|  | /* | 
|  | * Copyright (c) 2006 ARM Ltd. | 
|  | * Copyright (c) 2010 ST-Ericsson SA | 
|  | * Copyirght (c) 2017 Linaro Ltd. | 
|  | * | 
|  | * Author: Peter Pearse <peter.pearse@arm.com> | 
|  | * Author: Linus Walleij <linus.walleij@linaro.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * The full GNU General Public License is in this distribution in the file | 
|  | * called COPYING. | 
|  | * | 
|  | * Documentation: ARM DDI 0196G == PL080 | 
|  | * Documentation: ARM DDI 0218E == PL081 | 
|  | * Documentation: S3C6410 User's Manual == PL080S | 
|  | * | 
|  | * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any | 
|  | * channel. | 
|  | * | 
|  | * The PL080 has 8 channels available for simultaneous use, and the PL081 | 
|  | * has only two channels. So on these DMA controllers the number of channels | 
|  | * and the number of incoming DMA signals are two totally different things. | 
|  | * It is usually not possible to theoretically handle all physical signals, | 
|  | * so a multiplexing scheme with possible denial of use is necessary. | 
|  | * | 
|  | * The PL080 has a dual bus master, PL081 has a single master. | 
|  | * | 
|  | * PL080S is a version modified by Samsung and used in S3C64xx SoCs. | 
|  | * It differs in following aspects: | 
|  | * - CH_CONFIG register at different offset, | 
|  | * - separate CH_CONTROL2 register for transfer size, | 
|  | * - bigger maximum transfer size, | 
|  | * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word, | 
|  | * - no support for peripheral flow control. | 
|  | * | 
|  | * Memory to peripheral transfer may be visualized as | 
|  | *	Get data from memory to DMAC | 
|  | *	Until no data left | 
|  | *		On burst request from peripheral | 
|  | *			Destination burst from DMAC to peripheral | 
|  | *			Clear burst request | 
|  | *	Raise terminal count interrupt | 
|  | * | 
|  | * For peripherals with a FIFO: | 
|  | * Source      burst size == half the depth of the peripheral FIFO | 
|  | * Destination burst size == the depth of the peripheral FIFO | 
|  | * | 
|  | * (Bursts are irrelevant for mem to mem transfers - there are no burst | 
|  | * signals, the DMA controller will simply facilitate its AHB master.) | 
|  | * | 
|  | * ASSUMES default (little) endianness for DMA transfers | 
|  | * | 
|  | * The PL08x has two flow control settings: | 
|  | *  - DMAC flow control: the transfer size defines the number of transfers | 
|  | *    which occur for the current LLI entry, and the DMAC raises TC at the | 
|  | *    end of every LLI entry.  Observed behaviour shows the DMAC listening | 
|  | *    to both the BREQ and SREQ signals (contrary to documented), | 
|  | *    transferring data if either is active.  The LBREQ and LSREQ signals | 
|  | *    are ignored. | 
|  | * | 
|  | *  - Peripheral flow control: the transfer size is ignored (and should be | 
|  | *    zero).  The data is transferred from the current LLI entry, until | 
|  | *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC | 
|  | *    will then move to the next LLI entry. Unsupported by PL080S. | 
|  | */ | 
|  | #include <linux/amba/bus.h> | 
|  | #include <linux/amba/pl08x.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/amba/pl080.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  | #include "virt-dma.h" | 
|  |  | 
|  | #define DRIVER_NAME	"pl08xdmac" | 
|  |  | 
|  | #define PL80X_DMA_BUSWIDTHS \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ | 
|  | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 
|  |  | 
|  | static struct amba_driver pl08x_amba_driver; | 
|  | struct pl08x_driver_data; | 
|  |  | 
|  | /** | 
|  | * struct vendor_data - vendor-specific config parameters for PL08x derivatives | 
|  | * @config_offset: offset to the configuration register | 
|  | * @channels: the number of channels available in this variant | 
|  | * @signals: the number of request signals available from the hardware | 
|  | * @dualmaster: whether this version supports dual AHB masters or not. | 
|  | * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the | 
|  | *	channels have Nomadik security extension bits that need to be checked | 
|  | *	for permission before use and some registers are missing | 
|  | * @pl080s: whether this variant is a Samsung PL080S, which has separate | 
|  | *	register and LLI word for transfer size. | 
|  | * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020 | 
|  | * @max_transfer_size: the maximum single element transfer size for this | 
|  | *	PL08x variant. | 
|  | */ | 
|  | struct vendor_data { | 
|  | u8 config_offset; | 
|  | u8 channels; | 
|  | u8 signals; | 
|  | bool dualmaster; | 
|  | bool nomadik; | 
|  | bool pl080s; | 
|  | bool ftdmac020; | 
|  | u32 max_transfer_size; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_bus_data - information of source or destination | 
|  | * busses for a transfer | 
|  | * @addr: current address | 
|  | * @maxwidth: the maximum width of a transfer on this bus | 
|  | * @buswidth: the width of this bus in bytes: 1, 2 or 4 | 
|  | */ | 
|  | struct pl08x_bus_data { | 
|  | dma_addr_t addr; | 
|  | u8 maxwidth; | 
|  | u8 buswidth; | 
|  | }; | 
|  |  | 
|  | #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth) | 
|  |  | 
|  | /** | 
|  | * struct pl08x_phy_chan - holder for the physical channels | 
|  | * @id: physical index to this channel | 
|  | * @base: memory base address for this physical channel | 
|  | * @reg_config: configuration address for this physical channel | 
|  | * @reg_control: control address for this physical channel | 
|  | * @reg_src: transfer source address register | 
|  | * @reg_dst: transfer destination address register | 
|  | * @reg_lli: transfer LLI address register | 
|  | * @reg_busy: if the variant has a special per-channel busy register, | 
|  | * this contains a pointer to it | 
|  | * @lock: a lock to use when altering an instance of this struct | 
|  | * @serving: the virtual channel currently being served by this physical | 
|  | * channel | 
|  | * @locked: channel unavailable for the system, e.g. dedicated to secure | 
|  | * world | 
|  | * @ftdmac020: channel is on a FTDMAC020 | 
|  | * @pl080s: channel is on a PL08s | 
|  | */ | 
|  | struct pl08x_phy_chan { | 
|  | unsigned int id; | 
|  | void __iomem *base; | 
|  | void __iomem *reg_config; | 
|  | void __iomem *reg_control; | 
|  | void __iomem *reg_src; | 
|  | void __iomem *reg_dst; | 
|  | void __iomem *reg_lli; | 
|  | void __iomem *reg_busy; | 
|  | spinlock_t lock; | 
|  | struct pl08x_dma_chan *serving; | 
|  | bool locked; | 
|  | bool ftdmac020; | 
|  | bool pl080s; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_sg - structure containing data per sg | 
|  | * @src_addr: src address of sg | 
|  | * @dst_addr: dst address of sg | 
|  | * @len: transfer len in bytes | 
|  | * @node: node for txd's dsg_list | 
|  | */ | 
|  | struct pl08x_sg { | 
|  | dma_addr_t src_addr; | 
|  | dma_addr_t dst_addr; | 
|  | size_t len; | 
|  | struct list_head node; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor | 
|  | * @vd: virtual DMA descriptor | 
|  | * @dsg_list: list of children sg's | 
|  | * @llis_bus: DMA memory address (physical) start for the LLIs | 
|  | * @llis_va: virtual memory address start for the LLIs | 
|  | * @cctl: control reg values for current txd | 
|  | * @ccfg: config reg values for current txd | 
|  | * @done: this marks completed descriptors, which should not have their | 
|  | *   mux released. | 
|  | * @cyclic: indicate cyclic transfers | 
|  | */ | 
|  | struct pl08x_txd { | 
|  | struct virt_dma_desc vd; | 
|  | struct list_head dsg_list; | 
|  | dma_addr_t llis_bus; | 
|  | u32 *llis_va; | 
|  | /* Default cctl value for LLIs */ | 
|  | u32 cctl; | 
|  | /* | 
|  | * Settings to be put into the physical channel when we | 
|  | * trigger this txd.  Other registers are in llis_va[0]. | 
|  | */ | 
|  | u32 ccfg; | 
|  | bool done; | 
|  | bool cyclic; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel | 
|  | * states | 
|  | * @PL08X_CHAN_IDLE: the channel is idle | 
|  | * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport | 
|  | * channel and is running a transfer on it | 
|  | * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport | 
|  | * channel, but the transfer is currently paused | 
|  | * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport | 
|  | * channel to become available (only pertains to memcpy channels) | 
|  | */ | 
|  | enum pl08x_dma_chan_state { | 
|  | PL08X_CHAN_IDLE, | 
|  | PL08X_CHAN_RUNNING, | 
|  | PL08X_CHAN_PAUSED, | 
|  | PL08X_CHAN_WAITING, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel | 
|  | * @vc: wrappped virtual channel | 
|  | * @phychan: the physical channel utilized by this channel, if there is one | 
|  | * @name: name of channel | 
|  | * @cd: channel platform data | 
|  | * @cfg: slave configuration | 
|  | * @at: active transaction on this channel | 
|  | * @host: a pointer to the host (internal use) | 
|  | * @state: whether the channel is idle, paused, running etc | 
|  | * @slave: whether this channel is a device (slave) or for memcpy | 
|  | * @signal: the physical DMA request signal which this channel is using | 
|  | * @mux_use: count of descriptors using this DMA request signal setting | 
|  | */ | 
|  | struct pl08x_dma_chan { | 
|  | struct virt_dma_chan vc; | 
|  | struct pl08x_phy_chan *phychan; | 
|  | const char *name; | 
|  | struct pl08x_channel_data *cd; | 
|  | struct dma_slave_config cfg; | 
|  | struct pl08x_txd *at; | 
|  | struct pl08x_driver_data *host; | 
|  | enum pl08x_dma_chan_state state; | 
|  | bool slave; | 
|  | int signal; | 
|  | unsigned mux_use; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pl08x_driver_data - the local state holder for the PL08x | 
|  | * @slave: optional slave engine for this instance | 
|  | * @memcpy: memcpy engine for this instance | 
|  | * @has_slave: the PL08x has a slave engine (routed signals) | 
|  | * @base: virtual memory base (remapped) for the PL08x | 
|  | * @adev: the corresponding AMBA (PrimeCell) bus entry | 
|  | * @vd: vendor data for this PL08x variant | 
|  | * @pd: platform data passed in from the platform/machine | 
|  | * @phy_chans: array of data for the physical channels | 
|  | * @pool: a pool for the LLI descriptors | 
|  | * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI | 
|  | * fetches | 
|  | * @mem_buses: set to indicate memory transfers on AHB2. | 
|  | * @lli_words: how many words are used in each LLI item for this variant | 
|  | */ | 
|  | struct pl08x_driver_data { | 
|  | struct dma_device slave; | 
|  | struct dma_device memcpy; | 
|  | bool has_slave; | 
|  | void __iomem *base; | 
|  | struct amba_device *adev; | 
|  | const struct vendor_data *vd; | 
|  | struct pl08x_platform_data *pd; | 
|  | struct pl08x_phy_chan *phy_chans; | 
|  | struct dma_pool *pool; | 
|  | u8 lli_buses; | 
|  | u8 mem_buses; | 
|  | u8 lli_words; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * PL08X specific defines | 
|  | */ | 
|  |  | 
|  | /* The order of words in an LLI. */ | 
|  | #define PL080_LLI_SRC		0 | 
|  | #define PL080_LLI_DST		1 | 
|  | #define PL080_LLI_LLI		2 | 
|  | #define PL080_LLI_CCTL		3 | 
|  | #define PL080S_LLI_CCTL2	4 | 
|  |  | 
|  | /* Total words in an LLI. */ | 
|  | #define PL080_LLI_WORDS		4 | 
|  | #define PL080S_LLI_WORDS	8 | 
|  |  | 
|  | /* | 
|  | * Number of LLIs in each LLI buffer allocated for one transfer | 
|  | * (maximum times we call dma_pool_alloc on this pool without freeing) | 
|  | */ | 
|  | #define MAX_NUM_TSFR_LLIS	512 | 
|  | #define PL08X_ALIGN		8 | 
|  |  | 
|  | static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) | 
|  | { | 
|  | return container_of(chan, struct pl08x_dma_chan, vc.chan); | 
|  | } | 
|  |  | 
