| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/writeback.h> | 
 | #include "ctree.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "extent_io.h" | 
 | #include "disk-io.h" | 
 | #include "compression.h" | 
 |  | 
 | static struct kmem_cache *btrfs_ordered_extent_cache; | 
 |  | 
 | static u64 entry_end(struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	if (entry->file_offset + entry->len < entry->file_offset) | 
 | 		return (u64)-1; | 
 | 	return entry->file_offset + entry->len; | 
 | } | 
 |  | 
 | /* returns NULL if the insertion worked, or it returns the node it did find | 
 |  * in the tree | 
 |  */ | 
 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | 
 | 				   struct rb_node *node) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | 
 |  | 
 | 		if (file_offset < entry->file_offset) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (file_offset >= entry_end(entry)) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return parent; | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void ordered_data_tree_panic(struct inode *inode, int errno, | 
 | 					       u64 offset) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	btrfs_panic(fs_info, errno, | 
 | 		    "Inconsistency in ordered tree at offset %llu", offset); | 
 | } | 
 |  | 
 | /* | 
 |  * look for a given offset in the tree, and if it can't be found return the | 
 |  * first lesser offset | 
 |  */ | 
 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | 
 | 				     struct rb_node **prev_ret) | 
 | { | 
 | 	struct rb_node *n = root->rb_node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *test; | 
 | 	struct btrfs_ordered_extent *entry; | 
 | 	struct btrfs_ordered_extent *prev_entry = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
 | 		prev = n; | 
 | 		prev_entry = entry; | 
 |  | 
 | 		if (file_offset < entry->file_offset) | 
 | 			n = n->rb_left; | 
 | 		else if (file_offset >= entry_end(entry)) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return n; | 
 | 	} | 
 | 	if (!prev_ret) | 
 | 		return NULL; | 
 |  | 
 | 	while (prev && file_offset >= entry_end(prev_entry)) { | 
 | 		test = rb_next(prev); | 
 | 		if (!test) | 
 | 			break; | 
 | 		prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 		if (file_offset < entry_end(prev_entry)) | 
 | 			break; | 
 |  | 
 | 		prev = test; | 
 | 	} | 
 | 	if (prev) | 
 | 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 	while (prev && file_offset < entry_end(prev_entry)) { | 
 | 		test = rb_prev(prev); | 
 | 		if (!test) | 
 | 			break; | 
 | 		prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 		prev = test; | 
 | 	} | 
 | 	*prev_ret = prev; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to check if a given offset is inside a given entry | 
 |  */ | 
 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | 
 | { | 
 | 	if (file_offset < entry->file_offset || | 
 | 	    entry->file_offset + entry->len <= file_offset) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, | 
 | 			  u64 len) | 
 | { | 
 | 	if (file_offset + len <= entry->file_offset || | 
 | 	    entry->file_offset + entry->len <= file_offset) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * look find the first ordered struct that has this offset, otherwise | 
 |  * the first one less than this offset | 
 |  */ | 
 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | 
 | 					  u64 file_offset) | 
 | { | 
 | 	struct rb_root *root = &tree->tree; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *ret; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	if (tree->last) { | 
 | 		entry = rb_entry(tree->last, struct btrfs_ordered_extent, | 
 | 				 rb_node); | 
 | 		if (offset_in_entry(entry, file_offset)) | 
 | 			return tree->last; | 
 | 	} | 
