| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * fs/verity/hash_algs.c: fs-verity hash algorithms | 
 |  * | 
 |  * Copyright 2019 Google LLC | 
 |  */ | 
 |  | 
 | #include "fsverity_private.h" | 
 |  | 
 | #include <crypto/hash.h> | 
 | #include <linux/scatterlist.h> | 
 |  | 
 | /* The hash algorithms supported by fs-verity */ | 
 | struct fsverity_hash_alg fsverity_hash_algs[] = { | 
 | 	[FS_VERITY_HASH_ALG_SHA256] = { | 
 | 		.name = "sha256", | 
 | 		.digest_size = SHA256_DIGEST_SIZE, | 
 | 		.block_size = SHA256_BLOCK_SIZE, | 
 | 	}, | 
 | 	[FS_VERITY_HASH_ALG_SHA512] = { | 
 | 		.name = "sha512", | 
 | 		.digest_size = SHA512_DIGEST_SIZE, | 
 | 		.block_size = SHA512_BLOCK_SIZE, | 
 | 	}, | 
 | }; | 
 |  | 
 | /** | 
 |  * fsverity_get_hash_alg() - validate and prepare a hash algorithm | 
 |  * @inode: optional inode for logging purposes | 
 |  * @num: the hash algorithm number | 
 |  * | 
 |  * Get the struct fsverity_hash_alg for the given hash algorithm number, and | 
 |  * ensure it has a hash transform ready to go.  The hash transforms are | 
 |  * allocated on-demand so that we don't waste resources unnecessarily, and | 
 |  * because the crypto modules may be initialized later than fs/verity/. | 
 |  * | 
 |  * Return: pointer to the hash alg on success, else an ERR_PTR() | 
 |  */ | 
 | const struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, | 
 | 						      unsigned int num) | 
 | { | 
 | 	struct fsverity_hash_alg *alg; | 
 | 	struct crypto_ahash *tfm; | 
 | 	int err; | 
 |  | 
 | 	if (num >= ARRAY_SIZE(fsverity_hash_algs) || | 
 | 	    !fsverity_hash_algs[num].name) { | 
 | 		fsverity_warn(inode, "Unknown hash algorithm number: %u", num); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 | 	alg = &fsverity_hash_algs[num]; | 
 |  | 
 | 	/* pairs with cmpxchg() below */ | 
 | 	tfm = READ_ONCE(alg->tfm); | 
 | 	if (likely(tfm != NULL)) | 
 | 		return alg; | 
 | 	/* | 
 | 	 * Using the shash API would make things a bit simpler, but the ahash | 
 | 	 * API is preferable as it allows the use of crypto accelerators. | 
 | 	 */ | 
 | 	tfm = crypto_alloc_ahash(alg->name, 0, 0); | 
 | 	if (IS_ERR(tfm)) { | 
 | 		if (PTR_ERR(tfm) == -ENOENT) { | 
 | 			fsverity_warn(inode, | 
 | 				      "Missing crypto API support for hash algorithm \"%s\"", | 
 | 				      alg->name); | 
 | 			return ERR_PTR(-ENOPKG); | 
 | 		} | 
 | 		fsverity_err(inode, | 
 | 			     "Error allocating hash algorithm \"%s\": %ld", | 
 | 			     alg->name, PTR_ERR(tfm)); | 
 | 		return ERR_CAST(tfm); | 
 | 	} | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) | 
 | 		goto err_free_tfm; | 
 | 	if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	pr_info("%s using implementation \"%s\"\n", | 
 | 		alg->name, crypto_ahash_driver_name(tfm)); | 
 |  | 
 | 	/* pairs with READ_ONCE() above */ | 
 | 	if (cmpxchg(&alg->tfm, NULL, tfm) != NULL) | 
 | 		crypto_free_ahash(tfm); | 
 |  | 
 | 	return alg; | 
 |  | 
 | err_free_tfm: | 
 | 	crypto_free_ahash(tfm); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /** | 
 |  * fsverity_prepare_hash_state() - precompute the initial hash state | 
 |  * @alg: hash algorithm | 
 |  * @salt: a salt which is to be prepended to all data to be hashed | 
 |  * @salt_size: salt size in bytes, possibly 0 | 
 |  * | 
 |  * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed | 
 |  *	   initial hash state on success or an ERR_PTR() on failure. | 
 |  */ | 
 | const u8 *fsverity_prepare_hash_state(const struct fsverity_hash_alg *alg, | 
 | 				      const u8 *salt, size_t salt_size) | 
 | { | 
 | 	u8 *hashstate = NULL; | 
 | 	struct ahash_request *req = NULL; | 
 | 	u8 *padded_salt = NULL; | 
 | 	size_t padded_salt_size; | 
 | 	struct scatterlist sg; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	int err; | 
 |  | 
 | 	if (salt_size == 0) | 
 | 		return NULL; | 
 |  | 
 | 	hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); | 
 | 	if (!hashstate) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	req = ahash_request_alloc(alg->tfm, GFP_KERNEL); | 
 | 	if (!req) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_free; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Zero-pad the salt to the next multiple of the input size of the hash | 
 | 	 * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 | 
 | 	 * bytes for SHA-512.  This ensures that the hash algorithm won't have | 
 | 	 * any bytes buffered internally after processing the salt, thus making | 
 | 	 * salted hashing just as fast as unsalted hashing. | 
 | 	 */ | 
 | 	padded_salt_size = round_up(salt_size, alg->block_size); | 
 | 	padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); | 