|  | static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | return container_of(tx, struct pl08x_txd, vd.tx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mux handling. | 
|  | * | 
|  | * This gives us the DMA request input to the PL08x primecell which the | 
|  | * peripheral described by the channel data will be routed to, possibly | 
|  | * via a board/SoC specific external MUX.  One important point to note | 
|  | * here is that this does not depend on the physical channel. | 
|  | */ | 
|  | static int pl08x_request_mux(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | const struct pl08x_platform_data *pd = plchan->host->pd; | 
|  | int ret; | 
|  |  | 
|  | if (plchan->mux_use++ == 0 && pd->get_xfer_signal) { | 
|  | ret = pd->get_xfer_signal(plchan->cd); | 
|  | if (ret < 0) { | 
|  | plchan->mux_use = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | plchan->signal = ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pl08x_release_mux(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | const struct pl08x_platform_data *pd = plchan->host->pd; | 
|  |  | 
|  | if (plchan->signal >= 0) { | 
|  | WARN_ON(plchan->mux_use == 0); | 
|  |  | 
|  | if (--plchan->mux_use == 0 && pd->put_xfer_signal) { | 
|  | pd->put_xfer_signal(plchan->cd, plchan->signal); | 
|  | plchan->signal = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Physical channel handling | 
|  | */ | 
|  |  | 
|  | /* Whether a certain channel is busy or not */ | 
|  | static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | /* If we have a special busy register, take a shortcut */ | 
|  | if (ch->reg_busy) { | 
|  | val = readl(ch->reg_busy); | 
|  | return !!(val & BIT(ch->id)); | 
|  | } | 
|  | val = readl(ch->reg_config); | 
|  | return val & PL080_CONFIG_ACTIVE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pl08x_write_lli() - Write an LLI into the DMA controller. | 
|  | * | 
|  | * The PL08x derivatives support linked lists, but the first item of the | 
|  | * list containing the source, destination, control word and next LLI is | 
|  | * ignored. Instead the driver has to write those values directly into the | 
|  | * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE | 
|  | * register need to be set up for the first transfer. | 
|  | */ | 
|  | static void pl08x_write_lli(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg) | 
|  | { | 
|  | if (pl08x->vd->pl080s) | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " | 
|  | "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n", | 
|  | phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], | 
|  | lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], | 
|  | lli[PL080S_LLI_CCTL2], ccfg); | 
|  | else | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " | 
|  | "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", | 
|  | phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], | 
|  | lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg); | 
|  |  | 
|  | writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src); | 
|  | writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst); | 
|  | writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli); | 
|  |  | 
|  | /* | 
|  | * The FTMAC020 has a different layout in the CCTL word of the LLI | 
|  | * and the CCTL register which is split in CSR and SIZE registers. | 
|  | * Convert the LLI item CCTL into the proper values to write into | 
|  | * the CSR and SIZE registers. | 
|  | */ | 
|  | if (phychan->ftdmac020) { | 
|  | u32 llictl = lli[PL080_LLI_CCTL]; | 
|  | u32 val = 0; | 
|  |  | 
|  | /* Write the transfer size (12 bits) to the size register */ | 
|  | writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK, | 
|  | phychan->base + FTDMAC020_CH_SIZE); | 
|  | /* | 
|  | * Then write the control bits 28..16 to the control register | 
|  | * by shuffleing the bits around to where they are in the | 
|  | * main register. The mapping is as follows: | 
|  | * Bit 28: TC_MSK - mask on all except last LLI | 
|  | * Bit 27..25: SRC_WIDTH | 
|  | * Bit 24..22: DST_WIDTH | 
|  | * Bit 21..20: SRCAD_CTRL | 
|  | * Bit 19..17: DSTAD_CTRL | 
|  | * Bit 17: SRC_SEL | 
|  | * Bit 16: DST_SEL | 
|  | */ | 
|  | if (llictl & FTDMAC020_LLI_TC_MSK) | 
|  | val |= FTDMAC020_CH_CSR_TC_MSK; | 
|  | val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >> | 
|  | (FTDMAC020_LLI_SRC_WIDTH_SHIFT - | 
|  | FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT)); | 
|  | val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >> | 
|  | (FTDMAC020_LLI_DST_WIDTH_SHIFT - | 
|  | FTDMAC020_CH_CSR_DST_WIDTH_SHIFT)); | 
|  | val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >> | 
|  | (FTDMAC020_LLI_SRCAD_CTL_SHIFT - | 
|  | FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT)); | 
|  | val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >> | 
|  | (FTDMAC020_LLI_DSTAD_CTL_SHIFT - | 
|  | FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT)); | 
|  | if (llictl & FTDMAC020_LLI_SRC_SEL) | 
|  | val |= FTDMAC020_CH_CSR_SRC_SEL; | 
|  | if (llictl & FTDMAC020_LLI_DST_SEL) | 
|  | val |= FTDMAC020_CH_CSR_DST_SEL; | 
|  |  | 
|  | /* | 
|  | * Set up the bits that exist in the CSR but are not | 
|  | * part the LLI, i.e. only gets written to the control | 
|  | * register right here. | 
|  | * | 
|  | * FIXME: do not just handle memcpy, also handle slave DMA. | 
|  | */ | 
|  | switch (pl08x->pd->memcpy_burst_size) { | 
|  | default: | 
|  | case PL08X_BURST_SZ_1: | 
|  | val |= PL080_BSIZE_1 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_4: | 
|  | val |= PL080_BSIZE_4 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_8: | 
|  | val |= PL080_BSIZE_8 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_16: | 
|  | val |= PL080_BSIZE_16 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_32: | 
|  | val |= PL080_BSIZE_32 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_64: | 
|  | val |= PL080_BSIZE_64 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_128: | 
|  | val |= PL080_BSIZE_128 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_256: | 
|  | val |= PL080_BSIZE_256 << | 
|  | FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Protection flags */ | 
|  | if (pl08x->pd->memcpy_prot_buff) | 
|  | val |= FTDMAC020_CH_CSR_PROT2; | 
|  | if (pl08x->pd->memcpy_prot_cache) | 
|  | val |= FTDMAC020_CH_CSR_PROT3; | 
|  | /* We are the kernel, so we are in privileged mode */ | 
|  | val |= FTDMAC020_CH_CSR_PROT1; | 
|  |  | 
|  | writel_relaxed(val, phychan->reg_control); | 
|  | } else { | 
|  | /* Bits are just identical */ | 
|  | writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control); | 
|  | } | 
|  |  | 
|  | /* Second control word on the PL080s */ | 
|  | if (pl08x->vd->pl080s) | 
|  | writel_relaxed(lli[PL080S_LLI_CCTL2], | 
|  | phychan->base + PL080S_CH_CONTROL2); | 
|  |  | 
|  | writel(ccfg, phychan->reg_config); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the initial DMA register values i.e. those for the first LLI | 
|  | * The next LLI pointer and the configuration interrupt bit have | 
|  | * been set when the LLIs were constructed.  Poke them into the hardware | 
|  | * and start the transfer. | 
|  | */ | 
|  | static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_phy_chan *phychan = plchan->phychan; | 
|  | struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc); | 
|  | struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); | 
|  | u32 val; | 
|  |  | 
|  | list_del(&txd->vd.node); | 
|  |  | 
|  | plchan->at = txd; | 
|  |  | 
|  | /* Wait for channel inactive */ | 
|  | while (pl08x_phy_channel_busy(phychan)) | 
|  | cpu_relax(); | 
|  |  | 
|  | pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg); | 
|  |  | 
|  | /* Enable the DMA channel */ | 
|  | /* Do not access config register until channel shows as disabled */ | 
|  | while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id)) | 
|  | cpu_relax(); | 
|  |  | 
|  | /* Do not access config register until channel shows as inactive */ | 
|  | if (phychan->ftdmac020) { | 
|  | val = readl(phychan->reg_config); | 
|  | while (val & FTDMAC020_CH_CFG_BUSY) | 
|  | val = readl(phychan->reg_config); | 
|  |  | 
|  | val = readl(phychan->reg_control); | 
|  | while (val & FTDMAC020_CH_CSR_EN) | 
|  | val = readl(phychan->reg_control); | 
|  |  | 
|  | writel(val | FTDMAC020_CH_CSR_EN, | 
|  | phychan->reg_control); | 
|  | } else { | 
|  | val = readl(phychan->reg_config); | 
|  | while ((val & PL080_CONFIG_ACTIVE) || | 
|  | (val & PL080_CONFIG_ENABLE)) | 
|  | val = readl(phychan->reg_config); | 
|  |  | 
|  | writel(val | PL080_CONFIG_ENABLE, phychan->reg_config); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pause the channel by setting the HALT bit. | 
|  | * | 
|  | * For M->P transfers, pause the DMAC first and then stop the peripheral - | 
|  | * the FIFO can only drain if the peripheral is still requesting data. | 
|  | * (note: this can still timeout if the DMAC FIFO never drains of data.) | 
|  | * | 
|  | * For P->M transfers, disable the peripheral first to stop it filling | 
|  | * the DMAC FIFO, and then pause the DMAC. | 
|  | */ | 
|  | static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  | int timeout; | 
|  |  | 
|  | if (ch->ftdmac020) { | 
|  | /* Use the enable bit on the FTDMAC020 */ | 
|  | val = readl(ch->reg_control); | 
|  | val &= ~FTDMAC020_CH_CSR_EN; | 
|  | writel(val, ch->reg_control); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Set the HALT bit and wait for the FIFO to drain */ | 
|  | val = readl(ch->reg_config); | 
|  | val |= PL080_CONFIG_HALT; | 
|  | writel(val, ch->reg_config); | 
|  |  | 
|  | /* Wait for channel inactive */ | 
|  | for (timeout = 1000; timeout; timeout--) { | 
|  | if (!pl08x_phy_channel_busy(ch)) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  | if (pl08x_phy_channel_busy(ch)) | 
|  | pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); | 
|  | } | 
|  |  | 
|  | static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* Use the enable bit on the FTDMAC020 */ | 
|  | if (ch->ftdmac020) { | 
|  | val = readl(ch->reg_control); | 
|  | val |= FTDMAC020_CH_CSR_EN; | 
|  | writel(val, ch->reg_control); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Clear the HALT bit */ | 
|  | val = readl(ch->reg_config); | 
|  | val &= ~PL080_CONFIG_HALT; | 
|  | writel(val, ch->reg_config); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and | 
|  | * clears any pending interrupt status.  This should not be used for | 
|  | * an on-going transfer, but as a method of shutting down a channel | 
|  | * (eg, when it's no longer used) or terminating a transfer. | 
|  | */ | 
|  | static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* The layout for the FTDMAC020 is different */ | 
|  | if (ch->ftdmac020) { | 
|  | /* Disable all interrupts */ | 
|  | val = readl(ch->reg_config); | 
|  | val |= (FTDMAC020_CH_CFG_INT_ABT_MASK | | 
|  | FTDMAC020_CH_CFG_INT_ERR_MASK | | 
|  | FTDMAC020_CH_CFG_INT_TC_MASK); | 
|  | writel(val, ch->reg_config); | 
|  |  | 
|  | /* Abort and disable channel */ | 
|  | val = readl(ch->reg_control); | 
|  | val &= ~FTDMAC020_CH_CSR_EN; | 
|  | val |= FTDMAC020_CH_CSR_ABT; | 
|  | writel(val, ch->reg_control); | 
|  |  | 
|  | /* Clear ABT and ERR interrupt flags */ | 
|  | writel(BIT(ch->id) | BIT(ch->id + 16), | 
|  | pl08x->base + PL080_ERR_CLEAR); | 
|  | writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = readl(ch->reg_config); | 
|  | val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | | 
|  | PL080_CONFIG_TC_IRQ_MASK); | 
|  | writel(val, ch->reg_config); | 
|  |  | 
|  | writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR); | 
|  | writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); | 
|  | } | 
|  |  | 
|  | static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch) | 