 | 	ret = __tree_search(root, file_offset, &prev); | 
 | 	if (!ret) | 
 | 		ret = prev; | 
 | 	if (ret) | 
 | 		tree->last = ret; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* allocate and add a new ordered_extent into the per-inode tree. | 
 |  * file_offset is the logical offset in the file | 
 |  * | 
 |  * start is the disk block number of an extent already reserved in the | 
 |  * extent allocation tree | 
 |  * | 
 |  * len is the length of the extent | 
 |  * | 
 |  * The tree is given a single reference on the ordered extent that was | 
 |  * inserted. | 
 |  */ | 
 | static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
 | 				      u64 start, u64 len, u64 disk_len, | 
 | 				      int type, int dio, int compress_type) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); | 
 | 	if (!entry) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	entry->file_offset = file_offset; | 
 | 	entry->start = start; | 
 | 	entry->len = len; | 
 | 	entry->disk_len = disk_len; | 
 | 	entry->bytes_left = len; | 
 | 	entry->inode = igrab(inode); | 
 | 	entry->compress_type = compress_type; | 
 | 	entry->truncated_len = (u64)-1; | 
 | 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | 
 | 		set_bit(type, &entry->flags); | 
 |  | 
 | 	if (dio) | 
 | 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); | 
 |  | 
 | 	/* one ref for the tree */ | 
 | 	refcount_set(&entry->refs, 1); | 
 | 	init_waitqueue_head(&entry->wait); | 
 | 	INIT_LIST_HEAD(&entry->list); | 
 | 	INIT_LIST_HEAD(&entry->root_extent_list); | 
 | 	INIT_LIST_HEAD(&entry->work_list); | 
 | 	init_completion(&entry->completion); | 
 | 	INIT_LIST_HEAD(&entry->log_list); | 
 | 	INIT_LIST_HEAD(&entry->trans_list); | 
 |  | 
 | 	trace_btrfs_ordered_extent_add(inode, entry); | 
 |  | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	node = tree_insert(&tree->tree, file_offset, | 
 | 			   &entry->rb_node); | 
 | 	if (node) | 
 | 		ordered_data_tree_panic(inode, -EEXIST, file_offset); | 
 | 	spin_unlock_irq(&tree->lock); | 
 |  | 
 | 	spin_lock(&root->ordered_extent_lock); | 
 | 	list_add_tail(&entry->root_extent_list, | 
 | 		      &root->ordered_extents); | 
 | 	root->nr_ordered_extents++; | 
 | 	if (root->nr_ordered_extents == 1) { | 
 | 		spin_lock(&fs_info->ordered_root_lock); | 
 | 		BUG_ON(!list_empty(&root->ordered_root)); | 
 | 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots); | 
 | 		spin_unlock(&fs_info->ordered_root_lock); | 
 | 	} | 
 | 	spin_unlock(&root->ordered_extent_lock); | 
 |  | 
 | 	/* | 
 | 	 * We don't need the count_max_extents here, we can assume that all of | 
 | 	 * that work has been done at higher layers, so this is truly the | 
 | 	 * smallest the extent is going to get. | 
 | 	 */ | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
 | 			     u64 start, u64 len, u64 disk_len, int type) | 
 | { | 
 | 	return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
 | 					  disk_len, type, 0, | 
 | 					  BTRFS_COMPRESS_NONE); | 
 | } | 
 |  | 
 | int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, | 
 | 				 u64 start, u64 len, u64 disk_len, int type) | 
 | { | 
 | 	return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
 | 					  disk_len, type, 1, | 
 | 					  BTRFS_COMPRESS_NONE); | 
 | } | 
 |  | 
 | int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, | 
 | 				      u64 start, u64 len, u64 disk_len, | 
 | 				      int type, int compress_type) | 
 | { | 
 | 	return __btrfs_add_ordered_extent(inode, file_offset, start, len, | 
 | 					  disk_len, type, 0, | 
 | 					  compress_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | 
 |  * when an ordered extent is finished.  If the list covers more than one | 
 |  * ordered extent, it is split across multiples. | 
 |  */ | 
