | 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 	return RESUME_HOST; | 
 | } | 
 |  | 
 | static unsigned long mips_process_maar(unsigned int op, unsigned long val) | 
 | { | 
 | 	/* Mask off unused bits */ | 
 | 	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL; | 
 |  | 
 | 	if (read_gc0_pagegrain() & PG_ELPA) | 
 | 		mask |= 0x00ffffff00000000ull; | 
 | 	if (cpu_guest_has_mvh) | 
 | 		mask |= MIPS_MAAR_VH; | 
 |  | 
 | 	/* Set or clear VH */ | 
 | 	if (op == mtc_op) { | 
 | 		/* clear VH */ | 
 | 		val &= ~MIPS_MAAR_VH; | 
 | 	} else if (op == dmtc_op) { | 
 | 		/* set VH to match VL */ | 
 | 		val &= ~MIPS_MAAR_VH; | 
 | 		if (val & MIPS_MAAR_VL) | 
 | 			val |= MIPS_MAAR_VH; | 
 | 	} | 
 |  | 
 | 	return val & mask; | 
 | } | 
 |  | 
 | static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 |  | 
 | 	val &= MIPS_MAARI_INDEX; | 
 | 	if (val == MIPS_MAARI_INDEX) | 
 | 		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1); | 
 | 	else if (val < ARRAY_SIZE(vcpu->arch.maar)) | 
 | 		kvm_write_sw_gc0_maari(cop0, val); | 
 | } | 
 |  | 
 | static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst, | 
 | 					      u32 *opc, u32 cause, | 
 | 					      struct kvm_run *run, | 
 | 					      struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	u32 rt, rd, sel; | 
 | 	unsigned long curr_pc; | 
 | 	unsigned long val; | 
 |  | 
 | 	/* | 
 | 	 * Update PC and hold onto current PC in case there is | 
 | 	 * an error and we want to rollback the PC | 
 | 	 */ | 
 | 	curr_pc = vcpu->arch.pc; | 
 | 	er = update_pc(vcpu, cause); | 
 | 	if (er == EMULATE_FAIL) | 
 | 		return er; | 
 |  | 
 | 	if (inst.co_format.co) { | 
 | 		switch (inst.co_format.func) { | 
 | 		case wait_op: | 
 | 			er = kvm_mips_emul_wait(vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			er = EMULATE_FAIL; | 
 | 		} | 
 | 	} else { | 
 | 		rt = inst.c0r_format.rt; | 
 | 		rd = inst.c0r_format.rd; | 
 | 		sel = inst.c0r_format.sel; | 
 |  | 
 | 		switch (inst.c0r_format.rs) { | 
 | 		case dmfc_op: | 
 | 		case mfc_op: | 
 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
 | 			cop0->stat[rd][sel]++; | 
 | #endif | 
 | 			if (rd == MIPS_CP0_COUNT && | 
 | 			    sel == 0) {			/* Count */ | 
 | 				val = kvm_mips_read_count(vcpu); | 
 | 			} else if (rd == MIPS_CP0_COMPARE && | 
 | 				   sel == 0) {		/* Compare */ | 
 | 				val = read_gc0_compare(); | 
 | 			} else if (rd == MIPS_CP0_LLADDR && | 
 | 				   sel == 0) {		/* LLAddr */ | 
 | 				if (cpu_guest_has_rw_llb) | 
 | 					val = read_gc0_lladdr() & | 
 | 						MIPS_LLADDR_LLB; | 
 | 				else | 
 | 					val = 0; | 
 | 			} else if (rd == MIPS_CP0_LLADDR && | 
 | 				   sel == 1 &&		/* MAAR */ | 
 | 				   cpu_guest_has_maar && | 
 | 				   !cpu_guest_has_dyn_maar) { | 
 | 				/* MAARI must be in range */ | 
 | 				BUG_ON(kvm_read_sw_gc0_maari(cop0) >= | 
 | 						ARRAY_SIZE(vcpu->arch.maar)); | 
 | 				val = vcpu->arch.maar[ | 
 | 					kvm_read_sw_gc0_maari(cop0)]; | 
 | 			} else if ((rd == MIPS_CP0_PRID && | 
 | 				    (sel == 0 ||	/* PRid */ | 
 | 				     sel == 2 ||	/* CDMMBase */ | 
 | 				     sel == 3)) ||	/* CMGCRBase */ | 
 | 				   (rd == MIPS_CP0_STATUS && | 
 | 				    (sel == 2 ||	/* SRSCtl */ | 
 | 				     sel == 3)) ||	/* SRSMap */ | 
 | 				   (rd == MIPS_CP0_CONFIG && | 
 | 				    (sel == 7)) ||	/* Config7 */ | 
 | 				   (rd == MIPS_CP0_LLADDR && | 
 | 				    (sel == 2) &&	/* MAARI */ | 
 | 				    cpu_guest_has_maar && | 
 | 				    !cpu_guest_has_dyn_maar) || | 
 | 				   (rd == MIPS_CP0_ERRCTL && | 
 | 				    (sel == 0))) {	/* ErrCtl */ | 
 | 				val = cop0->reg[rd][sel]; | 
 | 			} else { | 
 | 				val = 0; | 
 | 				er = EMULATE_FAIL; | 
 | 			} | 
 |  | 
 | 			if (er != EMULATE_FAIL) { | 
 | 				/* Sign extend */ | 
 | 				if (inst.c0r_format.rs == mfc_op) | 
 | 					val = (int)val; | 
 | 				vcpu->arch.gprs[rt] = val; | 
 | 			} | 
 |  | 
 | 			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ? | 
 | 					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0, | 
 | 				      KVM_TRACE_COP0(rd, sel), val); | 
 | 			break; | 
 |  | 
 | 		case dmtc_op: | 
 | 		case mtc_op: | 
 | #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS | 
 | 			cop0->stat[rd][sel]++; | 
 | #endif | 
 | 			val = vcpu->arch.gprs[rt]; | 
 | 			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ? | 
 | 					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0, | 
 | 				      KVM_TRACE_COP0(rd, sel), val); | 
 |  | 
 | 			if (rd == MIPS_CP0_COUNT && | 
 | 			    sel == 0) {			/* Count */ | 
 | 				kvm_vz_lose_htimer(vcpu); | 
 | 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); | 
 | 			} else if (rd == MIPS_CP0_COMPARE && | 
 | 				   sel == 0) {		/* Compare */ | 
 | 				kvm_mips_write_compare(vcpu, | 
 | 						       vcpu->arch.gprs[rt], | 
 | 						       true); | 
 | 			} else if (rd == MIPS_CP0_LLADDR && | 
 | 				   sel == 0) {		/* LLAddr */ | 
 | 				/* | 
 | 				 * P5600 generates GPSI on guest MTC0 LLAddr. | 
 | 				 * Only allow the guest to clear LLB. | 
 | 				 */ | 
 | 				if (cpu_guest_has_rw_llb && | 
 | 				    !(val & MIPS_LLADDR_LLB)) | 
 | 					write_gc0_lladdr(0); | 
 | 			} else if (rd == MIPS_CP0_LLADDR && | 
 | 				   sel == 1 &&		/* MAAR */ | 
 | 				   cpu_guest_has_maar && | 
 | 				   !cpu_guest_has_dyn_maar) { | 
 | 				val = mips_process_maar(inst.c0r_format.rs, | 
 | 							val); | 
 |  | 
 | 				/* MAARI must be in range */ | 
 | 				BUG_ON(kvm_read_sw_gc0_maari(cop0) >= | 
 | 						ARRAY_SIZE(vcpu->arch.maar)); | 
 | 				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] = | 
 | 									val; | 
 | 			} else if (rd == MIPS_CP0_LLADDR && | 
 | 				   (sel == 2) &&	/* MAARI */ | 
 | 				   cpu_guest_has_maar && | 
 | 				   !cpu_guest_has_dyn_maar) { | 
 | 				kvm_write_maari(vcpu, val); | 
 | 			} else if (rd == MIPS_CP0_ERRCTL && | 
 | 				   (sel == 0)) {	/* ErrCtl */ | 
 | 				/* ignore the written value */ | 
 | 			} else { | 
 | 				er = EMULATE_FAIL; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			er = EMULATE_FAIL; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	/* Rollback PC only if emulation was unsuccessful */ | 
 | 	if (er == EMULATE_FAIL) { | 
 | 		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n", | 
 | 			curr_pc, __func__, inst.word); | 
 |  | 
 | 		vcpu->arch.pc = curr_pc; | 
 | 	} | 
 |  | 
 | 	return er; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst, | 
 | 					       u32 *opc, u32 cause, | 
 | 					       struct kvm_run *run, | 
 | 					       struct kvm_vcpu *vcpu) | 
 | { | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	u32 cache, op_inst, op, base; | 
 | 	s16 offset; | 
 | 	struct kvm_vcpu_arch *arch = &vcpu->arch; | 
 | 	unsigned long va, curr_pc; | 
 |  | 
 | 	/* | 
 | 	 * Update PC and hold onto current PC in case there is | 
 | 	 * an error and we want to rollback the PC | 
 | 	 */ | 
 | 	curr_pc = vcpu->arch.pc; | 
 | 	er = update_pc(vcpu, cause); | 
 | 	if (er == EMULATE_FAIL) | 
 | 		return er; | 
 |  | 
 | 	base = inst.i_format.rs; | 
 | 	op_inst = inst.i_format.rt; | 
 | 	if (cpu_has_mips_r6) | 
 | 		offset = inst.spec3_format.simmediate; | 
 | 	else | 
 | 		offset = inst.i_format.simmediate; | 
 | 	cache = op_inst & CacheOp_Cache; | 
 | 	op = op_inst & CacheOp_Op; | 
 |  | 
 | 	va = arch->gprs[base] + offset; | 
 |  | 
 | 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
 | 		  cache, op, base, arch->gprs[base], offset); | 
 |  | 
 | 	/* Secondary or tirtiary cache ops ignored */ | 
 | 	if (cache != Cache_I && cache != Cache_D) | 
 | 		return EMULATE_DONE; | 
 |  | 
 | 	switch (op_inst) { | 
 | 	case Index_Invalidate_I: | 
 | 		flush_icache_line_indexed(va); | 
 | 		return EMULATE_DONE; | 
 | 	case Index_Writeback_Inv_D: | 
 | 		flush_dcache_line_indexed(va); | 
 | 		return EMULATE_DONE; | 
 | 	case Hit_Invalidate_I: | 
 | 	case Hit_Invalidate_D: | 
 | 	case Hit_Writeback_Inv_D: | 
 | 		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) { | 
 | 			/* We can just flush entire icache */ | 
 | 			local_flush_icache_range(0, 0); | 
 | 			return EMULATE_DONE; | 
 | 		} | 
 |  | 
 | 		/* So far, other platforms support guest hit cache ops */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	}; | 
 |  | 
 | 	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", | 
 | 		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base], | 
 | 		offset); | 
 | 	/* Rollback PC */ | 
 | 	vcpu->arch.pc = curr_pc; | 
 |  | 
 | 	return EMULATE_FAIL; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc, | 
 | 						     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	struct kvm_vcpu_arch *arch = &vcpu->arch; | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	union mips_instruction inst; | 
 | 	int rd, rt, sel; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 *  Fetch the instruction. | 
 | 	 */ | 
 | 	if (cause & CAUSEF_BD) | 
 | 		opc += 1; | 
 | 	err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 	if (err) | 
 | 		return EMULATE_FAIL; | 
 |  | 
 | 	switch (inst.r_format.opcode) { | 
 | 	case cop0_op: | 
 | 		er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu); | 
 | 		break; | 
 | #ifndef CONFIG_CPU_MIPSR6 | 
 | 	case cache_op: | 