|  | { | 
|  | u32 val; | 
|  | u32 bytes; | 
|  |  | 
|  | if (ch->ftdmac020) { | 
|  | bytes = readl(ch->base + FTDMAC020_CH_SIZE); | 
|  |  | 
|  | val = readl(ch->reg_control); | 
|  | val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK; | 
|  | val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT; | 
|  | } else if (ch->pl080s) { | 
|  | val = readl(ch->base + PL080S_CH_CONTROL2); | 
|  | bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | val = readl(ch->reg_control); | 
|  | val &= PL080_CONTROL_SWIDTH_MASK; | 
|  | val >>= PL080_CONTROL_SWIDTH_SHIFT; | 
|  | } else { | 
|  | /* Plain PL08x */ | 
|  | val = readl(ch->reg_control); | 
|  | bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | val &= PL080_CONTROL_SWIDTH_MASK; | 
|  | val >>= PL080_CONTROL_SWIDTH_SHIFT; | 
|  | } | 
|  |  | 
|  | switch (val) { | 
|  | case PL080_WIDTH_8BIT: | 
|  | break; | 
|  | case PL080_WIDTH_16BIT: | 
|  | bytes *= 2; | 
|  | break; | 
|  | case PL080_WIDTH_32BIT: | 
|  | bytes *= 4; | 
|  | break; | 
|  | } | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va) | 
|  | { | 
|  | u32 val; | 
|  | u32 bytes; | 
|  |  | 
|  | if (ch->ftdmac020) { | 
|  | val = llis_va[PL080_LLI_CCTL]; | 
|  | bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | val = llis_va[PL080_LLI_CCTL]; | 
|  | val &= FTDMAC020_LLI_SRC_WIDTH_MSK; | 
|  | val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT; | 
|  | } else if (ch->pl080s) { | 
|  | val = llis_va[PL080S_LLI_CCTL2]; | 
|  | bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | val = llis_va[PL080_LLI_CCTL]; | 
|  | val &= PL080_CONTROL_SWIDTH_MASK; | 
|  | val >>= PL080_CONTROL_SWIDTH_SHIFT; | 
|  | } else { | 
|  | /* Plain PL08x */ | 
|  | val = llis_va[PL080_LLI_CCTL]; | 
|  | bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | val &= PL080_CONTROL_SWIDTH_MASK; | 
|  | val >>= PL080_CONTROL_SWIDTH_SHIFT; | 
|  | } | 
|  |  | 
|  | switch (val) { | 
|  | case PL080_WIDTH_8BIT: | 
|  | break; | 
|  | case PL080_WIDTH_16BIT: | 
|  | bytes *= 2; | 
|  | break; | 
|  | case PL080_WIDTH_32BIT: | 
|  | bytes *= 4; | 
|  | break; | 
|  | } | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | /* The channel should be paused when calling this */ | 
|  | static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | const u32 *llis_va, *llis_va_limit; | 
|  | struct pl08x_phy_chan *ch; | 
|  | dma_addr_t llis_bus; | 
|  | struct pl08x_txd *txd; | 
|  | u32 llis_max_words; | 
|  | size_t bytes; | 
|  | u32 clli; | 
|  |  | 
|  | ch = plchan->phychan; | 
|  | txd = plchan->at; | 
|  |  | 
|  | if (!ch || !txd) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Follow the LLIs to get the number of remaining | 
|  | * bytes in the currently active transaction. | 
|  | */ | 
|  | clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2; | 
|  |  | 
|  | /* First get the remaining bytes in the active transfer */ | 
|  | bytes = get_bytes_in_phy_channel(ch); | 
|  |  | 
|  | if (!clli) | 
|  | return bytes; | 
|  |  | 
|  | llis_va = txd->llis_va; | 
|  | llis_bus = txd->llis_bus; | 
|  |  | 
|  | llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS; | 
|  | BUG_ON(clli < llis_bus || clli >= llis_bus + | 
|  | sizeof(u32) * llis_max_words); | 
|  |  | 
|  | /* | 
|  | * Locate the next LLI - as this is an array, | 
|  | * it's simple maths to find. | 
|  | */ | 
|  | llis_va += (clli - llis_bus) / sizeof(u32); | 
|  |  | 
|  | llis_va_limit = llis_va + llis_max_words; | 
|  |  | 
|  | for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) { | 
|  | bytes += get_bytes_in_lli(ch, llis_va); | 
|  |  | 
|  | /* | 
|  | * A LLI pointer going backward terminates the LLI list | 
|  | */ | 
|  | if (llis_va[PL080_LLI_LLI] <= clli) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a physical channel for a virtual channel | 
|  | * | 
|  | * Try to locate a physical channel to be used for this transfer. If all | 
|  | * are taken return NULL and the requester will have to cope by using | 
|  | * some fallback PIO mode or retrying later. | 
|  | */ | 
|  | static struct pl08x_phy_chan * | 
|  | pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_dma_chan *virt_chan) | 
|  | { | 
|  | struct pl08x_phy_chan *ch = NULL; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | spin_lock_irqsave(&ch->lock, flags); | 
|  |  | 
|  | if (!ch->locked && !ch->serving) { | 
|  | ch->serving = virt_chan; | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | if (i == pl08x->vd->channels) { | 
|  | /* No physical channel available, cope with it */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ch; | 
|  | } | 
|  |  | 
|  | /* Mark the physical channel as free.  Note, this write is atomic. */ | 
|  | static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_phy_chan *ch) | 
|  | { | 
|  | ch->serving = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to allocate a physical channel.  When successful, assign it to | 
|  | * this virtual channel, and initiate the next descriptor.  The | 
|  | * virtual channel lock must be held at this point. | 
|  | */ | 
|  | static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_phy_chan *ch; | 
|  |  | 
|  | ch = pl08x_get_phy_channel(pl08x, plchan); | 
|  | if (!ch) { | 
|  | dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); | 
|  | plchan->state = PL08X_CHAN_WAITING; | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n", | 
|  | ch->id, plchan->name); | 
|  |  | 
|  | plchan->phychan = ch; | 
|  | plchan->state = PL08X_CHAN_RUNNING; | 
|  | pl08x_start_next_txd(plchan); | 
|  | } | 
|  |  | 
|  | static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch, | 
|  | struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n", | 
|  | ch->id, plchan->name); | 
|  |  | 
|  | /* | 
|  | * We do this without taking the lock; we're really only concerned | 
|  | * about whether this pointer is NULL or not, and we're guaranteed | 
|  | * that this will only be called when it _already_ is non-NULL. | 
|  | */ | 
|  | ch->serving = plchan; | 
|  | plchan->phychan = ch; | 
|  | plchan->state = PL08X_CHAN_RUNNING; | 
|  | pl08x_start_next_txd(plchan); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a physical DMA channel, potentially reallocating it to another | 
|  | * virtual channel if we have any pending. | 
|  | */ | 
|  | static void pl08x_phy_free(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_dma_chan *p, *next; | 
|  |  | 
|  | retry: | 
|  | next = NULL; | 
|  |  | 
|  | /* Find a waiting virtual channel for the next transfer. */ | 
|  | list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node) | 
|  | if (p->state == PL08X_CHAN_WAITING) { | 
|  | next = p; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!next && pl08x->has_slave) { | 
|  | list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node) | 
|  | if (p->state == PL08X_CHAN_WAITING) { | 
|  | next = p; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure that the physical channel is stopped */ | 
|  | pl08x_terminate_phy_chan(pl08x, plchan->phychan); | 
|  |  | 
|  | if (next) { | 
|  | bool success; | 
|  |  | 
|  | /* | 
|  | * Eww.  We know this isn't going to deadlock | 
|  | * but lockdep probably doesn't. | 
|  | */ | 
|  | spin_lock(&next->vc.lock); | 
|  | /* Re-check the state now that we have the lock */ | 
|  | success = next->state == PL08X_CHAN_WAITING; | 
|  | if (success) | 
|  | pl08x_phy_reassign_start(plchan->phychan, next); | 
|  | spin_unlock(&next->vc.lock); | 
|  |  | 
|  | /* If the state changed, try to find another channel */ | 
|  | if (!success) | 
|  | goto retry; | 
|  | } else { | 
|  | /* No more jobs, so free up the physical channel */ | 
|  | pl08x_put_phy_channel(pl08x, plchan->phychan); | 
|  | } | 
|  |  | 
|  | plchan->phychan = NULL; | 
|  | plchan->state = PL08X_CHAN_IDLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LLI handling | 
|  | */ | 
|  |  | 
|  | static inline unsigned int | 
|  | pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x, | 
|  | u32 cctl, | 
|  | bool source) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | if (source) | 
|  | val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> | 
|  | FTDMAC020_LLI_SRC_WIDTH_SHIFT; | 
|  | else | 
|  | val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >> | 
|  | FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | } else { | 
|  | if (source) | 
|  | val = (cctl & PL080_CONTROL_SWIDTH_MASK) >> | 
|  | PL080_CONTROL_SWIDTH_SHIFT; | 
|  | else | 
|  | val = (cctl & PL080_CONTROL_DWIDTH_MASK) >> | 
|  | PL080_CONTROL_DWIDTH_SHIFT; | 
|  | } | 
|  |  | 
|  | switch (val) { | 
|  | case PL080_WIDTH_8BIT: | 
|  | return 1; | 
|  | case PL080_WIDTH_16BIT: | 
|  | return 2; | 
|  | case PL080_WIDTH_32BIT: | 
|  | return 4; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x, | 
|  | u32 cctl, | 
|  | u8 srcwidth, u8 dstwidth, | 
|  | size_t tsize) | 
|  | { | 
|  | u32 retbits = cctl; | 
|  |  | 
|  | /* | 
|  | * Remove all src, dst and transfer size bits, then set the | 
|  | * width and size according to the parameters. The bit offsets | 
|  | * are different in the FTDMAC020 so we need to accound for this. | 
|  | */ | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK; | 
|  | retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK; | 
|  | retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | switch (srcwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << | 
|  | FTDMAC020_LLI_SRC_WIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << | 
|  | FTDMAC020_LLI_SRC_WIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << | 
|  | FTDMAC020_LLI_SRC_WIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dstwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << | 
|  | FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << | 
|  | FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << | 
|  | FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK; | 
|  | retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT; | 
|  | } else { | 
|  | retbits &= ~PL080_CONTROL_DWIDTH_MASK; | 
|  | retbits &= ~PL080_CONTROL_SWIDTH_MASK; | 
|  | retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  |  | 
|  | switch (srcwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << | 
|  | PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << | 
|  | PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << | 
|  | PL080_CONTROL_SWIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dstwidth) { | 
|  | case 1: | 
|  | retbits |= PL080_WIDTH_8BIT << | 
|  | PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case 2: | 
|  | retbits |= PL080_WIDTH_16BIT << | 
|  | PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case 4: | 
|  | retbits |= PL080_WIDTH_32BIT << | 
|  | PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK; | 
|  | retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; | 
|  | } | 
|  |  | 
|  | return retbits; | 
|  | } | 
|  |  | 
|  | struct pl08x_lli_build_data { | 
|  | struct pl08x_txd *txd; | 
|  | struct pl08x_bus_data srcbus; | 
|  | struct pl08x_bus_data dstbus; | 
|  | size_t remainder; | 
|  | u32 lli_bus; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Autoselect a master bus to use for the transfer. Slave will be the chosen as | 
|  | * victim in case src & dest are not similarly aligned. i.e. If after aligning | 
|  | * masters address with width requirements of transfer (by sending few byte by | 
|  | * byte data), slave is still not aligned, then its width will be reduced to | 
|  | * BYTE. | 
|  | * - prefers the destination bus if both available | 
|  | * - prefers bus with fixed address (i.e. peripheral) | 
|  | */ | 
|  | static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_lli_build_data *bd, | 
|  | struct pl08x_bus_data **mbus, | 