 | void btrfs_add_ordered_sum(struct inode *inode, | 
 | 			   struct btrfs_ordered_extent *entry, | 
 | 			   struct btrfs_ordered_sum *sum) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	list_add_tail(&sum->list, &entry->list); | 
 | 	spin_unlock_irq(&tree->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * this is used to account for finished IO across a given range | 
 |  * of the file.  The IO may span ordered extents.  If | 
 |  * a given ordered_extent is completely done, 1 is returned, otherwise | 
 |  * 0. | 
 |  * | 
 |  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
 |  * to make sure this function only returns 1 once for a given ordered extent. | 
 |  * | 
 |  * file_offset is updated to one byte past the range that is recorded as | 
 |  * complete.  This allows you to walk forward in the file. | 
 |  */ | 
 | int btrfs_dec_test_first_ordered_pending(struct inode *inode, | 
 | 				   struct btrfs_ordered_extent **cached, | 
 | 				   u64 *file_offset, u64 io_size, int uptodate) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 | 	u64 dec_end; | 
 | 	u64 dec_start; | 
 | 	u64 to_dec; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	spin_lock_irqsave(&tree->lock, flags); | 
 | 	node = tree_search(tree, *file_offset); | 
 | 	if (!node) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	if (!offset_in_entry(entry, *file_offset)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dec_start = max(*file_offset, entry->file_offset); | 
 | 	dec_end = min(*file_offset + io_size, entry->file_offset + | 
 | 		      entry->len); | 
 | 	*file_offset = dec_end; | 
 | 	if (dec_start > dec_end) { | 
 | 		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", | 
 | 			   dec_start, dec_end); | 
 | 	} | 
 | 	to_dec = dec_end - dec_start; | 
 | 	if (to_dec > entry->bytes_left) { | 
 | 		btrfs_crit(fs_info, | 
 | 			   "bad ordered accounting left %llu size %llu", | 
 | 			   entry->bytes_left, to_dec); | 
 | 	} | 
 | 	entry->bytes_left -= to_dec; | 
 | 	if (!uptodate) | 
 | 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags); | 
 |  | 
 | 	if (entry->bytes_left == 0) { | 
 | 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
 | 		/* test_and_set_bit implies a barrier */ | 
 | 		cond_wake_up_nomb(&entry->wait); | 
 | 	} else { | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	if (!ret && cached && entry) { | 
 | 		*cached = entry; | 
 | 		refcount_inc(&entry->refs); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tree->lock, flags); | 
 | 	return ret == 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used to account for finished IO across a given range | 
 |  * of the file.  The IO should not span ordered extents.  If | 
 |  * a given ordered_extent is completely done, 1 is returned, otherwise | 
 |  * 0. | 
 |  * | 
 |  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
 |  * to make sure this function only returns 1 once for a given ordered extent. | 
 |  */ | 
 | int btrfs_dec_test_ordered_pending(struct inode *inode, | 
 | 				   struct btrfs_ordered_extent **cached, | 
 | 				   u64 file_offset, u64 io_size, int uptodate) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	spin_lock_irqsave(&tree->lock, flags); | 
 | 	if (cached && *cached) { | 
 | 		entry = *cached; | 
 | 		goto have_entry; | 
 | 	} | 
 |  | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | have_entry: | 
 | 	if (!offset_in_entry(entry, file_offset)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (io_size > entry->bytes_left) { | 
 | 		btrfs_crit(BTRFS_I(inode)->root->fs_info, | 
 | 			   "bad ordered accounting left %llu size %llu", | 
 | 		       entry->bytes_left, io_size); | 
 | 	} | 
 | 	entry->bytes_left -= io_size; | 
 | 	if (!uptodate) | 