 | 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); | 
 | 		er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); | 
 | 		break; | 
 | #endif | 
 | 	case spec3_op: | 
 | 		switch (inst.spec3_format.func) { | 
 | #ifdef CONFIG_CPU_MIPSR6 | 
 | 		case cache6_op: | 
 | 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); | 
 | 			er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu); | 
 | 			break; | 
 | #endif | 
 | 		case rdhwr_op: | 
 | 			if (inst.r_format.rs || (inst.r_format.re >> 3)) | 
 | 				goto unknown; | 
 |  | 
 | 			rd = inst.r_format.rd; | 
 | 			rt = inst.r_format.rt; | 
 | 			sel = inst.r_format.re & 0x7; | 
 |  | 
 | 			switch (rd) { | 
 | 			case MIPS_HWR_CC:	/* Read count register */ | 
 | 				arch->gprs[rt] = | 
 | 					(long)(int)kvm_mips_read_count(vcpu); | 
 | 				break; | 
 | 			default: | 
 | 				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, | 
 | 					      KVM_TRACE_HWR(rd, sel), 0); | 
 | 				goto unknown; | 
 | 			}; | 
 |  | 
 | 			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, | 
 | 				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]); | 
 |  | 
 | 			er = update_pc(vcpu, cause); | 
 | 			break; | 
 | 		default: | 
 | 			goto unknown; | 
 | 		}; | 
 | 		break; | 
 | unknown: | 
 |  | 
 | 	default: | 
 | 		kvm_err("GPSI exception not supported (%p/%#x)\n", | 
 | 				opc, inst.word); | 
 | 		kvm_arch_vcpu_dump_regs(vcpu); | 
 | 		er = EMULATE_FAIL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return er; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc, | 
 | 						     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	struct kvm_vcpu_arch *arch = &vcpu->arch; | 
 | 	union mips_instruction inst; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 *  Fetch the instruction. | 
 | 	 */ | 
 | 	if (cause & CAUSEF_BD) | 
 | 		opc += 1; | 
 | 	err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 	if (err) | 
 | 		return EMULATE_FAIL; | 
 |  | 
 | 	/* complete MTC0 on behalf of guest and advance EPC */ | 
 | 	if (inst.c0r_format.opcode == cop0_op && | 
 | 	    inst.c0r_format.rs == mtc_op && | 
 | 	    inst.c0r_format.z == 0) { | 
 | 		int rt = inst.c0r_format.rt; | 
 | 		int rd = inst.c0r_format.rd; | 
 | 		int sel = inst.c0r_format.sel; | 
 | 		unsigned int val = arch->gprs[rt]; | 
 | 		unsigned int old_val, change; | 
 |  | 
 | 		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel), | 
 | 			      val); | 
 |  | 
 | 		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { | 
 | 			/* FR bit should read as zero if no FPU */ | 
 | 			if (!kvm_mips_guest_has_fpu(&vcpu->arch)) | 
 | 				val &= ~(ST0_CU1 | ST0_FR); | 
 |  | 
 | 			/* | 
 | 			 * Also don't allow FR to be set if host doesn't support | 
 | 			 * it. | 
 | 			 */ | 
 | 			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64)) | 
 | 				val &= ~ST0_FR; | 
 |  | 
 | 			old_val = read_gc0_status(); | 
 | 			change = val ^ old_val; | 
 |  | 
 | 			if (change & ST0_FR) { | 
 | 				/* | 
 | 				 * FPU and Vector register state is made | 
 | 				 * UNPREDICTABLE by a change of FR, so don't | 
 | 				 * even bother saving it. | 
 | 				 */ | 
 | 				kvm_drop_fpu(vcpu); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If MSA state is already live, it is undefined how it | 
 | 			 * interacts with FR=0 FPU state, and we don't want to | 
 | 			 * hit reserved instruction exceptions trying to save | 
 | 			 * the MSA state later when CU=1 && FR=1, so play it | 
 | 			 * safe and save it first. | 
 | 			 */ | 
 | 			if (change & ST0_CU1 && !(val & ST0_FR) && | 
 | 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) | 
 | 				kvm_lose_fpu(vcpu); | 
 |  | 
 | 			write_gc0_status(val); | 
 | 		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { | 
 | 			u32 old_cause = read_gc0_cause(); | 
 | 			u32 change = old_cause ^ val; | 
 |  | 
 | 			/* DC bit enabling/disabling timer? */ | 
 | 			if (change & CAUSEF_DC) { | 
 | 				if (val & CAUSEF_DC) { | 
 | 					kvm_vz_lose_htimer(vcpu); | 
 | 					kvm_mips_count_disable_cause(vcpu); | 
 | 				} else { | 
 | 					kvm_mips_count_enable_cause(vcpu); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* Only certain bits are RW to the guest */ | 
 | 			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP | | 
 | 				   CAUSEF_IP0 | CAUSEF_IP1); | 
 |  | 
 | 			/* WP can only be cleared */ | 
 | 			change &= ~CAUSEF_WP | old_cause; | 
 |  | 
 | 			write_gc0_cause(old_cause ^ change); | 
 | 		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */ | 
 | 			write_gc0_intctl(val); | 
 | 		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { | 
 | 			old_val = read_gc0_config5(); | 
 | 			change = val ^ old_val; | 
 | 			/* Handle changes in FPU/MSA modes */ | 
 | 			preempt_disable(); | 
 |  | 
 | 			/* | 
 | 			 * Propagate FRE changes immediately if the FPU | 
 | 			 * context is already loaded. | 
 | 			 */ | 
 | 			if (change & MIPS_CONF5_FRE && | 
 | 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) | 
 | 				change_c0_config5(MIPS_CONF5_FRE, val); | 
 |  | 
 | 			preempt_enable(); | 
 |  | 
 | 			val = old_val ^ | 
 | 				(change & kvm_vz_config5_guest_wrmask(vcpu)); | 
 | 			write_gc0_config5(val); | 
 | 		} else { | 
 | 			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n", | 
 | 			    opc, inst.word); | 
 | 			er = EMULATE_FAIL; | 
 | 		} | 
 |  | 
 | 		if (er != EMULATE_FAIL) | 
 | 			er = update_pc(vcpu, cause); | 
 | 	} else { | 
 | 		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n", | 
 | 			opc, inst.word); | 
 | 		er = EMULATE_FAIL; | 
 | 	} | 
 |  | 
 | 	return er; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc, | 
 | 						     struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* | 
 | 	 * Presumably this is due to MC (guest mode change), so lets trace some | 
 | 	 * relevant info. | 
 | 	 */ | 
 | 	trace_kvm_guest_mode_change(vcpu); | 
 |  | 
 | 	return EMULATE_DONE; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc, | 
 | 						   struct kvm_vcpu *vcpu) | 
 | { | 
 | 	enum emulation_result er; | 
 | 	union mips_instruction inst; | 
 | 	unsigned long curr_pc; | 
 | 	int err; | 
 |  | 
 | 	if (cause & CAUSEF_BD) | 
 | 		opc += 1; | 
 | 	err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 	if (err) | 
 | 		return EMULATE_FAIL; | 
 |  | 
 | 	/* | 
 | 	 * Update PC and hold onto current PC in case there is | 
 | 	 * an error and we want to rollback the PC | 
 | 	 */ | 
 | 	curr_pc = vcpu->arch.pc; | 
 | 	er = update_pc(vcpu, cause); | 
 | 	if (er == EMULATE_FAIL) | 
 | 		return er; | 
 |  | 
 | 	er = kvm_mips_emul_hypcall(vcpu, inst); | 
 | 	if (er == EMULATE_FAIL) | 
 | 		vcpu->arch.pc = curr_pc; | 
 |  | 
 | 	return er; | 
 | } | 
 |  | 
 | static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode, | 
 | 							u32 cause, | 
 | 							u32 *opc, | 
 | 							struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 inst; | 
 |  | 
 | 	/* | 
 | 	 *  Fetch the instruction. | 
 | 	 */ | 
 | 	if (cause & CAUSEF_BD) | 
 | 		opc += 1; | 
 | 	kvm_get_badinstr(opc, vcpu, &inst); | 
 |  | 
 | 	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n", | 
 | 		gexccode, opc, inst, read_gc0_status()); | 
 |  | 
 | 	return EMULATE_FAIL; | 
 | } | 
 |  | 
 | static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 *opc = (u32 *) vcpu->arch.pc; | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 & | 
 | 			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT; | 
 | 	int ret = RESUME_GUEST; | 
 |  | 
 | 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode); | 
 | 	switch (gexccode) { | 
 | 	case MIPS_GCTL0_GEXC_GPSI: | 
 | 		++vcpu->stat.vz_gpsi_exits; | 
 | 		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_GSFC: | 
 | 		++vcpu->stat.vz_gsfc_exits; | 
 | 		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_HC: | 
 | 		++vcpu->stat.vz_hc_exits; | 
 | 		er = kvm_trap_vz_handle_hc(cause, opc, vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_GRR: | 
 | 		++vcpu->stat.vz_grr_exits; | 
 | 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
 | 						       vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_GVA: | 
 | 		++vcpu->stat.vz_gva_exits; | 
 | 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
 | 						       vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_GHFC: | 
 | 		++vcpu->stat.vz_ghfc_exits; | 
 | 		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu); | 
 | 		break; | 
 | 	case MIPS_GCTL0_GEXC_GPA: | 
 | 		++vcpu->stat.vz_gpa_exits; | 
 | 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
 | 						       vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		++vcpu->stat.vz_resvd_exits; | 
 | 		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc, | 
 | 						       vcpu); | 
 | 		break; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (er == EMULATE_DONE) { | 
 | 		ret = RESUME_GUEST; | 
 | 	} else if (er == EMULATE_HYPERCALL) { | 
 | 		ret = kvm_mips_handle_hypcall(vcpu); | 
 | 	} else { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		ret = RESUME_HOST; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor. | 
 |  * @vcpu:	Virtual CPU context. | 
 |  * | 
 |  * Handle when the guest attempts to use a coprocessor which hasn't been allowed | 
 |  * by the root context. | 