|  | struct pl08x_bus_data **sbus, | 
|  | u32 cctl) | 
|  | { | 
|  | bool dst_incr; | 
|  | bool src_incr; | 
|  |  | 
|  | /* | 
|  | * The FTDMAC020 only supports memory-to-memory transfer, so | 
|  | * source and destination always increase. | 
|  | */ | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | dst_incr = true; | 
|  | src_incr = true; | 
|  | } else { | 
|  | dst_incr = !!(cctl & PL080_CONTROL_DST_INCR); | 
|  | src_incr = !!(cctl & PL080_CONTROL_SRC_INCR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If either bus is not advancing, i.e. it is a peripheral, that | 
|  | * one becomes master | 
|  | */ | 
|  | if (!dst_incr) { | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } else if (!src_incr) { | 
|  | *mbus = &bd->srcbus; | 
|  | *sbus = &bd->dstbus; | 
|  | } else { | 
|  | if (bd->dstbus.buswidth >= bd->srcbus.buswidth) { | 
|  | *mbus = &bd->dstbus; | 
|  | *sbus = &bd->srcbus; | 
|  | } else { | 
|  | *mbus = &bd->srcbus; | 
|  | *sbus = &bd->dstbus; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fills in one LLI for a certain transfer descriptor and advance the counter | 
|  | */ | 
|  | static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_lli_build_data *bd, | 
|  | int num_llis, int len, u32 cctl, u32 cctl2) | 
|  | { | 
|  | u32 offset = num_llis * pl08x->lli_words; | 
|  | u32 *llis_va = bd->txd->llis_va + offset; | 
|  | dma_addr_t llis_bus = bd->txd->llis_bus; | 
|  |  | 
|  | BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); | 
|  |  | 
|  | /* Advance the offset to next LLI. */ | 
|  | offset += pl08x->lli_words; | 
|  |  | 
|  | llis_va[PL080_LLI_SRC] = bd->srcbus.addr; | 
|  | llis_va[PL080_LLI_DST] = bd->dstbus.addr; | 
|  | llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset); | 
|  | llis_va[PL080_LLI_LLI] |= bd->lli_bus; | 
|  | llis_va[PL080_LLI_CCTL] = cctl; | 
|  | if (pl08x->vd->pl080s) | 
|  | llis_va[PL080S_LLI_CCTL2] = cctl2; | 
|  |  | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | /* FIXME: only memcpy so far so both increase */ | 
|  | bd->srcbus.addr += len; | 
|  | bd->dstbus.addr += len; | 
|  | } else { | 
|  | if (cctl & PL080_CONTROL_SRC_INCR) | 
|  | bd->srcbus.addr += len; | 
|  | if (cctl & PL080_CONTROL_DST_INCR) | 
|  | bd->dstbus.addr += len; | 
|  | } | 
|  |  | 
|  | BUG_ON(bd->remainder < len); | 
|  |  | 
|  | bd->remainder -= len; | 
|  | } | 
|  |  | 
|  | static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_lli_build_data *bd, u32 *cctl, u32 len, | 
|  | int num_llis, size_t *total_bytes) | 
|  | { | 
|  | *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len); | 
|  | pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len); | 
|  | (*total_bytes) += len; | 
|  | } | 
|  |  | 
|  | #if 1 | 
|  | static void pl08x_dump_lli(struct pl08x_driver_data *pl08x, | 
|  | const u32 *llis_va, int num_llis) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (pl08x->vd->pl080s) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n", | 
|  | "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2"); | 
|  | for (i = 0; i < num_llis; i++) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
|  | i, llis_va, llis_va[PL080_LLI_SRC], | 
|  | llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], | 
|  | llis_va[PL080_LLI_CCTL], | 
|  | llis_va[PL080S_LLI_CCTL2]); | 
|  | llis_va += pl08x->lli_words; | 
|  | } | 
|  | } else { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%-3s %-9s  %-10s %-10s %-10s %s\n", | 
|  | "lli", "", "csrc", "cdst", "clli", "cctl"); | 
|  | for (i = 0; i < num_llis; i++) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
|  | i, llis_va, llis_va[PL080_LLI_SRC], | 
|  | llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], | 
|  | llis_va[PL080_LLI_CCTL]); | 
|  | llis_va += pl08x->lli_words; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x, | 
|  | const u32 *llis_va, int num_llis) {} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This fills in the table of LLIs for the transfer descriptor | 
|  | * Note that we assume we never have to change the burst sizes | 
|  | * Return 0 for error | 
|  | */ | 
|  | static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_bus_data *mbus, *sbus; | 
|  | struct pl08x_lli_build_data bd; | 
|  | int num_llis = 0; | 
|  | u32 cctl, early_bytes = 0; | 
|  | size_t max_bytes_per_lli, total_bytes; | 
|  | u32 *llis_va, *last_lli; | 
|  | struct pl08x_sg *dsg; | 
|  |  | 
|  | txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus); | 
|  | if (!txd->llis_va) { | 
|  | dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bd.txd = txd; | 
|  | bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0; | 
|  | cctl = txd->cctl; | 
|  |  | 
|  | /* Find maximum width of the source bus */ | 
|  | bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true); | 
|  |  | 
|  | /* Find maximum width of the destination bus */ | 
|  | bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false); | 
|  |  | 
|  | list_for_each_entry(dsg, &txd->dsg_list, node) { | 
|  | total_bytes = 0; | 
|  | cctl = txd->cctl; | 
|  |  | 
|  | bd.srcbus.addr = dsg->src_addr; | 
|  | bd.dstbus.addr = dsg->dst_addr; | 
|  | bd.remainder = dsg->len; | 
|  | bd.srcbus.buswidth = bd.srcbus.maxwidth; | 
|  | bd.dstbus.buswidth = bd.dstbus.maxwidth; | 
|  |  | 
|  | pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl); | 
|  |  | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n", | 
|  | (u64)bd.srcbus.addr, | 
|  | cctl & PL080_CONTROL_SRC_INCR ? "+" : "", | 
|  | bd.srcbus.buswidth, | 
|  | (u64)bd.dstbus.addr, | 
|  | cctl & PL080_CONTROL_DST_INCR ? "+" : "", | 
|  | bd.dstbus.buswidth, | 
|  | bd.remainder); | 
|  | dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n", | 
|  | mbus == &bd.srcbus ? "src" : "dst", | 
|  | sbus == &bd.srcbus ? "src" : "dst"); | 
|  |  | 
|  | /* | 
|  | * Zero length is only allowed if all these requirements are | 
|  | * met: | 
|  | * - flow controller is peripheral. | 
|  | * - src.addr is aligned to src.width | 
|  | * - dst.addr is aligned to dst.width | 
|  | * | 
|  | * sg_len == 1 should be true, as there can be two cases here: | 
|  | * | 
|  | * - Memory addresses are contiguous and are not scattered. | 
|  | *   Here, Only one sg will be passed by user driver, with | 
|  | *   memory address and zero length. We pass this to controller | 
|  | *   and after the transfer it will receive the last burst | 
|  | *   request from peripheral and so transfer finishes. | 
|  | * | 
|  | * - Memory addresses are scattered and are not contiguous. | 
|  | *   Here, Obviously as DMA controller doesn't know when a lli's | 
|  | *   transfer gets over, it can't load next lli. So in this | 
|  | *   case, there has to be an assumption that only one lli is | 
|  | *   supported. Thus, we can't have scattered addresses. | 
|  | */ | 
|  | if (!bd.remainder) { | 
|  | u32 fc; | 
|  |  | 
|  | /* FTDMAC020 only does memory-to-memory */ | 
|  | if (pl08x->vd->ftdmac020) | 
|  | fc = PL080_FLOW_MEM2MEM; | 
|  | else | 
|  | fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >> | 
|  | PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  | if (!((fc >= PL080_FLOW_SRC2DST_DST) && | 
|  | (fc <= PL080_FLOW_SRC2DST_SRC))) { | 
|  | dev_err(&pl08x->adev->dev, "%s sg len can't be zero", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!IS_BUS_ALIGNED(&bd.srcbus) || | 
|  | !IS_BUS_ALIGNED(&bd.dstbus)) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s src & dst address must be aligned to src" | 
|  | " & dst width if peripheral is flow controller", | 
|  | __func__); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cctl = pl08x_lli_control_bits(pl08x, cctl, | 
|  | bd.srcbus.buswidth, bd.dstbus.buswidth, | 
|  | 0); | 
|  | pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, | 
|  | 0, cctl, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send byte by byte for following cases | 
|  | * - Less than a bus width available | 
|  | * - until master bus is aligned | 
|  | */ | 
|  | if (bd.remainder < mbus->buswidth) | 
|  | early_bytes = bd.remainder; | 
|  | else if (!IS_BUS_ALIGNED(mbus)) { | 
|  | early_bytes = mbus->buswidth - | 
|  | (mbus->addr & (mbus->buswidth - 1)); | 
|  | if ((bd.remainder - early_bytes) < mbus->buswidth) | 
|  | early_bytes = bd.remainder; | 
|  | } | 
|  |  | 
|  | if (early_bytes) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s byte width LLIs (remain 0x%08zx)\n", | 
|  | __func__, bd.remainder); | 
|  | prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes, | 
|  | num_llis++, &total_bytes); | 
|  | } | 
|  |  | 
|  | if (bd.remainder) { | 
|  | /* | 
|  | * Master now aligned | 
|  | * - if slave is not then we must set its width down | 
|  | */ | 
|  | if (!IS_BUS_ALIGNED(sbus)) { | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "%s set down bus width to one byte\n", | 
|  | __func__); | 
|  |  | 
|  | sbus->buswidth = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bytes transferred = tsize * src width, not | 
|  | * MIN(buswidths) | 
|  | */ | 
|  | max_bytes_per_lli = bd.srcbus.buswidth * | 
|  | pl08x->vd->max_transfer_size; | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s max bytes per lli = %zu\n", | 
|  | __func__, max_bytes_per_lli); | 
|  |  | 
|  | /* | 
|  | * Make largest possible LLIs until less than one bus | 
|  | * width left | 
|  | */ | 
|  | while (bd.remainder > (mbus->buswidth - 1)) { | 
|  | size_t lli_len, tsize, width; | 
|  |  | 
|  | /* | 
|  | * If enough left try to send max possible, | 
|  | * otherwise try to send the remainder | 
|  | */ | 
|  | lli_len = min(bd.remainder, max_bytes_per_lli); | 
|  |  | 
|  | /* | 
|  | * Check against maximum bus alignment: | 
|  | * Calculate actual transfer size in relation to | 
|  | * bus width an get a maximum remainder of the | 
|  | * highest bus width - 1 | 
|  | */ | 
|  | width = max(mbus->buswidth, sbus->buswidth); | 
|  | lli_len = (lli_len / width) * width; | 
|  | tsize = lli_len / bd.srcbus.buswidth; | 
|  |  | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s fill lli with single lli chunk of " | 
|  | "size 0x%08zx (remainder 0x%08zx)\n", | 
|  | __func__, lli_len, bd.remainder); | 
|  |  | 
|  | cctl = pl08x_lli_control_bits(pl08x, cctl, | 
|  | bd.srcbus.buswidth, bd.dstbus.buswidth, | 
|  | tsize); | 
|  | pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, | 
|  | lli_len, cctl, tsize); | 
|  | total_bytes += lli_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send any odd bytes | 
|  | */ | 
|  | if (bd.remainder) { | 
|  | dev_vdbg(&pl08x->adev->dev, | 
|  | "%s align with boundary, send odd bytes (remain %zu)\n", | 
|  | __func__, bd.remainder); | 
|  | prep_byte_width_lli(pl08x, &bd, &cctl, | 
|  | bd.remainder, num_llis++, &total_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (total_bytes != dsg->len) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", | 
|  | __func__, total_bytes, dsg->len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (num_llis >= MAX_NUM_TSFR_LLIS) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", | 
|  | __func__, MAX_NUM_TSFR_LLIS); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | llis_va = txd->llis_va; | 
|  | last_lli = llis_va + (num_llis - 1) * pl08x->lli_words; | 
|  |  | 
|  | if (txd->cyclic) { | 
|  | /* Link back to the first LLI. */ | 
|  | last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus; | 
|  | } else { | 
|  | /* The final LLI terminates the LLI. */ | 
|  | last_lli[PL080_LLI_LLI] = 0; | 
|  | /* The final LLI element shall also fire an interrupt. */ | 
|  | if (pl08x->vd->ftdmac020) | 
|  | last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK; | 
|  | else | 
|  | last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN; | 
|  | } | 
|  |  | 
|  | pl08x_dump_lli(pl08x, llis_va, num_llis); | 
|  |  | 