 | 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags); | 
 |  | 
 | 	if (entry->bytes_left == 0) { | 
 | 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
 | 		/* test_and_set_bit implies a barrier */ | 
 | 		cond_wake_up_nomb(&entry->wait); | 
 | 	} else { | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	if (!ret && cached && entry) { | 
 | 		*cached = entry; | 
 | 		refcount_inc(&entry->refs); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tree->lock, flags); | 
 | 	return ret == 0; | 
 | } | 
 |  | 
 | /* | 
 |  * used to drop a reference on an ordered extent.  This will free | 
 |  * the extent if the last reference is dropped | 
 |  */ | 
 | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	struct list_head *cur; | 
 | 	struct btrfs_ordered_sum *sum; | 
 |  | 
 | 	trace_btrfs_ordered_extent_put(entry->inode, entry); | 
 |  | 
 | 	if (refcount_dec_and_test(&entry->refs)) { | 
 | 		ASSERT(list_empty(&entry->log_list)); | 
 | 		ASSERT(list_empty(&entry->trans_list)); | 
 | 		ASSERT(list_empty(&entry->root_extent_list)); | 
 | 		ASSERT(RB_EMPTY_NODE(&entry->rb_node)); | 
 | 		if (entry->inode) | 
 | 			btrfs_add_delayed_iput(entry->inode); | 
 | 		while (!list_empty(&entry->list)) { | 
 | 			cur = entry->list.next; | 
 | 			sum = list_entry(cur, struct btrfs_ordered_sum, list); | 
 | 			list_del(&sum->list); | 
 | 			kfree(sum); | 
 | 		} | 
 | 		kmem_cache_free(btrfs_ordered_extent_cache, entry); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * remove an ordered extent from the tree.  No references are dropped | 
 |  * and waiters are woken up. | 
 |  */ | 
 | void btrfs_remove_ordered_extent(struct inode *inode, | 
 | 				 struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode); | 
 | 	struct btrfs_root *root = btrfs_inode->root; | 
 | 	struct rb_node *node; | 
 | 	bool dec_pending_ordered = false; | 
 |  | 
 | 	/* This is paired with btrfs_add_ordered_extent. */ | 
 | 	spin_lock(&btrfs_inode->lock); | 
 | 	btrfs_mod_outstanding_extents(btrfs_inode, -1); | 
 | 	spin_unlock(&btrfs_inode->lock); | 
 | 	if (root != fs_info->tree_root) | 
 | 		btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false); | 
 |  | 
 | 	tree = &btrfs_inode->ordered_tree; | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	node = &entry->rb_node; | 
 | 	rb_erase(node, &tree->tree); | 
 | 	RB_CLEAR_NODE(node); | 
 | 	if (tree->last == node) | 
 | 		tree->last = NULL; | 
 | 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | 
 | 	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) | 
 | 		dec_pending_ordered = true; | 
 | 	spin_unlock_irq(&tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * The current running transaction is waiting on us, we need to let it | 
 | 	 * know that we're complete and wake it up. | 
 | 	 */ | 
 | 	if (dec_pending_ordered) { | 
 | 		struct btrfs_transaction *trans; | 
 |  | 
 | 		/* | 
 | 		 * The checks for trans are just a formality, it should be set, | 
 | 		 * but if it isn't we don't want to deref/assert under the spin | 
 | 		 * lock, so be nice and check if trans is set, but ASSERT() so | 
 | 		 * if it isn't set a developer will notice. | 
 | 		 */ | 
 | 		spin_lock(&fs_info->trans_lock); | 
 | 		trans = fs_info->running_transaction; | 
 | 		if (trans) | 
 | 			refcount_inc(&trans->use_count); | 
 | 		spin_unlock(&fs_info->trans_lock); | 
 |  | 
 | 		ASSERT(trans); | 
 | 		if (trans) { | 
 | 			if (atomic_dec_and_test(&trans->pending_ordered)) | 
 | 				wake_up(&trans->pending_wait); | 
 | 			btrfs_put_transaction(trans); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->ordered_extent_lock); | 
 | 	list_del_init(&entry->root_extent_list); | 
 | 	root->nr_ordered_extents--; | 
 |  | 
 | 	trace_btrfs_ordered_extent_remove(inode, entry); | 
 |  | 