 |  */ | 
 | static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	enum emulation_result er = EMULATE_FAIL; | 
 | 	int ret = RESUME_GUEST; | 
 |  | 
 | 	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { | 
 | 		/* | 
 | 		 * If guest FPU not present, the FPU operation should have been | 
 | 		 * treated as a reserved instruction! | 
 | 		 * If FPU already in use, we shouldn't get this at all. | 
 | 		 */ | 
 | 		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) || | 
 | 			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) { | 
 | 			preempt_enable(); | 
 | 			return EMULATE_FAIL; | 
 | 		} | 
 |  | 
 | 		kvm_own_fpu(vcpu); | 
 | 		er = EMULATE_DONE; | 
 | 	} | 
 | 	/* other coprocessors not handled */ | 
 |  | 
 | 	switch (er) { | 
 | 	case EMULATE_DONE: | 
 | 		ret = RESUME_GUEST; | 
 | 		break; | 
 |  | 
 | 	case EMULATE_FAIL: | 
 | 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		ret = RESUME_HOST; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root. | 
 |  * @vcpu:	Virtual CPU context. | 
 |  * | 
 |  * Handle when the guest attempts to use MSA when it is disabled in the root | 
 |  * context. | 
 |  */ | 
 | static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 |  | 
 | 	/* | 
 | 	 * If MSA not present or not exposed to guest or FR=0, the MSA operation | 
 | 	 * should have been treated as a reserved instruction! | 
 | 	 * Same if CU1=1, FR=0. | 
 | 	 * If MSA already in use, we shouldn't get this at all. | 
 | 	 */ | 
 | 	if (!kvm_mips_guest_has_msa(&vcpu->arch) || | 
 | 	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 || | 
 | 	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) || | 
 | 	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) { | 
 | 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		return RESUME_HOST; | 
 | 	} | 
 |  | 
 | 	kvm_own_msa(vcpu); | 
 |  | 
 | 	return RESUME_GUEST; | 
 | } | 
 |  | 
 | static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	u32 *opc = (u32 *) vcpu->arch.pc; | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	ulong badvaddr = vcpu->arch.host_cp0_badvaddr; | 
 | 	union mips_instruction inst; | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	int err, ret = RESUME_GUEST; | 
 |  | 
 | 	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) { | 
 | 		/* A code fetch fault doesn't count as an MMIO */ | 
 | 		if (kvm_is_ifetch_fault(&vcpu->arch)) { | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 			return RESUME_HOST; | 
 | 		} | 
 |  | 
 | 		/* Fetch the instruction */ | 
 | 		if (cause & CAUSEF_BD) | 
 | 			opc += 1; | 
 | 		err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 		if (err) { | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 			return RESUME_HOST; | 
 | 		} | 
 |  | 
 | 		/* Treat as MMIO */ | 
 | 		er = kvm_mips_emulate_load(inst, cause, run, vcpu); | 
 | 		if (er == EMULATE_FAIL) { | 
 | 			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n", | 
 | 				opc, badvaddr); | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (er == EMULATE_DONE) { | 
 | 		ret = RESUME_GUEST; | 
 | 	} else if (er == EMULATE_DO_MMIO) { | 
 | 		run->exit_reason = KVM_EXIT_MMIO; | 
 | 		ret = RESUME_HOST; | 
 | 	} else { | 
 | 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		ret = RESUME_HOST; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	u32 *opc = (u32 *) vcpu->arch.pc; | 
 | 	u32 cause = vcpu->arch.host_cp0_cause; | 
 | 	ulong badvaddr = vcpu->arch.host_cp0_badvaddr; | 
 | 	union mips_instruction inst; | 
 | 	enum emulation_result er = EMULATE_DONE; | 
 | 	int err; | 
 | 	int ret = RESUME_GUEST; | 
 |  | 
 | 	/* Just try the access again if we couldn't do the translation */ | 
 | 	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr)) | 
 | 		return RESUME_GUEST; | 
 | 	vcpu->arch.host_cp0_badvaddr = badvaddr; | 
 |  | 
 | 	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) { | 
 | 		/* Fetch the instruction */ | 
 | 		if (cause & CAUSEF_BD) | 
 | 			opc += 1; | 
 | 		err = kvm_get_badinstr(opc, vcpu, &inst.word); | 
 | 		if (err) { | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 			return RESUME_HOST; | 
 | 		} | 
 |  | 
 | 		/* Treat as MMIO */ | 
 | 		er = kvm_mips_emulate_store(inst, cause, run, vcpu); | 
 | 		if (er == EMULATE_FAIL) { | 
 | 			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n", | 
 | 				opc, badvaddr); | 
 | 			run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (er == EMULATE_DONE) { | 
 | 		ret = RESUME_GUEST; | 
 | 	} else if (er == EMULATE_DO_MMIO) { | 
 | 		run->exit_reason = KVM_EXIT_MMIO; | 
 | 		ret = RESUME_HOST; | 
 | 	} else { | 
 | 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		ret = RESUME_HOST; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 kvm_vz_get_one_regs[] = { | 
 | 	KVM_REG_MIPS_CP0_INDEX, | 
 | 	KVM_REG_MIPS_CP0_ENTRYLO0, | 
 | 	KVM_REG_MIPS_CP0_ENTRYLO1, | 
 | 	KVM_REG_MIPS_CP0_CONTEXT, | 
 | 	KVM_REG_MIPS_CP0_PAGEMASK, | 
 | 	KVM_REG_MIPS_CP0_PAGEGRAIN, | 
 | 	KVM_REG_MIPS_CP0_WIRED, | 
 | 	KVM_REG_MIPS_CP0_HWRENA, | 
 | 	KVM_REG_MIPS_CP0_BADVADDR, | 
 | 	KVM_REG_MIPS_CP0_COUNT, | 
 | 	KVM_REG_MIPS_CP0_ENTRYHI, | 
 | 	KVM_REG_MIPS_CP0_COMPARE, | 
 | 	KVM_REG_MIPS_CP0_STATUS, | 
 | 	KVM_REG_MIPS_CP0_INTCTL, | 
 | 	KVM_REG_MIPS_CP0_CAUSE, | 
 | 	KVM_REG_MIPS_CP0_EPC, | 
 | 	KVM_REG_MIPS_CP0_PRID, | 
 | 	KVM_REG_MIPS_CP0_EBASE, | 
 | 	KVM_REG_MIPS_CP0_CONFIG, | 
 | 	KVM_REG_MIPS_CP0_CONFIG1, | 
 | 	KVM_REG_MIPS_CP0_CONFIG2, | 
 | 	KVM_REG_MIPS_CP0_CONFIG3, | 
 | 	KVM_REG_MIPS_CP0_CONFIG4, | 
 | 	KVM_REG_MIPS_CP0_CONFIG5, | 
 | #ifdef CONFIG_64BIT | 
 | 	KVM_REG_MIPS_CP0_XCONTEXT, | 
 | #endif | 
 | 	KVM_REG_MIPS_CP0_ERROREPC, | 
 |  | 
 | 	KVM_REG_MIPS_COUNT_CTL, | 
 | 	KVM_REG_MIPS_COUNT_RESUME, | 
 | 	KVM_REG_MIPS_COUNT_HZ, | 
 | }; | 
 |  | 
 | static u64 kvm_vz_get_one_regs_contextconfig[] = { | 
 | 	KVM_REG_MIPS_CP0_CONTEXTCONFIG, | 
 | #ifdef CONFIG_64BIT | 
 | 	KVM_REG_MIPS_CP0_XCONTEXTCONFIG, | 
 | #endif | 
 | }; | 
 |  | 
 | static u64 kvm_vz_get_one_regs_segments[] = { | 
 | 	KVM_REG_MIPS_CP0_SEGCTL0, | 
 | 	KVM_REG_MIPS_CP0_SEGCTL1, | 
 | 	KVM_REG_MIPS_CP0_SEGCTL2, | 
 | }; | 
 |  | 
 | static u64 kvm_vz_get_one_regs_htw[] = { | 
 | 	KVM_REG_MIPS_CP0_PWBASE, | 
 | 	KVM_REG_MIPS_CP0_PWFIELD, | 
 | 	KVM_REG_MIPS_CP0_PWSIZE, | 
 | 	KVM_REG_MIPS_CP0_PWCTL, | 
 | }; | 
 |  | 
 | static u64 kvm_vz_get_one_regs_kscratch[] = { | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH1, | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH2, | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH3, | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH4, | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH5, | 
 | 	KVM_REG_MIPS_CP0_KSCRATCH6, | 
 | }; | 
 |  | 
 | static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long ret; | 
 |  | 
 | 	ret = ARRAY_SIZE(kvm_vz_get_one_regs); | 
 | 	if (cpu_guest_has_userlocal) | 
 | 		++ret; | 
 | 	if (cpu_guest_has_badinstr) | 
 | 		++ret; | 
 | 	if (cpu_guest_has_badinstrp) | 
 | 		++ret; | 
 | 	if (cpu_guest_has_contextconfig) | 
 | 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); | 
 | 	if (cpu_guest_has_segments) | 
 | 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments); | 
 | 	if (cpu_guest_has_htw) | 
 | 		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw); | 
 | 	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) | 
 | 		ret += 1 + ARRAY_SIZE(vcpu->arch.maar); | 
 | 	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) | 
 | { | 
 | 	u64 index; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (copy_to_user(indices, kvm_vz_get_one_regs, | 
 | 			 sizeof(kvm_vz_get_one_regs))) | 
 | 		return -EFAULT; | 
 | 	indices += ARRAY_SIZE(kvm_vz_get_one_regs); | 
 |  | 
 | 	if (cpu_guest_has_userlocal) { | 
 | 		index = KVM_REG_MIPS_CP0_USERLOCAL; | 
 | 		if (copy_to_user(indices, &index, sizeof(index))) | 
 | 			return -EFAULT; | 
 | 		++indices; | 
 | 	} | 
 | 	if (cpu_guest_has_badinstr) { | 
 | 		index = KVM_REG_MIPS_CP0_BADINSTR; | 
 | 		if (copy_to_user(indices, &index, sizeof(index))) | 
 | 			return -EFAULT; | 
 | 		++indices; | 
 | 	} | 
 | 	if (cpu_guest_has_badinstrp) { | 
 | 		index = KVM_REG_MIPS_CP0_BADINSTRP; | 
 | 		if (copy_to_user(indices, &index, sizeof(index))) | 
 | 			return -EFAULT; | 
 | 		++indices; | 
 | 	} | 
 | 	if (cpu_guest_has_contextconfig) { | 
 | 		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig, | 
 | 				 sizeof(kvm_vz_get_one_regs_contextconfig))) | 
 | 			return -EFAULT; | 
 | 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig); | 
 | 	} | 
 | 	if (cpu_guest_has_segments) { | 
 | 		if (copy_to_user(indices, kvm_vz_get_one_regs_segments, | 
 | 				 sizeof(kvm_vz_get_one_regs_segments))) | 
 | 			return -EFAULT; | 
 | 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments); | 
 | 	} | 
 | 	if (cpu_guest_has_htw) { | 
 | 		if (copy_to_user(indices, kvm_vz_get_one_regs_htw, | 
 | 				 sizeof(kvm_vz_get_one_regs_htw))) | 
 | 			return -EFAULT; | 
 | 		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw); | 
 | 	} | 
 | 	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) { | 
 | 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) { | 
 | 			index = KVM_REG_MIPS_CP0_MAAR(i); | 