|  | return num_llis; | 
|  | } | 
|  |  | 
|  | static void pl08x_free_txd(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_txd *txd) | 
|  | { | 
|  | struct pl08x_sg *dsg, *_dsg; | 
|  |  | 
|  | if (txd->llis_va) | 
|  | dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); | 
|  |  | 
|  | list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { | 
|  | list_del(&dsg->node); | 
|  | kfree(dsg); | 
|  | } | 
|  |  | 
|  | kfree(txd); | 
|  | } | 
|  |  | 
|  | static void pl08x_desc_free(struct virt_dma_desc *vd) | 
|  | { | 
|  | struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan); | 
|  |  | 
|  | dma_descriptor_unmap(&vd->tx); | 
|  | if (!txd->done) | 
|  | pl08x_release_mux(plchan); | 
|  |  | 
|  | pl08x_free_txd(plchan->host, txd); | 
|  | } | 
|  |  | 
|  | static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, | 
|  | struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | LIST_HEAD(head); | 
|  |  | 
|  | vchan_get_all_descriptors(&plchan->vc, &head); | 
|  | vchan_dma_desc_free_list(&plchan->vc, &head); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DMA ENGINE API | 
|  | */ | 
|  | static void pl08x_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | /* Ensure all queued descriptors are freed */ | 
|  | vchan_free_chan_resources(to_virt_chan(chan)); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( | 
|  | struct dma_chan *chan, unsigned long flags) | 
|  | { | 
|  | struct dma_async_tx_descriptor *retval = NULL; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Code accessing dma_async_is_complete() in a tight loop may give problems. | 
|  | * If slaves are relying on interrupts to signal completion this function | 
|  | * must not be called with interrupts disabled. | 
|  | */ | 
|  | static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, struct dma_tx_state *txstate) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct virt_dma_desc *vd; | 
|  | unsigned long flags; | 
|  | enum dma_status ret; | 
|  | size_t bytes = 0; | 
|  |  | 
|  | ret = dma_cookie_status(chan, cookie, txstate); | 
|  | if (ret == DMA_COMPLETE) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * There's no point calculating the residue if there's | 
|  | * no txstate to store the value. | 
|  | */ | 
|  | if (!txstate) { | 
|  | if (plchan->state == PL08X_CHAN_PAUSED) | 
|  | ret = DMA_PAUSED; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&plchan->vc.lock, flags); | 
|  | ret = dma_cookie_status(chan, cookie, txstate); | 
|  | if (ret != DMA_COMPLETE) { | 
|  | vd = vchan_find_desc(&plchan->vc, cookie); | 
|  | if (vd) { | 
|  | /* On the issued list, so hasn't been processed yet */ | 
|  | struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); | 
|  | struct pl08x_sg *dsg; | 
|  |  | 
|  | list_for_each_entry(dsg, &txd->dsg_list, node) | 
|  | bytes += dsg->len; | 
|  | } else { | 
|  | bytes = pl08x_getbytes_chan(plchan); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  |  | 
|  | /* | 
|  | * This cookie not complete yet | 
|  | * Get number of bytes left in the active transactions and queue | 
|  | */ | 
|  | dma_set_residue(txstate, bytes); | 
|  |  | 
|  | if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS) | 
|  | ret = DMA_PAUSED; | 
|  |  | 
|  | /* Whether waiting or running, we're in progress */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* PrimeCell DMA extension */ | 
|  | struct burst_table { | 
|  | u32 burstwords; | 
|  | u32 reg; | 
|  | }; | 
|  |  | 
|  | static const struct burst_table burst_sizes[] = { | 
|  | { | 
|  | .burstwords = 256, | 
|  | .reg = PL080_BSIZE_256, | 
|  | }, | 
|  | { | 
|  | .burstwords = 128, | 
|  | .reg = PL080_BSIZE_128, | 
|  | }, | 
|  | { | 
|  | .burstwords = 64, | 
|  | .reg = PL080_BSIZE_64, | 
|  | }, | 
|  | { | 
|  | .burstwords = 32, | 
|  | .reg = PL080_BSIZE_32, | 
|  | }, | 
|  | { | 
|  | .burstwords = 16, | 
|  | .reg = PL080_BSIZE_16, | 
|  | }, | 
|  | { | 
|  | .burstwords = 8, | 
|  | .reg = PL080_BSIZE_8, | 
|  | }, | 
|  | { | 
|  | .burstwords = 4, | 
|  | .reg = PL080_BSIZE_4, | 
|  | }, | 
|  | { | 
|  | .burstwords = 0, | 
|  | .reg = PL080_BSIZE_1, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Given the source and destination available bus masks, select which | 
|  | * will be routed to each port.  We try to have source and destination | 
|  | * on separate ports, but always respect the allowable settings. | 
|  | */ | 
|  | static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst) | 
|  | { | 
|  | u32 cctl = 0; | 
|  | u32 dst_ahb2; | 
|  | u32 src_ahb2; | 
|  |  | 
|  | /* The FTDMAC020 use different bits to indicate src/dst bus */ | 
|  | if (ftdmac020) { | 
|  | dst_ahb2 = FTDMAC020_LLI_DST_SEL; | 
|  | src_ahb2 = FTDMAC020_LLI_SRC_SEL; | 
|  | } else { | 
|  | dst_ahb2 = PL080_CONTROL_DST_AHB2; | 
|  | src_ahb2 = PL080_CONTROL_SRC_AHB2; | 
|  | } | 
|  |  | 
|  | if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) | 
|  | cctl |= dst_ahb2; | 
|  | if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) | 
|  | cctl |= src_ahb2; | 
|  |  | 
|  | return cctl; | 
|  | } | 
|  |  | 
|  | static u32 pl08x_cctl(u32 cctl) | 
|  | { | 
|  | cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | | 
|  | PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | | 
|  | PL080_CONTROL_PROT_MASK); | 
|  |  | 
|  | /* Access the cell in privileged mode, non-bufferable, non-cacheable */ | 
|  | return cctl | PL080_CONTROL_PROT_SYS; | 
|  | } | 
|  |  | 
|  | static u32 pl08x_width(enum dma_slave_buswidth width) | 
|  | { | 
|  | switch (width) { | 
|  | case DMA_SLAVE_BUSWIDTH_1_BYTE: | 
|  | return PL080_WIDTH_8BIT; | 
|  | case DMA_SLAVE_BUSWIDTH_2_BYTES: | 
|  | return PL080_WIDTH_16BIT; | 
|  | case DMA_SLAVE_BUSWIDTH_4_BYTES: | 
|  | return PL080_WIDTH_32BIT; | 
|  | default: | 
|  | return ~0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 pl08x_burst(u32 maxburst) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) | 
|  | if (burst_sizes[i].burstwords <= maxburst) | 
|  | break; | 
|  |  | 
|  | return burst_sizes[i].reg; | 
|  | } | 
|  |  | 
|  | static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan, | 
|  | enum dma_slave_buswidth addr_width, u32 maxburst) | 
|  | { | 
|  | u32 width, burst, cctl = 0; | 
|  |  | 
|  | width = pl08x_width(addr_width); | 
|  | if (width == ~0) | 
|  | return ~0; | 
|  |  | 
|  | cctl |= width << PL080_CONTROL_SWIDTH_SHIFT; | 
|  | cctl |= width << PL080_CONTROL_DWIDTH_SHIFT; | 
|  |  | 
|  | /* | 
|  | * If this channel will only request single transfers, set this | 
|  | * down to ONE element.  Also select one element if no maxburst | 
|  | * is specified. | 
|  | */ | 
|  | if (plchan->cd->single) | 
|  | maxburst = 1; | 
|  |  | 
|  | burst = pl08x_burst(maxburst); | 
|  | cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT; | 
|  | cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  |  | 
|  | return pl08x_cctl(cctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slave transactions callback to the slave device to allow | 
|  | * synchronization of slave DMA signals with the DMAC enable | 
|  | */ | 
|  | static void pl08x_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->vc.lock, flags); | 
|  | if (vchan_issue_pending(&plchan->vc)) { | 
|  | if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING) | 
|  | pl08x_phy_alloc_and_start(plchan); | 
|  | } | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  | } | 
|  |  | 
|  | static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan) | 
|  | { | 
|  | struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); | 
|  |  | 
|  | if (txd) | 
|  | INIT_LIST_HEAD(&txd->dsg_list); | 
|  | return txd; | 
|  | } | 
|  |  | 
|  | static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | u32 cctl = 0; | 
|  |  | 
|  | /* Conjure cctl */ | 
|  | switch (pl08x->pd->memcpy_burst_size) { | 
|  | default: | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "illegal burst size for memcpy, set to 1\n"); | 
|  | /* Fall through */ | 
|  | case PL08X_BURST_SZ_1: | 
|  | cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_4: | 
|  | cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_8: | 
|  | cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_16: | 
|  | cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_32: | 
|  | cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_64: | 
|  | cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_128: | 
|  | cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | case PL08X_BURST_SZ_256: | 
|  | cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT | | 
|  | PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (pl08x->pd->memcpy_bus_width) { | 
|  | default: | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "illegal bus width for memcpy, set to 8 bits\n"); | 
|  | /* Fall through */ | 
|  | case PL08X_BUS_WIDTH_8_BITS: | 
|  | cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT | | 
|  | PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case PL08X_BUS_WIDTH_16_BITS: | 
|  | cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT | | 
|  | PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | case PL08X_BUS_WIDTH_32_BITS: | 
|  | cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT | | 
|  | PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Protection flags */ | 
|  | if (pl08x->pd->memcpy_prot_buff) | 
|  | cctl |= PL080_CONTROL_PROT_BUFF; | 
|  | if (pl08x->pd->memcpy_prot_cache) | 
|  | cctl |= PL080_CONTROL_PROT_CACHE; | 
|  |  | 
|  | /* We are the kernel, so we are in privileged mode */ | 
|  | cctl |= PL080_CONTROL_PROT_SYS; | 
|  |  | 
|  | /* Both to be incremented or the code will break */ | 
|  | cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; | 
|  |  | 
|  | if (pl08x->vd->dualmaster) | 
|  | cctl |= pl08x_select_bus(false, | 
|  | pl08x->mem_buses, | 
|  | pl08x->mem_buses); | 
|  |  | 
|  | return cctl; | 
|  | } | 
|  |  | 
|  | static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | u32 cctl = 0; | 
|  |  | 
|  | /* Conjure cctl */ | 
|  | switch (pl08x->pd->memcpy_bus_width) { | 
|  | default: | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "illegal bus width for memcpy, set to 8 bits\n"); | 
|  | /* Fall through */ | 
|  | case PL08X_BUS_WIDTH_8_BITS: | 
|  | cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | | 
|  | PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | case PL08X_BUS_WIDTH_16_BITS: | 
|  | cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | | 
|  | PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | case PL08X_BUS_WIDTH_32_BITS: | 
|  | cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | | 
|  | PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By default mask the TC IRQ on all LLIs, it will be unmasked on | 
|  | * the last LLI item by other code. | 
|  | */ | 
|  | cctl |= FTDMAC020_LLI_TC_MSK; | 
|  |  | 
|  | /* | 
|  | * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL | 
|  | * and FTDMAC020_LLI_DSTAD_CTL as zero | 
|  | */ | 
|  | if (pl08x->vd->dualmaster) | 
|  | cctl |= pl08x_select_bus(true, | 
|  | pl08x->mem_buses, | 
|  | pl08x->mem_buses); | 
|  |  | 
|  | return cctl; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a descriptor to be used by memcpy submit | 
|  | */ | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( | 
|  | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | 
|  | size_t len, unsigned long flags) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | struct pl08x_sg *dsg; | 
|  | int ret; | 
|  |  | 
|  | txd = pl08x_get_txd(plchan); | 
|  | if (!txd) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s no memory for descriptor\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); | 
|  | if (!dsg) { | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | return NULL; | 
|  | } | 