 | 	if (!root->nr_ordered_extents) { | 
 | 		spin_lock(&fs_info->ordered_root_lock); | 
 | 		BUG_ON(list_empty(&root->ordered_root)); | 
 | 		list_del_init(&root->ordered_root); | 
 | 		spin_unlock(&fs_info->ordered_root_lock); | 
 | 	} | 
 | 	spin_unlock(&root->ordered_extent_lock); | 
 | 	wake_up(&entry->wait); | 
 | } | 
 |  | 
 | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work); | 
 | 	btrfs_start_ordered_extent(ordered->inode, ordered, 1); | 
 | 	complete(&ordered->completion); | 
 | } | 
 |  | 
 | /* | 
 |  * wait for all the ordered extents in a root.  This is done when balancing | 
 |  * space between drives. | 
 |  */ | 
 | u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, | 
 | 			       const u64 range_start, const u64 range_len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	LIST_HEAD(splice); | 
 | 	LIST_HEAD(skipped); | 
 | 	LIST_HEAD(works); | 
 | 	struct btrfs_ordered_extent *ordered, *next; | 
 | 	u64 count = 0; | 
 | 	const u64 range_end = range_start + range_len; | 
 |  | 
 | 	mutex_lock(&root->ordered_extent_mutex); | 
 | 	spin_lock(&root->ordered_extent_lock); | 
 | 	list_splice_init(&root->ordered_extents, &splice); | 
 | 	while (!list_empty(&splice) && nr) { | 
 | 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent, | 
 | 					   root_extent_list); | 
 |  | 
 | 		if (range_end <= ordered->start || | 
 | 		    ordered->start + ordered->disk_len <= range_start) { | 
 | 			list_move_tail(&ordered->root_extent_list, &skipped); | 
 | 			cond_resched_lock(&root->ordered_extent_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_move_tail(&ordered->root_extent_list, | 
 | 			       &root->ordered_extents); | 
 | 		refcount_inc(&ordered->refs); | 
 | 		spin_unlock(&root->ordered_extent_lock); | 
 |  | 
 | 		btrfs_init_work(&ordered->flush_work, | 
 | 				btrfs_flush_delalloc_helper, | 
 | 				btrfs_run_ordered_extent_work, NULL, NULL); | 
 | 		list_add_tail(&ordered->work_list, &works); | 
 | 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&root->ordered_extent_lock); | 
 | 		if (nr != U64_MAX) | 
 | 			nr--; | 
 | 		count++; | 
 | 	} | 
 | 	list_splice_tail(&skipped, &root->ordered_extents); | 
 | 	list_splice_tail(&splice, &root->ordered_extents); | 
 | 	spin_unlock(&root->ordered_extent_lock); | 
 |  | 
 | 	list_for_each_entry_safe(ordered, next, &works, work_list) { | 
 | 		list_del_init(&ordered->work_list); | 
 | 		wait_for_completion(&ordered->completion); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	mutex_unlock(&root->ordered_extent_mutex); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, | 
 | 			     const u64 range_start, const u64 range_len) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct list_head splice; | 
 | 	u64 total_done = 0; | 
 | 	u64 done; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	mutex_lock(&fs_info->ordered_operations_mutex); | 
 | 	spin_lock(&fs_info->ordered_root_lock); | 
 | 	list_splice_init(&fs_info->ordered_roots, &splice); | 
 | 	while (!list_empty(&splice) && nr) { | 
 | 		root = list_first_entry(&splice, struct btrfs_root, | 
 | 					ordered_root); | 
 | 		root = btrfs_grab_fs_root(root); | 
 | 		BUG_ON(!root); | 
 | 		list_move_tail(&root->ordered_root, | 
 | 			       &fs_info->ordered_roots); | 
 | 		spin_unlock(&fs_info->ordered_root_lock); | 
 |  | 
 | 		done = btrfs_wait_ordered_extents(root, nr, | 
 | 						  range_start, range_len); | 
 | 		btrfs_put_fs_root(root); | 
 | 		total_done += done; | 
 |  | 
 | 		spin_lock(&fs_info->ordered_root_lock); | 
 | 		if (nr != U64_MAX) { | 
 | 			nr -= done; | 
 | 		} | 
 | 	} | 
 | 	list_splice_tail(&splice, &fs_info->ordered_roots); | 
 | 	spin_unlock(&fs_info->ordered_root_lock); | 
 | 	mutex_unlock(&fs_info->ordered_operations_mutex); | 
 |  | 