 | 			if (copy_to_user(indices, &index, sizeof(index))) | 
 | 				return -EFAULT; | 
 | 			++indices; | 
 | 		} | 
 |  | 
 | 		index = KVM_REG_MIPS_CP0_MAARI; | 
 | 		if (copy_to_user(indices, &index, sizeof(index))) | 
 | 			return -EFAULT; | 
 | 		++indices; | 
 | 	} | 
 | 	for (i = 0; i < 6; ++i) { | 
 | 		if (!cpu_guest_has_kscr(i + 2)) | 
 | 			continue; | 
 |  | 
 | 		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i], | 
 | 				 sizeof(kvm_vz_get_one_regs_kscratch[i]))) | 
 | 			return -EFAULT; | 
 | 		++indices; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline s64 entrylo_kvm_to_user(unsigned long v) | 
 | { | 
 | 	s64 mask, ret = v; | 
 |  | 
 | 	if (BITS_PER_LONG == 32) { | 
 | 		/* | 
 | 		 * KVM API exposes 64-bit version of the register, so move the | 
 | 		 * RI/XI bits up into place. | 
 | 		 */ | 
 | 		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; | 
 | 		ret &= ~mask; | 
 | 		ret |= ((s64)v & mask) << 32; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline unsigned long entrylo_user_to_kvm(s64 v) | 
 | { | 
 | 	unsigned long mask, ret = v; | 
 |  | 
 | 	if (BITS_PER_LONG == 32) { | 
 | 		/* | 
 | 		 * KVM API exposes 64-bit versiono of the register, so move the | 
 | 		 * RI/XI bits down into place. | 
 | 		 */ | 
 | 		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI; | 
 | 		ret &= ~mask; | 
 | 		ret |= (v >> 32) & mask; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu, | 
 | 			      const struct kvm_one_reg *reg, | 
 | 			      s64 *v) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	unsigned int idx; | 
 |  | 
 | 	switch (reg->id) { | 
 | 	case KVM_REG_MIPS_CP0_INDEX: | 
 | 		*v = (long)read_gc0_index(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYLO0: | 
 | 		*v = entrylo_kvm_to_user(read_gc0_entrylo0()); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYLO1: | 
 | 		*v = entrylo_kvm_to_user(read_gc0_entrylo1()); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONTEXT: | 
 | 		*v = (long)read_gc0_context(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONTEXTCONFIG: | 
 | 		if (!cpu_guest_has_contextconfig) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_contextconfig(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_USERLOCAL: | 
 | 		if (!cpu_guest_has_userlocal) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_userlocal(); | 
 | 		break; | 
 | #ifdef CONFIG_64BIT | 
 | 	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: | 
 | 		if (!cpu_guest_has_contextconfig) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_xcontextconfig(); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_CP0_PAGEMASK: | 
 | 		*v = (long)read_gc0_pagemask(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PAGEGRAIN: | 
 | 		*v = (long)read_gc0_pagegrain(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL0: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_segctl0(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL1: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_segctl1(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL2: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_segctl2(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWBASE: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_pwbase(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWFIELD: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_pwfield(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWSIZE: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_pwsize(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_WIRED: | 
 | 		*v = (long)read_gc0_wired(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWCTL: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_pwctl(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_HWRENA: | 
 | 		*v = (long)read_gc0_hwrena(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADVADDR: | 
 | 		*v = (long)read_gc0_badvaddr(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADINSTR: | 
 | 		if (!cpu_guest_has_badinstr) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_badinstr(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADINSTRP: | 
 | 		if (!cpu_guest_has_badinstrp) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_badinstrp(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_COUNT: | 
 | 		*v = kvm_mips_read_count(vcpu); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYHI: | 
 | 		*v = (long)read_gc0_entryhi(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_COMPARE: | 
 | 		*v = (long)read_gc0_compare(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_STATUS: | 
 | 		*v = (long)read_gc0_status(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_INTCTL: | 
 | 		*v = read_gc0_intctl(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CAUSE: | 
 | 		*v = (long)read_gc0_cause(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_EPC: | 
 | 		*v = (long)read_gc0_epc(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PRID: | 
 | 		switch (boot_cpu_type()) { | 
 | 		case CPU_CAVIUM_OCTEON3: | 
 | 			/* Octeon III has a read-only guest.PRid */ | 
 | 			*v = read_gc0_prid(); | 
 | 			break; | 
 | 		default: | 
 | 			*v = (long)kvm_read_c0_guest_prid(cop0); | 
 | 			break; | 
 | 		}; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_EBASE: | 
 | 		*v = kvm_vz_read_gc0_ebase(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG: | 
 | 		*v = read_gc0_config(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG1: | 
 | 		if (!cpu_guest_has_conf1) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_config1(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG2: | 
 | 		if (!cpu_guest_has_conf2) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_config2(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG3: | 
 | 		if (!cpu_guest_has_conf3) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_config3(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG4: | 
 | 		if (!cpu_guest_has_conf4) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_config4(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG5: | 
 | 		if (!cpu_guest_has_conf5) | 
 | 			return -EINVAL; | 
 | 		*v = read_gc0_config5(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): | 
 | 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); | 
 | 		if (idx >= ARRAY_SIZE(vcpu->arch.maar)) | 
 | 			return -EINVAL; | 
 | 		*v = vcpu->arch.maar[idx]; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_MAARI: | 
 | 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
 | 			return -EINVAL; | 
 | 		*v = kvm_read_sw_gc0_maari(vcpu->arch.cop0); | 
 | 		break; | 
 | #ifdef CONFIG_64BIT | 
 | 	case KVM_REG_MIPS_CP0_XCONTEXT: | 
 | 		*v = read_gc0_xcontext(); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_CP0_ERROREPC: | 
 | 		*v = (long)read_gc0_errorepc(); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: | 
 | 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; | 
 | 		if (!cpu_guest_has_kscr(idx)) | 
 | 			return -EINVAL; | 
 | 		switch (idx) { | 
 | 		case 2: | 
 | 			*v = (long)read_gc0_kscratch1(); | 
 | 			break; | 
 | 		case 3: | 
 | 			*v = (long)read_gc0_kscratch2(); | 
 | 			break; | 
 | 		case 4: | 
 | 			*v = (long)read_gc0_kscratch3(); | 
 | 			break; | 
 | 		case 5: | 
 | 			*v = (long)read_gc0_kscratch4(); | 
 | 			break; | 
 | 		case 6: | 
 | 			*v = (long)read_gc0_kscratch5(); | 
 | 			break; | 
 | 		case 7: | 
 | 			*v = (long)read_gc0_kscratch6(); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_CTL: | 
 | 		*v = vcpu->arch.count_ctl; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_RESUME: | 
 | 		*v = ktime_to_ns(vcpu->arch.count_resume); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_HZ: | 
 | 		*v = vcpu->arch.count_hz; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu, | 
 | 			      const struct kvm_one_reg *reg, | 
 | 			      s64 v) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	unsigned int idx; | 
 | 	int ret = 0; | 
 | 	unsigned int cur, change; | 
 |  | 
 | 	switch (reg->id) { | 
 | 	case KVM_REG_MIPS_CP0_INDEX: | 
 | 		write_gc0_index(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYLO0: | 
 | 		write_gc0_entrylo0(entrylo_user_to_kvm(v)); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYLO1: | 
 | 		write_gc0_entrylo1(entrylo_user_to_kvm(v)); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONTEXT: | 
 | 		write_gc0_context(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONTEXTCONFIG: | 
 | 		if (!cpu_guest_has_contextconfig) | 
 | 			return -EINVAL; | 
 | 		write_gc0_contextconfig(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_USERLOCAL: | 
 | 		if (!cpu_guest_has_userlocal) | 
 | 			return -EINVAL; | 
 | 		write_gc0_userlocal(v); | 
 | 		break; | 
 | #ifdef CONFIG_64BIT | 
 | 	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG: | 
 | 		if (!cpu_guest_has_contextconfig) | 
 | 			return -EINVAL; | 
 | 		write_gc0_xcontextconfig(v); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_CP0_PAGEMASK: | 
 | 		write_gc0_pagemask(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PAGEGRAIN: | 