|  | list_add_tail(&dsg->node, &txd->dsg_list); | 
|  |  | 
|  | dsg->src_addr = src; | 
|  | dsg->dst_addr = dest; | 
|  | dsg->len = len; | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | /* Writing CCFG zero ENABLES all interrupts */ | 
|  | txd->ccfg = 0; | 
|  | txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x); | 
|  | } else { | 
|  | txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | | 
|  | PL080_CONFIG_TC_IRQ_MASK | | 
|  | PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  | txd->cctl = pl08x_memcpy_cctl(pl08x); | 
|  | } | 
|  |  | 
|  | ret = pl08x_fill_llis_for_desc(plchan->host, txd); | 
|  | if (!ret) { | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&plchan->vc, &txd->vd, flags); | 
|  | } | 
|  |  | 
|  | static struct pl08x_txd *pl08x_init_txd( | 
|  | struct dma_chan *chan, | 
|  | enum dma_transfer_direction direction, | 
|  | dma_addr_t *slave_addr) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | enum dma_slave_buswidth addr_width; | 
|  | int ret, tmp; | 
|  | u8 src_buses, dst_buses; | 
|  | u32 maxburst, cctl; | 
|  |  | 
|  | txd = pl08x_get_txd(plchan); | 
|  | if (!txd) { | 
|  | dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up addresses, the PrimeCell configured address | 
|  | * will take precedence since this may configure the | 
|  | * channel target address dynamically at runtime. | 
|  | */ | 
|  | if (direction == DMA_MEM_TO_DEV) { | 
|  | cctl = PL080_CONTROL_SRC_INCR; | 
|  | *slave_addr = plchan->cfg.dst_addr; | 
|  | addr_width = plchan->cfg.dst_addr_width; | 
|  | maxburst = plchan->cfg.dst_maxburst; | 
|  | src_buses = pl08x->mem_buses; | 
|  | dst_buses = plchan->cd->periph_buses; | 
|  | } else if (direction == DMA_DEV_TO_MEM) { | 
|  | cctl = PL080_CONTROL_DST_INCR; | 
|  | *slave_addr = plchan->cfg.src_addr; | 
|  | addr_width = plchan->cfg.src_addr_width; | 
|  | maxburst = plchan->cfg.src_maxburst; | 
|  | src_buses = plchan->cd->periph_buses; | 
|  | dst_buses = pl08x->mem_buses; | 
|  | } else { | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s direction unsupported\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | cctl |= pl08x_get_cctl(plchan, addr_width, maxburst); | 
|  | if (cctl == ~0) { | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "DMA slave configuration botched?\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses); | 
|  |  | 
|  | if (plchan->cfg.device_fc) | 
|  | tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER : | 
|  | PL080_FLOW_PER2MEM_PER; | 
|  | else | 
|  | tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER : | 
|  | PL080_FLOW_PER2MEM; | 
|  |  | 
|  | txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | | 
|  | PL080_CONFIG_TC_IRQ_MASK | | 
|  | tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT; | 
|  |  | 
|  | ret = pl08x_request_mux(plchan); | 
|  | if (ret < 0) { | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "unable to mux for transfer on %s due to platform restrictions\n", | 
|  | plchan->name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n", | 
|  | plchan->signal, plchan->name); | 
|  |  | 
|  | /* Assign the flow control signal to this channel */ | 
|  | if (direction == DMA_MEM_TO_DEV) | 
|  | txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT; | 
|  | else | 
|  | txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT; | 
|  |  | 
|  | return txd; | 
|  | } | 
|  |  | 
|  | static int pl08x_tx_add_sg(struct pl08x_txd *txd, | 
|  | enum dma_transfer_direction direction, | 
|  | dma_addr_t slave_addr, | 
|  | dma_addr_t buf_addr, | 
|  | unsigned int len) | 
|  | { | 
|  | struct pl08x_sg *dsg; | 
|  |  | 
|  | dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); | 
|  | if (!dsg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | list_add_tail(&dsg->node, &txd->dsg_list); | 
|  |  | 
|  | dsg->len = len; | 
|  | if (direction == DMA_MEM_TO_DEV) { | 
|  | dsg->src_addr = buf_addr; | 
|  | dsg->dst_addr = slave_addr; | 
|  | } else { | 
|  | dsg->src_addr = slave_addr; | 
|  | dsg->dst_addr = buf_addr; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( | 
|  | struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags, void *context) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | struct scatterlist *sg; | 
|  | int ret, tmp; | 
|  | dma_addr_t slave_addr; | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", | 
|  | __func__, sg_dma_len(sgl), plchan->name); | 
|  |  | 
|  | txd = pl08x_init_txd(chan, direction, &slave_addr); | 
|  | if (!txd) | 
|  | return NULL; | 
|  |  | 
|  | for_each_sg(sgl, sg, sg_len, tmp) { | 
|  | ret = pl08x_tx_add_sg(txd, direction, slave_addr, | 
|  | sg_dma_address(sg), | 
|  | sg_dma_len(sg)); | 
|  | if (ret) { | 
|  | pl08x_release_mux(plchan); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n", | 
|  | __func__); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = pl08x_fill_llis_for_desc(plchan->host, txd); | 
|  | if (!ret) { | 
|  | pl08x_release_mux(plchan); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&plchan->vc, &txd->vd, flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic( | 
|  | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, | 
|  | size_t period_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | struct pl08x_txd *txd; | 
|  | int ret, tmp; | 
|  | dma_addr_t slave_addr; | 
|  |  | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n", | 
|  | __func__, period_len, buf_len, | 
|  | direction == DMA_MEM_TO_DEV ? "to" : "from", | 
|  | plchan->name); | 
|  |  | 
|  | txd = pl08x_init_txd(chan, direction, &slave_addr); | 
|  | if (!txd) | 
|  | return NULL; | 
|  |  | 
|  | txd->cyclic = true; | 
|  | txd->cctl |= PL080_CONTROL_TC_IRQ_EN; | 
|  | for (tmp = 0; tmp < buf_len; tmp += period_len) { | 
|  | ret = pl08x_tx_add_sg(txd, direction, slave_addr, | 
|  | buf_addr + tmp, period_len); | 
|  | if (ret) { | 
|  | pl08x_release_mux(plchan); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = pl08x_fill_llis_for_desc(plchan->host, txd); | 
|  | if (!ret) { | 
|  | pl08x_release_mux(plchan); | 
|  | pl08x_free_txd(pl08x, txd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&plchan->vc, &txd->vd, flags); | 
|  | } | 
|  |  | 
|  | static int pl08x_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *config) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  |  | 
|  | if (!plchan->slave) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Reject definitely invalid configurations */ | 
|  | if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || | 
|  | config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (config->device_fc && pl08x->vd->pl080s) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s: PL080S does not support peripheral flow control\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | plchan->cfg = *config; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pl08x_terminate_all(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | struct pl08x_driver_data *pl08x = plchan->host; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&plchan->vc.lock, flags); | 
|  | if (!plchan->phychan && !plchan->at) { | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | plchan->state = PL08X_CHAN_IDLE; | 
|  |  | 
|  | if (plchan->phychan) { | 
|  | /* | 
|  | * Mark physical channel as free and free any slave | 
|  | * signal | 
|  | */ | 
|  | pl08x_phy_free(plchan); | 
|  | } | 
|  | /* Dequeue jobs and free LLIs */ | 
|  | if (plchan->at) { | 
|  | vchan_terminate_vdesc(&plchan->at->vd); | 
|  | plchan->at = NULL; | 
|  | } | 
|  | /* Dequeue jobs not yet fired as well */ | 
|  | pl08x_free_txd_list(pl08x, plchan); | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pl08x_synchronize(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  |  | 
|  | vchan_synchronize(&plchan->vc); | 
|  | } | 
|  |  | 
|  | static int pl08x_pause(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Anything succeeds on channels with no physical allocation and | 
|  | * no queued transfers. | 
|  | */ | 
|  | spin_lock_irqsave(&plchan->vc.lock, flags); | 
|  | if (!plchan->phychan && !plchan->at) { | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pl08x_pause_phy_chan(plchan->phychan); | 
|  | plchan->state = PL08X_CHAN_PAUSED; | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pl08x_resume(struct dma_chan *chan) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Anything succeeds on channels with no physical allocation and | 
|  | * no queued transfers. | 
|  | */ | 
|  | spin_lock_irqsave(&plchan->vc.lock, flags); | 
|  | if (!plchan->phychan && !plchan->at) { | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pl08x_resume_phy_chan(plchan->phychan); | 
|  | plchan->state = PL08X_CHAN_RUNNING; | 
|  |  | 
|  | spin_unlock_irqrestore(&plchan->vc.lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan; | 
|  | char *name = chan_id; | 
|  |  | 
|  | /* Reject channels for devices not bound to this driver */ | 
|  | if (chan->device->dev->driver != &pl08x_amba_driver.drv) | 
|  | return false; | 
|  |  | 
|  | plchan = to_pl08x_chan(chan); | 
|  |  | 
|  | /* Check that the channel is not taken! */ | 
|  | if (!strcmp(plchan->name, name)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pl08x_filter_id); | 
|  |  | 
|  | static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id) | 
|  | { | 
|  | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); | 
|  |  | 
|  | return plchan->cd == chan_id; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Just check that the device is there and active | 
|  | * TODO: turn this bit on/off depending on the number of physical channels | 
|  | * actually used, if it is zero... well shut it off. That will save some | 
|  | * power. Cut the clock at the same time. | 
|  | */ | 
|  | static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | /* The Nomadik variant does not have the config register */ | 
|  | if (pl08x->vd->nomadik) | 
|  | return; | 
|  | /* The FTDMAC020 variant does this in another register */ | 
|  | if (pl08x->vd->ftdmac020) { | 
|  | writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR); | 
|  | return; | 
|  | } | 
|  | writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG); | 
|  | } | 
|  |  | 
|  | static irqreturn_t pl08x_irq(int irq, void *dev) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = dev; | 
|  | u32 mask = 0, err, tc, i; | 
|  |  | 
|  | /* check & clear - ERR & TC interrupts */ | 
|  | err = readl(pl08x->base + PL080_ERR_STATUS); | 
|  | if (err) { | 
|  | dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n", | 
|  | __func__, err); | 
|  | writel(err, pl08x->base + PL080_ERR_CLEAR); | 
|  | } | 
|  | tc = readl(pl08x->base + PL080_TC_STATUS); | 
|  | if (tc) | 
|  | writel(tc, pl08x->base + PL080_TC_CLEAR); | 
|  |  | 
|  | if (!err && !tc) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | if ((BIT(i) & err) || (BIT(i) & tc)) { | 
|  | /* Locate physical channel */ | 
|  | struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; | 
|  | struct pl08x_dma_chan *plchan = phychan->serving; | 
|  | struct pl08x_txd *tx; | 
|  |  | 
|  | if (!plchan) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "%s Error TC interrupt on unused channel: 0x%08x\n", | 
|  | __func__, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_lock(&plchan->vc.lock); | 
|  | tx = plchan->at; | 
|  | if (tx && tx->cyclic) { | 
|  | vchan_cyclic_callback(&tx->vd); | 
|  | } else if (tx) { | 
|  | plchan->at = NULL; | 
|  | /* | 
|  | * This descriptor is done, release its mux | 
|  | * reservation. | 
|  | */ | 
|  | pl08x_release_mux(plchan); | 
|  | tx->done = true; | 
|  | vchan_cookie_complete(&tx->vd); | 
|  |  | 
|  | /* | 
|  | * And start the next descriptor (if any), | 
|  | * otherwise free this channel. | 
|  | */ | 
|  | if (vchan_next_desc(&plchan->vc)) | 