 | 	return total_done; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to start IO or wait for a given ordered extent to finish. | 
 |  * | 
 |  * If wait is one, this effectively waits on page writeback for all the pages | 
 |  * in the extent, and it waits on the io completion code to insert | 
 |  * metadata into the btree corresponding to the extent | 
 |  */ | 
 | void btrfs_start_ordered_extent(struct inode *inode, | 
 | 				       struct btrfs_ordered_extent *entry, | 
 | 				       int wait) | 
 | { | 
 | 	u64 start = entry->file_offset; | 
 | 	u64 end = start + entry->len - 1; | 
 |  | 
 | 	trace_btrfs_ordered_extent_start(inode, entry); | 
 |  | 
 | 	/* | 
 | 	 * pages in the range can be dirty, clean or writeback.  We | 
 | 	 * start IO on any dirty ones so the wait doesn't stall waiting | 
 | 	 * for the flusher thread to find them | 
 | 	 */ | 
 | 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) | 
 | 		filemap_fdatawrite_range(inode->i_mapping, start, end); | 
 | 	if (wait) { | 
 | 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | 
 | 						 &entry->flags)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Used to wait on ordered extents across a large range of bytes. | 
 |  */ | 
 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | 
 | { | 
 | 	int ret = 0; | 
 | 	int ret_wb = 0; | 
 | 	u64 end; | 
 | 	u64 orig_end; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 	if (start + len < start) { | 
 | 		orig_end = INT_LIMIT(loff_t); | 
 | 	} else { | 
 | 		orig_end = start + len - 1; | 
 | 		if (orig_end > INT_LIMIT(loff_t)) | 
 | 			orig_end = INT_LIMIT(loff_t); | 
 | 	} | 
 |  | 
 | 	/* start IO across the range first to instantiate any delalloc | 
 | 	 * extents | 
 | 	 */ | 
 | 	ret = btrfs_fdatawrite_range(inode, start, orig_end); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If we have a writeback error don't return immediately. Wait first | 
 | 	 * for any ordered extents that haven't completed yet. This is to make | 
 | 	 * sure no one can dirty the same page ranges and call writepages() | 
 | 	 * before the ordered extents complete - to avoid failures (-EEXIST) | 
 | 	 * when adding the new ordered extents to the ordered tree. | 
 | 	 */ | 
 | 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); | 
 |  | 
 | 	end = orig_end; | 
 | 	while (1) { | 
 | 		ordered = btrfs_lookup_first_ordered_extent(inode, end); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		if (ordered->file_offset > orig_end) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			break; | 
 | 		} | 
 | 		if (ordered->file_offset + ordered->len <= start) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			break; | 
 | 		} | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		end = ordered->file_offset; | 
 | 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) | 
 | 			ret = -EIO; | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		if (ret || end == 0 || end == start) | 
 | 			break; | 
 | 		end--; | 
 | 	} | 
 | 	return ret_wb ? ret_wb : ret; | 
 | } | 
 |  | 
 | /* | 
 |  * find an ordered extent corresponding to file_offset.  return NULL if | 
 |  * nothing is found, otherwise take a reference on the extent and return it | 
 |  */ | 
 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | 
 | 							 u64 file_offset) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	if (!offset_in_entry(entry, file_offset)) | 
 | 		entry = NULL; | 
 | 	if (entry) | 
 | 		refcount_inc(&entry->refs); | 
 | out: | 
 | 	spin_unlock_irq(&tree->lock); | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* Since the DIO code tries to lock a wide area we need to look for any ordered | 
 |  * extents that exist in the range, rather than just the start of the range. | 
 |  */ | 
