| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Key setup facility for FS encryption support. | 
 |  * | 
 |  * Copyright (C) 2015, Google, Inc. | 
 |  * | 
 |  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. | 
 |  * Heavily modified since then. | 
 |  */ | 
 |  | 
 | #include <crypto/skcipher.h> | 
 | #include <linux/key.h> | 
 |  | 
 | #include "fscrypt_private.h" | 
 |  | 
 | struct fscrypt_mode fscrypt_modes[] = { | 
 | 	[FSCRYPT_MODE_AES_256_XTS] = { | 
 | 		.friendly_name = "AES-256-XTS", | 
 | 		.cipher_str = "xts(aes)", | 
 | 		.keysize = 64, | 
 | 		.ivsize = 16, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_256_CTS] = { | 
 | 		.friendly_name = "AES-256-CTS-CBC", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 32, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_128_CBC] = { | 
 | 		.friendly_name = "AES-128-CBC-ESSIV", | 
 | 		.cipher_str = "essiv(cbc(aes),sha256)", | 
 | 		.keysize = 16, | 
 | 		.ivsize = 16, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_AES_128_CTS] = { | 
 | 		.friendly_name = "AES-128-CTS-CBC", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 16, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FSCRYPT_MODE_ADIANTUM] = { | 
 | 		.friendly_name = "Adiantum", | 
 | 		.cipher_str = "adiantum(xchacha12,aes)", | 
 | 		.keysize = 32, | 
 | 		.ivsize = 32, | 
 | 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct fscrypt_mode * | 
 | select_encryption_mode(const union fscrypt_policy *policy, | 
 | 		       const struct inode *inode) | 
 | { | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; | 
 |  | 
 | 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", | 
 | 		  inode->i_ino, (inode->i_mode & S_IFMT)); | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | /* Create a symmetric cipher object for the given encryption mode and key */ | 
 | static struct crypto_skcipher * | 
 | fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, | 
 | 			  const struct inode *inode) | 
 | { | 
 | 	struct crypto_skcipher *tfm; | 
 | 	int err; | 
 |  | 
 | 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); | 
 | 	if (IS_ERR(tfm)) { | 
 | 		if (PTR_ERR(tfm) == -ENOENT) { | 
 | 			fscrypt_warn(inode, | 
 | 				     "Missing crypto API support for %s (API name: \"%s\")", | 
 | 				     mode->friendly_name, mode->cipher_str); | 
 | 			return ERR_PTR(-ENOPKG); | 
 | 		} | 
 | 		fscrypt_err(inode, "Error allocating '%s' transform: %ld", | 
 | 			    mode->cipher_str, PTR_ERR(tfm)); | 
 | 		return tfm; | 
 | 	} | 
 | 	if (!xchg(&mode->logged_impl_name, 1)) { | 
 | 		/* | 
 | 		 * fscrypt performance can vary greatly depending on which | 
 | 		 * crypto algorithm implementation is used.  Help people debug | 
 | 		 * performance problems by logging the ->cra_driver_name the | 
 | 		 * first time a mode is used. | 
 | 		 */ | 
 | 		pr_info("fscrypt: %s using implementation \"%s\"\n", | 
 | 			mode->friendly_name, | 
 | 			crypto_skcipher_alg(tfm)->base.cra_driver_name); | 
 | 	} | 
 | 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
 | 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); | 
 | 	if (err) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	return tfm; | 
 |  | 
 | err_free_tfm: | 
 | 	crypto_free_skcipher(tfm); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the | 
 |  * raw key, encryption mode, and flag indicating which encryption implementation | 
 |  * (fs-layer or blk-crypto) will be used. | 
 |  */ | 
 | int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, | 
 | 			const u8 *raw_key, unsigned int raw_key_size, | 
 | 			const struct fscrypt_info *ci) | 
 | { | 
 | 	struct crypto_skcipher *tfm; | 
 |  | 
 | 	if (fscrypt_using_inline_encryption(ci)) | 
 | 		return fscrypt_prepare_inline_crypt_key(prep_key, | 
 | 				raw_key, raw_key_size, ci); | 
 |  | 
 | 	if (WARN_ON(raw_key_size != ci->ci_mode->keysize)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); | 
 | 	if (IS_ERR(tfm)) | 
 | 		return PTR_ERR(tfm); | 
 | 	/* | 