 | 		write_gc0_pagegrain(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL0: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		write_gc0_segctl0(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL1: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		write_gc0_segctl1(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_SEGCTL2: | 
 | 		if (!cpu_guest_has_segments) | 
 | 			return -EINVAL; | 
 | 		write_gc0_segctl2(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWBASE: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		write_gc0_pwbase(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWFIELD: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		write_gc0_pwfield(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWSIZE: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		write_gc0_pwsize(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_WIRED: | 
 | 		change_gc0_wired(MIPSR6_WIRED_WIRED, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PWCTL: | 
 | 		if (!cpu_guest_has_htw) | 
 | 			return -EINVAL; | 
 | 		write_gc0_pwctl(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_HWRENA: | 
 | 		write_gc0_hwrena(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADVADDR: | 
 | 		write_gc0_badvaddr(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADINSTR: | 
 | 		if (!cpu_guest_has_badinstr) | 
 | 			return -EINVAL; | 
 | 		write_gc0_badinstr(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_BADINSTRP: | 
 | 		if (!cpu_guest_has_badinstrp) | 
 | 			return -EINVAL; | 
 | 		write_gc0_badinstrp(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_COUNT: | 
 | 		kvm_mips_write_count(vcpu, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_ENTRYHI: | 
 | 		write_gc0_entryhi(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_COMPARE: | 
 | 		kvm_mips_write_compare(vcpu, v, false); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_STATUS: | 
 | 		write_gc0_status(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_INTCTL: | 
 | 		write_gc0_intctl(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CAUSE: | 
 | 		/* | 
 | 		 * If the timer is stopped or started (DC bit) it must look | 
 | 		 * atomic with changes to the timer interrupt pending bit (TI). | 
 | 		 * A timer interrupt should not happen in between. | 
 | 		 */ | 
 | 		if ((read_gc0_cause() ^ v) & CAUSEF_DC) { | 
 | 			if (v & CAUSEF_DC) { | 
 | 				/* disable timer first */ | 
 | 				kvm_mips_count_disable_cause(vcpu); | 
 | 				change_gc0_cause((u32)~CAUSEF_DC, v); | 
 | 			} else { | 
 | 				/* enable timer last */ | 
 | 				change_gc0_cause((u32)~CAUSEF_DC, v); | 
 | 				kvm_mips_count_enable_cause(vcpu); | 
 | 			} | 
 | 		} else { | 
 | 			write_gc0_cause(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_EPC: | 
 | 		write_gc0_epc(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_PRID: | 
 | 		switch (boot_cpu_type()) { | 
 | 		case CPU_CAVIUM_OCTEON3: | 
 | 			/* Octeon III has a guest.PRid, but its read-only */ | 
 | 			break; | 
 | 		default: | 
 | 			kvm_write_c0_guest_prid(cop0, v); | 
 | 			break; | 
 | 		}; | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_EBASE: | 
 | 		kvm_vz_write_gc0_ebase(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG: | 
 | 		cur = read_gc0_config(); | 
 | 		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG1: | 
 | 		if (!cpu_guest_has_conf1) | 
 | 			break; | 
 | 		cur = read_gc0_config1(); | 
 | 		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config1(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG2: | 
 | 		if (!cpu_guest_has_conf2) | 
 | 			break; | 
 | 		cur = read_gc0_config2(); | 
 | 		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config2(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG3: | 
 | 		if (!cpu_guest_has_conf3) | 
 | 			break; | 
 | 		cur = read_gc0_config3(); | 
 | 		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config3(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG4: | 
 | 		if (!cpu_guest_has_conf4) | 
 | 			break; | 
 | 		cur = read_gc0_config4(); | 
 | 		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config4(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_CONFIG5: | 
 | 		if (!cpu_guest_has_conf5) | 
 | 			break; | 
 | 		cur = read_gc0_config5(); | 
 | 		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu); | 
 | 		if (change) { | 
 | 			v = cur ^ change; | 
 | 			write_gc0_config5(v); | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f): | 
 | 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
 | 			return -EINVAL; | 
 | 		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0); | 
 | 		if (idx >= ARRAY_SIZE(vcpu->arch.maar)) | 
 | 			return -EINVAL; | 
 | 		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_MAARI: | 
 | 		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar) | 
 | 			return -EINVAL; | 
 | 		kvm_write_maari(vcpu, v); | 
 | 		break; | 
 | #ifdef CONFIG_64BIT | 
 | 	case KVM_REG_MIPS_CP0_XCONTEXT: | 
 | 		write_gc0_xcontext(v); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_REG_MIPS_CP0_ERROREPC: | 
 | 		write_gc0_errorepc(v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6: | 
 | 		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2; | 
 | 		if (!cpu_guest_has_kscr(idx)) | 
 | 			return -EINVAL; | 
 | 		switch (idx) { | 
 | 		case 2: | 
 | 			write_gc0_kscratch1(v); | 
 | 			break; | 
 | 		case 3: | 
 | 			write_gc0_kscratch2(v); | 
 | 			break; | 
 | 		case 4: | 
 | 			write_gc0_kscratch3(v); | 
 | 			break; | 
 | 		case 5: | 
 | 			write_gc0_kscratch4(v); | 
 | 			break; | 
 | 		case 6: | 
 | 			write_gc0_kscratch5(v); | 
 | 			break; | 
 | 		case 7: | 
 | 			write_gc0_kscratch6(v); | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_CTL: | 
 | 		ret = kvm_mips_set_count_ctl(vcpu, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_RESUME: | 
 | 		ret = kvm_mips_set_count_resume(vcpu, v); | 
 | 		break; | 
 | 	case KVM_REG_MIPS_COUNT_HZ: | 
 | 		ret = kvm_mips_set_count_hz(vcpu, v); | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache) | 
 | static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long guestid = guestid_cache(cpu); | 
 |  | 
 | 	if (!(++guestid & GUESTID_MASK)) { | 
 | 		if (cpu_has_vtag_icache) | 
 | 			flush_icache_all(); | 
 |  | 
 | 		if (!guestid)		/* fix version if needed */ | 
 | 			guestid = GUESTID_FIRST_VERSION; | 
 |  | 
 | 		++guestid;		/* guestid 0 reserved for root */ | 
 |  | 
 | 		/* start new guestid cycle */ | 
 | 		kvm_vz_local_flush_roottlb_all_guests(); | 
 | 		kvm_vz_local_flush_guesttlb_all(); | 
 | 	} | 
 |  | 
 | 	guestid_cache(cpu) = guestid; | 
 | } | 
 |  | 
 | /* Returns 1 if the guest TLB may be clobbered */ | 
 | static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	int ret = 0; | 
 | 	int i; | 
 |  | 
 | 	if (!kvm_request_pending(vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { | 
 | 		if (cpu_has_guestid) { | 
 | 			/* Drop all GuestIDs for this VCPU */ | 
 | 			for_each_possible_cpu(i) | 
 | 				vcpu->arch.vzguestid[i] = 0; | 
 | 			/* This will clobber guest TLB contents too */ | 
 | 			ret = 1; | 
 | 		} | 
 | 		/* | 
 | 		 * For Root ASID Dealias (RAD) we don't do anything here, but we | 
 | 		 * still need the request to ensure we recheck asid_flush_mask. | 
 | 		 * We can still return 0 as only the root TLB will be affected | 
 | 		 * by a root ASID flush. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int wired = read_gc0_wired(); | 
 | 	struct kvm_mips_tlb *tlbs; | 
 | 	int i; | 
 |  | 
 | 	/* Expand the wired TLB array if necessary */ | 
 | 	wired &= MIPSR6_WIRED_WIRED; | 
 | 	if (wired > vcpu->arch.wired_tlb_limit) { | 
 | 		tlbs = krealloc(vcpu->arch.wired_tlb, wired * | 
 | 				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC); | 
 | 		if (WARN_ON(!tlbs)) { | 
 | 			/* Save whatever we can */ | 
 | 			wired = vcpu->arch.wired_tlb_limit; | 
 | 		} else { | 
 | 			vcpu->arch.wired_tlb = tlbs; | 
 | 			vcpu->arch.wired_tlb_limit = wired; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (wired) | 
 | 		/* Save wired entries from the guest TLB */ | 
 | 		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired); | 
 | 	/* Invalidate any dropped entries since last time */ | 
 | 	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) { | 
 | 		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i); | 
 | 		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0; | 
 | 		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0; | 
 | 		vcpu->arch.wired_tlb[i].tlb_mask = 0; | 
 | 	} | 
 | 	vcpu->arch.wired_tlb_used = wired; | 
 | } | 
 |  | 
 | static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Load wired entries into the guest TLB */ | 
 | 	if (vcpu->arch.wired_tlb) | 
 | 		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0, | 
 | 				     vcpu->arch.wired_tlb_used); | 
 | } | 
 |  | 
 | static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm; | 
 | 	bool migrated; | 
 |  | 
 | 	/* | 
 | 	 * Are we entering guest context on a different CPU to last time? | 
 | 	 * If so, the VCPU's guest TLB state on this CPU may be stale. | 
 | 	 */ | 
 | 	migrated = (vcpu->arch.last_exec_cpu != cpu); | 
 | 	vcpu->arch.last_exec_cpu = cpu; | 
 |  | 
 | 	/* | 
 | 	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and | 
 | 	 * remains set until another vcpu is loaded in.  As a rule GuestRID | 