 | struct btrfs_ordered_extent *btrfs_lookup_ordered_range( | 
 | 		struct btrfs_inode *inode, u64 file_offset, u64 len) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 |  | 
 | 	tree = &inode->ordered_tree; | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) { | 
 | 		node = tree_search(tree, file_offset + len); | 
 | 		if (!node) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 		if (range_overlaps(entry, file_offset, len)) | 
 | 			break; | 
 |  | 
 | 		if (entry->file_offset >= file_offset + len) { | 
 | 			entry = NULL; | 
 | 			break; | 
 | 		} | 
 | 		entry = NULL; | 
 | 		node = rb_next(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 	} | 
 | out: | 
 | 	if (entry) | 
 | 		refcount_inc(&entry->refs); | 
 | 	spin_unlock_irq(&tree->lock); | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * lookup and return any extent before 'file_offset'.  NULL is returned | 
 |  * if none is found | 
 |  */ | 
 | struct btrfs_ordered_extent * | 
 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	refcount_inc(&entry->refs); | 
 | out: | 
 | 	spin_unlock_irq(&tree->lock); | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * After an extent is done, call this to conditionally update the on disk | 
 |  * i_size.  i_size is updated to cover any fully written part of the file. | 
 |  */ | 
 | int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, | 
 | 				struct btrfs_ordered_extent *ordered) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	u64 disk_i_size; | 
 | 	u64 new_i_size; | 
 | 	u64 i_size = i_size_read(inode); | 
 | 	struct rb_node *node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct btrfs_ordered_extent *test; | 
 | 	int ret = 1; | 
 | 	u64 orig_offset = offset; | 
 |  | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	if (ordered) { | 
 | 		offset = entry_end(ordered); | 
 | 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) | 
 | 			offset = min(offset, | 
 | 				     ordered->file_offset + | 
 | 				     ordered->truncated_len); | 
 | 	} else { | 
 | 		offset = ALIGN(offset, btrfs_inode_sectorsize(inode)); | 
 | 	} | 
 | 	disk_i_size = BTRFS_I(inode)->disk_i_size; | 
 |  | 
 | 	/* | 
 | 	 * truncate file. | 
 | 	 * If ordered is not NULL, then this is called from endio and | 
 | 	 * disk_i_size will be updated by either truncate itself or any | 
 | 	 * in-flight IOs which are inside the disk_i_size. | 
 | 	 * | 
 | 	 * Because btrfs_setsize() may set i_size with disk_i_size if truncate | 
 | 	 * fails somehow, we need to make sure we have a precise disk_i_size by | 
 | 	 * updating it as usual. | 
 | 	 * | 
 | 	 */ | 
 | 	if (!ordered && disk_i_size > i_size) { | 
 | 		BTRFS_I(inode)->disk_i_size = orig_offset; | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if the disk i_size is already at the inode->i_size, or | 
 | 	 * this ordered extent is inside the disk i_size, we're done | 
 | 	 */ | 
 | 	if (disk_i_size == i_size) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We still need to update disk_i_size if outstanding_isize is greater | 
 | 	 * than disk_i_size. | 
 | 	 */ | 
 | 	if (offset <= disk_i_size && | 
 | 	    (!ordered || ordered->outstanding_isize <= disk_i_size)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * walk backward from this ordered extent to disk_i_size. | 
 | 	 * if we find an ordered extent then we can't update disk i_size | 
 | 	 * yet | 
 | 	 */ | 
 | 	if (ordered) { | 
 | 		node = rb_prev(&ordered->rb_node); | 
 | 	} else { | 
 | 		prev = tree_search(tree, offset); | 
 | 		/* | 
 | 		 * we insert file extents without involving ordered struct, | 
 | 		 * so there should be no ordered struct cover this offset | 
 | 		 */ | 
 | 		if (prev) { | 
 | 			test = rb_entry(prev, struct btrfs_ordered_extent, | 