 | 	 * Pairs with READ_ONCE() in fscrypt_is_key_prepared().  (Only matters | 
 | 	 * for the per-mode keys, which are shared by multiple inodes.) | 
 | 	 */ | 
 | 	smp_store_release(&prep_key->tfm, tfm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Destroy a crypto transform object and/or blk-crypto key. */ | 
 | void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) | 
 | { | 
 | 	crypto_free_skcipher(prep_key->tfm); | 
 | 	fscrypt_destroy_inline_crypt_key(prep_key); | 
 | } | 
 |  | 
 | /* Given the per-file key, set up the file's crypto transform object */ | 
 | int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key) | 
 | { | 
 | 	ci->ci_owns_key = true; | 
 | 	return fscrypt_prepare_key(&ci->ci_key, derived_key, | 
 | 				   ci->ci_mode->keysize, ci); | 
 | } | 
 |  | 
 | static int setup_per_mode_key(struct fscrypt_info *ci, | 
 | 			      struct fscrypt_master_key *mk, | 
 | 			      struct fscrypt_prepared_key *keys, | 
 | 			      u8 hkdf_context, bool include_fs_uuid) | 
 | { | 
 | 	static DEFINE_MUTEX(mode_key_setup_mutex); | 
 | 	const struct inode *inode = ci->ci_inode; | 
 | 	const struct super_block *sb = inode->i_sb; | 
 | 	struct fscrypt_mode *mode = ci->ci_mode; | 
 | 	const u8 mode_num = mode - fscrypt_modes; | 
 | 	struct fscrypt_prepared_key *prep_key; | 
 | 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; | 
 | 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; | 
 | 	unsigned int hkdf_infolen = 0; | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	prep_key = &keys[mode_num]; | 
 | 	if (fscrypt_is_key_prepared(prep_key, ci)) { | 
 | 		ci->ci_key = *prep_key; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&mode_key_setup_mutex); | 
 |  | 
 | 	if (fscrypt_is_key_prepared(prep_key, ci)) | 
 | 		goto done_unlock; | 
 |  | 
 | 	if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) { | 
 | 		int i; | 
 |  | 
 | 		if (!fscrypt_using_inline_encryption(ci)) { | 
 | 			fscrypt_warn(ci->ci_inode, | 
 | 				     "Hardware-wrapped keys require inline encryption (-o inlinecrypt)"); | 
 | 			err = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) { | 
 | 			if (fscrypt_is_key_prepared(&keys[i], ci)) { | 
 | 				fscrypt_warn(ci->ci_inode, | 
 | 					     "Each hardware-wrapped key can only be used with one encryption mode"); | 
 | 				err = -EINVAL; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 | 		err = fscrypt_prepare_key(prep_key, mk->mk_secret.raw, | 
 | 					  mk->mk_secret.size, ci); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} else { | 
 | 		BUILD_BUG_ON(sizeof(mode_num) != 1); | 
 | 		BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); | 
 | 		BUILD_BUG_ON(sizeof(hkdf_info) != 17); | 
 | 		hkdf_info[hkdf_infolen++] = mode_num; | 
 | 		if (include_fs_uuid) { | 
 | 			memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, | 
 | 				   sizeof(sb->s_uuid)); | 
 | 			hkdf_infolen += sizeof(sb->s_uuid); | 
 | 		} | 
 | 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, | 
 | 					  hkdf_context, hkdf_info, hkdf_infolen, | 
 | 					  mode_key, mode->keysize); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 		err = fscrypt_prepare_key(prep_key, mode_key, mode->keysize, | 
 | 					  ci); | 
 | 		memzero_explicit(mode_key, mode->keysize); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} | 
 | done_unlock: | 
 | 	ci->ci_key = *prep_key; | 
 | 	err = 0; | 
 | out_unlock: | 
 | 	mutex_unlock(&mode_key_setup_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, | 
 | 				     struct fscrypt_master_key *mk) | 
 | { | 
 | 	u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; | 
 | 	int err; | 
 |  | 
 | 	if (mk->mk_secret.is_hw_wrapped && | 
 | 	    !(ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)) { | 
 | 		fscrypt_warn(ci->ci_inode, | 
 | 			     "Hardware-wrapped keys are only supported with IV_INO_LBLK_64 policies"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { | 
 | 		/* | 
 | 		 * DIRECT_KEY: instead of deriving per-file keys, the per-file | 