 | 	 * remains zeroed when in root context unless the kernel is busy | 
 | 	 * manipulating guest tlb entries. | 
 | 	 */ | 
 | 	if (cpu_has_guestid) { | 
 | 		/* | 
 | 		 * Check if our GuestID is of an older version and thus invalid. | 
 | 		 * | 
 | 		 * We also discard the stored GuestID if we've executed on | 
 | 		 * another CPU, as the guest mappings may have changed without | 
 | 		 * hypervisor knowledge. | 
 | 		 */ | 
 | 		if (migrated || | 
 | 		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) & | 
 | 					GUESTID_VERSION_MASK) { | 
 | 			kvm_vz_get_new_guestid(cpu, vcpu); | 
 | 			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu); | 
 | 			trace_kvm_guestid_change(vcpu, | 
 | 						 vcpu->arch.vzguestid[cpu]); | 
 | 		} | 
 |  | 
 | 		/* Restore GuestID */ | 
 | 		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]); | 
 | 	} else { | 
 | 		/* | 
 | 		 * The Guest TLB only stores a single guest's TLB state, so | 
 | 		 * flush it if another VCPU has executed on this CPU. | 
 | 		 * | 
 | 		 * We also flush if we've executed on another CPU, as the guest | 
 | 		 * mappings may have changed without hypervisor knowledge. | 
 | 		 */ | 
 | 		if (migrated || last_exec_vcpu[cpu] != vcpu) | 
 | 			kvm_vz_local_flush_guesttlb_all(); | 
 | 		last_exec_vcpu[cpu] = vcpu; | 
 |  | 
 | 		/* | 
 | 		 * Root ASID dealiases guest GPA mappings in the root TLB. | 
 | 		 * Allocate new root ASID if needed. | 
 | 		 */ | 
 | 		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask) | 
 | 		    || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) & | 
 | 						asid_version_mask(cpu)) | 
 | 			get_new_mmu_context(gpa_mm, cpu); | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	bool migrated, all; | 
 |  | 
 | 	/* | 
 | 	 * Have we migrated to a different CPU? | 
 | 	 * If so, any old guest TLB state may be stale. | 
 | 	 */ | 
 | 	migrated = (vcpu->arch.last_sched_cpu != cpu); | 
 |  | 
 | 	/* | 
 | 	 * Was this the last VCPU to run on this CPU? | 
 | 	 * If not, any old guest state from this VCPU will have been clobbered. | 
 | 	 */ | 
 | 	all = migrated || (last_vcpu[cpu] != vcpu); | 
 | 	last_vcpu[cpu] = vcpu; | 
 |  | 
 | 	/* | 
 | 	 * Restore CP0_Wired unconditionally as we clear it after use, and | 
 | 	 * restore wired guest TLB entries (while in guest context). | 
 | 	 */ | 
 | 	kvm_restore_gc0_wired(cop0); | 
 | 	if (current->flags & PF_VCPU) { | 
 | 		tlbw_use_hazard(); | 
 | 		kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
 | 		kvm_vz_vcpu_load_wired(vcpu); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Restore timer state regardless, as e.g. Cause.TI can change over time | 
 | 	 * if left unmaintained. | 
 | 	 */ | 
 | 	kvm_vz_restore_timer(vcpu); | 
 |  | 
 | 	/* Set MC bit if we want to trace guest mode changes */ | 
 | 	if (kvm_trace_guest_mode_change) | 
 | 		set_c0_guestctl0(MIPS_GCTL0_MC); | 
 | 	else | 
 | 		clear_c0_guestctl0(MIPS_GCTL0_MC); | 
 |  | 
 | 	/* Don't bother restoring registers multiple times unless necessary */ | 
 | 	if (!all) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Restore config registers first, as some implementations restrict | 
 | 	 * writes to other registers when the corresponding feature bits aren't | 
 | 	 * set. For example Status.CU1 cannot be set unless Config1.FP is set. | 
 | 	 */ | 
 | 	kvm_restore_gc0_config(cop0); | 
 | 	if (cpu_guest_has_conf1) | 
 | 		kvm_restore_gc0_config1(cop0); | 
 | 	if (cpu_guest_has_conf2) | 
 | 		kvm_restore_gc0_config2(cop0); | 
 | 	if (cpu_guest_has_conf3) | 
 | 		kvm_restore_gc0_config3(cop0); | 
 | 	if (cpu_guest_has_conf4) | 
 | 		kvm_restore_gc0_config4(cop0); | 
 | 	if (cpu_guest_has_conf5) | 
 | 		kvm_restore_gc0_config5(cop0); | 
 | 	if (cpu_guest_has_conf6) | 
 | 		kvm_restore_gc0_config6(cop0); | 
 | 	if (cpu_guest_has_conf7) | 
 | 		kvm_restore_gc0_config7(cop0); | 
 |  | 
 | 	kvm_restore_gc0_index(cop0); | 
 | 	kvm_restore_gc0_entrylo0(cop0); | 
 | 	kvm_restore_gc0_entrylo1(cop0); | 
 | 	kvm_restore_gc0_context(cop0); | 
 | 	if (cpu_guest_has_contextconfig) | 
 | 		kvm_restore_gc0_contextconfig(cop0); | 
 | #ifdef CONFIG_64BIT | 
 | 	kvm_restore_gc0_xcontext(cop0); | 
 | 	if (cpu_guest_has_contextconfig) | 
 | 		kvm_restore_gc0_xcontextconfig(cop0); | 
 | #endif | 
 | 	kvm_restore_gc0_pagemask(cop0); | 
 | 	kvm_restore_gc0_pagegrain(cop0); | 
 | 	kvm_restore_gc0_hwrena(cop0); | 
 | 	kvm_restore_gc0_badvaddr(cop0); | 
 | 	kvm_restore_gc0_entryhi(cop0); | 
 | 	kvm_restore_gc0_status(cop0); | 
 | 	kvm_restore_gc0_intctl(cop0); | 
 | 	kvm_restore_gc0_epc(cop0); | 
 | 	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0)); | 
 | 	if (cpu_guest_has_userlocal) | 
 | 		kvm_restore_gc0_userlocal(cop0); | 
 |  | 
 | 	kvm_restore_gc0_errorepc(cop0); | 
 |  | 
 | 	/* restore KScratch registers if enabled in guest */ | 
 | 	if (cpu_guest_has_conf4) { | 
 | 		if (cpu_guest_has_kscr(2)) | 
 | 			kvm_restore_gc0_kscratch1(cop0); | 
 | 		if (cpu_guest_has_kscr(3)) | 
 | 			kvm_restore_gc0_kscratch2(cop0); | 
 | 		if (cpu_guest_has_kscr(4)) | 
 | 			kvm_restore_gc0_kscratch3(cop0); | 
 | 		if (cpu_guest_has_kscr(5)) | 
 | 			kvm_restore_gc0_kscratch4(cop0); | 
 | 		if (cpu_guest_has_kscr(6)) | 
 | 			kvm_restore_gc0_kscratch5(cop0); | 
 | 		if (cpu_guest_has_kscr(7)) | 
 | 			kvm_restore_gc0_kscratch6(cop0); | 
 | 	} | 
 |  | 
 | 	if (cpu_guest_has_badinstr) | 
 | 		kvm_restore_gc0_badinstr(cop0); | 
 | 	if (cpu_guest_has_badinstrp) | 
 | 		kvm_restore_gc0_badinstrp(cop0); | 
 |  | 
 | 	if (cpu_guest_has_segments) { | 
 | 		kvm_restore_gc0_segctl0(cop0); | 
 | 		kvm_restore_gc0_segctl1(cop0); | 
 | 		kvm_restore_gc0_segctl2(cop0); | 
 | 	} | 
 |  | 
 | 	/* restore HTW registers */ | 
 | 	if (cpu_guest_has_htw) { | 
 | 		kvm_restore_gc0_pwbase(cop0); | 
 | 		kvm_restore_gc0_pwfield(cop0); | 
 | 		kvm_restore_gc0_pwsize(cop0); | 
 | 		kvm_restore_gc0_pwctl(cop0); | 
 | 	} | 
 |  | 
 | 	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */ | 
 | 	if (cpu_has_guestctl2) | 
 | 		write_c0_guestctl2( | 
 | 			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]); | 
 |  | 
 | 	/* | 
 | 	 * We should clear linked load bit to break interrupted atomics. This | 
 | 	 * prevents a SC on the next VCPU from succeeding by matching a LL on | 
 | 	 * the previous VCPU. | 
 | 	 */ | 
 | 	if (cpu_guest_has_rw_llb) | 
 | 		write_gc0_lladdr(0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 |  | 
 | 	if (current->flags & PF_VCPU) | 
 | 		kvm_vz_vcpu_save_wired(vcpu); | 
 |  | 
 | 	kvm_lose_fpu(vcpu); | 
 |  | 
 | 	kvm_save_gc0_index(cop0); | 
 | 	kvm_save_gc0_entrylo0(cop0); | 
 | 	kvm_save_gc0_entrylo1(cop0); | 
 | 	kvm_save_gc0_context(cop0); | 
 | 	if (cpu_guest_has_contextconfig) | 
 | 		kvm_save_gc0_contextconfig(cop0); | 
 | #ifdef CONFIG_64BIT | 
 | 	kvm_save_gc0_xcontext(cop0); | 
 | 	if (cpu_guest_has_contextconfig) | 
 | 		kvm_save_gc0_xcontextconfig(cop0); | 
 | #endif | 
 | 	kvm_save_gc0_pagemask(cop0); | 
 | 	kvm_save_gc0_pagegrain(cop0); | 
 | 	kvm_save_gc0_wired(cop0); | 
 | 	/* allow wired TLB entries to be overwritten */ | 
 | 	clear_gc0_wired(MIPSR6_WIRED_WIRED); | 
 | 	kvm_save_gc0_hwrena(cop0); | 
 | 	kvm_save_gc0_badvaddr(cop0); | 
 | 	kvm_save_gc0_entryhi(cop0); | 
 | 	kvm_save_gc0_status(cop0); | 
 | 	kvm_save_gc0_intctl(cop0); | 
 | 	kvm_save_gc0_epc(cop0); | 
 | 	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase()); | 
 | 	if (cpu_guest_has_userlocal) | 
 | 		kvm_save_gc0_userlocal(cop0); | 
 |  | 
 | 	/* only save implemented config registers */ | 
 | 	kvm_save_gc0_config(cop0); | 
 | 	if (cpu_guest_has_conf1) | 
 | 		kvm_save_gc0_config1(cop0); | 
 | 	if (cpu_guest_has_conf2) | 
 | 		kvm_save_gc0_config2(cop0); | 
 | 	if (cpu_guest_has_conf3) | 
 | 		kvm_save_gc0_config3(cop0); | 
 | 	if (cpu_guest_has_conf4) | 
 | 		kvm_save_gc0_config4(cop0); | 
 | 	if (cpu_guest_has_conf5) | 
 | 		kvm_save_gc0_config5(cop0); | 
 | 	if (cpu_guest_has_conf6) | 
 | 		kvm_save_gc0_config6(cop0); | 
 | 	if (cpu_guest_has_conf7) | 
 | 		kvm_save_gc0_config7(cop0); | 
 |  | 
 | 	kvm_save_gc0_errorepc(cop0); | 
 |  | 
 | 	/* save KScratch registers if enabled in guest */ | 
 | 	if (cpu_guest_has_conf4) { | 
 | 		if (cpu_guest_has_kscr(2)) | 
 | 			kvm_save_gc0_kscratch1(cop0); | 
 | 		if (cpu_guest_has_kscr(3)) | 
 | 			kvm_save_gc0_kscratch2(cop0); | 
 | 		if (cpu_guest_has_kscr(4)) | 
 | 			kvm_save_gc0_kscratch3(cop0); | 
 | 		if (cpu_guest_has_kscr(5)) | 
 | 			kvm_save_gc0_kscratch4(cop0); | 
 | 		if (cpu_guest_has_kscr(6)) | 
 | 			kvm_save_gc0_kscratch5(cop0); | 
 | 		if (cpu_guest_has_kscr(7)) | 
 | 			kvm_save_gc0_kscratch6(cop0); | 
 | 	} | 
 |  | 
 | 	if (cpu_guest_has_badinstr) | 
 | 		kvm_save_gc0_badinstr(cop0); | 
 | 	if (cpu_guest_has_badinstrp) | 
 | 		kvm_save_gc0_badinstrp(cop0); | 
 |  | 
 | 	if (cpu_guest_has_segments) { | 
 | 		kvm_save_gc0_segctl0(cop0); | 
 | 		kvm_save_gc0_segctl1(cop0); | 
 | 		kvm_save_gc0_segctl2(cop0); | 
 | 	} | 
 |  | 
 | 	/* save HTW registers if enabled in guest */ | 
 | 	if (cpu_guest_has_htw && | 
 | 	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) { | 
 | 		kvm_save_gc0_pwbase(cop0); | 
 | 		kvm_save_gc0_pwfield(cop0); | 
 | 		kvm_save_gc0_pwsize(cop0); | 
 | 		kvm_save_gc0_pwctl(cop0); | 