 | 	if (!padded_salt) { | 
 | 		err = -ENOMEM; | 
 | 		goto err_free; | 
 | 	} | 
 | 	memcpy(padded_salt, salt, salt_size); | 
 |  | 
 | 	sg_init_one(&sg, padded_salt, padded_salt_size); | 
 | 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
 | 					CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				   crypto_req_done, &wait); | 
 | 	ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); | 
 |  | 
 | 	err = crypto_wait_req(crypto_ahash_init(req), &wait); | 
 | 	if (err) | 
 | 		goto err_free; | 
 |  | 
 | 	err = crypto_wait_req(crypto_ahash_update(req), &wait); | 
 | 	if (err) | 
 | 		goto err_free; | 
 |  | 
 | 	err = crypto_ahash_export(req, hashstate); | 
 | 	if (err) | 
 | 		goto err_free; | 
 | out: | 
 | 	ahash_request_free(req); | 
 | 	kfree(padded_salt); | 
 | 	return hashstate; | 
 |  | 
 | err_free: | 
 | 	kfree(hashstate); | 
 | 	hashstate = ERR_PTR(err); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /** | 
 |  * fsverity_hash_page() - hash a single data or hash page | 
 |  * @params: the Merkle tree's parameters | 
 |  * @inode: inode for which the hashing is being done | 
 |  * @req: preallocated hash request | 
 |  * @page: the page to hash | 
 |  * @out: output digest, size 'params->digest_size' bytes | 
 |  * | 
 |  * Hash a single data or hash block, assuming block_size == PAGE_SIZE. | 
 |  * The hash is salted if a salt is specified in the Merkle tree parameters. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | int fsverity_hash_page(const struct merkle_tree_params *params, | 
 | 		       const struct inode *inode, | 
 | 		       struct ahash_request *req, struct page *page, u8 *out) | 
 | { | 
 | 	struct scatterlist sg; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(params->block_size != PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sg_init_table(&sg, 1); | 
 | 	sg_set_page(&sg, page, PAGE_SIZE, 0); | 
 | 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
 | 					CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				   crypto_req_done, &wait); | 
 | 	ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); | 
 |  | 
 | 	if (params->hashstate) { | 
 | 		err = crypto_ahash_import(req, params->hashstate); | 
 | 		if (err) { | 
 | 			fsverity_err(inode, | 
 | 				     "Error %d importing hash state", err); | 
 | 			return err; | 
 | 		} | 
 | 		err = crypto_ahash_finup(req); | 
 | 	} else { | 
 | 		err = crypto_ahash_digest(req); | 
 | 	} | 
 |  | 
 | 	err = crypto_wait_req(err, &wait); | 
 | 	if (err) | 
 | 		fsverity_err(inode, "Error %d computing page hash", err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * fsverity_hash_buffer() - hash some data | 
 |  * @alg: the hash algorithm to use | 
 |  * @data: the data to hash | 
 |  * @size: size of data to hash, in bytes | 
 |  * @out: output digest, size 'alg->digest_size' bytes | 
 |  * | 
 |  * Hash some data which is located in physically contiguous memory (i.e. memory | 
 |  * allocated by kmalloc(), not by vmalloc()).  No salt is used. | 
 |  * | 
 |  * Return: 0 on success, -errno on failure | 
 |  */ | 
 | int fsverity_hash_buffer(const struct fsverity_hash_alg *alg, | 
 | 			 const void *data, size_t size, u8 *out) | 
 | { | 
 | 	struct ahash_request *req; | 
 | 	struct scatterlist sg; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	int err; | 
 |  | 
 | 	req = ahash_request_alloc(alg->tfm, GFP_KERNEL); | 
 | 	if (!req) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sg_init_one(&sg, data, size); | 
 | 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
 | 					CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				   crypto_req_done, &wait); | 
 | 	ahash_request_set_crypt(req, &sg, out, size); | 
 |  | 
 | 	err = crypto_wait_req(crypto_ahash_digest(req), &wait); | 
 |  | 
 | 	ahash_request_free(req); | 
 | 	return err; | 
 | } | 
 |  | 
 | void __init fsverity_check_hash_algs(void) | 
 | { | 
 | 	size_t i; | 
 |  | 
 | 	/* | 
 | 	 * Sanity check the hash algorithms (could be a build-time check, but | 
 | 	 * they're in an array) | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { | 
 | 		const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; | 
 |  | 
 | 		if (!alg->name) | 
 | 			continue; | 
 |  | 
 | 		BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); | 
 |  | 
 | 		/* | 
 | 		 * For efficiency, the implementation currently assumes the | 
 | 		 * digest and block sizes are powers of 2.  This limitation can | 
 | 		 * be lifted if the code is updated to handle other values. | 
 | 		 */ | 
 | 		BUG_ON(!is_power_of_2(alg->digest_size)); | 
 | 		BUG_ON(!is_power_of_2(alg->block_size)); | 
 | 	} | 
 | } |