 | 		 * nonce will be included in all the IVs.  But unlike v1 | 
 | 		 * policies, for v2 policies in this case we don't encrypt with | 
 | 		 * the master key directly but rather derive a per-mode key. | 
 | 		 * This ensures that the master key is consistently used only | 
 | 		 * for HKDF, avoiding key reuse issues. | 
 | 		 */ | 
 | 		if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) { | 
 | 			fscrypt_warn(ci->ci_inode, | 
 | 				     "Direct key flag not allowed with %s", | 
 | 				     ci->ci_mode->friendly_name); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		return setup_per_mode_key(ci, mk, mk->mk_direct_keys, | 
 | 					  HKDF_CONTEXT_DIRECT_KEY, false); | 
 | 	} else if (ci->ci_policy.v2.flags & | 
 | 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { | 
 | 		/* | 
 | 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key, | 
 | 		 * mode_num, filesystem_uuid), and inode number is included in | 
 | 		 * the IVs.  This format is optimized for use with inline | 
 | 		 * encryption hardware compliant with the UFS or eMMC standards. | 
 | 		 */ | 
 | 		return setup_per_mode_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, | 
 | 					  HKDF_CONTEXT_IV_INO_LBLK_64_KEY, | 
 | 					  true); | 
 | 	} | 
 |  | 
 | 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, | 
 | 				  HKDF_CONTEXT_PER_FILE_KEY, | 
 | 				  ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE, | 
 | 				  derived_key, ci->ci_mode->keysize); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = fscrypt_set_derived_key(ci, derived_key); | 
 | 	memzero_explicit(derived_key, ci->ci_mode->keysize); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the master key, then set up the inode's actual encryption key. | 
 |  * | 
 |  * If the master key is found in the filesystem-level keyring, then the | 
 |  * corresponding 'struct key' is returned in *master_key_ret with | 
 |  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task | 
 |  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race | 
 |  * to create an fscrypt_info for the same inode), and to synchronize the master | 
 |  * key being removed with a new inode starting to use it. | 
 |  */ | 
 | static int setup_file_encryption_key(struct fscrypt_info *ci, | 
 | 				     struct key **master_key_ret) | 
 | { | 
 | 	struct key *key; | 
 | 	struct fscrypt_master_key *mk = NULL; | 
 | 	struct fscrypt_key_specifier mk_spec; | 
 | 	int err; | 
 |  | 
 | 	fscrypt_select_encryption_impl(ci); | 
 |  | 
 | 	switch (ci->ci_policy.version) { | 
 | 	case FSCRYPT_POLICY_V1: | 
 | 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; | 
 | 		memcpy(mk_spec.u.descriptor, | 
 | 		       ci->ci_policy.v1.master_key_descriptor, | 
 | 		       FSCRYPT_KEY_DESCRIPTOR_SIZE); | 
 | 		break; | 
 | 	case FSCRYPT_POLICY_V2: | 
 | 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; | 
 | 		memcpy(mk_spec.u.identifier, | 
 | 		       ci->ci_policy.v2.master_key_identifier, | 
 | 		       FSCRYPT_KEY_IDENTIFIER_SIZE); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); | 
 | 	if (IS_ERR(key)) { | 
 | 		if (key != ERR_PTR(-ENOKEY) || | 
 | 		    ci->ci_policy.version != FSCRYPT_POLICY_V1) | 
 | 			return PTR_ERR(key); | 
 |  | 
 | 		/* | 
 | 		 * As a legacy fallback for v1 policies, search for the key in | 
 | 		 * the current task's subscribed keyrings too.  Don't move this | 
 | 		 * to before the search of ->s_master_keys, since users | 
 | 		 * shouldn't be able to override filesystem-level keys. | 
 | 		 */ | 
 | 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); | 
 | 	} | 
 |  | 
 | 	mk = key->payload.data[0]; | 
 | 	down_read(&mk->mk_secret_sem); | 
 |  | 
 | 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ | 
 | 	if (!is_master_key_secret_present(&mk->mk_secret)) { | 
 | 		err = -ENOKEY; | 
 | 		goto out_release_key; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Require that the master key be at least as long as the derived key. | 
 | 	 * Otherwise, the derived key cannot possibly contain as much entropy as | 