 | 	} | 
 |  | 
 | 	kvm_vz_save_timer(vcpu); | 
 |  | 
 | 	/* save Root.GuestCtl2 in unused Guest guestctl2 register */ | 
 | 	if (cpu_has_guestctl2) | 
 | 		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = | 
 | 			read_c0_guestctl2(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB. | 
 |  * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries). | 
 |  * | 
 |  * Attempt to resize the guest VTLB by writing guest Config registers. This is | 
 |  * necessary for cores with a shared root/guest TLB to avoid overlap with wired | 
 |  * entries in the root VTLB. | 
 |  * | 
 |  * Returns:	The resulting guest VTLB size. | 
 |  */ | 
 | static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size) | 
 | { | 
 | 	unsigned int config4 = 0, ret = 0, limit; | 
 |  | 
 | 	/* Write MMUSize - 1 into guest Config registers */ | 
 | 	if (cpu_guest_has_conf1) | 
 | 		change_gc0_config1(MIPS_CONF1_TLBS, | 
 | 				   (size - 1) << MIPS_CONF1_TLBS_SHIFT); | 
 | 	if (cpu_guest_has_conf4) { | 
 | 		config4 = read_gc0_config4(); | 
 | 		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == | 
 | 		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) { | 
 | 			config4 &= ~MIPS_CONF4_VTLBSIZEEXT; | 
 | 			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << | 
 | 				MIPS_CONF4_VTLBSIZEEXT_SHIFT; | 
 | 		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) == | 
 | 			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) { | 
 | 			config4 &= ~MIPS_CONF4_MMUSIZEEXT; | 
 | 			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) << | 
 | 				MIPS_CONF4_MMUSIZEEXT_SHIFT; | 
 | 		} | 
 | 		write_gc0_config4(config4); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it | 
 | 	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write | 
 | 	 * not dropped) | 
 | 	 */ | 
 | 	if (cpu_has_mips_r6) { | 
 | 		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >> | 
 | 						MIPSR6_WIRED_LIMIT_SHIFT; | 
 | 		if (size - 1 <= limit) | 
 | 			limit = 0; | 
 | 		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT); | 
 | 	} | 
 |  | 
 | 	/* Read back MMUSize - 1 */ | 
 | 	back_to_back_c0_hazard(); | 
 | 	if (cpu_guest_has_conf1) | 
 | 		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >> | 
 | 						MIPS_CONF1_TLBS_SHIFT; | 
 | 	if (config4) { | 
 | 		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) == | 
 | 		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) | 
 | 			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >> | 
 | 				MIPS_CONF4_VTLBSIZEEXT_SHIFT) << | 
 | 				MIPS_CONF1_TLBS_SIZE; | 
 | 		else if ((config4 & MIPS_CONF4_MMUEXTDEF) == | 
 | 			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) | 
 | 			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >> | 
 | 				MIPS_CONF4_MMUSIZEEXT_SHIFT) << | 
 | 				MIPS_CONF1_TLBS_SIZE; | 
 | 	} | 
 | 	return ret + 1; | 
 | } | 
 |  | 
 | static int kvm_vz_hardware_enable(void) | 
 | { | 
 | 	unsigned int mmu_size, guest_mmu_size, ftlb_size; | 
 | 	u64 guest_cvmctl, cvmvmconfig; | 
 |  | 
 | 	switch (current_cpu_type()) { | 
 | 	case CPU_CAVIUM_OCTEON3: | 
 | 		/* Set up guest timer/perfcount IRQ lines */ | 
 | 		guest_cvmctl = read_gc0_cvmctl(); | 
 | 		guest_cvmctl &= ~CVMCTL_IPTI; | 
 | 		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT; | 
 | 		guest_cvmctl &= ~CVMCTL_IPPCI; | 
 | 		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT; | 
 | 		write_gc0_cvmctl(guest_cvmctl); | 
 |  | 
 | 		cvmvmconfig = read_c0_cvmvmconfig(); | 
 | 		/* No I/O hole translation. */ | 
 | 		cvmvmconfig |= CVMVMCONF_DGHT; | 
 | 		/* Halve the root MMU size */ | 
 | 		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) | 
 | 			    >> CVMVMCONF_MMUSIZEM1_S) + 1; | 
 | 		guest_mmu_size = mmu_size / 2; | 
 | 		mmu_size -= guest_mmu_size; | 
 | 		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; | 
 | 		cvmvmconfig |= mmu_size - 1; | 
 | 		write_c0_cvmvmconfig(cvmvmconfig); | 
 |  | 
 | 		/* Update our records */ | 
 | 		current_cpu_data.tlbsize = mmu_size; | 
 | 		current_cpu_data.tlbsizevtlb = mmu_size; | 
 | 		current_cpu_data.guest.tlbsize = guest_mmu_size; | 
 |  | 
 | 		/* Flush moved entries in new (guest) context */ | 
 | 		kvm_vz_local_flush_guesttlb_all(); | 
 | 		break; | 
 | 	default: | 
 | 		/* | 
 | 		 * ImgTec cores tend to use a shared root/guest TLB. To avoid | 
 | 		 * overlap of root wired and guest entries, the guest TLB may | 
 | 		 * need resizing. | 
 | 		 */ | 
 | 		mmu_size = current_cpu_data.tlbsizevtlb; | 
 | 		ftlb_size = current_cpu_data.tlbsize - mmu_size; | 
 |  | 
 | 		/* Try switching to maximum guest VTLB size for flush */ | 
 | 		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size); | 
 | 		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; | 
 | 		kvm_vz_local_flush_guesttlb_all(); | 
 |  | 
 | 		/* | 
 | 		 * Reduce to make space for root wired entries and at least 2 | 
 | 		 * root non-wired entries. This does assume that long-term wired | 
 | 		 * entries won't be added later. | 
 | 		 */ | 
 | 		guest_mmu_size = mmu_size - num_wired_entries() - 2; | 
 | 		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size); | 
 | 		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size; | 
 |  | 
 | 		/* | 
 | 		 * Write the VTLB size, but if another CPU has already written, | 
 | 		 * check it matches or we won't provide a consistent view to the | 
 | 		 * guest. If this ever happens it suggests an asymmetric number | 
 | 		 * of wired entries. | 
 | 		 */ | 
 | 		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) && | 
 | 		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size, | 
 | 			 "Available guest VTLB size mismatch")) | 
 | 			return -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable virtualization features granting guest direct control of | 
 | 	 * certain features: | 
 | 	 * CP0=1:	Guest coprocessor 0 context. | 
 | 	 * AT=Guest:	Guest MMU. | 
 | 	 * CG=1:	Hit (virtual address) CACHE operations (optional). | 
 | 	 * CF=1:	Guest Config registers. | 
 | 	 * CGI=1:	Indexed flush CACHE operations (optional). | 
 | 	 */ | 
 | 	write_c0_guestctl0(MIPS_GCTL0_CP0 | | 
 | 			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) | | 
 | 			   MIPS_GCTL0_CG | MIPS_GCTL0_CF); | 
 | 	if (cpu_has_guestctl0ext) | 
 | 		set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI); | 
 |  | 
 | 	if (cpu_has_guestid) { | 
 | 		write_c0_guestctl1(0); | 
 | 		kvm_vz_local_flush_roottlb_all_guests(); | 
 |  | 
 | 		GUESTID_MASK = current_cpu_data.guestid_mask; | 
 | 		GUESTID_FIRST_VERSION = GUESTID_MASK + 1; | 
 | 		GUESTID_VERSION_MASK = ~GUESTID_MASK; | 
 |  | 
 | 		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION; | 
 | 	} | 
 |  | 
 | 	/* clear any pending injected virtual guest interrupts */ | 
 | 	if (cpu_has_guestctl2) | 
 | 		clear_c0_guestctl2(0x3f << 10); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vz_hardware_disable(void) | 
 | { | 
 | 	u64 cvmvmconfig; | 
 | 	unsigned int mmu_size; | 
 |  | 
 | 	/* Flush any remaining guest TLB entries */ | 
 | 	kvm_vz_local_flush_guesttlb_all(); | 
 |  | 
 | 	switch (current_cpu_type()) { | 
 | 	case CPU_CAVIUM_OCTEON3: | 
 | 		/* | 
 | 		 * Allocate whole TLB for root. Existing guest TLB entries will | 
 | 		 * change ownership to the root TLB. We should be safe though as | 
 | 		 * they've already been flushed above while in guest TLB. | 
 | 		 */ | 
 | 		cvmvmconfig = read_c0_cvmvmconfig(); | 
 | 		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1) | 
 | 			    >> CVMVMCONF_MMUSIZEM1_S) + 1; | 
 | 		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1; | 
 | 		cvmvmconfig |= mmu_size - 1; | 
 | 		write_c0_cvmvmconfig(cvmvmconfig); | 
 |  | 
 | 		/* Update our records */ | 
 | 		current_cpu_data.tlbsize = mmu_size; | 
 | 		current_cpu_data.tlbsizevtlb = mmu_size; | 
 | 		current_cpu_data.guest.tlbsize = 0; | 
 |  | 
 | 		/* Flush moved entries in new (root) context */ | 
 | 		local_flush_tlb_all(); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (cpu_has_guestid) { | 
 | 		write_c0_guestctl1(0); | 
 | 		kvm_vz_local_flush_roottlb_all_guests(); | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_vz_check_extension(struct kvm *kvm, long ext) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	switch (ext) { | 
 | 	case KVM_CAP_MIPS_VZ: | 
 | 		/* we wouldn't be here unless cpu_has_vz */ | 
 | 		r = 1; | 
 | 		break; | 
 | #ifdef CONFIG_64BIT | 
 | 	case KVM_CAP_MIPS_64BIT: | 
 | 		/* We support 64-bit registers/operations and addresses */ | 
 | 		r = 2; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		vcpu->arch.vzguestid[i] = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * If the VCPU is freed and reused as another VCPU, we don't want the | 
 | 	 * matching pointer wrongly hanging around in last_vcpu[] or | 
 | 	 * last_exec_vcpu[]. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (last_vcpu[cpu] == vcpu) | 
 | 			last_vcpu[cpu] = NULL; | 
 | 		if (last_exec_vcpu[cpu] == vcpu) | 
 | 			last_exec_vcpu[cpu] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct mips_coproc *cop0 = vcpu->arch.cop0; | 
 | 	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */ | 
 |  | 
 | 	/* | 
 | 	 * Start off the timer at the same frequency as the host timer, but the | 