|  | pl08x_start_next_txd(plchan); | 
|  | else | 
|  | pl08x_phy_free(plchan); | 
|  | } | 
|  | spin_unlock(&plchan->vc.lock); | 
|  |  | 
|  | mask |= BIT(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | return mask ? IRQ_HANDLED : IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan) | 
|  | { | 
|  | chan->slave = true; | 
|  | chan->name = chan->cd->bus_id; | 
|  | chan->cfg.src_addr = chan->cd->addr; | 
|  | chan->cfg.dst_addr = chan->cd->addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the DMAC memcpy/slave channels. | 
|  | * Make a local wrapper to hold required data | 
|  | */ | 
|  | static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, | 
|  | struct dma_device *dmadev, unsigned int channels, bool slave) | 
|  | { | 
|  | struct pl08x_dma_chan *chan; | 
|  | int i; | 
|  |  | 
|  | INIT_LIST_HEAD(&dmadev->channels); | 
|  |  | 
|  | /* | 
|  | * Register as many many memcpy as we have physical channels, | 
|  | * we won't always be able to use all but the code will have | 
|  | * to cope with that situation. | 
|  | */ | 
|  | for (i = 0; i < channels; i++) { | 
|  | chan = kzalloc(sizeof(*chan), GFP_KERNEL); | 
|  | if (!chan) | 
|  | return -ENOMEM; | 
|  |  | 
|  | chan->host = pl08x; | 
|  | chan->state = PL08X_CHAN_IDLE; | 
|  | chan->signal = -1; | 
|  |  | 
|  | if (slave) { | 
|  | chan->cd = &pl08x->pd->slave_channels[i]; | 
|  | /* | 
|  | * Some implementations have muxed signals, whereas some | 
|  | * use a mux in front of the signals and need dynamic | 
|  | * assignment of signals. | 
|  | */ | 
|  | chan->signal = i; | 
|  | pl08x_dma_slave_init(chan); | 
|  | } else { | 
|  | chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL); | 
|  | if (!chan->cd) { | 
|  | kfree(chan); | 
|  | return -ENOMEM; | 
|  | } | 
|  | chan->cd->bus_id = "memcpy"; | 
|  | chan->cd->periph_buses = pl08x->pd->mem_buses; | 
|  | chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); | 
|  | if (!chan->name) { | 
|  | kfree(chan->cd); | 
|  | kfree(chan); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "initialize virtual channel \"%s\"\n", | 
|  | chan->name); | 
|  |  | 
|  | chan->vc.desc_free = pl08x_desc_free; | 
|  | vchan_init(&chan->vc, dmadev); | 
|  | } | 
|  | dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", | 
|  | i, slave ? "slave" : "memcpy"); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void pl08x_free_virtual_channels(struct dma_device *dmadev) | 
|  | { | 
|  | struct pl08x_dma_chan *chan = NULL; | 
|  | struct pl08x_dma_chan *next; | 
|  |  | 
|  | list_for_each_entry_safe(chan, | 
|  | next, &dmadev->channels, vc.chan.device_node) { | 
|  | list_del(&chan->vc.chan.device_node); | 
|  | kfree(chan); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static const char *pl08x_state_str(enum pl08x_dma_chan_state state) | 
|  | { | 
|  | switch (state) { | 
|  | case PL08X_CHAN_IDLE: | 
|  | return "idle"; | 
|  | case PL08X_CHAN_RUNNING: | 
|  | return "running"; | 
|  | case PL08X_CHAN_PAUSED: | 
|  | return "paused"; | 
|  | case PL08X_CHAN_WAITING: | 
|  | return "waiting"; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return "UNKNOWN STATE"; | 
|  | } | 
|  |  | 
|  | static int pl08x_debugfs_show(struct seq_file *s, void *data) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = s->private; | 
|  | struct pl08x_dma_chan *chan; | 
|  | struct pl08x_phy_chan *ch; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | seq_printf(s, "PL08x physical channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tUSER:\n"); | 
|  | seq_printf(s, "--------\t-----\n"); | 
|  | for (i = 0; i < pl08x->vd->channels; i++) { | 
|  | struct pl08x_dma_chan *virt_chan; | 
|  |  | 
|  | ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | spin_lock_irqsave(&ch->lock, flags); | 
|  | virt_chan = ch->serving; | 
|  |  | 
|  | seq_printf(s, "%d\t\t%s%s\n", | 
|  | ch->id, | 
|  | virt_chan ? virt_chan->name : "(none)", | 
|  | ch->locked ? " LOCKED" : ""); | 
|  |  | 
|  | spin_unlock_irqrestore(&ch->lock, flags); | 
|  | } | 
|  |  | 
|  | seq_printf(s, "\nPL08x virtual memcpy channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tSTATE:\n"); | 
|  | seq_printf(s, "--------\t------\n"); | 
|  | list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) { | 
|  | seq_printf(s, "%s\t\t%s\n", chan->name, | 
|  | pl08x_state_str(chan->state)); | 
|  | } | 
|  |  | 
|  | if (pl08x->has_slave) { | 
|  | seq_printf(s, "\nPL08x virtual slave channels:\n"); | 
|  | seq_printf(s, "CHANNEL:\tSTATE:\n"); | 
|  | seq_printf(s, "--------\t------\n"); | 
|  | list_for_each_entry(chan, &pl08x->slave.channels, | 
|  | vc.chan.device_node) { | 
|  | seq_printf(s, "%s\t\t%s\n", chan->name, | 
|  | pl08x_state_str(chan->state)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pl08x_debugfs_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, pl08x_debugfs_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations pl08x_debugfs_operations = { | 
|  | .open		= pl08x_debugfs_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | /* Expose a simple debugfs interface to view all clocks */ | 
|  | (void) debugfs_create_file(dev_name(&pl08x->adev->dev), | 
|  | S_IFREG | S_IRUGO, NULL, pl08x, | 
|  | &pl08x_debugfs_operations); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x, | 
|  | u32 id) | 
|  | { | 
|  | struct pl08x_dma_chan *chan; | 
|  |  | 
|  | /* Trying to get a slave channel from something with no slave support */ | 
|  | if (!pl08x->has_slave) | 
|  | return NULL; | 
|  |  | 
|  | list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) { | 
|  | if (chan->signal == id) | 
|  | return &chan->vc.chan; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x = ofdma->of_dma_data; | 
|  | struct dma_chan *dma_chan; | 
|  | struct pl08x_dma_chan *plchan; | 
|  |  | 
|  | if (!pl08x) | 
|  | return NULL; | 
|  |  | 
|  | if (dma_spec->args_count != 2) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "DMA channel translation requires two cells\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]); | 
|  | if (!dma_chan) { | 
|  | dev_err(&pl08x->adev->dev, | 
|  | "DMA slave channel not found\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | plchan = to_pl08x_chan(dma_chan); | 
|  | dev_dbg(&pl08x->adev->dev, | 
|  | "translated channel for signal %d\n", | 
|  | dma_spec->args[0]); | 
|  |  | 
|  | /* Augment channel data for applicable AHB buses */ | 
|  | plchan->cd->periph_buses = dma_spec->args[1]; | 
|  | return dma_get_slave_channel(dma_chan); | 
|  | } | 
|  |  | 
|  | static int pl08x_of_probe(struct amba_device *adev, | 
|  | struct pl08x_driver_data *pl08x, | 
|  | struct device_node *np) | 
|  | { | 
|  | struct pl08x_platform_data *pd; | 
|  | struct pl08x_channel_data *chanp = NULL; | 
|  | u32 val; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL); | 
|  | if (!pd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Eligible bus masters for fetching LLIs */ | 
|  | if (of_property_read_bool(np, "lli-bus-interface-ahb1")) | 
|  | pd->lli_buses |= PL08X_AHB1; | 
|  | if (of_property_read_bool(np, "lli-bus-interface-ahb2")) | 
|  | pd->lli_buses |= PL08X_AHB2; | 
|  | if (!pd->lli_buses) { | 
|  | dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n"); | 
|  | pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2; | 
|  | } | 
|  |  | 
|  | /* Eligible bus masters for memory access */ | 
|  | if (of_property_read_bool(np, "mem-bus-interface-ahb1")) | 
|  | pd->mem_buses |= PL08X_AHB1; | 
|  | if (of_property_read_bool(np, "mem-bus-interface-ahb2")) | 
|  | pd->mem_buses |= PL08X_AHB2; | 
|  | if (!pd->mem_buses) { | 
|  | dev_info(&adev->dev, "no bus masters for memory stated, assume all\n"); | 
|  | pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2; | 
|  | } | 
|  |  | 
|  | /* Parse the memcpy channel properties */ | 
|  | ret = of_property_read_u32(np, "memcpy-burst-size", &val); | 
|  | if (ret) { | 
|  | dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n"); | 
|  | val = 1; | 
|  | } | 
|  | switch (val) { | 
|  | default: | 
|  | dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n"); | 
|  | /* Fall through */ | 
|  | case 1: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_1; | 
|  | break; | 
|  | case 4: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_4; | 
|  | break; | 
|  | case 8: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_8; | 
|  | break; | 
|  | case 16: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_16; | 
|  | break; | 
|  | case 32: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_32; | 
|  | break; | 
|  | case 64: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_64; | 
|  | break; | 
|  | case 128: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_128; | 
|  | break; | 
|  | case 256: | 
|  | pd->memcpy_burst_size = PL08X_BURST_SZ_256; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = of_property_read_u32(np, "memcpy-bus-width", &val); | 
|  | if (ret) { | 
|  | dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n"); | 
|  | val = 8; | 
|  | } | 
|  | switch (val) { | 
|  | default: | 
|  | dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); | 
|  | /* Fall through */ | 
|  | case 8: | 
|  | pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS; | 
|  | break; | 
|  | case 16: | 
|  | pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS; | 
|  | break; | 
|  | case 32: | 
|  | pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate channel data for all possible slave channels (one | 
|  | * for each possible signal), channels will then be allocated | 
|  | * for a device and have it's AHB interfaces set up at | 
|  | * translation time. | 
|  | */ | 
|  | if (pl08x->vd->signals) { | 
|  | chanp = devm_kcalloc(&adev->dev, | 
|  | pl08x->vd->signals, | 
|  | sizeof(struct pl08x_channel_data), | 
|  | GFP_KERNEL); | 
|  | if (!chanp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pd->slave_channels = chanp; | 
|  | for (i = 0; i < pl08x->vd->signals; i++) { | 
|  | /* | 
|  | * chanp->periph_buses will be assigned at translation | 
|  | */ | 
|  | chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i); | 
|  | chanp++; | 
|  | } | 
|  | pd->num_slave_channels = pl08x->vd->signals; | 
|  | } | 
|  |  | 
|  | pl08x->pd = pd; | 
|  |  | 
|  | return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate, | 
|  | pl08x); | 
|  | } | 
|  | #else | 
|  | static inline int pl08x_of_probe(struct amba_device *adev, | 
|  | struct pl08x_driver_data *pl08x, | 
|  | struct device_node *np) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) | 
|  | { | 
|  | struct pl08x_driver_data *pl08x; | 
|  | struct vendor_data *vd = id->data; | 
|  | struct device_node *np = adev->dev.of_node; | 
|  | u32 tsfr_size; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | ret = amba_request_regions(adev, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Ensure that we can do DMA */ | 
|  | ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); | 
|  | if (ret) | 
|  | goto out_no_pl08x; | 
|  |  | 
|  | /* Create the driver state holder */ | 
|  | pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL); | 
|  | if (!pl08x) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_pl08x; | 
|  | } | 
|  |  | 
|  | /* Assign useful pointers to the driver state */ | 
|  | pl08x->adev = adev; | 
|  | pl08x->vd = vd; | 
|  |  | 
|  | pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); | 
|  | if (!pl08x->base) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_ioremap; | 
|  | } | 
|  |  | 
|  | if (vd->ftdmac020) { | 
|  | u32 val; | 
|  |  | 
|  | val = readl(pl08x->base + FTDMAC020_REVISION); | 
|  | dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n", | 
|  | (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff); | 
|  | val = readl(pl08x->base + FTDMAC020_FEATURE); | 