 | 	 * that required by the encryption mode it will be used for.  For v1 | 
 | 	 * policies it's also required for the KDF to work at all. | 
 | 	 */ | 
 | 	if (mk->mk_secret.size < ci->ci_mode->keysize) { | 
 | 		fscrypt_warn(NULL, | 
 | 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", | 
 | 			     master_key_spec_type(&mk_spec), | 
 | 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, | 
 | 			     mk->mk_secret.size, ci->ci_mode->keysize); | 
 | 		err = -ENOKEY; | 
 | 		goto out_release_key; | 
 | 	} | 
 |  | 
 | 	switch (ci->ci_policy.version) { | 
 | 	case FSCRYPT_POLICY_V1: | 
 | 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); | 
 | 		break; | 
 | 	case FSCRYPT_POLICY_V2: | 
 | 		err = fscrypt_setup_v2_file_key(ci, mk); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		err = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	if (err) | 
 | 		goto out_release_key; | 
 |  | 
 | 	*master_key_ret = key; | 
 | 	return 0; | 
 |  | 
 | out_release_key: | 
 | 	up_read(&mk->mk_secret_sem); | 
 | 	key_put(key); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void put_crypt_info(struct fscrypt_info *ci) | 
 | { | 
 | 	struct key *key; | 
 |  | 
 | 	if (!ci) | 
 | 		return; | 
 |  | 
 | 	if (ci->ci_direct_key) | 
 | 		fscrypt_put_direct_key(ci->ci_direct_key); | 
 | 	else if (ci->ci_owns_key) | 
 | 		fscrypt_destroy_prepared_key(&ci->ci_key); | 
 |  | 
 | 	key = ci->ci_master_key; | 
 | 	if (key) { | 
 | 		struct fscrypt_master_key *mk = key->payload.data[0]; | 
 |  | 
 | 		/* | 
 | 		 * Remove this inode from the list of inodes that were unlocked | 
 | 		 * with the master key. | 
 | 		 * | 
 | 		 * In addition, if we're removing the last inode from a key that | 
 | 		 * already had its secret removed, invalidate the key so that it | 
 | 		 * gets removed from ->s_master_keys. | 
 | 		 */ | 
 | 		spin_lock(&mk->mk_decrypted_inodes_lock); | 
 | 		list_del(&ci->ci_master_key_link); | 
 | 		spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 		if (refcount_dec_and_test(&mk->mk_refcount)) | 
 | 			key_invalidate(key); | 
 | 		key_put(key); | 
 | 	} | 
 | 	memzero_explicit(ci, sizeof(*ci)); | 
 | 	kmem_cache_free(fscrypt_info_cachep, ci); | 
 | } | 
 |  | 
 | int fscrypt_get_encryption_info(struct inode *inode) | 
 | { | 
 | 	struct fscrypt_info *crypt_info; | 
 | 	union fscrypt_context ctx; | 
 | 	struct fscrypt_mode *mode; | 
 | 	struct key *master_key = NULL; | 
 | 	int res; | 
 |  | 
 | 	if (fscrypt_has_encryption_key(inode)) | 
 | 		return 0; | 
 |  | 
 | 	res = fscrypt_initialize(inode->i_sb->s_cop->flags); | 
 | 	if (res) | 
 | 		return res; | 
 |  | 
 | 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); | 
 | 	if (res < 0) { | 
 | 		if (!fscrypt_dummy_context_enabled(inode) || | 
 | 		    IS_ENCRYPTED(inode)) { | 
 | 			fscrypt_warn(inode, | 
 | 				     "Error %d getting encryption context", | 
 | 				     res); | 
 | 			return res; | 
 | 		} | 
 | 		/* Fake up a context for an unencrypted directory */ | 
 | 		memset(&ctx, 0, sizeof(ctx)); | 
 | 		ctx.version = FSCRYPT_CONTEXT_V1; | 
 | 		ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS; | 
 | 		ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS; | 
 | 		memset(ctx.v1.master_key_descriptor, 0x42, | 
 | 		       FSCRYPT_KEY_DESCRIPTOR_SIZE); | 
 | 		res = sizeof(ctx.v1); | 
 | 	} | 
 |  | 
 | 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS); | 
 | 	if (!crypt_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	crypt_info->ci_inode = inode; | 
 |  | 
 | 	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res); | 
 | 	if (res) { | 
 | 		fscrypt_warn(inode, | 
 | 			     "Unrecognized or corrupt encryption context"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	switch (ctx.version) { | 
 | 	case FSCRYPT_CONTEXT_V1: | 
 | 		memcpy(crypt_info->ci_nonce, ctx.v1.nonce, | 
 | 		       FS_KEY_DERIVATION_NONCE_SIZE); | 
 | 		break; | 
 | 	case FSCRYPT_CONTEXT_V2: | 
 | 		memcpy(crypt_info->ci_nonce, ctx.v2.nonce, | 