 | 	 * soft timer doesn't handle frequencies greater than 1GHz yet. | 
 | 	 */ | 
 | 	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC) | 
 | 		count_hz = mips_hpt_frequency; | 
 | 	kvm_mips_init_count(vcpu, count_hz); | 
 |  | 
 | 	/* | 
 | 	 * Initialize guest register state to valid architectural reset state. | 
 | 	 */ | 
 |  | 
 | 	/* PageGrain */ | 
 | 	if (cpu_has_mips_r6) | 
 | 		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC); | 
 | 	/* Wired */ | 
 | 	if (cpu_has_mips_r6) | 
 | 		kvm_write_sw_gc0_wired(cop0, | 
 | 				       read_gc0_wired() & MIPSR6_WIRED_LIMIT); | 
 | 	/* Status */ | 
 | 	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL); | 
 | 	if (cpu_has_mips_r6) | 
 | 		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status()); | 
 | 	/* IntCtl */ | 
 | 	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() & | 
 | 				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI)); | 
 | 	/* PRId */ | 
 | 	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id); | 
 | 	/* EBase */ | 
 | 	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id); | 
 | 	/* Config */ | 
 | 	kvm_save_gc0_config(cop0); | 
 | 	/* architecturally writable (e.g. from guest) */ | 
 | 	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK, | 
 | 				 _page_cachable_default >> _CACHE_SHIFT); | 
 | 	/* architecturally read only, but maybe writable from root */ | 
 | 	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config()); | 
 | 	if (cpu_guest_has_conf1) { | 
 | 		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M); | 
 | 		/* Config1 */ | 
 | 		kvm_save_gc0_config1(cop0); | 
 | 		/* architecturally read only, but maybe writable from root */ | 
 | 		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	| | 
 | 					       MIPS_CONF1_MD	| | 
 | 					       MIPS_CONF1_PC	| | 
 | 					       MIPS_CONF1_WR	| | 
 | 					       MIPS_CONF1_CA	| | 
 | 					       MIPS_CONF1_FP); | 
 | 	} | 
 | 	if (cpu_guest_has_conf2) { | 
 | 		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M); | 
 | 		/* Config2 */ | 
 | 		kvm_save_gc0_config2(cop0); | 
 | 	} | 
 | 	if (cpu_guest_has_conf3) { | 
 | 		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M); | 
 | 		/* Config3 */ | 
 | 		kvm_save_gc0_config3(cop0); | 
 | 		/* architecturally writable (e.g. from guest) */ | 
 | 		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE); | 
 | 		/* architecturally read only, but maybe writable from root */ | 
 | 		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	| | 
 | 					       MIPS_CONF3_BPG	| | 
 | 					       MIPS_CONF3_ULRI	| | 
 | 					       MIPS_CONF3_DSP	| | 
 | 					       MIPS_CONF3_CTXTC	| | 
 | 					       MIPS_CONF3_ITL	| | 
 | 					       MIPS_CONF3_LPA	| | 
 | 					       MIPS_CONF3_VEIC	| | 
 | 					       MIPS_CONF3_VINT	| | 
 | 					       MIPS_CONF3_SP	| | 
 | 					       MIPS_CONF3_CDMM	| | 
 | 					       MIPS_CONF3_MT	| | 
 | 					       MIPS_CONF3_SM	| | 
 | 					       MIPS_CONF3_TL); | 
 | 	} | 
 | 	if (cpu_guest_has_conf4) { | 
 | 		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M); | 
 | 		/* Config4 */ | 
 | 		kvm_save_gc0_config4(cop0); | 
 | 	} | 
 | 	if (cpu_guest_has_conf5) { | 
 | 		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M); | 
 | 		/* Config5 */ | 
 | 		kvm_save_gc0_config5(cop0); | 
 | 		/* architecturally writable (e.g. from guest) */ | 
 | 		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	| | 
 | 					       MIPS_CONF5_CV	| | 
 | 					       MIPS_CONF5_MSAEN	| | 
 | 					       MIPS_CONF5_UFE	| | 
 | 					       MIPS_CONF5_FRE	| | 
 | 					       MIPS_CONF5_SBRI	| | 
 | 					       MIPS_CONF5_UFR); | 
 | 		/* architecturally read only, but maybe writable from root */ | 
 | 		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP); | 
 | 	} | 
 |  | 
 | 	if (cpu_guest_has_contextconfig) { | 
 | 		/* ContextConfig */ | 
 | 		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0); | 
 | #ifdef CONFIG_64BIT | 
 | 		/* XContextConfig */ | 
 | 		/* bits SEGBITS-13+3:4 set */ | 
 | 		kvm_write_sw_gc0_xcontextconfig(cop0, | 
 | 					((1ull << (cpu_vmbits - 13)) - 1) << 4); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* Implementation dependent, use the legacy layout */ | 
 | 	if (cpu_guest_has_segments) { | 
 | 		/* SegCtl0, SegCtl1, SegCtl2 */ | 
 | 		kvm_write_sw_gc0_segctl0(cop0, 0x00200010); | 
 | 		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 | | 
 | 				(_page_cachable_default >> _CACHE_SHIFT) << | 
 | 						(16 + MIPS_SEGCFG_C_SHIFT)); | 
 | 		kvm_write_sw_gc0_segctl2(cop0, 0x00380438); | 
 | 	} | 
 |  | 
 | 	/* reset HTW registers */ | 
 | 	if (cpu_guest_has_htw && cpu_has_mips_r6) { | 
 | 		/* PWField */ | 
 | 		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302); | 
 | 		/* PWSize */ | 
 | 		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT); | 
 | 	} | 
 |  | 
 | 	/* start with no pending virtual guest interrupts */ | 
 | 	if (cpu_has_guestctl2) | 
 | 		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0; | 
 |  | 
 | 	/* Put PC at reset vector */ | 
 | 	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vz_flush_shadow_all(struct kvm *kvm) | 
 | { | 
 | 	if (cpu_has_guestid) { | 
 | 		/* Flush GuestID for each VCPU individually */ | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 | 	} else { | 
 | 		/* | 
 | 		 * For each CPU there is a single GPA ASID used by all VCPUs in | 
 | 		 * the VM, so it doesn't make sense for the VCPUs to handle | 
 | 		 * invalidation of these ASIDs individually. | 
 | 		 * | 
 | 		 * Instead mark all CPUs as needing ASID invalidation in | 
 | 		 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to | 
 | 		 * kick any running VCPUs so they check asid_flush_mask. | 
 | 		 */ | 
 | 		cpumask_setall(&kvm->arch.asid_flush_mask); | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_vz_flush_shadow_memslot(struct kvm *kvm, | 
 | 					const struct kvm_memory_slot *slot) | 
 | { | 
 | 	kvm_vz_flush_shadow_all(kvm); | 
 | } | 
 |  | 
 | static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int preserve_guest_tlb; | 
 |  | 
 | 	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu); | 
 |  | 
 | 	if (preserve_guest_tlb) | 
 | 		kvm_vz_vcpu_save_wired(vcpu); | 
 |  | 
 | 	kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
 |  | 
 | 	if (preserve_guest_tlb) | 
 | 		kvm_vz_vcpu_load_wired(vcpu); | 
 | } | 
 |  | 
 | static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int r; | 
 |  | 
 | 	kvm_vz_acquire_htimer(vcpu); | 
 | 	/* Check if we have any exceptions/interrupts pending */ | 
 | 	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause()); | 
 |  | 
 | 	kvm_vz_check_requests(vcpu, cpu); | 
 | 	kvm_vz_vcpu_load_tlb(vcpu, cpu); | 
 | 	kvm_vz_vcpu_load_wired(vcpu); | 
 |  | 
 | 	r = vcpu->arch.vcpu_run(run, vcpu); | 
 |  | 
 | 	kvm_vz_vcpu_save_wired(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static struct kvm_mips_callbacks kvm_vz_callbacks = { | 
 | 	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable, | 
 | 	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss, | 
 | 	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss, | 
 | 	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss, | 
 | 	.handle_addr_err_st = kvm_trap_vz_no_handler, | 
 | 	.handle_addr_err_ld = kvm_trap_vz_no_handler, | 
 | 	.handle_syscall = kvm_trap_vz_no_handler, | 
 | 	.handle_res_inst = kvm_trap_vz_no_handler, | 
 | 	.handle_break = kvm_trap_vz_no_handler, | 
 | 	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled, | 
 | 	.handle_guest_exit = kvm_trap_vz_handle_guest_exit, | 
 |  | 
 | 	.hardware_enable = kvm_vz_hardware_enable, | 
 | 	.hardware_disable = kvm_vz_hardware_disable, | 
 | 	.check_extension = kvm_vz_check_extension, | 
 | 	.vcpu_init = kvm_vz_vcpu_init, | 
 | 	.vcpu_uninit = kvm_vz_vcpu_uninit, | 
 | 	.vcpu_setup = kvm_vz_vcpu_setup, | 
 | 	.flush_shadow_all = kvm_vz_flush_shadow_all, | 
 | 	.flush_shadow_memslot = kvm_vz_flush_shadow_memslot, | 
 | 	.gva_to_gpa = kvm_vz_gva_to_gpa_cb, | 
 | 	.queue_timer_int = kvm_vz_queue_timer_int_cb, | 
 | 	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb, | 
 | 	.queue_io_int = kvm_vz_queue_io_int_cb, | 
 | 	.dequeue_io_int = kvm_vz_dequeue_io_int_cb, | 
 | 	.irq_deliver = kvm_vz_irq_deliver_cb, | 
 | 	.irq_clear = kvm_vz_irq_clear_cb, | 
 | 	.num_regs = kvm_vz_num_regs, | 
 | 	.copy_reg_indices = kvm_vz_copy_reg_indices, | 
 | 	.get_one_reg = kvm_vz_get_one_reg, | 
 | 	.set_one_reg = kvm_vz_set_one_reg, | 
 | 	.vcpu_load = kvm_vz_vcpu_load, | 
 | 	.vcpu_put = kvm_vz_vcpu_put, | 
 | 	.vcpu_run = kvm_vz_vcpu_run, | 
 | 	.vcpu_reenter = kvm_vz_vcpu_reenter, | 
 | }; | 
 |  | 
 | int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) | 
 | { | 
 | 	if (!cpu_has_vz) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * VZ requires at least 2 KScratch registers, so it should have been | 
 | 	 * possible to allocate pgd_reg. | 
 | 	 */ | 
 | 	if (WARN(pgd_reg == -1, | 
 | 		 "pgd_reg not allocated even though cpu_has_vz\n")) | 
 | 		return -ENODEV; | 
 |  | 
 | 	pr_info("Starting KVM with MIPS VZ extensions\n"); | 
 |  | 
 | 	*install_callbacks = &kvm_vz_callbacks; | 
 | 	return 0; | 
 | } |