|  | dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, " | 
|  | "%s built-in bridge, %s, %s linked lists\n", | 
|  | (val >> 12) & 0x0f, | 
|  | (val & BIT(10)) ? "no" : "has", | 
|  | (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0", | 
|  | (val & BIT(8)) ? "supports" : "does not support"); | 
|  |  | 
|  | /* Vendor data from feature register */ | 
|  | if (!(val & BIT(8))) | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "linked lists not supported, required\n"); | 
|  | vd->channels = (val >> 12) & 0x0f; | 
|  | vd->dualmaster = !!(val & BIT(9)); | 
|  | } | 
|  |  | 
|  | /* Initialize memcpy engine */ | 
|  | dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); | 
|  | pl08x->memcpy.dev = &adev->dev; | 
|  | pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; | 
|  | pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; | 
|  | pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; | 
|  | pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; | 
|  | pl08x->memcpy.device_issue_pending = pl08x_issue_pending; | 
|  | pl08x->memcpy.device_config = pl08x_config; | 
|  | pl08x->memcpy.device_pause = pl08x_pause; | 
|  | pl08x->memcpy.device_resume = pl08x_resume; | 
|  | pl08x->memcpy.device_terminate_all = pl08x_terminate_all; | 
|  | pl08x->memcpy.device_synchronize = pl08x_synchronize; | 
|  | pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS; | 
|  | pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS; | 
|  | pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM); | 
|  | pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; | 
|  | if (vd->ftdmac020) | 
|  | pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize slave engine, if the block has no signals, that means | 
|  | * we have no slave support. | 
|  | */ | 
|  | if (vd->signals) { | 
|  | pl08x->has_slave = true; | 
|  | dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask); | 
|  | pl08x->slave.dev = &adev->dev; | 
|  | pl08x->slave.device_free_chan_resources = | 
|  | pl08x_free_chan_resources; | 
|  | pl08x->slave.device_prep_dma_interrupt = | 
|  | pl08x_prep_dma_interrupt; | 
|  | pl08x->slave.device_tx_status = pl08x_dma_tx_status; | 
|  | pl08x->slave.device_issue_pending = pl08x_issue_pending; | 
|  | pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; | 
|  | pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic; | 
|  | pl08x->slave.device_config = pl08x_config; | 
|  | pl08x->slave.device_pause = pl08x_pause; | 
|  | pl08x->slave.device_resume = pl08x_resume; | 
|  | pl08x->slave.device_terminate_all = pl08x_terminate_all; | 
|  | pl08x->slave.device_synchronize = pl08x_synchronize; | 
|  | pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS; | 
|  | pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS; | 
|  | pl08x->slave.directions = | 
|  | BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | 
|  | pl08x->slave.residue_granularity = | 
|  | DMA_RESIDUE_GRANULARITY_SEGMENT; | 
|  | } | 
|  |  | 
|  | /* Get the platform data */ | 
|  | pl08x->pd = dev_get_platdata(&adev->dev); | 
|  | if (!pl08x->pd) { | 
|  | if (np) { | 
|  | ret = pl08x_of_probe(adev, pl08x, np); | 
|  | if (ret) | 
|  | goto out_no_platdata; | 
|  | } else { | 
|  | dev_err(&adev->dev, "no platform data supplied\n"); | 
|  | ret = -EINVAL; | 
|  | goto out_no_platdata; | 
|  | } | 
|  | } else { | 
|  | pl08x->slave.filter.map = pl08x->pd->slave_map; | 
|  | pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len; | 
|  | pl08x->slave.filter.fn = pl08x_filter_fn; | 
|  | } | 
|  |  | 
|  | /* By default, AHB1 only.  If dualmaster, from platform */ | 
|  | pl08x->lli_buses = PL08X_AHB1; | 
|  | pl08x->mem_buses = PL08X_AHB1; | 
|  | if (pl08x->vd->dualmaster) { | 
|  | pl08x->lli_buses = pl08x->pd->lli_buses; | 
|  | pl08x->mem_buses = pl08x->pd->mem_buses; | 
|  | } | 
|  |  | 
|  | if (vd->pl080s) | 
|  | pl08x->lli_words = PL080S_LLI_WORDS; | 
|  | else | 
|  | pl08x->lli_words = PL080_LLI_WORDS; | 
|  | tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32); | 
|  |  | 
|  | /* A DMA memory pool for LLIs, align on 1-byte boundary */ | 
|  | pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, | 
|  | tsfr_size, PL08X_ALIGN, 0); | 
|  | if (!pl08x->pool) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_lli_pool; | 
|  | } | 
|  |  | 
|  | /* Turn on the PL08x */ | 
|  | pl08x_ensure_on(pl08x); | 
|  |  | 
|  | /* Clear any pending interrupts */ | 
|  | if (vd->ftdmac020) | 
|  | /* This variant has error IRQs in bits 16-19 */ | 
|  | writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR); | 
|  | else | 
|  | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); | 
|  | writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); | 
|  |  | 
|  | /* Attach the interrupt handler */ | 
|  | ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x); | 
|  | if (ret) { | 
|  | dev_err(&adev->dev, "%s failed to request interrupt %d\n", | 
|  | __func__, adev->irq[0]); | 
|  | goto out_no_irq; | 
|  | } | 
|  |  | 
|  | /* Initialize physical channels */ | 
|  | pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)), | 
|  | GFP_KERNEL); | 
|  | if (!pl08x->phy_chans) { | 
|  | ret = -ENOMEM; | 
|  | goto out_no_phychans; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < vd->channels; i++) { | 
|  | struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; | 
|  |  | 
|  | ch->id = i; | 
|  | ch->base = pl08x->base + PL080_Cx_BASE(i); | 
|  | if (vd->ftdmac020) { | 
|  | /* FTDMA020 has a special channel busy register */ | 
|  | ch->reg_busy = ch->base + FTDMAC020_CH_BUSY; | 
|  | ch->reg_config = ch->base + FTDMAC020_CH_CFG; | 
|  | ch->reg_control = ch->base + FTDMAC020_CH_CSR; | 
|  | ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR; | 
|  | ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR; | 
|  | ch->reg_lli = ch->base + FTDMAC020_CH_LLP; | 
|  | ch->ftdmac020 = true; | 
|  | } else { | 
|  | ch->reg_config = ch->base + vd->config_offset; | 
|  | ch->reg_control = ch->base + PL080_CH_CONTROL; | 
|  | ch->reg_src = ch->base + PL080_CH_SRC_ADDR; | 
|  | ch->reg_dst = ch->base + PL080_CH_DST_ADDR; | 
|  | ch->reg_lli = ch->base + PL080_CH_LLI; | 
|  | } | 
|  | if (vd->pl080s) | 
|  | ch->pl080s = true; | 
|  |  | 
|  | spin_lock_init(&ch->lock); | 
|  |  | 
|  | /* | 
|  | * Nomadik variants can have channels that are locked | 
|  | * down for the secure world only. Lock up these channels | 
|  | * by perpetually serving a dummy virtual channel. | 
|  | */ | 
|  | if (vd->nomadik) { | 
|  | u32 val; | 
|  |  | 
|  | val = readl(ch->reg_config); | 
|  | if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) { | 
|  | dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i); | 
|  | ch->locked = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev_dbg(&adev->dev, "physical channel %d is %s\n", | 
|  | i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); | 
|  | } | 
|  |  | 
|  | /* Register as many memcpy channels as there are physical channels */ | 
|  | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, | 
|  | pl08x->vd->channels, false); | 
|  | if (ret <= 0) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to enumerate memcpy channels - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_memcpy; | 
|  | } | 
|  |  | 
|  | /* Register slave channels */ | 
|  | if (pl08x->has_slave) { | 
|  | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, | 
|  | pl08x->pd->num_slave_channels, true); | 
|  | if (ret < 0) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to enumerate slave channels - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_slave; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = dma_async_device_register(&pl08x->memcpy); | 
|  | if (ret) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to register memcpy as an async device - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_memcpy_reg; | 
|  | } | 
|  |  | 
|  | if (pl08x->has_slave) { | 
|  | ret = dma_async_device_register(&pl08x->slave); | 
|  | if (ret) { | 
|  | dev_warn(&pl08x->adev->dev, | 
|  | "%s failed to register slave as an async device - %d\n", | 
|  | __func__, ret); | 
|  | goto out_no_slave_reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | amba_set_drvdata(adev, pl08x); | 
|  | init_pl08x_debugfs(pl08x); | 
|  | dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n", | 
|  | amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev), | 
|  | (unsigned long long)adev->res.start, adev->irq[0]); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_no_slave_reg: | 
|  | dma_async_device_unregister(&pl08x->memcpy); | 
|  | out_no_memcpy_reg: | 
|  | if (pl08x->has_slave) | 
|  | pl08x_free_virtual_channels(&pl08x->slave); | 
|  | out_no_slave: | 
|  | pl08x_free_virtual_channels(&pl08x->memcpy); | 
|  | out_no_memcpy: | 
|  | kfree(pl08x->phy_chans); | 
|  | out_no_phychans: | 
|  | free_irq(adev->irq[0], pl08x); | 
|  | out_no_irq: | 
|  | dma_pool_destroy(pl08x->pool); | 
|  | out_no_lli_pool: | 
|  | out_no_platdata: | 
|  | iounmap(pl08x->base); | 
|  | out_no_ioremap: | 
|  | kfree(pl08x); | 
|  | out_no_pl08x: | 
|  | amba_release_regions(adev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* PL080 has 8 channels and the PL080 have just 2 */ | 
|  | static struct vendor_data vendor_pl080 = { | 
|  | .config_offset = PL080_CH_CONFIG, | 
|  | .channels = 8, | 
|  | .signals = 16, | 
|  | .dualmaster = true, | 
|  | .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, | 
|  | }; | 
|  |  | 
|  | static struct vendor_data vendor_nomadik = { | 
|  | .config_offset = PL080_CH_CONFIG, | 
|  | .channels = 8, | 
|  | .signals = 32, | 
|  | .dualmaster = true, | 
|  | .nomadik = true, | 
|  | .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, | 
|  | }; | 
|  |  | 
|  | static struct vendor_data vendor_pl080s = { | 
|  | .config_offset = PL080S_CH_CONFIG, | 
|  | .channels = 8, | 
|  | .signals = 32, | 
|  | .pl080s = true, | 
|  | .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK, | 
|  | }; | 
|  |  | 
|  | static struct vendor_data vendor_pl081 = { | 
|  | .config_offset = PL080_CH_CONFIG, | 
|  | .channels = 2, | 
|  | .signals = 16, | 
|  | .dualmaster = false, | 
|  | .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, | 
|  | }; | 
|  |  | 
|  | static struct vendor_data vendor_ftdmac020 = { | 
|  | .config_offset = PL080_CH_CONFIG, | 
|  | .ftdmac020 = true, | 
|  | .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, | 
|  | }; | 
|  |  | 
|  | static const struct amba_id pl08x_ids[] = { | 
|  | /* Samsung PL080S variant */ | 
|  | { | 
|  | .id	= 0x0a141080, | 
|  | .mask	= 0xffffffff, | 
|  | .data	= &vendor_pl080s, | 
|  | }, | 
|  | /* PL080 */ | 
|  | { | 
|  | .id	= 0x00041080, | 
|  | .mask	= 0x000fffff, | 
|  | .data	= &vendor_pl080, | 
|  | }, | 
|  | /* PL081 */ | 
|  | { | 
|  | .id	= 0x00041081, | 
|  | .mask	= 0x000fffff, | 
|  | .data	= &vendor_pl081, | 
|  | }, | 
|  | /* Nomadik 8815 PL080 variant */ | 
|  | { | 
|  | .id	= 0x00280080, | 
|  | .mask	= 0x00ffffff, | 
|  | .data	= &vendor_nomadik, | 
|  | }, | 
|  | /* Faraday Technology FTDMAC020 */ | 
|  | { | 
|  | .id	= 0x0003b080, | 
|  | .mask	= 0x000fffff, | 
|  | .data	= &vendor_ftdmac020, | 
|  | }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(amba, pl08x_ids); | 
|  |  | 
|  | static struct amba_driver pl08x_amba_driver = { | 
|  | .drv.name	= DRIVER_NAME, | 
|  | .id_table	= pl08x_ids, | 
|  | .probe		= pl08x_probe, | 
|  | }; | 
|  |  | 
|  | static int __init pl08x_init(void) | 
|  | { | 
|  | int retval; | 
|  | retval = amba_driver_register(&pl08x_amba_driver); | 
|  | if (retval) | 
|  | printk(KERN_WARNING DRIVER_NAME | 
|  | "failed to register as an AMBA device (%d)\n", | 
|  | retval); | 
|  | return retval; | 
|  | } | 
|  | subsys_initcall(pl08x_init); |