 | 					rb_node); | 
 | 			BUG_ON(offset_in_entry(test, offset)); | 
 | 		} | 
 | 		node = prev; | 
 | 	} | 
 | 	for (; node; node = rb_prev(node)) { | 
 | 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 |  | 
 | 		/* We treat this entry as if it doesn't exist */ | 
 | 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) | 
 | 			continue; | 
 |  | 
 | 		if (entry_end(test) <= disk_i_size) | 
 | 			break; | 
 | 		if (test->file_offset >= i_size) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * We don't update disk_i_size now, so record this undealt | 
 | 		 * i_size. Or we will not know the real i_size. | 
 | 		 */ | 
 | 		if (test->outstanding_isize < offset) | 
 | 			test->outstanding_isize = offset; | 
 | 		if (ordered && | 
 | 		    ordered->outstanding_isize > test->outstanding_isize) | 
 | 			test->outstanding_isize = ordered->outstanding_isize; | 
 | 		goto out; | 
 | 	} | 
 | 	new_i_size = min_t(u64, offset, i_size); | 
 |  | 
 | 	/* | 
 | 	 * Some ordered extents may completed before the current one, and | 
 | 	 * we hold the real i_size in ->outstanding_isize. | 
 | 	 */ | 
 | 	if (ordered && ordered->outstanding_isize > new_i_size) | 
 | 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size); | 
 | 	BTRFS_I(inode)->disk_i_size = new_i_size; | 
 | 	ret = 0; | 
 | out: | 
 | 	/* | 
 | 	 * We need to do this because we can't remove ordered extents until | 
 | 	 * after the i_disk_size has been updated and then the inode has been | 
 | 	 * updated to reflect the change, so we need to tell anybody who finds | 
 | 	 * this ordered extent that we've already done all the real work, we | 
 | 	 * just haven't completed all the other work. | 
 | 	 */ | 
 | 	if (ordered) | 
 | 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); | 
 | 	spin_unlock_irq(&tree->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * search the ordered extents for one corresponding to 'offset' and | 
 |  * try to find a checksum.  This is used because we allow pages to | 
 |  * be reclaimed before their checksum is actually put into the btree | 
 |  */ | 
 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | 
 | 			   u32 *sum, int len) | 
 | { | 
 | 	struct btrfs_ordered_sum *ordered_sum; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	unsigned long num_sectors; | 
 | 	unsigned long i; | 
 | 	u32 sectorsize = btrfs_inode_sectorsize(inode); | 
 | 	int index = 0; | 
 |  | 
 | 	ordered = btrfs_lookup_ordered_extent(inode, offset); | 
 | 	if (!ordered) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&tree->lock); | 
 | 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { | 
 | 		if (disk_bytenr >= ordered_sum->bytenr && | 
 | 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { | 
 | 			i = (disk_bytenr - ordered_sum->bytenr) >> | 
 | 			    inode->i_sb->s_blocksize_bits; | 
 | 			num_sectors = ordered_sum->len >> | 
 | 				      inode->i_sb->s_blocksize_bits; | 
 | 			num_sectors = min_t(int, len - index, num_sectors - i); | 
 | 			memcpy(sum + index, ordered_sum->sums + i, | 
 | 			       num_sectors); | 
 |  | 
 | 			index += (int)num_sectors; | 
 | 			if (index == len) | 
 | 				goto out; | 
 | 			disk_bytenr += num_sectors * sectorsize; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irq(&tree->lock); | 
 | 	btrfs_put_ordered_extent(ordered); | 
 | 	return index; | 
 | } | 
 |  | 
 | int __init ordered_data_init(void) | 
 | { | 
 | 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", | 
 | 				     sizeof(struct btrfs_ordered_extent), 0, | 
 | 				     SLAB_MEM_SPREAD, | 
 | 				     NULL); | 
 | 	if (!btrfs_ordered_extent_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold ordered_data_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(btrfs_ordered_extent_cache); | 
 | } |