 | 		       FS_KEY_DERIVATION_NONCE_SIZE); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON(1); | 
 | 		res = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) { | 
 | 		res = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mode = select_encryption_mode(&crypt_info->ci_policy, inode); | 
 | 	if (IS_ERR(mode)) { | 
 | 		res = PTR_ERR(mode); | 
 | 		goto out; | 
 | 	} | 
 | 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); | 
 | 	crypt_info->ci_mode = mode; | 
 |  | 
 | 	res = setup_file_encryption_key(crypt_info, &master_key); | 
 | 	if (res) | 
 | 		goto out; | 
 |  | 
 | 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { | 
 | 		if (master_key) { | 
 | 			struct fscrypt_master_key *mk = | 
 | 				master_key->payload.data[0]; | 
 |  | 
 | 			refcount_inc(&mk->mk_refcount); | 
 | 			crypt_info->ci_master_key = key_get(master_key); | 
 | 			spin_lock(&mk->mk_decrypted_inodes_lock); | 
 | 			list_add(&crypt_info->ci_master_key_link, | 
 | 				 &mk->mk_decrypted_inodes); | 
 | 			spin_unlock(&mk->mk_decrypted_inodes_lock); | 
 | 		} | 
 | 		crypt_info = NULL; | 
 | 	} | 
 | 	res = 0; | 
 | out: | 
 | 	if (master_key) { | 
 | 		struct fscrypt_master_key *mk = master_key->payload.data[0]; | 
 |  | 
 | 		up_read(&mk->mk_secret_sem); | 
 | 		key_put(master_key); | 
 | 	} | 
 | 	if (res == -ENOKEY) | 
 | 		res = 0; | 
 | 	put_crypt_info(crypt_info); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_get_encryption_info); | 
 |  | 
 | /** | 
 |  * fscrypt_put_encryption_info - free most of an inode's fscrypt data | 
 |  * | 
 |  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is | 
 |  * being evicted.  An RCU grace period need not have elapsed yet. | 
 |  */ | 
 | void fscrypt_put_encryption_info(struct inode *inode) | 
 | { | 
 | 	put_crypt_info(inode->i_crypt_info); | 
 | 	inode->i_crypt_info = NULL; | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_put_encryption_info); | 
 |  | 
 | /** | 
 |  * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay | 
 |  * | 
 |  * Free the inode's cached decrypted symlink target, if any.  Filesystems must | 
 |  * call this after an RCU grace period, just before they free the inode. | 
 |  */ | 
 | void fscrypt_free_inode(struct inode *inode) | 
 | { | 
 | 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { | 
 | 		kfree(inode->i_link); | 
 | 		inode->i_link = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_free_inode); | 
 |  | 
 | /** | 
 |  * fscrypt_drop_inode - check whether the inode's master key has been removed | 
 |  * | 
 |  * Filesystems supporting fscrypt must call this from their ->drop_inode() | 
 |  * method so that encrypted inodes are evicted as soon as they're no longer in | 
 |  * use and their master key has been removed. | 
 |  * | 
 |  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 | 
 |  */ | 
 | int fscrypt_drop_inode(struct inode *inode) | 
 | { | 
 | 	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info); | 
 | 	const struct fscrypt_master_key *mk; | 
 |  | 
 | 	/* | 
 | 	 * If ci is NULL, then the inode doesn't have an encryption key set up | 
 | 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key | 
 | 	 * was provided via the legacy mechanism of the process-subscribed | 
 | 	 * keyrings, so we don't know whether it's been removed or not. | 
 | 	 */ | 
 | 	if (!ci || !ci->ci_master_key) | 
 | 		return 0; | 
 | 	mk = ci->ci_master_key->payload.data[0]; | 
 |  | 
 | 	/* | 
 | 	 * Note: since we aren't holding ->mk_secret_sem, the result here can | 
 | 	 * immediately become outdated.  But there's no correctness problem with | 
 | 	 * unnecessarily evicting.  Nor is there a correctness problem with not | 
 | 	 * evicting while iput() is racing with the key being removed, since | 
 | 	 * then the thread removing the key will either evict the inode itself | 
 | 	 * or will correctly detect that it wasn't evicted due to the race. | 
 | 	 */ | 
 | 	return !is_master_key_secret_present(&mk->mk_secret); | 
 | } | 
 | EXPORT_SYMBOL_GPL(fscrypt_drop_inode); |